/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" /****************************************************************************************/ /* lightweight convolution with 3x3 kernel */ void icvSepConvSmall3_32f( float* src, int src_step, float* dst, int dst_step, CvSize src_size, const float* kx, const float* ky, float* buffer ) { int dst_width, buffer_step = 0; int x, y; assert( src && dst && src_size.width > 2 && src_size.height > 2 && (src_step & 3) == 0 && (dst_step & 3) == 0 && (kx || ky) && (buffer || !kx || !ky)); src_step /= sizeof(src[0]); dst_step /= sizeof(dst[0]); dst_width = src_size.width - 2; if( !kx ) { /* set vars, so that vertical convolution will write results into destination ROI and horizontal convolution won't run */ src_size.width = dst_width; buffer_step = dst_step; buffer = dst; dst_width = 0; } assert( src_step >= src_size.width && dst_step >= dst_width ); src_size.height -= 3; if( !ky ) { /* set vars, so that vertical convolution won't run and horizontal convolution will write results into destination ROI */ src_size.height += 3; buffer_step = src_step; buffer = src; src_size.width = 0; } for( y = 0; y <= src_size.height; y++, src += src_step, dst += dst_step, buffer += buffer_step ) { float* src2 = src + src_step; float* src3 = src + src_step*2; for( x = 0; x < src_size.width; x++ ) { buffer[x] = (float)(ky[0]*src[x] + ky[1]*src2[x] + ky[2]*src3[x]); } for( x = 0; x < dst_width; x++ ) { dst[x] = (float)(kx[0]*buffer[x] + kx[1]*buffer[x+1] + kx[2]*buffer[x+2]); } } } /****************************************************************************************\ Sobel & Scharr Derivative Filters \****************************************************************************************/ /////////////////////////////// Old IPP derivative filters /////////////////////////////// // still used in corner detectors (see cvcorner.cpp) icvFilterSobelVert_8u16s_C1R_t icvFilterSobelVert_8u16s_C1R_p = 0; icvFilterSobelHoriz_8u16s_C1R_t icvFilterSobelHoriz_8u16s_C1R_p = 0; icvFilterSobelVertSecond_8u16s_C1R_t icvFilterSobelVertSecond_8u16s_C1R_p = 0; icvFilterSobelHorizSecond_8u16s_C1R_t icvFilterSobelHorizSecond_8u16s_C1R_p = 0; icvFilterSobelCross_8u16s_C1R_t icvFilterSobelCross_8u16s_C1R_p = 0; icvFilterSobelVert_32f_C1R_t icvFilterSobelVert_32f_C1R_p = 0; icvFilterSobelHoriz_32f_C1R_t icvFilterSobelHoriz_32f_C1R_p = 0; icvFilterSobelVertSecond_32f_C1R_t icvFilterSobelVertSecond_32f_C1R_p = 0; icvFilterSobelHorizSecond_32f_C1R_t icvFilterSobelHorizSecond_32f_C1R_p = 0; icvFilterSobelCross_32f_C1R_t icvFilterSobelCross_32f_C1R_p = 0; icvFilterScharrVert_8u16s_C1R_t icvFilterScharrVert_8u16s_C1R_p = 0; icvFilterScharrHoriz_8u16s_C1R_t icvFilterScharrHoriz_8u16s_C1R_p = 0; icvFilterScharrVert_32f_C1R_t icvFilterScharrVert_32f_C1R_p = 0; icvFilterScharrHoriz_32f_C1R_t icvFilterScharrHoriz_32f_C1R_p = 0; ///////////////////////////////// New IPP derivative filters ///////////////////////////// #define IPCV_FILTER_PTRS( name ) \ icvFilter##name##GetBufSize_8u16s_C1R_t \ icvFilter##name##GetBufSize_8u16s_C1R_p = 0; \ icvFilter##name##Border_8u16s_C1R_t \ icvFilter##name##Border_8u16s_C1R_p = 0; \ icvFilter##name##GetBufSize_32f_C1R_t \ icvFilter##name##GetBufSize_32f_C1R_p = 0; \ icvFilter##name##Border_32f_C1R_t \ icvFilter##name##Border_32f_C1R_p = 0; IPCV_FILTER_PTRS( ScharrHoriz ) IPCV_FILTER_PTRS( ScharrVert ) IPCV_FILTER_PTRS( SobelHoriz ) IPCV_FILTER_PTRS( SobelNegVert ) IPCV_FILTER_PTRS( SobelHorizSecond ) IPCV_FILTER_PTRS( SobelVertSecond ) IPCV_FILTER_PTRS( SobelCross ) IPCV_FILTER_PTRS( Laplacian ) typedef CvStatus (CV_STDCALL * CvDeriv3x3GetBufSizeIPPFunc) ( CvSize roi, int* bufsize ); typedef CvStatus (CV_STDCALL * CvDerivGetBufSizeIPPFunc) ( CvSize roi, int masksize, int* bufsize ); typedef CvStatus (CV_STDCALL * CvDeriv3x3IPPFunc_8u ) ( const void* src, int srcstep, void* dst, int dststep, CvSize size, int bordertype, uchar bordervalue, void* buffer ); typedef CvStatus (CV_STDCALL * CvDeriv3x3IPPFunc_32f ) ( const void* src, int srcstep, void* dst, int dststep, CvSize size, int bordertype, float bordervalue, void* buffer ); typedef CvStatus (CV_STDCALL * CvDerivIPPFunc_8u ) ( const void* src, int srcstep, void* dst, int dststep, CvSize size, int masksize, int bordertype, uchar bordervalue, void* buffer ); typedef CvStatus (CV_STDCALL * CvDerivIPPFunc_32f ) ( const void* src, int srcstep, void* dst, int dststep, CvSize size, int masksize, int bordertype, float bordervalue, void* buffer ); ////////////////////////////////////////////////////////////////////////////////////////// CV_IMPL void cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size ) { CvSepFilter filter; void* buffer = 0; int local_alloc = 0; CV_FUNCNAME( "cvSobel" ); __BEGIN__; int origin = 0; int src_type, dst_type; CvMat srcstub, *src = (CvMat*)srcarr; CvMat dststub, *dst = (CvMat*)dstarr; if( !CV_IS_MAT(src) ) CV_CALL( src = cvGetMat( src, &srcstub )); if( !CV_IS_MAT(dst) ) CV_CALL( dst = cvGetMat( dst, &dststub )); if( CV_IS_IMAGE_HDR( srcarr )) origin = ((IplImage*)srcarr)->origin; src_type = CV_MAT_TYPE( src->type ); dst_type = CV_MAT_TYPE( dst->type ); if( !CV_ARE_SIZES_EQ( src, dst )) CV_ERROR( CV_StsBadArg, "src and dst have different sizes" ); if( ((aperture_size == CV_SCHARR || aperture_size == 3 || aperture_size == 5) && dx <= 2 && dy <= 2 && dx + dy <= 2 && icvFilterSobelNegVertBorder_8u16s_C1R_p) && (src_type == CV_8UC1 && dst_type == CV_16SC1/* || src_type == CV_32FC1 && dst_type == CV_32FC1*/) ) { CvDerivGetBufSizeIPPFunc ipp_sobel_getbufsize_func = 0; CvDerivIPPFunc_8u ipp_sobel_func_8u = 0; CvDerivIPPFunc_32f ipp_sobel_func_32f = 0; CvDeriv3x3GetBufSizeIPPFunc ipp_scharr_getbufsize_func = 0; CvDeriv3x3IPPFunc_8u ipp_scharr_func_8u = 0; CvDeriv3x3IPPFunc_32f ipp_scharr_func_32f = 0; if( aperture_size == CV_SCHARR ) { if( dx == 1 && dy == 0 ) { if( src_type == CV_8U ) ipp_scharr_func_8u = icvFilterScharrVertBorder_8u16s_C1R_p, ipp_scharr_getbufsize_func = icvFilterScharrVertGetBufSize_8u16s_C1R_p; else ipp_scharr_func_32f = icvFilterScharrVertBorder_32f_C1R_p, ipp_scharr_getbufsize_func = icvFilterScharrVertGetBufSize_32f_C1R_p; } else if( dx == 0 && dy == 1 ) { if( src_type == CV_8U ) ipp_scharr_func_8u = icvFilterScharrHorizBorder_8u16s_C1R_p, ipp_scharr_getbufsize_func = icvFilterScharrHorizGetBufSize_8u16s_C1R_p; else ipp_scharr_func_32f = icvFilterScharrHorizBorder_32f_C1R_p, ipp_scharr_getbufsize_func = icvFilterScharrHorizGetBufSize_32f_C1R_p; } else CV_ERROR( CV_StsBadArg, "Scharr filter can only be used to compute 1st image derivatives" ); } else { if( dx == 1 && dy == 0 ) { if( src_type == CV_8U ) ipp_sobel_func_8u = icvFilterSobelNegVertBorder_8u16s_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelNegVertGetBufSize_8u16s_C1R_p; else ipp_sobel_func_32f = icvFilterSobelNegVertBorder_32f_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelNegVertGetBufSize_32f_C1R_p; } else if( dx == 0 && dy == 1 ) { if( src_type == CV_8U ) ipp_sobel_func_8u = icvFilterSobelHorizBorder_8u16s_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelHorizGetBufSize_8u16s_C1R_p; else ipp_sobel_func_32f = icvFilterSobelHorizBorder_32f_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelHorizGetBufSize_32f_C1R_p; } else if( dx == 2 && dy == 0 ) { if( src_type == CV_8U ) ipp_sobel_func_8u = icvFilterSobelVertSecondBorder_8u16s_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelVertSecondGetBufSize_8u16s_C1R_p; else ipp_sobel_func_32f = icvFilterSobelVertSecondBorder_32f_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelVertSecondGetBufSize_32f_C1R_p; } else if( dx == 0 && dy == 2 ) { if( src_type == CV_8U ) ipp_sobel_func_8u = icvFilterSobelHorizSecondBorder_8u16s_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelHorizSecondGetBufSize_8u16s_C1R_p; else ipp_sobel_func_32f = icvFilterSobelHorizSecondBorder_32f_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelHorizSecondGetBufSize_32f_C1R_p; } else if( dx == 1 && dy == 1 ) { if( src_type == CV_8U ) ipp_sobel_func_8u = icvFilterSobelCrossBorder_8u16s_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelCrossGetBufSize_8u16s_C1R_p; else ipp_sobel_func_32f = icvFilterSobelCrossBorder_32f_C1R_p, ipp_sobel_getbufsize_func = icvFilterSobelCrossGetBufSize_32f_C1R_p; } } if( ((ipp_sobel_func_8u || ipp_sobel_func_32f) && ipp_sobel_getbufsize_func) || ((ipp_scharr_func_8u || ipp_scharr_func_32f) && ipp_scharr_getbufsize_func) ) { int bufsize = 0, masksize = aperture_size == 3 ? 33 : 55; CvSize size = cvGetMatSize( src ); uchar* src_ptr = src->data.ptr; uchar* dst_ptr = dst->data.ptr; int src_step = src->step ? src->step : CV_STUB_STEP; int dst_step = dst->step ? dst->step : CV_STUB_STEP; const int bordertype = 1; // replication border CvStatus status; status = ipp_sobel_getbufsize_func ? ipp_sobel_getbufsize_func( size, masksize, &bufsize ) : ipp_scharr_getbufsize_func( size, &bufsize ); if( status >= 0 ) { if( bufsize <= CV_MAX_LOCAL_SIZE ) { buffer = cvStackAlloc( bufsize ); local_alloc = 1; } else CV_CALL( buffer = cvAlloc( bufsize )); status = ipp_sobel_func_8u ? ipp_sobel_func_8u( src_ptr, src_step, dst_ptr, dst_step, size, masksize, bordertype, 0, buffer ) : ipp_sobel_func_32f ? ipp_sobel_func_32f( src_ptr, src_step, dst_ptr, dst_step, size, masksize, bordertype, 0, buffer ) : ipp_scharr_func_8u ? ipp_scharr_func_8u( src_ptr, src_step, dst_ptr, dst_step, size, bordertype, 0, buffer ) : ipp_scharr_func_32f ? ipp_scharr_func_32f( src_ptr, src_step, dst_ptr, dst_step, size, bordertype, 0, buffer ) : CV_NOTDEFINED_ERR; } if( status >= 0 && ((dx == 0 && dy == 1 && origin) || (dx == 1 && dy == 1 && !origin))) // negate the output cvSubRS( dst, cvScalarAll(0), dst ); if( status >= 0 ) EXIT; } } CV_CALL( filter.init_deriv( src->cols, src_type, dst_type, dx, dy, aperture_size, origin ? CvSepFilter::FLIP_KERNEL : 0)); CV_CALL( filter.process( src, dst )); __END__; if( buffer && !local_alloc ) cvFree( &buffer ); } /****************************************************************************************\ Laplacian Filter \****************************************************************************************/ static void icvLaplaceRow_8u32s( const uchar* src, int* dst, void* params ); static void icvLaplaceRow_8u32f( const uchar* src, float* dst, void* params ); static void icvLaplaceRow_32f( const float* src, float* dst, void* params ); static void icvLaplaceCol_32s16s( const int** src, short* dst, int dst_step, int count, void* params ); static void icvLaplaceCol_32f( const float** src, float* dst, int dst_step, int count, void* params ); CvLaplaceFilter::CvLaplaceFilter() { normalized = basic_laplacian = false; } CvLaplaceFilter::CvLaplaceFilter( int _max_width, int _src_type, int _dst_type, bool _normalized, int _ksize, int _border_mode, CvScalar _border_value ) { normalized = basic_laplacian = false; init( _max_width, _src_type, _dst_type, _normalized, _ksize, _border_mode, _border_value ); } CvLaplaceFilter::~CvLaplaceFilter() { clear(); } void CvLaplaceFilter::get_work_params() { int min_rows = max_ky*2 + 3, rows = MAX(min_rows,10), row_sz; int width = max_width, trow_sz = 0; int dst_depth = CV_MAT_DEPTH(dst_type); int work_depth = dst_depth < CV_32F ? CV_32S : CV_32F; work_type = CV_MAKETYPE( work_depth, CV_MAT_CN(dst_type)*2 ); trow_sz = cvAlign( (max_width + ksize.width - 1)*CV_ELEM_SIZE(src_type), ALIGN ); row_sz = cvAlign( width*CV_ELEM_SIZE(work_type), ALIGN ); buf_size = rows*row_sz; buf_size = MIN( buf_size, 1 << 16 ); buf_size = MAX( buf_size, min_rows*row_sz ); max_rows = (buf_size/row_sz)*3 + max_ky*2 + 8; buf_size += trow_sz; } void CvLaplaceFilter::init( int _max_width, int _src_type, int _dst_type, bool _normalized, int _ksize0, int _border_mode, CvScalar _border_value ) { CvMat *kx = 0, *ky = 0; CV_FUNCNAME( "CvLaplaceFilter::init" ); __BEGIN__; int src_depth = CV_MAT_DEPTH(_src_type), dst_depth = CV_MAT_DEPTH(_dst_type); int _ksize = MAX( _ksize0, 3 ); normalized = _normalized; basic_laplacian = _ksize0 == 1; if( ((src_depth != CV_8U || (dst_depth != CV_16S && dst_depth != CV_32F)) && (src_depth != CV_32F || dst_depth != CV_32F)) || CV_MAT_CN(_src_type) != CV_MAT_CN(_dst_type) ) CV_ERROR( CV_StsUnmatchedFormats, "Laplacian can either transform 8u->16s, or 8u->32f, or 32f->32f.\n" "The number of channels must be the same." ); if( _ksize < 1 || _ksize > CV_MAX_SOBEL_KSIZE || _ksize % 2 == 0 ) CV_ERROR( CV_StsOutOfRange, "kernel size must be within 1..7 and odd" ); CV_CALL( kx = cvCreateMat( 1, _ksize, CV_32F )); CV_CALL( ky = cvCreateMat( 1, _ksize, CV_32F )); CvSepFilter::init_sobel_kernel( kx, ky, 2, 0, 0 ); CvSepFilter::init( _max_width, _src_type, _dst_type, kx, ky, cvPoint(-1,-1), _border_mode, _border_value ); x_func = 0; y_func = 0; if( src_depth == CV_8U ) { if( dst_depth == CV_16S ) { x_func = (CvRowFilterFunc)icvLaplaceRow_8u32s; y_func = (CvColumnFilterFunc)icvLaplaceCol_32s16s; } else if( dst_depth == CV_32F ) { x_func = (CvRowFilterFunc)icvLaplaceRow_8u32f; y_func = (CvColumnFilterFunc)icvLaplaceCol_32f; } } else if( src_depth == CV_32F ) { if( dst_depth == CV_32F ) { x_func = (CvRowFilterFunc)icvLaplaceRow_32f; y_func = (CvColumnFilterFunc)icvLaplaceCol_32f; } } if( !x_func || !y_func ) CV_ERROR( CV_StsUnsupportedFormat, "" ); __END__; cvReleaseMat( &kx ); cvReleaseMat( &ky ); } void CvLaplaceFilter::init( int _max_width, int _src_type, int _dst_type, bool _is_separable, CvSize _ksize, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { CvSepFilter::init( _max_width, _src_type, _dst_type, _is_separable, _ksize, _anchor, _border_mode, _border_value ); } void CvLaplaceFilter::init( int _max_width, int _src_type, int _dst_type, const CvMat* _kx, const CvMat* _ky, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { CvSepFilter::init( _max_width, _src_type, _dst_type, _kx, _ky, _anchor, _border_mode, _border_value ); } #define ICV_LAPLACE_ROW( flavor, srctype, dsttype, load_macro ) \ static void \ icvLaplaceRow_##flavor( const srctype* src, dsttype* dst, void* params )\ { \ const CvLaplaceFilter* state = (const CvLaplaceFilter*)params; \ const CvMat* _kx = state->get_x_kernel(); \ const CvMat* _ky = state->get_y_kernel(); \ const dsttype* kx = (dsttype*)_kx->data.ptr; \ const dsttype* ky = (dsttype*)_ky->data.ptr; \ int ksize = _kx->cols + _kx->rows - 1; \ int i = 0, j, k, width = state->get_width(); \ int cn = CV_MAT_CN(state->get_src_type()); \ int ksize2 = ksize/2, ksize2n = ksize2*cn; \ const srctype* s = src + ksize2n; \ bool basic_laplacian = state->is_basic_laplacian(); \ \ kx += ksize2; \ ky += ksize2; \ width *= cn; \ \ if( basic_laplacian ) \ for( i = 0; i < width; i++ ) \ { \ dsttype s0 = load_macro(s[i]); \ dsttype s1 = (dsttype)(s[i-cn] - s0*2 + s[i+cn]); \ dst[i] = s0; dst[i+width] = s1; \ } \ else if( ksize == 3 ) \ for( i = 0; i < width; i++ ) \ { \ dsttype s0 = (dsttype)(s[i-cn] + s[i]*2 + s[i+cn]); \ dsttype s1 = (dsttype)(s[i-cn] - s[i]*2 + s[i+cn]); \ dst[i] = s0; dst[i+width] = s1; \ } \ else if( ksize == 5 ) \ for( i = 0; i < width; i++ ) \ { \ dsttype s0 = (dsttype)(s[i-2*cn]+(s[i-cn]+s[i+cn])*4+s[i]*6+s[i+2*cn]);\ dsttype s1 = (dsttype)(s[i-2*cn]-s[i]*2+s[i+2*cn]); \ dst[i] = s0; dst[i+width] = s1; \ } \ else \ for( i = 0; i < width; i++, s++ ) \ { \ dsttype s0 = ky[0]*load_macro(s[0]), s1 = kx[0]*load_macro(s[0]);\ for( k = 1, j = cn; k <= ksize2; k++, j += cn ) \ { \ dsttype t = load_macro(s[j] + s[-j]); \ s0 += ky[k]*t; s1 += kx[k]*t; \ } \ dst[i] = s0; dst[i+width] = s1; \ } \ } ICV_LAPLACE_ROW( 8u32s, uchar, int, CV_NOP ) ICV_LAPLACE_ROW( 8u32f, uchar, float, CV_8TO32F ) ICV_LAPLACE_ROW( 32f, float, float, CV_NOP ) static void icvLaplaceCol_32s16s( const int** src, short* dst, int dst_step, int count, void* params ) { const CvLaplaceFilter* state = (const CvLaplaceFilter*)params; const CvMat* _kx = state->get_x_kernel(); const CvMat* _ky = state->get_y_kernel(); const int* kx = (const int*)_kx->data.ptr; const int* ky = (const int*)_ky->data.ptr; int ksize = _kx->cols + _kx->rows - 1, ksize2 = ksize/2; int i = 0, k, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); bool basic_laplacian = state->is_basic_laplacian(); bool normalized = state->is_normalized(); int shift = ksize - 1, delta = (1 << shift) >> 1; width *= cn; src += ksize2; kx += ksize2; ky += ksize2; dst_step /= sizeof(dst[0]); if( basic_laplacian || !normalized ) { normalized = false; shift = delta = 0; } for( ; count--; dst += dst_step, src++ ) { if( ksize == 3 ) { const int *src0 = src[-1], *src1 = src[0], *src2 = src[1]; if( basic_laplacian ) { for( i = 0; i <= width - 2; i += 2 ) { int s0 = src0[i] - src1[i]*2 + src2[i] + src1[i+width]; int s1 = src0[i+1] - src1[i+1]*2 + src2[i+1] + src1[i+width+1]; dst[i] = (short)s0; dst[i+1] = (short)s1; } for( ; i < width; i++ ) dst[i] = (short)(src0[i] - src1[i]*2 + src2[i] + src1[i+width]); } else if( !normalized ) for( i = 0; i <= width - 2; i += 2 ) { int s0 = src0[i] - src1[i]*2 + src2[i] + src0[i+width] + src1[i+width]*2 + src2[i+width]; int s1 = src0[i+1] - src1[i+1]*2 + src2[i+1] + src0[i+width+1] + src1[i+width+1]*2 + src2[i+width+1]; dst[i] = (short)s0; dst[i+1] = (short)s1; } else for( i = 0; i <= width - 2; i += 2 ) { int s0 = CV_DESCALE(src0[i] - src1[i]*2 + src2[i] + src0[i+width] + src1[i+width]*2 + src2[i+width], 2); int s1 = CV_DESCALE(src0[i+1] - src1[i+1]*2 + src2[i+1] + src0[i+width+1] + src1[i+width+1]*2 + src2[i+width+1],2); dst[i] = (short)s0; dst[i+1] = (short)s1; } } else if( ksize == 5 ) { const int *src0 = src[-2], *src1 = src[-1], *src2 = src[0], *src3 = src[1], *src4 = src[2]; if( !normalized ) for( i = 0; i <= width - 2; i += 2 ) { int s0 = src0[i] - src2[i]*2 + src4[i] + src0[i+width] + src4[i+width] + (src1[i+width] + src3[i+width])*4 + src2[i+width]*6; int s1 = src0[i+1] - src2[i+1]*2 + src4[i+1] + src0[i+width+1] + src4[i+width+1] + (src1[i+width+1] + src3[i+width+1])*4 + src2[i+width+1]*6; dst[i] = (short)s0; dst[i+1] = (short)s1; } else for( i = 0; i <= width - 2; i += 2 ) { int s0 = CV_DESCALE(src0[i] - src2[i]*2 + src4[i] + src0[i+width] + src4[i+width] + (src1[i+width] + src3[i+width])*4 + src2[i+width]*6, 4); int s1 = CV_DESCALE(src0[i+1] - src2[i+1]*2 + src4[i+1] + src0[i+width+1] + src4[i+width+1] + (src1[i+width+1] + src3[i+width+1])*4 + src2[i+width+1]*6, 4); dst[i] = (short)s0; dst[i+1] = (short)s1; } } else { if( !normalized ) for( i = 0; i <= width - 2; i += 2 ) { int s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width]; int s1 = kx[0]*src[0][i+1] + ky[0]*src[0][i+width+1]; for( k = 1; k <= ksize2; k++ ) { const int* src1 = src[k] + i, *src2 = src[-k] + i; int fx = kx[k], fy = ky[k]; s0 += fx*(src1[0] + src2[0]) + fy*(src1[width] + src2[width]); s1 += fx*(src1[1] + src2[1]) + fy*(src1[width+1] + src2[width+1]); } dst[i] = CV_CAST_16S(s0); dst[i+1] = CV_CAST_16S(s1); } else for( i = 0; i <= width - 2; i += 2 ) { int s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width]; int s1 = kx[0]*src[0][i+1] + ky[0]*src[0][i+width+1]; for( k = 1; k <= ksize2; k++ ) { const int* src1 = src[k] + i, *src2 = src[-k] + i; int fx = kx[k], fy = ky[k]; s0 += fx*(src1[0] + src2[0]) + fy*(src1[width] + src2[width]); s1 += fx*(src1[1] + src2[1]) + fy*(src1[width+1] + src2[width+1]); } s0 = CV_DESCALE( s0, shift ); s1 = CV_DESCALE( s1, shift ); dst[i] = (short)s0; dst[i+1] = (short)s1; } } for( ; i < width; i++ ) { int s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width]; for( k = 1; k <= ksize2; k++ ) { const int* src1 = src[k] + i, *src2 = src[-k] + i; s0 += kx[k]*(src1[0] + src2[0]) + ky[k]*(src1[width] + src2[width]); } s0 = (s0 + delta) >> shift; dst[i] = CV_CAST_16S(s0); } } } static void icvLaplaceCol_32f( const float** src, float* dst, int dst_step, int count, void* params ) { const CvLaplaceFilter* state = (const CvLaplaceFilter*)params; const CvMat* _kx = state->get_x_kernel(); const CvMat* _ky = state->get_y_kernel(); const float* kx = (const float*)_kx->data.ptr; const float* ky = (const float*)_ky->data.ptr; int ksize = _kx->cols + _kx->rows - 1, ksize2 = ksize/2; int i = 0, k, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); bool basic_laplacian = state->is_basic_laplacian(); bool normalized = state->is_normalized(); float scale = 1.f/(1 << (ksize - 1)); width *= cn; src += ksize2; kx += ksize2; ky += ksize2; dst_step /= sizeof(dst[0]); if( basic_laplacian || !normalized ) { normalized = false; scale = 1.f; } for( ; count--; dst += dst_step, src++ ) { if( ksize == 3 ) { const float *src0 = src[-1], *src1 = src[0], *src2 = src[1]; if( basic_laplacian ) { for( i = 0; i <= width - 2; i += 2 ) { float s0 = src0[i] - src1[i]*2 + src2[i] + src1[i+width]; float s1 = src0[i+1] - src1[i+1]*2 + src2[i+1] + src1[i+width+1]; dst[i] = s0; dst[i+1] = s1; } for( ; i < width; i++ ) dst[i] = src0[i] - src1[i]*2 + src2[i] + src1[i+width]; } else if( !normalized ) for( i = 0; i <= width - 2; i += 2 ) { float s0 = src0[i] - src1[i]*2 + src2[i] + src0[i+width] + src1[i+width]*2 + src2[i+width]; float s1 = src0[i+1] - src1[i+1]*2 + src2[i+1] + src0[i+width+1] + src1[i+width+1]*2 + src2[i+width+1]; dst[i] = s0; dst[i+1] = s1; } else for( i = 0; i <= width - 2; i += 2 ) { float s0 = (src0[i] - src1[i]*2 + src2[i] + src0[i+width] + src1[i+width]*2 + src2[i+width])*scale; float s1 = (src0[i+1] - src1[i+1]*2 + src2[i+1] + src0[i+width+1] + src1[i+width+1]*2 + src2[i+width+1])*scale; dst[i] = s0; dst[i+1] = s1; } } else if( ksize == 5 ) { const float *src0 = src[-2], *src1 = src[-1], *src2 = src[0], *src3 = src[1], *src4 = src[2]; for( i = 0; i <= width - 2; i += 2 ) { float s0 = (src0[i] - src2[i]*2 + src4[i] + src0[i+width] + src4[i+width] + (src1[i+width] + src3[i+width])*4 + src2[i+width]*6)*scale; float s1 = (src0[i+1] - src2[i+1]*2 + src4[i+1] + src0[i+width+1] + src4[i+width+1] + (src1[i+width+1] + src3[i+width+1])*4 + src2[i+width+1]*6)*scale; dst[i] = s0; dst[i+1] = s1; } } else { for( i = 0; i <= width - 2; i += 2 ) { float s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width]; float s1 = kx[0]*src[0][i+1] + ky[0]*src[0][i+width+1]; for( k = 1; k <= ksize2; k++ ) { const float* src1 = src[k] + i, *src2 = src[-k] + i; float fx = kx[k], fy = ky[k]; s0 += fx*(src1[0] + src2[0]) + fy*(src1[width] + src2[width]); s1 += fx*(src1[1] + src2[1]) + fy*(src1[width+1] + src2[width+1]); } s0 *= scale; s1 *= scale; dst[i] = s0; dst[i+1] = s1; } } for( ; i < width; i++ ) { float s0 = kx[0]*src[0][i] + ky[0]*src[0][i+width]; for( k = 1; k <= ksize2; k++ ) { const float* src1 = src[k] + i, *src2 = src[-k] + i; s0 += kx[k]*(src1[0] + src2[0]) + ky[k]*(src1[width] + src2[width]); } dst[i] = s0*scale; } } } CV_IMPL void cvLaplace( const void* srcarr, void* dstarr, int aperture_size ) { CvLaplaceFilter laplacian; void* buffer = 0; int local_alloc = 0; CV_FUNCNAME( "cvLaplace" ); __BEGIN__; CvMat srcstub, *src = (CvMat*)srcarr; CvMat dststub, *dst = (CvMat*)dstarr; int src_type, dst_type; CV_CALL( src = cvGetMat( src, &srcstub )); CV_CALL( dst = cvGetMat( dst, &dststub )); src_type = CV_MAT_TYPE(src->type); dst_type = CV_MAT_TYPE(dst->type); if( (aperture_size == 3 || aperture_size == 5) && (src_type == CV_8UC1 && dst_type == CV_16SC1/* || src_type == CV_32FC1 && dst_type == CV_32FC1*/) ) { CvDerivGetBufSizeIPPFunc ipp_laplace_getbufsize_func = 0; CvDerivIPPFunc_8u ipp_laplace_func_8u = 0; CvDerivIPPFunc_32f ipp_laplace_func_32f = 0; if( src_type == CV_8U ) ipp_laplace_func_8u = icvFilterLaplacianBorder_8u16s_C1R_p, ipp_laplace_getbufsize_func = icvFilterLaplacianGetBufSize_8u16s_C1R_p; else ipp_laplace_func_32f = icvFilterLaplacianBorder_32f_C1R_p, ipp_laplace_getbufsize_func = icvFilterLaplacianGetBufSize_32f_C1R_p; if( (ipp_laplace_func_8u || ipp_laplace_func_32f) && ipp_laplace_getbufsize_func ) { int bufsize = 0, masksize = aperture_size == 3 ? 33 : 55; CvSize size = cvGetMatSize( src ); uchar* src_ptr = src->data.ptr; uchar* dst_ptr = dst->data.ptr; int src_step = src->step ? src->step : CV_STUB_STEP; int dst_step = dst->step ? dst->step : CV_STUB_STEP; const int bordertype = 1; // replication border CvStatus status; status = ipp_laplace_getbufsize_func( size, masksize, &bufsize ); if( status >= 0 ) { if( bufsize <= CV_MAX_LOCAL_SIZE ) { buffer = cvStackAlloc( bufsize ); local_alloc = 1; } else CV_CALL( buffer = cvAlloc( bufsize )); status = ipp_laplace_func_8u ? ipp_laplace_func_8u( src_ptr, src_step, dst_ptr, dst_step, size, masksize, bordertype, 0, buffer ) : ipp_laplace_func_32f ? ipp_laplace_func_32f( src_ptr, src_step, dst_ptr, dst_step, size, masksize, bordertype, 0, buffer ) : CV_NOTDEFINED_ERR; } if( status >= 0 ) EXIT; } } CV_CALL( laplacian.init( src->cols, src_type, dst_type, false, aperture_size )); CV_CALL( laplacian.process( src, dst )); __END__; if( buffer && !local_alloc ) cvFree( &buffer ); } /* End of file. */