/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective icvers. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* //////////////////////////////////////////////////////////////////// // // Geometrical transforms on images and matrices: rotation, zoom etc. // // */ #include "_cv.h" #undef CV_MAT_ELEM_PTR_FAST #define CV_MAT_ELEM_PTR_FAST( mat, row, col, pix_size ) \ ((mat).data.ptr + (size_t)(mat).step*(row) + (pix_size)*(col)) inline float min4( float a, float b, float c, float d ) { a = MIN(a,b); c = MIN(c,d); return MIN(a,c); } #define CV_MAT_3COLOR_ELEM(img,type,y,x,c) CV_MAT_ELEM(img,type,y,(x)*3+(c)) #define KNOWN 0 //known outside narrow band #define BAND 1 //narrow band (known) #define INSIDE 2 //unknown #define CHANGE 3 //servise typedef struct CvHeapElem { float T; int i,j; struct CvHeapElem* prev; struct CvHeapElem* next; } CvHeapElem; class CvPriorityQueueFloat { protected: CvHeapElem *mem,*empty,*head,*tail; int num,in; public: bool Init( const CvMat* f ) { int i,j; for( i = num = 0; i < f->rows; i++ ) { for( j = 0; j < f->cols; j++ ) num += CV_MAT_ELEM(*f,uchar,i,j)!=0; } if (num<=0) return false; mem = (CvHeapElem*)cvAlloc((num+2)*sizeof(CvHeapElem)); if (mem==NULL) return false; head = mem; head->i = head->j = -1; head->prev = NULL; head->next = mem+1; head->T = -FLT_MAX; empty = mem+1; for (i=1; i<=num; i++) { mem[i].prev = mem+i-1; mem[i].next = mem+i+1; mem[i].i = -1; mem[i].T = FLT_MAX; } tail = mem+i; tail->i = tail->j = -1; tail->prev = mem+i-1; tail->next = NULL; tail->T = FLT_MAX; return true; } bool Add(const CvMat* f) { int i,j; for (i=0; i<f->rows; i++) { for (j=0; j<f->cols; j++) { if (CV_MAT_ELEM(*f,uchar,i,j)!=0) { if (!Push(i,j,0)) return false; } } } return true; } bool Push(int i, int j, float T) { CvHeapElem *tmp=empty,*add=empty; if (empty==tail) return false; while (tmp->prev->T>T) tmp = tmp->prev; if (tmp!=empty) { add->prev->next = add->next; add->next->prev = add->prev; empty = add->next; add->prev = tmp->prev; add->next = tmp; add->prev->next = add; add->next->prev = add; } else { empty = empty->next; } add->i = i; add->j = j; add->T = T; in++; // printf("push i %3d j %3d T %12.4e in %4d\n",i,j,T,in); return true; } bool Pop(int *i, int *j) { CvHeapElem *tmp=head->next; if (empty==tmp) return false; *i = tmp->i; *j = tmp->j; tmp->prev->next = tmp->next; tmp->next->prev = tmp->prev; tmp->prev = empty->prev; tmp->next = empty; tmp->prev->next = tmp; tmp->next->prev = tmp; empty = tmp; in--; // printf("pop i %3d j %3d T %12.4e in %4d\n",tmp->i,tmp->j,tmp->T,in); return true; } bool Pop(int *i, int *j, float *T) { CvHeapElem *tmp=head->next; if (empty==tmp) return false; *i = tmp->i; *j = tmp->j; *T = tmp->T; tmp->prev->next = tmp->next; tmp->next->prev = tmp->prev; tmp->prev = empty->prev; tmp->next = empty; tmp->prev->next = tmp; tmp->next->prev = tmp; empty = tmp; in--; // printf("pop i %3d j %3d T %12.4e in %4d\n",tmp->i,tmp->j,tmp->T,in); return true; } CvPriorityQueueFloat(void) { num=in=0; mem=empty=head=tail=NULL; } ~CvPriorityQueueFloat(void) { cvFree( &mem ); } }; inline float VectorScalMult(CvPoint2D32f v1,CvPoint2D32f v2) { return v1.x*v2.x+v1.y*v2.y; } inline float VectorLength(CvPoint2D32f v1) { return v1.x*v1.x+v1.y*v1.y; } /////////////////////////////////////////////////////////////////////////////////////////// //HEAP::iterator Heap_Iterator; //HEAP Heap; float FastMarching_solve(int i1,int j1,int i2,int j2, const CvMat* f, const CvMat* t) { double sol, a11, a22, m12; a11=CV_MAT_ELEM(*t,float,i1,j1); a22=CV_MAT_ELEM(*t,float,i2,j2); m12=MIN(a11,a22); if( CV_MAT_ELEM(*f,uchar,i1,j1) != INSIDE ) if( CV_MAT_ELEM(*f,uchar,i2,j2) != INSIDE ) if( fabs(a11-a22) >= 1.0 ) sol = 1+m12; else sol = (a11+a22+sqrt((double)(2-(a11-a22)*(a11-a22))))*0.5; else sol = 1+a11; else if( CV_MAT_ELEM(*f,uchar,i2,j2) != INSIDE ) sol = 1+a22; else sol = 1+m12; return (float)sol; } ///////////////////////////////////////////////////////////////////////////////////// static void icvCalcFMM(const CvMat *f, CvMat *t, CvPriorityQueueFloat *Heap, bool negate) { int i, j, ii = 0, jj = 0, q; float dist; while (Heap->Pop(&ii,&jj)) { unsigned known=(negate)?CHANGE:KNOWN; CV_MAT_ELEM(*f,uchar,ii,jj) = (uchar)known; for (q=0; q<4; q++) { i=0; j=0; if (q==0) {i=ii-1; j=jj;} else if(q==1) {i=ii; j=jj-1;} else if(q==2) {i=ii+1; j=jj;} else {i=ii; j=jj+1;} if ((i<=0)||(j<=0)||(i>f->rows)||(j>f->cols)) continue; if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) { dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t), FastMarching_solve(i+1,j,i,j-1,f,t), FastMarching_solve(i-1,j,i,j+1,f,t), FastMarching_solve(i+1,j,i,j+1,f,t)); CV_MAT_ELEM(*t,float,i,j) = dist; CV_MAT_ELEM(*f,uchar,i,j) = BAND; Heap->Push(i,j,dist); } } } if (negate) { for (i=0; i<f->rows; i++) { for(j=0; j<f->cols; j++) { if (CV_MAT_ELEM(*f,uchar,i,j) == CHANGE) { CV_MAT_ELEM(*f,uchar,i,j) = KNOWN; CV_MAT_ELEM(*t,float,i,j) = -CV_MAT_ELEM(*t,float,i,j); } } } } } static void icvTeleaInpaintFMM(const CvMat *f, CvMat *t, CvMat *out, int range, CvPriorityQueueFloat *Heap ) { int i = 0, j = 0, ii = 0, jj = 0, k, l, q, color = 0; float dist; if (CV_MAT_CN(out->type)==3) { while (Heap->Pop(&ii,&jj)) { CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN; for(q=0; q<4; q++) { if (q==0) {i=ii-1; j=jj;} else if(q==1) {i=ii; j=jj-1;} else if(q==2) {i=ii+1; j=jj;} else if(q==3) {i=ii; j=jj+1;} if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue; if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) { dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t), FastMarching_solve(i+1,j,i,j-1,f,t), FastMarching_solve(i-1,j,i,j+1,f,t), FastMarching_solve(i+1,j,i,j+1,f,t)); CV_MAT_ELEM(*t,float,i,j) = dist; for (color=0; color<=2; color++) { CvPoint2D32f gradI,gradT,r; float Ia=0,Jx=0,Jy=0,s=1.0e-20f,w,dst,lev,dir,sat; if (CV_MAT_ELEM(*f,uchar,i,j+1)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) { gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j-1)))*0.5f; } else { gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j))); } } else { if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) { gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i,j-1))); } else { gradT.x=0; } } if (CV_MAT_ELEM(*f,uchar,i+1,j)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) { gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i-1,j)))*0.5f; } else { gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i,j))); } } else { if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) { gradT.y=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i-1,j))); } else { gradT.y=0; } } for (k=i-range; k<=i+range; k++) { int km=k-1+(k==1),kp=k-1-(k==t->rows-2); for (l=j-range; l<=j+range; l++) { int lm=l-1+(l==1),lp=l-1-(l==t->cols-2); if (k>0&&l>0&&k<t->rows-1&&l<t->cols-1) { if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&& ((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) { r.y = (float)(i-k); r.x = (float)(j-l); dst = (float)(1./(VectorLength(r)*sqrt((double)VectorLength(r)))); lev = (float)(1./(1+fabs(CV_MAT_ELEM(*t,float,k,l)-CV_MAT_ELEM(*t,float,i,j)))); dir=VectorScalMult(r,gradT); if (fabs(dir)<=0.01) dir=0.000001f; w = (float)fabs(dst*lev*dir); if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) { gradI.x=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)))*2.0f; } else { gradI.x=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color))); } } else { if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) { gradI.x=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,km,lp,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color))); } else { gradI.x=0; } } if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) { gradI.y=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)))*2.0f; } else { gradI.y=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color))); } } else { if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) { gradI.y=(float)((CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color))); } else { gradI.y=0; } } Ia += (float)w * (float)(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)); Jx -= (float)w * (float)(gradI.x*r.x); Jy -= (float)w * (float)(gradI.y*r.y); s += w; } } } } sat = (float)((Ia/s+(Jx+Jy)/(sqrt(Jx*Jx+Jy*Jy)+1.0e-20f)+0.5f)); { int isat = cvRound(sat); CV_MAT_3COLOR_ELEM(*out,uchar,i-1,j-1,color) = CV_CAST_8U(isat); } } CV_MAT_ELEM(*f,uchar,i,j) = BAND; Heap->Push(i,j,dist); } } } } else if (CV_MAT_CN(out->type)==1) { while (Heap->Pop(&ii,&jj)) { CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN; for(q=0; q<4; q++) { if (q==0) {i=ii-1; j=jj;} else if(q==1) {i=ii; j=jj-1;} else if(q==2) {i=ii+1; j=jj;} else if(q==3) {i=ii; j=jj+1;} if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue; if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) { dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t), FastMarching_solve(i+1,j,i,j-1,f,t), FastMarching_solve(i-1,j,i,j+1,f,t), FastMarching_solve(i+1,j,i,j+1,f,t)); CV_MAT_ELEM(*t,float,i,j) = dist; for (color=0; color<=0; color++) { CvPoint2D32f gradI,gradT,r; float Ia=0,Jx=0,Jy=0,s=1.0e-20f,w,dst,lev,dir,sat; if (CV_MAT_ELEM(*f,uchar,i,j+1)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) { gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j-1)))*0.5f; } else { gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j+1)-CV_MAT_ELEM(*t,float,i,j))); } } else { if (CV_MAT_ELEM(*f,uchar,i,j-1)!=INSIDE) { gradT.x=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i,j-1))); } else { gradT.x=0; } } if (CV_MAT_ELEM(*f,uchar,i+1,j)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) { gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i-1,j)))*0.5f; } else { gradT.y=(float)((CV_MAT_ELEM(*t,float,i+1,j)-CV_MAT_ELEM(*t,float,i,j))); } } else { if (CV_MAT_ELEM(*f,uchar,i-1,j)!=INSIDE) { gradT.y=(float)((CV_MAT_ELEM(*t,float,i,j)-CV_MAT_ELEM(*t,float,i-1,j))); } else { gradT.y=0; } } for (k=i-range; k<=i+range; k++) { int km=k-1+(k==1),kp=k-1-(k==t->rows-2); for (l=j-range; l<=j+range; l++) { int lm=l-1+(l==1),lp=l-1-(l==t->cols-2); if (k>0&&l>0&&k<t->rows-1&&l<t->cols-1) { if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&& ((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) { r.y = (float)(i-k); r.x = (float)(j-l); dst = (float)(1./(VectorLength(r)*sqrt(VectorLength(r)))); lev = (float)(1./(1+fabs(CV_MAT_ELEM(*t,float,k,l)-CV_MAT_ELEM(*t,float,i,j)))); dir=VectorScalMult(r,gradT); if (fabs(dir)<=0.01) dir=0.000001f; w = (float)fabs(dst*lev*dir); if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) { gradI.x=(float)((CV_MAT_ELEM(*out,uchar,km,lp+1)-CV_MAT_ELEM(*out,uchar,km,lm-1)))*2.0f; } else { gradI.x=(float)((CV_MAT_ELEM(*out,uchar,km,lp+1)-CV_MAT_ELEM(*out,uchar,km,lm))); } } else { if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) { gradI.x=(float)((CV_MAT_ELEM(*out,uchar,km,lp)-CV_MAT_ELEM(*out,uchar,km,lm-1))); } else { gradI.x=0; } } if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) { gradI.y=(float)((CV_MAT_ELEM(*out,uchar,kp+1,lm)-CV_MAT_ELEM(*out,uchar,km-1,lm)))*2.0f; } else { gradI.y=(float)((CV_MAT_ELEM(*out,uchar,kp+1,lm)-CV_MAT_ELEM(*out,uchar,km,lm))); } } else { if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) { gradI.y=(float)((CV_MAT_ELEM(*out,uchar,kp,lm)-CV_MAT_ELEM(*out,uchar,km-1,lm))); } else { gradI.y=0; } } Ia += (float)w * (float)(CV_MAT_ELEM(*out,uchar,km,lm)); Jx -= (float)w * (float)(gradI.x*r.x); Jy -= (float)w * (float)(gradI.y*r.y); s += w; } } } } sat = (float)((Ia/s+(Jx+Jy)/(sqrt(Jx*Jx+Jy*Jy)+1.0e-20f)+0.5f)); { int isat = cvRound(sat); CV_MAT_ELEM(*out,uchar,i-1,j-1) = CV_CAST_8U(isat); } } CV_MAT_ELEM(*f,uchar,i,j) = BAND; Heap->Push(i,j,dist); } } } } } static void icvNSInpaintFMM(const CvMat *f, CvMat *t, CvMat *out, int range, CvPriorityQueueFloat *Heap) { int i = 0, j = 0, ii = 0, jj = 0, k, l, q, color = 0; float dist; if (CV_MAT_CN(out->type)==3) { while (Heap->Pop(&ii,&jj)) { CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN; for(q=0; q<4; q++) { if (q==0) {i=ii-1; j=jj;} else if(q==1) {i=ii; j=jj-1;} else if(q==2) {i=ii+1; j=jj;} else if(q==3) {i=ii; j=jj+1;} if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue; if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) { dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t), FastMarching_solve(i+1,j,i,j-1,f,t), FastMarching_solve(i-1,j,i,j+1,f,t), FastMarching_solve(i+1,j,i,j+1,f,t)); CV_MAT_ELEM(*t,float,i,j) = dist; for (color=0; color<=2; color++) { CvPoint2D32f gradI,r; float Ia=0,s=1.0e-20f,w,dst,dir; for (k=i-range; k<=i+range; k++) { int km=k-1+(k==1),kp=k-1-(k==f->rows-2); for (l=j-range; l<=j+range; l++) { int lm=l-1+(l==1),lp=l-1-(l==f->cols-2); if (k>0&&l>0&&k<f->rows-1&&l<f->cols-1) { if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&& ((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) { r.y=(float)(k-i); r.x=(float)(l-j); dst = 1/(VectorLength(r)*VectorLength(r)+1); if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) { gradI.x=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color))+ abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color))); } else { gradI.x=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp+1,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)))*2.0f; } } else { if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) { gradI.x=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,kp,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km-1,lm,color)))*2.0f; } else { gradI.x=0; } } if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) { gradI.y=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color))+ abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color))); } else { gradI.y=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lp+1,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)))*2.0f; } } else { if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) { gradI.y=(float)(abs(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)-CV_MAT_3COLOR_ELEM(*out,uchar,km,lm-1,color)))*2.0f; } else { gradI.y=0; } } gradI.x=-gradI.x; dir=VectorScalMult(r,gradI); if (fabs(dir)<=0.01) { dir=0.000001f; } else { dir = (float)fabs(VectorScalMult(r,gradI)/sqrt(VectorLength(r)*VectorLength(gradI))); } w = dst*dir; Ia += (float)w * (float)(CV_MAT_3COLOR_ELEM(*out,uchar,km,lm,color)); s += w; } } } } { int out_val = cvRound((double)Ia/s); CV_MAT_3COLOR_ELEM(*out,uchar,i-1,j-1,color) = CV_CAST_8U(out_val); } } CV_MAT_ELEM(*f,uchar,i,j) = BAND; Heap->Push(i,j,dist); } } } } else if (CV_MAT_CN(out->type)==1) { while (Heap->Pop(&ii,&jj)) { CV_MAT_ELEM(*f,uchar,ii,jj) = KNOWN; for(q=0; q<4; q++) { if (q==0) {i=ii-1; j=jj;} else if(q==1) {i=ii; j=jj-1;} else if(q==2) {i=ii+1; j=jj;} else if(q==3) {i=ii; j=jj+1;} if ((i<=1)||(j<=1)||(i>t->rows-1)||(j>t->cols-1)) continue; if (CV_MAT_ELEM(*f,uchar,i,j)==INSIDE) { dist = min4(FastMarching_solve(i-1,j,i,j-1,f,t), FastMarching_solve(i+1,j,i,j-1,f,t), FastMarching_solve(i-1,j,i,j+1,f,t), FastMarching_solve(i+1,j,i,j+1,f,t)); CV_MAT_ELEM(*t,float,i,j) = dist; { CvPoint2D32f gradI,r; float Ia=0,s=1.0e-20f,w,dst,dir; for (k=i-range; k<=i+range; k++) { int km=k-1+(k==1),kp=k-1-(k==t->rows-2); for (l=j-range; l<=j+range; l++) { int lm=l-1+(l==1),lp=l-1-(l==t->cols-2); if (k>0&&l>0&&k<t->rows-1&&l<t->cols-1) { if ((CV_MAT_ELEM(*f,uchar,k,l)!=INSIDE)&& ((l-j)*(l-j)+(k-i)*(k-i)<=range*range)) { r.y=(float)(i-k); r.x=(float)(j-l); dst = 1/(VectorLength(r)*VectorLength(r)+1); if (CV_MAT_ELEM(*f,uchar,k+1,l)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) { gradI.x=(float)(abs(CV_MAT_ELEM(*out,uchar,kp+1,lm)-CV_MAT_ELEM(*out,uchar,kp,lm))+ abs(CV_MAT_ELEM(*out,uchar,kp,lm)-CV_MAT_ELEM(*out,uchar,km-1,lm))); } else { gradI.x=(float)(abs(CV_MAT_ELEM(*out,uchar,kp+1,lm)-CV_MAT_ELEM(*out,uchar,kp,lm)))*2.0f; } } else { if (CV_MAT_ELEM(*f,uchar,k-1,l)!=INSIDE) { gradI.x=(float)(abs(CV_MAT_ELEM(*out,uchar,kp,lm)-CV_MAT_ELEM(*out,uchar,km-1,lm)))*2.0f; } else { gradI.x=0; } } if (CV_MAT_ELEM(*f,uchar,k,l+1)!=INSIDE) { if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) { gradI.y=(float)(abs(CV_MAT_ELEM(*out,uchar,km,lp+1)-CV_MAT_ELEM(*out,uchar,km,lm))+ abs(CV_MAT_ELEM(*out,uchar,km,lm)-CV_MAT_ELEM(*out,uchar,km,lm-1))); } else { gradI.y=(float)(abs(CV_MAT_ELEM(*out,uchar,km,lp+1)-CV_MAT_ELEM(*out,uchar,km,lm)))*2.0f; } } else { if (CV_MAT_ELEM(*f,uchar,k,l-1)!=INSIDE) { gradI.y=(float)(abs(CV_MAT_ELEM(*out,uchar,km,lm)-CV_MAT_ELEM(*out,uchar,km,lm-1)))*2.0f; } else { gradI.y=0; } } gradI.x=-gradI.x; dir=VectorScalMult(r,gradI); if (fabs(dir)<=0.01) { dir=0.000001f; } else { dir = (float)fabs(VectorScalMult(r,gradI)/sqrt(VectorLength(r)*VectorLength(gradI))); } w = dst*dir; Ia += (float)w * (float)(CV_MAT_ELEM(*out,uchar,km,lm)); s += w; } } } } { int out_val = cvRound((double)Ia/s); CV_MAT_ELEM(*out,uchar,i-1,j-1) = CV_CAST_8U(out_val); } } CV_MAT_ELEM(*f,uchar,i,j) = BAND; Heap->Push(i,j,dist); } } } } } #define SET_BORDER1_C1(image,type,value) {\ int i,j;\ for(j=0; j<image->cols; j++) {\ CV_MAT_ELEM(*image,type,0,j) = value;\ }\ for (i=1; i<image->rows-1; i++) {\ CV_MAT_ELEM(*image,type,i,0) = CV_MAT_ELEM(*image,type,i,image->cols-1) = value;\ }\ for(j=0; j<image->cols; j++) {\ CV_MAT_ELEM(*image,type,erows-1,j) = value;\ }\ } #define COPY_MASK_BORDER1_C1(src,dst,type) {\ int i,j;\ for (i=0; i<src->rows; i++) {\ for(j=0; j<src->cols; j++) {\ if (CV_MAT_ELEM(*src,type,i,j)!=0)\ CV_MAT_ELEM(*dst,type,i+1,j+1) = INSIDE;\ }\ }\ } CV_IMPL void cvInpaint( const CvArr* _input_img, const CvArr* _inpaint_mask, CvArr* _output_img, double inpaintRange, int flags ) { CvMat *mask = 0, *band = 0, *f = 0, *t = 0, *out = 0; CvPriorityQueueFloat *Heap = 0, *Out = 0; IplConvKernel *el_cross = 0, *el_range = 0; CV_FUNCNAME( "cvInpaint" ); __BEGIN__; CvMat input_hdr, mask_hdr, output_hdr; CvMat* input_img, *inpaint_mask, *output_img; int range=cvRound(inpaintRange); int erows, ecols; CV_CALL( input_img = cvGetMat( _input_img, &input_hdr )); CV_CALL( inpaint_mask = cvGetMat( _inpaint_mask, &mask_hdr )); CV_CALL( output_img = cvGetMat( _output_img, &output_hdr )); if( !CV_ARE_SIZES_EQ(input_img,output_img) || !CV_ARE_SIZES_EQ(input_img,inpaint_mask)) CV_ERROR( CV_StsUnmatchedSizes, "All the input and output images must have the same size" ); if( (CV_MAT_TYPE(input_img->type) != CV_8UC1 && CV_MAT_TYPE(input_img->type) != CV_8UC3) || !CV_ARE_TYPES_EQ(input_img,output_img) ) CV_ERROR( CV_StsUnsupportedFormat, "Only 8-bit 1-channel and 3-channel input/output images are supported" ); if( CV_MAT_TYPE(inpaint_mask->type) != CV_8UC1 ) CV_ERROR( CV_StsUnsupportedFormat, "The mask must be 8-bit 1-channel image" ); range = MAX(range,1); range = MIN(range,100); ecols = input_img->cols + 2; erows = input_img->rows + 2; CV_CALL( f = cvCreateMat(erows, ecols, CV_8UC1)); CV_CALL( t = cvCreateMat(erows, ecols, CV_32FC1)); CV_CALL( band = cvCreateMat(erows, ecols, CV_8UC1)); CV_CALL( mask = cvCreateMat(erows, ecols, CV_8UC1)); CV_CALL( el_cross = cvCreateStructuringElementEx(3,3,1,1,CV_SHAPE_CROSS,NULL)); cvCopy( input_img, output_img ); cvSet(mask,cvScalar(KNOWN,0,0,0)); COPY_MASK_BORDER1_C1(inpaint_mask,mask,uchar); SET_BORDER1_C1(mask,uchar,0); cvSet(f,cvScalar(KNOWN,0,0,0)); cvSet(t,cvScalar(1.0e6f,0,0,0)); cvDilate(mask,band,el_cross,1); // image with narrow band Heap=new CvPriorityQueueFloat; if (!Heap->Init(band)) EXIT; cvSub(band,mask,band,NULL); SET_BORDER1_C1(band,uchar,0); if (!Heap->Add(band)) EXIT; cvSet(f,cvScalar(BAND,0,0,0),band); cvSet(f,cvScalar(INSIDE,0,0,0),mask); cvSet(t,cvScalar(0,0,0,0),band); if( flags == CV_INPAINT_TELEA ) { CV_CALL( out = cvCreateMat(erows, ecols, CV_8UC1)); CV_CALL( el_range = cvCreateStructuringElementEx(2*range+1,2*range+1, range,range,CV_SHAPE_RECT,NULL)); cvDilate(mask,out,el_range,1); cvSub(out,mask,out,NULL); Out=new CvPriorityQueueFloat; if (!Out->Init(out)) EXIT; if (!Out->Add(band)) EXIT; cvSub(out,band,out,NULL); SET_BORDER1_C1(out,uchar,0); icvCalcFMM(out,t,Out,true); icvTeleaInpaintFMM(mask,t,output_img,range,Heap); } else icvNSInpaintFMM(mask,t,output_img,range,Heap); __END__; delete Out; delete Heap; cvReleaseStructuringElement(&el_cross); cvReleaseStructuringElement(&el_range); cvReleaseMat(&out); cvReleaseMat(&mask); cvReleaseMat(&band); cvReleaseMat(&t); cvReleaseMat(&f); }