/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" typedef struct CvFFillSegment { ushort y; ushort l; ushort r; ushort prevl; ushort prevr; short dir; } CvFFillSegment; #define UP 1 #define DOWN -1 #define ICV_PUSH( Y, L, R, PREV_L, PREV_R, DIR )\ { \ tail->y = (ushort)(Y); \ tail->l = (ushort)(L); \ tail->r = (ushort)(R); \ tail->prevl = (ushort)(PREV_L); \ tail->prevr = (ushort)(PREV_R); \ tail->dir = (short)(DIR); \ if( ++tail >= buffer_end ) \ tail = buffer; \ } #define ICV_POP( Y, L, R, PREV_L, PREV_R, DIR ) \ { \ Y = head->y; \ L = head->l; \ R = head->r; \ PREV_L = head->prevl; \ PREV_R = head->prevr; \ DIR = head->dir; \ if( ++head >= buffer_end ) \ head = buffer; \ } #define ICV_EQ_C3( p1, p2 ) \ ((p1)[0] == (p2)[0] && (p1)[1] == (p2)[1] && (p1)[2] == (p2)[2]) #define ICV_SET_C3( p, q ) \ ((p)[0] = (q)[0], (p)[1] = (q)[1], (p)[2] = (q)[2]) /****************************************************************************************\ * Simple Floodfill (repainting single-color connected component) * \****************************************************************************************/ static CvStatus icvFloodFill_8u_CnIR( uchar* pImage, int step, CvSize roi, CvPoint seed, uchar* _newVal, CvConnectedComp* region, int flags, CvFFillSegment* buffer, int buffer_size, int cn ) { uchar* img = pImage + step * seed.y; int i, L, R; int area = 0; int val0[] = {0,0,0}; uchar newVal[] = {0,0,0}; int XMin, XMax, YMin = seed.y, YMax = seed.y; int _8_connectivity = (flags & 255) == 8; CvFFillSegment* buffer_end = buffer + buffer_size, *head = buffer, *tail = buffer; L = R = XMin = XMax = seed.x; if( cn == 1 ) { val0[0] = img[L]; newVal[0] = _newVal[0]; img[L] = newVal[0]; while( ++R < roi.width && img[R] == val0[0] ) img[R] = newVal[0]; while( --L >= 0 && img[L] == val0[0] ) img[L] = newVal[0]; } else { assert( cn == 3 ); ICV_SET_C3( val0, img + L*3 ); ICV_SET_C3( newVal, _newVal ); ICV_SET_C3( img + L*3, newVal ); while( --L >= 0 && ICV_EQ_C3( img + L*3, val0 )) ICV_SET_C3( img + L*3, newVal ); while( ++R < roi.width && ICV_EQ_C3( img + R*3, val0 )) ICV_SET_C3( img + R*3, newVal ); } XMax = --R; XMin = ++L; ICV_PUSH( seed.y, L, R, R + 1, R, UP ); while( head != tail ) { int k, YC, PL, PR, dir; ICV_POP( YC, L, R, PL, PR, dir ); int data[][3] = { {-dir, L - _8_connectivity, R + _8_connectivity}, {dir, L - _8_connectivity, PL - 1}, {dir, PR + 1, R + _8_connectivity} }; if( region ) { area += R - L + 1; if( XMax < R ) XMax = R; if( XMin > L ) XMin = L; if( YMax < YC ) YMax = YC; if( YMin > YC ) YMin = YC; } for( k = 0/*(unsigned)(YC - dir) >= (unsigned)roi.height*/; k < 3; k++ ) { dir = data[k][0]; img = pImage + (YC + dir) * step; int left = data[k][1]; int right = data[k][2]; if( (unsigned)(YC + dir) >= (unsigned)roi.height ) continue; if( cn == 1 ) for( i = left; i <= right; i++ ) { if( (unsigned)i < (unsigned)roi.width && img[i] == val0[0] ) { int j = i; img[i] = newVal[0]; while( --j >= 0 && img[j] == val0[0] ) img[j] = newVal[0]; while( ++i < roi.width && img[i] == val0[0] ) img[i] = newVal[0]; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else for( i = left; i <= right; i++ ) { if( (unsigned)i < (unsigned)roi.width && ICV_EQ_C3( img + i*3, val0 )) { int j = i; ICV_SET_C3( img + i*3, newVal ); while( --j >= 0 && ICV_EQ_C3( img + j*3, val0 )) ICV_SET_C3( img + j*3, newVal ); while( ++i < roi.width && ICV_EQ_C3( img + i*3, val0 )) ICV_SET_C3( img + i*3, newVal ); ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } } } if( region ) { region->area = area; region->rect.x = XMin; region->rect.y = YMin; region->rect.width = XMax - XMin + 1; region->rect.height = YMax - YMin + 1; region->value = cvScalar(newVal[0], newVal[1], newVal[2], 0); } return CV_NO_ERR; } /* because all the operations on floats that are done during non-gradient floodfill are just copying and comparison on equality, we can do the whole op on 32-bit integers instead */ static CvStatus icvFloodFill_32f_CnIR( int* pImage, int step, CvSize roi, CvPoint seed, int* _newVal, CvConnectedComp* region, int flags, CvFFillSegment* buffer, int buffer_size, int cn ) { int* img = pImage + (step /= sizeof(pImage[0])) * seed.y; int i, L, R; int area = 0; int val0[] = {0,0,0}; int newVal[] = {0,0,0}; int XMin, XMax, YMin = seed.y, YMax = seed.y; int _8_connectivity = (flags & 255) == 8; CvFFillSegment* buffer_end = buffer + buffer_size, *head = buffer, *tail = buffer; L = R = XMin = XMax = seed.x; if( cn == 1 ) { val0[0] = img[L]; newVal[0] = _newVal[0]; img[L] = newVal[0]; while( ++R < roi.width && img[R] == val0[0] ) img[R] = newVal[0]; while( --L >= 0 && img[L] == val0[0] ) img[L] = newVal[0]; } else { assert( cn == 3 ); ICV_SET_C3( val0, img + L*3 ); ICV_SET_C3( newVal, _newVal ); ICV_SET_C3( img + L*3, newVal ); while( --L >= 0 && ICV_EQ_C3( img + L*3, val0 )) ICV_SET_C3( img + L*3, newVal ); while( ++R < roi.width && ICV_EQ_C3( img + R*3, val0 )) ICV_SET_C3( img + R*3, newVal ); } XMax = --R; XMin = ++L; ICV_PUSH( seed.y, L, R, R + 1, R, UP ); while( head != tail ) { int k, YC, PL, PR, dir; ICV_POP( YC, L, R, PL, PR, dir ); int data[][3] = { {-dir, L - _8_connectivity, R + _8_connectivity}, {dir, L - _8_connectivity, PL - 1}, {dir, PR + 1, R + _8_connectivity} }; if( region ) { area += R - L + 1; if( XMax < R ) XMax = R; if( XMin > L ) XMin = L; if( YMax < YC ) YMax = YC; if( YMin > YC ) YMin = YC; } for( k = 0/*(unsigned)(YC - dir) >= (unsigned)roi.height*/; k < 3; k++ ) { dir = data[k][0]; img = pImage + (YC + dir) * step; int left = data[k][1]; int right = data[k][2]; if( (unsigned)(YC + dir) >= (unsigned)roi.height ) continue; if( cn == 1 ) for( i = left; i <= right; i++ ) { if( (unsigned)i < (unsigned)roi.width && img[i] == val0[0] ) { int j = i; img[i] = newVal[0]; while( --j >= 0 && img[j] == val0[0] ) img[j] = newVal[0]; while( ++i < roi.width && img[i] == val0[0] ) img[i] = newVal[0]; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else for( i = left; i <= right; i++ ) { if( (unsigned)i < (unsigned)roi.width && ICV_EQ_C3( img + i*3, val0 )) { int j = i; ICV_SET_C3( img + i*3, newVal ); while( --j >= 0 && ICV_EQ_C3( img + j*3, val0 )) ICV_SET_C3( img + j*3, newVal ); while( ++i < roi.width && ICV_EQ_C3( img + i*3, val0 )) ICV_SET_C3( img + i*3, newVal ); ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } } } if( region ) { Cv32suf v0, v1, v2; region->area = area; region->rect.x = XMin; region->rect.y = YMin; region->rect.width = XMax - XMin + 1; region->rect.height = YMax - YMin + 1; v0.i = newVal[0]; v1.i = newVal[1]; v2.i = newVal[2]; region->value = cvScalar( v0.f, v1.f, v2.f ); } return CV_NO_ERR; } /****************************************************************************************\ * Gradient Floodfill * \****************************************************************************************/ #define DIFF_INT_C1(p1,p2) ((unsigned)((p1)[0] - (p2)[0] + d_lw[0]) <= interval[0]) #define DIFF_INT_C3(p1,p2) ((unsigned)((p1)[0] - (p2)[0] + d_lw[0])<= interval[0] && \ (unsigned)((p1)[1] - (p2)[1] + d_lw[1])<= interval[1] && \ (unsigned)((p1)[2] - (p2)[2] + d_lw[2])<= interval[2]) #define DIFF_FLT_C1(p1,p2) (fabs((p1)[0] - (p2)[0] + d_lw[0]) <= interval[0]) #define DIFF_FLT_C3(p1,p2) (fabs((p1)[0] - (p2)[0] + d_lw[0]) <= interval[0] && \ fabs((p1)[1] - (p2)[1] + d_lw[1]) <= interval[1] && \ fabs((p1)[2] - (p2)[2] + d_lw[2]) <= interval[2]) static CvStatus icvFloodFill_Grad_8u_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep, CvSize /*roi*/, CvPoint seed, uchar* _newVal, uchar* _d_lw, uchar* _d_up, CvConnectedComp* region, int flags, CvFFillSegment* buffer, int buffer_size, int cn ) { uchar* img = pImage + step*seed.y; uchar* mask = (pMask += maskStep + 1) + maskStep*seed.y; int i, L, R; int area = 0; int sum[] = {0,0,0}, val0[] = {0,0,0}; uchar newVal[] = {0,0,0}; int d_lw[] = {0,0,0}; unsigned interval[] = {0,0,0}; int XMin, XMax, YMin = seed.y, YMax = seed.y; int _8_connectivity = (flags & 255) == 8; int fixedRange = flags & CV_FLOODFILL_FIXED_RANGE; int fillImage = (flags & CV_FLOODFILL_MASK_ONLY) == 0; uchar newMaskVal = (uchar)(flags & 0xff00 ? flags >> 8 : 1); CvFFillSegment* buffer_end = buffer + buffer_size, *head = buffer, *tail = buffer; L = R = seed.x; if( mask[L] ) return CV_OK; mask[L] = newMaskVal; for( i = 0; i < cn; i++ ) { newVal[i] = _newVal[i]; d_lw[i] = _d_lw[i]; interval[i] = (unsigned)(_d_up[i] + _d_lw[i]); if( fixedRange ) val0[i] = img[L*cn+i]; } if( cn == 1 ) { if( fixedRange ) { while( !mask[R + 1] && DIFF_INT_C1( img + (R+1), val0 )) mask[++R] = newMaskVal; while( !mask[L - 1] && DIFF_INT_C1( img + (L-1), val0 )) mask[--L] = newMaskVal; } else { while( !mask[R + 1] && DIFF_INT_C1( img + (R+1), img + R )) mask[++R] = newMaskVal; while( !mask[L - 1] && DIFF_INT_C1( img + (L-1), img + L )) mask[--L] = newMaskVal; } } else { if( fixedRange ) { while( !mask[R + 1] && DIFF_INT_C3( img + (R+1)*3, val0 )) mask[++R] = newMaskVal; while( !mask[L - 1] && DIFF_INT_C3( img + (L-1)*3, val0 )) mask[--L] = newMaskVal; } else { while( !mask[R + 1] && DIFF_INT_C3( img + (R+1)*3, img + R*3 )) mask[++R] = newMaskVal; while( !mask[L - 1] && DIFF_INT_C3( img + (L-1)*3, img + L*3 )) mask[--L] = newMaskVal; } } XMax = R; XMin = L; ICV_PUSH( seed.y, L, R, R + 1, R, UP ); while( head != tail ) { int k, YC, PL, PR, dir, curstep; ICV_POP( YC, L, R, PL, PR, dir ); int data[][3] = { {-dir, L - _8_connectivity, R + _8_connectivity}, {dir, L - _8_connectivity, PL - 1}, {dir, PR + 1, R + _8_connectivity} }; unsigned length = (unsigned)(R-L); if( region ) { area += (int)length + 1; if( XMax < R ) XMax = R; if( XMin > L ) XMin = L; if( YMax < YC ) YMax = YC; if( YMin > YC ) YMin = YC; } if( cn == 1 ) { for( k = 0; k < 3; k++ ) { dir = data[k][0]; curstep = dir * step; img = pImage + (YC + dir) * step; mask = pMask + (YC + dir) * maskStep; int left = data[k][1]; int right = data[k][2]; if( fixedRange ) for( i = left; i <= right; i++ ) { if( !mask[i] && DIFF_INT_C1( img + i, val0 )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_INT_C1( img + j, val0 )) mask[j] = newMaskVal; while( !mask[++i] && DIFF_INT_C1( img + i, val0 )) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else if( !_8_connectivity ) for( i = left; i <= right; i++ ) { if( !mask[i] && DIFF_INT_C1( img + i, img - curstep + i )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_INT_C1( img + j, img + (j+1) )) mask[j] = newMaskVal; while( !mask[++i] && (DIFF_INT_C1( img + i, img + (i-1) ) || (DIFF_INT_C1( img + i, img + i - curstep) && i <= R))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else for( i = left; i <= right; i++ ) { int idx, val[1]; if( !mask[i] && (((val[0] = img[i], (unsigned)(idx = i-L-1) <= length) && DIFF_INT_C1( val, img - curstep + (i-1))) || ((unsigned)(++idx) <= length && DIFF_INT_C1( val, img - curstep + i )) || ((unsigned)(++idx) <= length && DIFF_INT_C1( val, img - curstep + (i+1) )))) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_INT_C1( img + j, img + (j+1) )) mask[j] = newMaskVal; while( !mask[++i] && ((val[0] = img[i], DIFF_INT_C1( val, img + (i-1) )) || (((unsigned)(idx = i-L-1) <= length && DIFF_INT_C1( val, img - curstep + (i-1) ))) || ((unsigned)(++idx) <= length && DIFF_INT_C1( val, img - curstep + i )) || ((unsigned)(++idx) <= length && DIFF_INT_C1( val, img - curstep + (i+1) )))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } } img = pImage + YC * step; if( fillImage ) for( i = L; i <= R; i++ ) img[i] = newVal[0]; else if( region ) for( i = L; i <= R; i++ ) sum[0] += img[i]; } else { for( k = 0; k < 3; k++ ) { dir = data[k][0]; curstep = dir * step; img = pImage + (YC + dir) * step; mask = pMask + (YC + dir) * maskStep; int left = data[k][1]; int right = data[k][2]; if( fixedRange ) for( i = left; i <= right; i++ ) { if( !mask[i] && DIFF_INT_C3( img + i*3, val0 )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_INT_C3( img + j*3, val0 )) mask[j] = newMaskVal; while( !mask[++i] && DIFF_INT_C3( img + i*3, val0 )) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else if( !_8_connectivity ) for( i = left; i <= right; i++ ) { if( !mask[i] && DIFF_INT_C3( img + i*3, img - curstep + i*3 )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_INT_C3( img + j*3, img + (j+1)*3 )) mask[j] = newMaskVal; while( !mask[++i] && (DIFF_INT_C3( img + i*3, img + (i-1)*3 ) || (DIFF_INT_C3( img + i*3, img + i*3 - curstep) && i <= R))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else for( i = left; i <= right; i++ ) { int idx, val[3]; if( !mask[i] && (((ICV_SET_C3( val, img+i*3 ), (unsigned)(idx = i-L-1) <= length) && DIFF_INT_C3( val, img - curstep + (i-1)*3 )) || ((unsigned)(++idx) <= length && DIFF_INT_C3( val, img - curstep + i*3 )) || ((unsigned)(++idx) <= length && DIFF_INT_C3( val, img - curstep + (i+1)*3 )))) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_INT_C3( img + j*3, img + (j+1)*3 )) mask[j] = newMaskVal; while( !mask[++i] && ((ICV_SET_C3( val, img + i*3 ), DIFF_INT_C3( val, img + (i-1)*3 )) || (((unsigned)(idx = i-L-1) <= length && DIFF_INT_C3( val, img - curstep + (i-1)*3 ))) || ((unsigned)(++idx) <= length && DIFF_INT_C3( val, img - curstep + i*3 )) || ((unsigned)(++idx) <= length && DIFF_INT_C3( val, img - curstep + (i+1)*3 )))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } } img = pImage + YC * step; if( fillImage ) for( i = L; i <= R; i++ ) ICV_SET_C3( img + i*3, newVal ); else if( region ) for( i = L; i <= R; i++ ) { sum[0] += img[i*3]; sum[1] += img[i*3+1]; sum[2] += img[i*3+2]; } } } if( region ) { region->area = area; region->rect.x = XMin; region->rect.y = YMin; region->rect.width = XMax - XMin + 1; region->rect.height = YMax - YMin + 1; if( fillImage ) region->value = cvScalar(newVal[0], newVal[1], newVal[2]); else { double iarea = area ? 1./area : 0; region->value = cvScalar(sum[0]*iarea, sum[1]*iarea, sum[2]*iarea); } } return CV_NO_ERR; } static CvStatus icvFloodFill_Grad_32f_CnIR( float* pImage, int step, uchar* pMask, int maskStep, CvSize /*roi*/, CvPoint seed, float* _newVal, float* _d_lw, float* _d_up, CvConnectedComp* region, int flags, CvFFillSegment* buffer, int buffer_size, int cn ) { float* img = pImage + (step /= sizeof(float))*seed.y; uchar* mask = (pMask += maskStep + 1) + maskStep*seed.y; int i, L, R; int area = 0; double sum[] = {0,0,0}, val0[] = {0,0,0}; float newVal[] = {0,0,0}; float d_lw[] = {0,0,0}; float interval[] = {0,0,0}; int XMin, XMax, YMin = seed.y, YMax = seed.y; int _8_connectivity = (flags & 255) == 8; int fixedRange = flags & CV_FLOODFILL_FIXED_RANGE; int fillImage = (flags & CV_FLOODFILL_MASK_ONLY) == 0; uchar newMaskVal = (uchar)(flags & 0xff00 ? flags >> 8 : 1); CvFFillSegment* buffer_end = buffer + buffer_size, *head = buffer, *tail = buffer; L = R = seed.x; if( mask[L] ) return CV_OK; mask[L] = newMaskVal; for( i = 0; i < cn; i++ ) { newVal[i] = _newVal[i]; d_lw[i] = 0.5f*(_d_lw[i] - _d_up[i]); interval[i] = 0.5f*(_d_lw[i] + _d_up[i]); if( fixedRange ) val0[i] = img[L*cn+i]; } if( cn == 1 ) { if( fixedRange ) { while( !mask[R + 1] && DIFF_FLT_C1( img + (R+1), val0 )) mask[++R] = newMaskVal; while( !mask[L - 1] && DIFF_FLT_C1( img + (L-1), val0 )) mask[--L] = newMaskVal; } else { while( !mask[R + 1] && DIFF_FLT_C1( img + (R+1), img + R )) mask[++R] = newMaskVal; while( !mask[L - 1] && DIFF_FLT_C1( img + (L-1), img + L )) mask[--L] = newMaskVal; } } else { if( fixedRange ) { while( !mask[R + 1] && DIFF_FLT_C3( img + (R+1)*3, val0 )) mask[++R] = newMaskVal; while( !mask[L - 1] && DIFF_FLT_C3( img + (L-1)*3, val0 )) mask[--L] = newMaskVal; } else { while( !mask[R + 1] && DIFF_FLT_C3( img + (R+1)*3, img + R*3 )) mask[++R] = newMaskVal; while( !mask[L - 1] && DIFF_FLT_C3( img + (L-1)*3, img + L*3 )) mask[--L] = newMaskVal; } } XMax = R; XMin = L; ICV_PUSH( seed.y, L, R, R + 1, R, UP ); while( head != tail ) { int k, YC, PL, PR, dir, curstep; ICV_POP( YC, L, R, PL, PR, dir ); int data[][3] = { {-dir, L - _8_connectivity, R + _8_connectivity}, {dir, L - _8_connectivity, PL - 1}, {dir, PR + 1, R + _8_connectivity} }; unsigned length = (unsigned)(R-L); if( region ) { area += (int)length + 1; if( XMax < R ) XMax = R; if( XMin > L ) XMin = L; if( YMax < YC ) YMax = YC; if( YMin > YC ) YMin = YC; } if( cn == 1 ) { for( k = 0; k < 3; k++ ) { dir = data[k][0]; curstep = dir * step; img = pImage + (YC + dir) * step; mask = pMask + (YC + dir) * maskStep; int left = data[k][1]; int right = data[k][2]; if( fixedRange ) for( i = left; i <= right; i++ ) { if( !mask[i] && DIFF_FLT_C1( img + i, val0 )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_FLT_C1( img + j, val0 )) mask[j] = newMaskVal; while( !mask[++i] && DIFF_FLT_C1( img + i, val0 )) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else if( !_8_connectivity ) for( i = left; i <= right; i++ ) { if( !mask[i] && DIFF_FLT_C1( img + i, img - curstep + i )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_FLT_C1( img + j, img + (j+1) )) mask[j] = newMaskVal; while( !mask[++i] && (DIFF_FLT_C1( img + i, img + (i-1) ) || (DIFF_FLT_C1( img + i, img + i - curstep) && i <= R))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else for( i = left; i <= right; i++ ) { int idx; float val[1]; if( !mask[i] && (((val[0] = img[i], (unsigned)(idx = i-L-1) <= length) && DIFF_FLT_C1( val, img - curstep + (i-1) )) || ((unsigned)(++idx) <= length && DIFF_FLT_C1( val, img - curstep + i )) || ((unsigned)(++idx) <= length && DIFF_FLT_C1( val, img - curstep + (i+1) )))) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_FLT_C1( img + j, img + (j+1) )) mask[j] = newMaskVal; while( !mask[++i] && ((val[0] = img[i], DIFF_FLT_C1( val, img + (i-1) )) || (((unsigned)(idx = i-L-1) <= length && DIFF_FLT_C1( val, img - curstep + (i-1) ))) || ((unsigned)(++idx) <= length && DIFF_FLT_C1( val, img - curstep + i )) || ((unsigned)(++idx) <= length && DIFF_FLT_C1( val, img - curstep + (i+1) )))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } } img = pImage + YC * step; if( fillImage ) for( i = L; i <= R; i++ ) img[i] = newVal[0]; else if( region ) for( i = L; i <= R; i++ ) sum[0] += img[i]; } else { for( k = 0; k < 3; k++ ) { dir = data[k][0]; curstep = dir * step; img = pImage + (YC + dir) * step; mask = pMask + (YC + dir) * maskStep; int left = data[k][1]; int right = data[k][2]; if( fixedRange ) for( i = left; i <= right; i++ ) { if( !mask[i] && DIFF_FLT_C3( img + i*3, val0 )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_FLT_C3( img + j*3, val0 )) mask[j] = newMaskVal; while( !mask[++i] && DIFF_FLT_C3( img + i*3, val0 )) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else if( !_8_connectivity ) for( i = left; i <= right; i++ ) { if( !mask[i] && DIFF_FLT_C3( img + i*3, img - curstep + i*3 )) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_FLT_C3( img + j*3, img + (j+1)*3 )) mask[j] = newMaskVal; while( !mask[++i] && (DIFF_FLT_C3( img + i*3, img + (i-1)*3 ) || (DIFF_FLT_C3( img + i*3, img + i*3 - curstep) && i <= R))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } else for( i = left; i <= right; i++ ) { int idx; float val[3]; if( !mask[i] && (((ICV_SET_C3( val, img+i*3 ), (unsigned)(idx = i-L-1) <= length) && DIFF_FLT_C3( val, img - curstep + (i-1)*3 )) || ((unsigned)(++idx) <= length && DIFF_FLT_C3( val, img - curstep + i*3 )) || ((unsigned)(++idx) <= length && DIFF_FLT_C3( val, img - curstep + (i+1)*3 )))) { int j = i; mask[i] = newMaskVal; while( !mask[--j] && DIFF_FLT_C3( img + j*3, img + (j+1)*3 )) mask[j] = newMaskVal; while( !mask[++i] && ((ICV_SET_C3( val, img + i*3 ), DIFF_FLT_C3( val, img + (i-1)*3 )) || (((unsigned)(idx = i-L-1) <= length && DIFF_FLT_C3( val, img - curstep + (i-1)*3 ))) || ((unsigned)(++idx) <= length && DIFF_FLT_C3( val, img - curstep + i*3 )) || ((unsigned)(++idx) <= length && DIFF_FLT_C3( val, img - curstep + (i+1)*3 )))) mask[i] = newMaskVal; ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir ); } } } img = pImage + YC * step; if( fillImage ) for( i = L; i <= R; i++ ) ICV_SET_C3( img + i*3, newVal ); else if( region ) for( i = L; i <= R; i++ ) { sum[0] += img[i*3]; sum[1] += img[i*3+1]; sum[2] += img[i*3+2]; } } } if( region ) { region->area = area; region->rect.x = XMin; region->rect.y = YMin; region->rect.width = XMax - XMin + 1; region->rect.height = YMax - YMin + 1; if( fillImage ) region->value = cvScalar(newVal[0], newVal[1], newVal[2]); else { double iarea = area ? 1./area : 0; region->value = cvScalar(sum[0]*iarea, sum[1]*iarea, sum[2]*iarea); } } return CV_NO_ERR; } /****************************************************************************************\ * External Functions * \****************************************************************************************/ typedef CvStatus (CV_CDECL* CvFloodFillFunc)( void* img, int step, CvSize size, CvPoint seed, void* newval, CvConnectedComp* comp, int flags, void* buffer, int buffer_size, int cn ); typedef CvStatus (CV_CDECL* CvFloodFillGradFunc)( void* img, int step, uchar* mask, int maskStep, CvSize size, CvPoint seed, void* newval, void* d_lw, void* d_up, void* ccomp, int flags, void* buffer, int buffer_size, int cn ); static void icvInitFloodFill( void** ffill_tab, void** ffillgrad_tab ) { ffill_tab[0] = (void*)icvFloodFill_8u_CnIR; ffill_tab[1] = (void*)icvFloodFill_32f_CnIR; ffillgrad_tab[0] = (void*)icvFloodFill_Grad_8u_CnIR; ffillgrad_tab[1] = (void*)icvFloodFill_Grad_32f_CnIR; } CV_IMPL void cvFloodFill( CvArr* arr, CvPoint seed_point, CvScalar newVal, CvScalar lo_diff, CvScalar up_diff, CvConnectedComp* comp, int flags, CvArr* maskarr ) { static void* ffill_tab[4]; static void* ffillgrad_tab[4]; static int inittab = 0; CvMat* tempMask = 0; CvFFillSegment* buffer = 0; CV_FUNCNAME( "cvFloodFill" ); if( comp ) memset( comp, 0, sizeof(*comp) ); __BEGIN__; int i, type, depth, cn, is_simple, idx; int buffer_size, connectivity = flags & 255; double nv_buf[4] = {0,0,0,0}; union { uchar b[4]; float f[4]; } ld_buf, ud_buf; CvMat stub, *img = (CvMat*)arr; CvMat maskstub, *mask = (CvMat*)maskarr; CvSize size; if( !inittab ) { icvInitFloodFill( ffill_tab, ffillgrad_tab ); inittab = 1; } CV_CALL( img = cvGetMat( img, &stub )); type = CV_MAT_TYPE( img->type ); depth = CV_MAT_DEPTH(type); cn = CV_MAT_CN(type); idx = type == CV_8UC1 || type == CV_8UC3 ? 0 : type == CV_32FC1 || type == CV_32FC3 ? 1 : -1; if( idx < 0 ) CV_ERROR( CV_StsUnsupportedFormat, "" ); if( connectivity == 0 ) connectivity = 4; else if( connectivity != 4 && connectivity != 8 ) CV_ERROR( CV_StsBadFlag, "Connectivity must be 4, 0(=4) or 8" ); is_simple = mask == 0 && (flags & CV_FLOODFILL_MASK_ONLY) == 0; for( i = 0; i < cn; i++ ) { if( lo_diff.val[i] < 0 || up_diff.val[i] < 0 ) CV_ERROR( CV_StsBadArg, "lo_diff and up_diff must be non-negative" ); is_simple &= fabs(lo_diff.val[i]) < DBL_EPSILON && fabs(up_diff.val[i]) < DBL_EPSILON; } size = cvGetMatSize( img ); if( (unsigned)seed_point.x >= (unsigned)size.width || (unsigned)seed_point.y >= (unsigned)size.height ) CV_ERROR( CV_StsOutOfRange, "Seed point is outside of image" ); cvScalarToRawData( &newVal, &nv_buf, type, 0 ); buffer_size = MAX( size.width, size.height )*2; CV_CALL( buffer = (CvFFillSegment*)cvAlloc( buffer_size*sizeof(buffer[0]))); if( is_simple ) { int elem_size = CV_ELEM_SIZE(type); const uchar* seed_ptr = img->data.ptr + img->step*seed_point.y + elem_size*seed_point.x; CvFloodFillFunc func = (CvFloodFillFunc)ffill_tab[idx]; if( !func ) CV_ERROR( CV_StsUnsupportedFormat, "" ); // check if the new value is different from the current value at the seed point. // if they are exactly the same, use the generic version with mask to avoid infinite loops. for( i = 0; i < elem_size; i++ ) if( seed_ptr[i] != ((uchar*)nv_buf)[i] ) break; if( i < elem_size ) { IPPI_CALL( func( img->data.ptr, img->step, size, seed_point, &nv_buf, comp, flags, buffer, buffer_size, cn )); EXIT; } } { CvFloodFillGradFunc func = (CvFloodFillGradFunc)ffillgrad_tab[idx]; if( !func ) CV_ERROR( CV_StsUnsupportedFormat, "" ); if( !mask ) { /* created mask will be 8-byte aligned */ tempMask = cvCreateMat( size.height + 2, (size.width + 9) & -8, CV_8UC1 ); mask = tempMask; } else { CV_CALL( mask = cvGetMat( mask, &maskstub )); if( !CV_IS_MASK_ARR( mask )) CV_ERROR( CV_StsBadMask, "" ); if( mask->width != size.width + 2 || mask->height != size.height + 2 ) CV_ERROR( CV_StsUnmatchedSizes, "mask must be 2 pixel wider " "and 2 pixel taller than filled image" ); } { int width = tempMask ? mask->step : size.width + 2; uchar* mask_row = mask->data.ptr + mask->step; memset( mask_row - mask->step, 1, width ); for( i = 1; i <= size.height; i++, mask_row += mask->step ) { if( tempMask ) memset( mask_row, 0, width ); mask_row[0] = mask_row[size.width+1] = (uchar)1; } memset( mask_row, 1, width ); } if( depth == CV_8U ) for( i = 0; i < cn; i++ ) { int t = cvFloor(lo_diff.val[i]); ld_buf.b[i] = CV_CAST_8U(t); t = cvFloor(up_diff.val[i]); ud_buf.b[i] = CV_CAST_8U(t); } else for( i = 0; i < cn; i++ ) { ld_buf.f[i] = (float)lo_diff.val[i]; ud_buf.f[i] = (float)up_diff.val[i]; } IPPI_CALL( func( img->data.ptr, img->step, mask->data.ptr, mask->step, size, seed_point, &nv_buf, ld_buf.f, ud_buf.f, comp, flags, buffer, buffer_size, cn )); } __END__; cvFree( &buffer ); cvReleaseMat( &tempMask ); } /* End of file. */