/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" /* * This file includes the code, contributed by Simon Perreault * (the function icvMedianBlur_8u_CnR_O1) * * Constant-time median filtering -- http://nomis80.org/ctmf.html * Copyright (C) 2006 Simon Perreault * * Contact: * Laboratoire de vision et systemes numeriques * Pavillon Adrien-Pouliot * Universite Laval * Sainte-Foy, Quebec, Canada * G1K 7P4 * * perreaul@gel.ulaval.ca */ // uncomment the line below to force SSE2 mode //#define CV_SSE2 1 /****************************************************************************************\ Box Filter \****************************************************************************************/ static void icvSumRow_8u32s( const uchar* src0, int* dst, void* params ); static void icvSumRow_32f64f( const float* src0, double* dst, void* params ); static void icvSumCol_32s8u( const int** src, uchar* dst, int dst_step, int count, void* params ); static void icvSumCol_32s16s( const int** src, short* dst, int dst_step, int count, void* params ); static void icvSumCol_32s32s( const int** src, int* dst, int dst_step, int count, void* params ); static void icvSumCol_64f32f( const double** src, float* dst, int dst_step, int count, void* params ); CvBoxFilter::CvBoxFilter() { min_depth = CV_32S; sum = 0; sum_count = 0; normalized = false; } CvBoxFilter::CvBoxFilter( int _max_width, int _src_type, int _dst_type, bool _normalized, CvSize _ksize, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { min_depth = CV_32S; sum = 0; sum_count = 0; normalized = false; init( _max_width, _src_type, _dst_type, _normalized, _ksize, _anchor, _border_mode, _border_value ); } CvBoxFilter::~CvBoxFilter() { clear(); } void CvBoxFilter::init( int _max_width, int _src_type, int _dst_type, bool _normalized, CvSize _ksize, CvPoint _anchor, int _border_mode, CvScalar _border_value ) { CV_FUNCNAME( "CvBoxFilter::init" ); __BEGIN__; sum = 0; normalized = _normalized; if( (normalized && CV_MAT_TYPE(_src_type) != CV_MAT_TYPE(_dst_type)) || (!normalized && CV_MAT_CN(_src_type) != CV_MAT_CN(_dst_type))) CV_ERROR( CV_StsUnmatchedFormats, "In case of normalized box filter input and output must have the same type.\n" "In case of unnormalized box filter the number of input and output channels must be the same" ); min_depth = CV_MAT_DEPTH(_src_type) == CV_8U ? CV_32S : CV_64F; CvBaseImageFilter::init( _max_width, _src_type, _dst_type, 1, _ksize, _anchor, _border_mode, _border_value ); scale = normalized ? 1./(ksize.width*ksize.height) : 1; if( CV_MAT_DEPTH(src_type) == CV_8U ) x_func = (CvRowFilterFunc)icvSumRow_8u32s; else if( CV_MAT_DEPTH(src_type) == CV_32F ) x_func = (CvRowFilterFunc)icvSumRow_32f64f; else CV_ERROR( CV_StsUnsupportedFormat, "Unknown/unsupported input image format" ); if( CV_MAT_DEPTH(dst_type) == CV_8U ) { if( !normalized ) CV_ERROR( CV_StsBadArg, "Only normalized box filter can be used for 8u->8u transformation" ); y_func = (CvColumnFilterFunc)icvSumCol_32s8u; } else if( CV_MAT_DEPTH(dst_type) == CV_16S ) { if( normalized || CV_MAT_DEPTH(src_type) != CV_8U ) CV_ERROR( CV_StsBadArg, "Only 8u->16s unnormalized box filter is supported in case of 16s output" ); y_func = (CvColumnFilterFunc)icvSumCol_32s16s; } else if( CV_MAT_DEPTH(dst_type) == CV_32S ) { if( normalized || CV_MAT_DEPTH(src_type) != CV_8U ) CV_ERROR( CV_StsBadArg, "Only 8u->32s unnormalized box filter is supported in case of 32s output"); y_func = (CvColumnFilterFunc)icvSumCol_32s32s; } else if( CV_MAT_DEPTH(dst_type) == CV_32F ) { if( CV_MAT_DEPTH(src_type) != CV_32F ) CV_ERROR( CV_StsBadArg, "Only 32f->32f box filter (normalized or not) is supported in case of 32f output" ); y_func = (CvColumnFilterFunc)icvSumCol_64f32f; } else{ CV_ERROR( CV_StsBadArg, "Unknown/unsupported destination image format" ); } __END__; } void CvBoxFilter::start_process( CvSlice x_range, int width ) { CvBaseImageFilter::start_process( x_range, width ); int i, psz = CV_ELEM_SIZE(work_type); uchar* s; buf_end -= buf_step; buf_max_count--; assert( buf_max_count >= max_ky*2 + 1 ); s = sum = buf_end + cvAlign((width + ksize.width - 1)*CV_ELEM_SIZE(src_type), ALIGN); sum_count = 0; width *= psz; for( i = 0; i < width; i++ ) s[i] = (uchar)0; } static void icvSumRow_8u32s( const uchar* src, int* dst, void* params ) { const CvBoxFilter* state = (const CvBoxFilter*)params; int ksize = state->get_kernel_size().width; int width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); int i, k; width = (width - 1)*cn; ksize *= cn; for( k = 0; k < cn; k++, src++, dst++ ) { int s = 0; for( i = 0; i < ksize; i += cn ) s += src[i]; dst[0] = s; for( i = 0; i < width; i += cn ) { s += src[i+ksize] - src[i]; dst[i+cn] = s; } } } static void icvSumRow_32f64f( const float* src, double* dst, void* params ) { const CvBoxFilter* state = (const CvBoxFilter*)params; int ksize = state->get_kernel_size().width; int width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); int i, k; width = (width - 1)*cn; ksize *= cn; for( k = 0; k < cn; k++, src++, dst++ ) { double s = 0; for( i = 0; i < ksize; i += cn ) s += src[i]; dst[0] = s; for( i = 0; i < width; i += cn ) { s += (double)src[i+ksize] - src[i]; dst[i+cn] = s; } } } static void icvSumCol_32s8u( const int** src, uchar* dst, int dst_step, int count, void* params ) { #define BLUR_SHIFT 24 CvBoxFilter* state = (CvBoxFilter*)params; int ksize = state->get_kernel_size().height; int i, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); double scale = state->get_scale(); int iscale = cvFloor(scale*(1 << BLUR_SHIFT)); int* sum = (int*)state->get_sum_buf(); int* _sum_count = state->get_sum_count_ptr(); int sum_count = *_sum_count; width *= cn; src += sum_count; count += ksize - 1 - sum_count; for( ; count--; src++ ) { const int* sp = src[0]; if( sum_count+1 < ksize ) { for( i = 0; i <= width - 2; i += 2 ) { int s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; sum[i] = s0; sum[i+1] = s1; } for( ; i < width; i++ ) sum[i] += sp[i]; sum_count++; } else { const int* sm = src[-ksize+1]; for( i = 0; i <= width - 2; i += 2 ) { int s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; int t0 = CV_DESCALE(s0*iscale, BLUR_SHIFT), t1 = CV_DESCALE(s1*iscale, BLUR_SHIFT); s0 -= sm[i]; s1 -= sm[i+1]; sum[i] = s0; sum[i+1] = s1; dst[i] = (uchar)t0; dst[i+1] = (uchar)t1; } for( ; i < width; i++ ) { int s0 = sum[i] + sp[i], t0 = CV_DESCALE(s0*iscale, BLUR_SHIFT); sum[i] = s0 - sm[i]; dst[i] = (uchar)t0; } dst += dst_step; } } *_sum_count = sum_count; #undef BLUR_SHIFT } static void icvSumCol_32s16s( const int** src, short* dst, int dst_step, int count, void* params ) { CvBoxFilter* state = (CvBoxFilter*)params; int ksize = state->get_kernel_size().height; int ktotal = ksize*state->get_kernel_size().width; int i, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); int* sum = (int*)state->get_sum_buf(); int* _sum_count = state->get_sum_count_ptr(); int sum_count = *_sum_count; dst_step /= sizeof(dst[0]); width *= cn; src += sum_count; count += ksize - 1 - sum_count; for( ; count--; src++ ) { const int* sp = src[0]; if( sum_count+1 < ksize ) { for( i = 0; i <= width - 2; i += 2 ) { int s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; sum[i] = s0; sum[i+1] = s1; } for( ; i < width; i++ ) sum[i] += sp[i]; sum_count++; } else if( ktotal < 128 ) { const int* sm = src[-ksize+1]; for( i = 0; i <= width - 2; i += 2 ) { int s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; dst[i] = (short)s0; dst[i+1] = (short)s1; s0 -= sm[i]; s1 -= sm[i+1]; sum[i] = s0; sum[i+1] = s1; } for( ; i < width; i++ ) { int s0 = sum[i] + sp[i]; dst[i] = (short)s0; sum[i] = s0 - sm[i]; } dst += dst_step; } else { const int* sm = src[-ksize+1]; for( i = 0; i <= width - 2; i += 2 ) { int s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; dst[i] = CV_CAST_16S(s0); dst[i+1] = CV_CAST_16S(s1); s0 -= sm[i]; s1 -= sm[i+1]; sum[i] = s0; sum[i+1] = s1; } for( ; i < width; i++ ) { int s0 = sum[i] + sp[i]; dst[i] = CV_CAST_16S(s0); sum[i] = s0 - sm[i]; } dst += dst_step; } } *_sum_count = sum_count; } static void icvSumCol_32s32s( const int** src, int * dst, int dst_step, int count, void* params ) { CvBoxFilter* state = (CvBoxFilter*)params; int ksize = state->get_kernel_size().height; int i, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); int* sum = (int*)state->get_sum_buf(); int* _sum_count = state->get_sum_count_ptr(); int sum_count = *_sum_count; dst_step /= sizeof(dst[0]); width *= cn; src += sum_count; count += ksize - 1 - sum_count; for( ; count--; src++ ) { const int* sp = src[0]; if( sum_count+1 < ksize ) { for( i = 0; i <= width - 2; i += 2 ) { int s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; sum[i] = s0; sum[i+1] = s1; } for( ; i < width; i++ ) sum[i] += sp[i]; sum_count++; } else { const int* sm = src[-ksize+1]; for( i = 0; i <= width - 2; i += 2 ) { int s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; dst[i] = s0; dst[i+1] = s1; s0 -= sm[i]; s1 -= sm[i+1]; sum[i] = s0; sum[i+1] = s1; } for( ; i < width; i++ ) { int s0 = sum[i] + sp[i]; dst[i] = s0; sum[i] = s0 - sm[i]; } dst += dst_step; } } *_sum_count = sum_count; } static void icvSumCol_64f32f( const double** src, float* dst, int dst_step, int count, void* params ) { CvBoxFilter* state = (CvBoxFilter*)params; int ksize = state->get_kernel_size().height; int i, width = state->get_width(); int cn = CV_MAT_CN(state->get_src_type()); double scale = state->get_scale(); bool normalized = state->is_normalized(); double* sum = (double*)state->get_sum_buf(); int* _sum_count = state->get_sum_count_ptr(); int sum_count = *_sum_count; dst_step /= sizeof(dst[0]); width *= cn; src += sum_count; count += ksize - 1 - sum_count; for( ; count--; src++ ) { const double* sp = src[0]; if( sum_count+1 < ksize ) { for( i = 0; i <= width - 2; i += 2 ) { double s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; sum[i] = s0; sum[i+1] = s1; } for( ; i < width; i++ ) sum[i] += sp[i]; sum_count++; } else { const double* sm = src[-ksize+1]; if( normalized ) for( i = 0; i <= width - 2; i += 2 ) { double s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; double t0 = s0*scale, t1 = s1*scale; s0 -= sm[i]; s1 -= sm[i+1]; dst[i] = (float)t0; dst[i+1] = (float)t1; sum[i] = s0; sum[i+1] = s1; } else for( i = 0; i <= width - 2; i += 2 ) { double s0 = sum[i] + sp[i], s1 = sum[i+1] + sp[i+1]; dst[i] = (float)s0; dst[i+1] = (float)s1; s0 -= sm[i]; s1 -= sm[i+1]; sum[i] = s0; sum[i+1] = s1; } for( ; i < width; i++ ) { double s0 = sum[i] + sp[i], t0 = s0*scale; sum[i] = s0 - sm[i]; dst[i] = (float)t0; } dst += dst_step; } } *_sum_count = sum_count; } /****************************************************************************************\ Median Filter \****************************************************************************************/ #define CV_MINMAX_8U(a,b) \ (t = CV_FAST_CAST_8U((a) - (b)), (b) += t, a -= t) #if CV_SSE2 && !defined __SSE2__ #define __SSE2__ 1 #include "emmintrin.h" #endif #if defined(__VEC__) || defined(__ALTIVEC__) #include <altivec.h> #undef bool #endif #if defined(__GNUC__) #define align(x) __attribute__ ((aligned (x))) #elif CV_SSE2 && (defined(__ICL) || (_MSC_VER >= 1300)) #define align(x) __declspec(align(x)) #else #define align(x) #endif #if _MSC_VER >= 1200 #pragma warning( disable: 4244 ) #endif /** * This structure represents a two-tier histogram. The first tier (known as the * "coarse" level) is 4 bit wide and the second tier (known as the "fine" level) * is 8 bit wide. Pixels inserted in the fine level also get inserted into the * coarse bucket designated by the 4 MSBs of the fine bucket value. * * The structure is aligned on 16 bits, which is a prerequisite for SIMD * instructions. Each bucket is 16 bit wide, which means that extra care must be * taken to prevent overflow. */ typedef struct align(16) { ushort coarse[16]; ushort fine[16][16]; } Histogram; /** * HOP is short for Histogram OPeration. This macro makes an operation \a op on * histogram \a h for pixel value \a x. It takes care of handling both levels. */ #define HOP(h,x,op) \ h.coarse[x>>4] op; \ *((ushort*) h.fine + x) op; #define COP(c,j,x,op) \ h_coarse[ 16*(n*c+j) + (x>>4) ] op; \ h_fine[ 16 * (n*(16*c+(x>>4)) + j) + (x & 0xF) ] op; #if defined __SSE2__ || defined __MMX__ || defined __ALTIVEC__ #define MEDIAN_HAVE_SIMD 1 #else #define MEDIAN_HAVE_SIMD 0 #endif /** * Adds histograms \a x and \a y and stores the result in \a y. Makes use of * SSE2, MMX or Altivec, if available. */ #if defined(__SSE2__) static inline void histogram_add( const ushort x[16], ushort y[16] ) { _mm_store_si128( (__m128i*) &y[0], _mm_add_epi16( _mm_load_si128((__m128i*) &y[0]), _mm_load_si128((__m128i*) &x[0] ))); _mm_store_si128( (__m128i*) &y[8], _mm_add_epi16( _mm_load_si128((__m128i*) &y[8]), _mm_load_si128((__m128i*) &x[8] ))); } #elif defined(__MMX__) static inline void histogram_add( const ushort x[16], ushort y[16] ) { *(__m64*) &y[0] = _mm_add_pi16( *(__m64*) &y[0], *(__m64*) &x[0] ); *(__m64*) &y[4] = _mm_add_pi16( *(__m64*) &y[4], *(__m64*) &x[4] ); *(__m64*) &y[8] = _mm_add_pi16( *(__m64*) &y[8], *(__m64*) &x[8] ); *(__m64*) &y[12] = _mm_add_pi16( *(__m64*) &y[12], *(__m64*) &x[12] ); } #elif defined(__ALTIVEC__) static inline void histogram_add( const ushort x[16], ushort y[16] ) { *(vector ushort*) &y[0] = vec_add( *(vector ushort*) &y[0], *(vector ushort*) &x[0] ); *(vector ushort*) &y[8] = vec_add( *(vector ushort*) &y[8], *(vector ushort*) &x[8] ); } #else static inline void histogram_add( const ushort x[16], ushort y[16] ) { int i; for( i = 0; i < 16; ++i ) y[i] = (ushort)(y[i] + x[i]); } #endif /** * Subtracts histogram \a x from \a y and stores the result in \a y. Makes use * of SSE2, MMX or Altivec, if available. */ #if defined(__SSE2__) static inline void histogram_sub( const ushort x[16], ushort y[16] ) { _mm_store_si128( (__m128i*) &y[0], _mm_sub_epi16( _mm_load_si128((__m128i*) &y[0]), _mm_load_si128((__m128i*) &x[0] ))); _mm_store_si128( (__m128i*) &y[8], _mm_sub_epi16( _mm_load_si128((__m128i*) &y[8]), _mm_load_si128((__m128i*) &x[8] ))); } #elif defined(__MMX__) static inline void histogram_sub( const ushort x[16], ushort y[16] ) { *(__m64*) &y[0] = _mm_sub_pi16( *(__m64*) &y[0], *(__m64*) &x[0] ); *(__m64*) &y[4] = _mm_sub_pi16( *(__m64*) &y[4], *(__m64*) &x[4] ); *(__m64*) &y[8] = _mm_sub_pi16( *(__m64*) &y[8], *(__m64*) &x[8] ); *(__m64*) &y[12] = _mm_sub_pi16( *(__m64*) &y[12], *(__m64*) &x[12] ); } #elif defined(__ALTIVEC__) static inline void histogram_sub( const ushort x[16], ushort y[16] ) { *(vector ushort*) &y[0] = vec_sub( *(vector ushort*) &y[0], *(vector ushort*) &x[0] ); *(vector ushort*) &y[8] = vec_sub( *(vector ushort*) &y[8], *(vector ushort*) &x[8] ); } #else static inline void histogram_sub( const ushort x[16], ushort y[16] ) { int i; for( i = 0; i < 16; ++i ) y[i] = (ushort)(y[i] - x[i]); } #endif static inline void histogram_muladd( int a, const ushort x[16], ushort y[16] ) { int i; for ( i = 0; i < 16; ++i ) y[i] = (ushort)(y[i] + a * x[i]); } static CvStatus CV_STDCALL icvMedianBlur_8u_CnR_O1( uchar* src, int src_step, uchar* dst, int dst_step, CvSize size, int kernel_size, int cn, int pad_left, int pad_right ) { int r = (kernel_size-1)/2; const int m = size.height, n = size.width; int i, j, k, c; const unsigned char *p, *q; Histogram H[4]; ushort *h_coarse, *h_fine, luc[4][16]; if( size.height < r || size.width < r ) return CV_BADSIZE_ERR; assert( src ); assert( dst ); assert( r >= 0 ); assert( size.width >= 2*r+1 ); assert( size.height >= 2*r+1 ); assert( src_step != 0 ); assert( dst_step != 0 ); h_coarse = (ushort*) cvAlloc( 1 * 16 * n * cn * sizeof(ushort) ); h_fine = (ushort*) cvAlloc( 16 * 16 * n * cn * sizeof(ushort) ); memset( h_coarse, 0, 1 * 16 * n * cn * sizeof(ushort) ); memset( h_fine, 0, 16 * 16 * n * cn * sizeof(ushort) ); /* First row initialization */ for ( j = 0; j < n; ++j ) { for ( c = 0; c < cn; ++c ) { COP( c, j, src[cn*j+c], += r+1 ); } } for ( i = 0; i < r; ++i ) { for ( j = 0; j < n; ++j ) { for ( c = 0; c < cn; ++c ) { COP( c, j, src[src_step*i+cn*j+c], ++ ); } } } for ( i = 0; i < m; ++i ) { /* Update column histograms for entire row. */ p = src + src_step * MAX( 0, i-r-1 ); q = p + cn * n; for ( j = 0; p != q; ++j ) { for ( c = 0; c < cn; ++c, ++p ) { COP( c, j, *p, -- ); } } p = src + src_step * MIN( m-1, i+r ); q = p + cn * n; for ( j = 0; p != q; ++j ) { for ( c = 0; c < cn; ++c, ++p ) { COP( c, j, *p, ++ ); } } /* First column initialization */ memset( H, 0, cn*sizeof(H[0]) ); memset( luc, 0, cn*sizeof(luc[0]) ); if ( pad_left ) { for ( c = 0; c < cn; ++c ) { histogram_muladd( r, &h_coarse[16*n*c], H[c].coarse ); } } for ( j = 0; j < (pad_left ? r : 2*r); ++j ) { for ( c = 0; c < cn; ++c ) { histogram_add( &h_coarse[16*(n*c+j)], H[c].coarse ); } } for ( c = 0; c < cn; ++c ) { for ( k = 0; k < 16; ++k ) { histogram_muladd( 2*r+1, &h_fine[16*n*(16*c+k)], &H[c].fine[k][0] ); } } for ( j = pad_left ? 0 : r; j < (pad_right ? n : n-r); ++j ) { for ( c = 0; c < cn; ++c ) { int t = 2*r*r + 2*r, b, sum = 0; ushort* segment; histogram_add( &h_coarse[16*(n*c + MIN(j+r,n-1))], H[c].coarse ); /* Find median at coarse level */ for ( k = 0; k < 16 ; ++k ) { sum += H[c].coarse[k]; if ( sum > t ) { sum -= H[c].coarse[k]; break; } } assert( k < 16 ); /* Update corresponding histogram segment */ if ( luc[c][k] <= j-r ) { memset( &H[c].fine[k], 0, 16 * sizeof(ushort) ); for ( luc[c][k] = j-r; luc[c][k] < MIN(j+r+1,n); ++luc[c][k] ) { histogram_add( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] ); } if ( luc[c][k] < j+r+1 ) { histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] ); luc[c][k] = (ushort)(j+r+1); } } else { for ( ; luc[c][k] < j+r+1; ++luc[c][k] ) { histogram_sub( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] ); histogram_add( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] ); } } histogram_sub( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse ); /* Find median in segment */ segment = H[c].fine[k]; for ( b = 0; b < 16 ; ++b ) { sum += segment[b]; if ( sum > t ) { dst[dst_step*i+cn*j+c] = (uchar)(16*k + b); break; } } assert( b < 16 ); } } } #if defined(__MMX__) _mm_empty(); #endif cvFree(&h_coarse); cvFree(&h_fine); #undef HOP #undef COP return CV_OK; } #if _MSC_VER >= 1200 #pragma warning( default: 4244 ) #endif static CvStatus CV_STDCALL icvMedianBlur_8u_CnR_Om( uchar* src, int src_step, uchar* dst, int dst_step, CvSize size, int m, int cn ) { #define N 16 int zone0[4][N]; int zone1[4][N*N]; int x, y; int n2 = m*m/2; int nx = (m + 1)/2 - 1; uchar* src_max = src + size.height*src_step; uchar* src_right = src + size.width*cn; #define UPDATE_ACC01( pix, cn, op ) \ { \ int p = (pix); \ zone1[cn][p] op; \ zone0[cn][p >> 4] op; \ } if( size.height < nx || size.width < nx ) return CV_BADSIZE_ERR; if( m == 3 ) { size.width *= cn; for( y = 0; y < size.height; y++, dst += dst_step ) { const uchar* src0 = src + src_step*(y-1); const uchar* src1 = src0 + src_step; const uchar* src2 = src1 + src_step; if( y == 0 ) src0 = src1; else if( y == size.height - 1 ) src2 = src1; for( x = 0; x < 2*cn; x++ ) { int x0 = x < cn ? x : size.width - 3*cn + x; int x2 = x < cn ? x + cn : size.width - 2*cn + x; int x1 = x < cn ? x0 : x2, t; int p0 = src0[x0], p1 = src0[x1], p2 = src0[x2]; int p3 = src1[x0], p4 = src1[x1], p5 = src1[x2]; int p6 = src2[x0], p7 = src2[x1], p8 = src2[x2]; CV_MINMAX_8U(p1, p2); CV_MINMAX_8U(p4, p5); CV_MINMAX_8U(p7, p8); CV_MINMAX_8U(p0, p1); CV_MINMAX_8U(p3, p4); CV_MINMAX_8U(p6, p7); CV_MINMAX_8U(p1, p2); CV_MINMAX_8U(p4, p5); CV_MINMAX_8U(p7, p8); CV_MINMAX_8U(p0, p3); CV_MINMAX_8U(p5, p8); CV_MINMAX_8U(p4, p7); CV_MINMAX_8U(p3, p6); CV_MINMAX_8U(p1, p4); CV_MINMAX_8U(p2, p5); CV_MINMAX_8U(p4, p7); CV_MINMAX_8U(p4, p2); CV_MINMAX_8U(p6, p4); CV_MINMAX_8U(p4, p2); dst[x1] = (uchar)p4; } for( x = cn; x < size.width - cn; x++ ) { int p0 = src0[x-cn], p1 = src0[x], p2 = src0[x+cn]; int p3 = src1[x-cn], p4 = src1[x], p5 = src1[x+cn]; int p6 = src2[x-cn], p7 = src2[x], p8 = src2[x+cn]; int t; CV_MINMAX_8U(p1, p2); CV_MINMAX_8U(p4, p5); CV_MINMAX_8U(p7, p8); CV_MINMAX_8U(p0, p1); CV_MINMAX_8U(p3, p4); CV_MINMAX_8U(p6, p7); CV_MINMAX_8U(p1, p2); CV_MINMAX_8U(p4, p5); CV_MINMAX_8U(p7, p8); CV_MINMAX_8U(p0, p3); CV_MINMAX_8U(p5, p8); CV_MINMAX_8U(p4, p7); CV_MINMAX_8U(p3, p6); CV_MINMAX_8U(p1, p4); CV_MINMAX_8U(p2, p5); CV_MINMAX_8U(p4, p7); CV_MINMAX_8U(p4, p2); CV_MINMAX_8U(p6, p4); CV_MINMAX_8U(p4, p2); dst[x] = (uchar)p4; } } return CV_OK; } for( x = 0; x < size.width; x++, dst += cn ) { uchar* dst_cur = dst; uchar* src_top = src; uchar* src_bottom = src; int k, c; int x0 = -1; int src_step1 = src_step, dst_step1 = dst_step; if( x % 2 != 0 ) { src_bottom = src_top += src_step*(size.height-1); dst_cur += dst_step*(size.height-1); src_step1 = -src_step1; dst_step1 = -dst_step1; } if( x <= m/2 ) nx++; if( nx < m ) x0 = x < m/2 ? 0 : (nx-1)*cn; // init accumulator memset( zone0, 0, sizeof(zone0[0])*cn ); memset( zone1, 0, sizeof(zone1[0])*cn ); for( y = 0; y <= m/2; y++ ) { for( c = 0; c < cn; c++ ) { if( y > 0 ) { if( x0 >= 0 ) UPDATE_ACC01( src_bottom[x0+c], c, += (m - nx) ); for( k = 0; k < nx*cn; k += cn ) UPDATE_ACC01( src_bottom[k+c], c, ++ ); } else { if( x0 >= 0 ) UPDATE_ACC01( src_bottom[x0+c], c, += (m - nx)*(m/2+1) ); for( k = 0; k < nx*cn; k += cn ) UPDATE_ACC01( src_bottom[k+c], c, += m/2+1 ); } } if( (src_step1 > 0 && y < size.height-1) || (src_step1 < 0 && size.height-y-1 > 0) ) src_bottom += src_step1; } for( y = 0; y < size.height; y++, dst_cur += dst_step1 ) { // find median for( c = 0; c < cn; c++ ) { int s = 0; for( k = 0; ; k++ ) { int t = s + zone0[c][k]; if( t > n2 ) break; s = t; } for( k *= N; ;k++ ) { s += zone1[c][k]; if( s > n2 ) break; } dst_cur[c] = (uchar)k; } if( y+1 == size.height ) break; if( cn == 1 ) { for( k = 0; k < nx; k++ ) { int p = src_top[k]; int q = src_bottom[k]; zone1[0][p]--; zone0[0][p>>4]--; zone1[0][q]++; zone0[0][q>>4]++; } } else if( cn == 3 ) { for( k = 0; k < nx*3; k += 3 ) { UPDATE_ACC01( src_top[k], 0, -- ); UPDATE_ACC01( src_top[k+1], 1, -- ); UPDATE_ACC01( src_top[k+2], 2, -- ); UPDATE_ACC01( src_bottom[k], 0, ++ ); UPDATE_ACC01( src_bottom[k+1], 1, ++ ); UPDATE_ACC01( src_bottom[k+2], 2, ++ ); } } else { assert( cn == 4 ); for( k = 0; k < nx*4; k += 4 ) { UPDATE_ACC01( src_top[k], 0, -- ); UPDATE_ACC01( src_top[k+1], 1, -- ); UPDATE_ACC01( src_top[k+2], 2, -- ); UPDATE_ACC01( src_top[k+3], 3, -- ); UPDATE_ACC01( src_bottom[k], 0, ++ ); UPDATE_ACC01( src_bottom[k+1], 1, ++ ); UPDATE_ACC01( src_bottom[k+2], 2, ++ ); UPDATE_ACC01( src_bottom[k+3], 3, ++ ); } } if( x0 >= 0 ) { for( c = 0; c < cn; c++ ) { UPDATE_ACC01( src_top[x0+c], c, -= (m - nx) ); UPDATE_ACC01( src_bottom[x0+c], c, += (m - nx) ); } } if( (src_step1 > 0 && src_bottom + src_step1 < src_max) || (src_step1 < 0 && src_bottom + src_step1 >= src) ) src_bottom += src_step1; if( y >= m/2 ) src_top += src_step1; } if( x >= m/2 ) src += cn; if( src + nx*cn > src_right ) nx--; } #undef N #undef UPDATE_ACC return CV_OK; } /****************************************************************************************\ Bilateral Filtering \****************************************************************************************/ static void icvBilateralFiltering_8u( const CvMat* src, CvMat* dst, int d, double sigma_color, double sigma_space ) { CvMat* temp = 0; float* color_weight = 0; float* space_weight = 0; int* space_ofs = 0; CV_FUNCNAME( "icvBilateralFiltering_8u" ); __BEGIN__; double gauss_color_coeff = -0.5/(sigma_color*sigma_color); double gauss_space_coeff = -0.5/(sigma_space*sigma_space); int cn = CV_MAT_CN(src->type); int i, j, k, maxk, radius; CvSize size = cvGetMatSize(src); if( (CV_MAT_TYPE(src->type) != CV_8UC1 && CV_MAT_TYPE(src->type) != CV_8UC3) || !CV_ARE_TYPES_EQ(src, dst) ) CV_ERROR( CV_StsUnsupportedFormat, "Both source and destination must be 8-bit, single-channel or 3-channel images" ); if( sigma_color <= 0 ) sigma_color = 1; if( sigma_space <= 0 ) sigma_space = 1; if( d == 0 ) radius = cvRound(sigma_space*1.5); else radius = d/2; radius = MAX(radius, 1); d = radius*2 + 1; CV_CALL( temp = cvCreateMat( src->rows + radius*2, src->cols + radius*2, src->type )); CV_CALL( cvCopyMakeBorder( src, temp, cvPoint(radius,radius), IPL_BORDER_REPLICATE )); CV_CALL( color_weight = (float*)cvAlloc(cn*256*sizeof(color_weight[0]))); CV_CALL( space_weight = (float*)cvAlloc(d*d*sizeof(space_weight[0]))); CV_CALL( space_ofs = (int*)cvAlloc(d*d*sizeof(space_ofs[0]))); // initialize color-related bilateral filter coefficients for( i = 0; i < 256*cn; i++ ) color_weight[i] = (float)exp(i*i*gauss_color_coeff); // initialize space-related bilateral filter coefficients for( i = -radius, maxk = 0; i <= radius; i++ ) for( j = -radius; j <= radius; j++ ) { double r = sqrt((double)i*i + (double)j*j); if( r > radius ) continue; space_weight[maxk] = (float)exp(r*r*gauss_space_coeff); space_ofs[maxk++] = i*temp->step + j*cn; } for( i = 0; i < size.height; i++ ) { const uchar* sptr = temp->data.ptr + (i+radius)*temp->step + radius*cn; uchar* dptr = dst->data.ptr + i*dst->step; if( cn == 1 ) { for( j = 0; j < size.width; j++ ) { float sum = 0, wsum = 0; int val0 = sptr[j]; for( k = 0; k < maxk; k++ ) { int val = sptr[j + space_ofs[k]]; float w = space_weight[k]*color_weight[abs(val - val0)]; sum += val*w; wsum += w; } // overflow is not possible here => there is no need to use CV_CAST_8U dptr[j] = (uchar)cvRound(sum/wsum); } } else { assert( cn == 3 ); for( j = 0; j < size.width*3; j += 3 ) { float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0; int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2]; for( k = 0; k < maxk; k++ ) { const uchar* sptr_k = sptr + j + space_ofs[k]; int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2]; float w = space_weight[k]*color_weight[abs(b - b0) + abs(g - g0) + abs(r - r0)]; sum_b += b*w; sum_g += g*w; sum_r += r*w; wsum += w; } wsum = 1.f/wsum; b0 = cvRound(sum_b*wsum); g0 = cvRound(sum_g*wsum); r0 = cvRound(sum_r*wsum); dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0; } } } __END__; cvReleaseMat( &temp ); cvFree( &color_weight ); cvFree( &space_weight ); cvFree( &space_ofs ); } static void icvBilateralFiltering_32f( const CvMat* src, CvMat* dst, int d, double sigma_color, double sigma_space ) { CvMat* temp = 0; float* space_weight = 0; int* space_ofs = 0; float *expLUT = 0; CV_FUNCNAME( "icvBilateralFiltering_32f" ); __BEGIN__; double gauss_color_coeff = -0.5/(sigma_color*sigma_color); double gauss_space_coeff = -0.5/(sigma_space*sigma_space); int cn = CV_MAT_CN(src->type); int i, j, k, maxk, radius; double minValSrc=-1, maxValSrc=1; const int kExpNumBinsPerChannel = 1 << 12; int kExpNumBins = 0; float lastExpVal = 1.f; int temp_step; float len, scale_index; CvMat src_reshaped; CvSize size = cvGetMatSize(src); if( (CV_MAT_TYPE(src->type) != CV_32FC1 && CV_MAT_TYPE(src->type) != CV_32FC3) || !CV_ARE_TYPES_EQ(src, dst) ) CV_ERROR( CV_StsUnsupportedFormat, "Both source and destination must be 32-bit float, single-channel or 3-channel images" ); if( sigma_color <= 0 ) sigma_color = 1; if( sigma_space <= 0 ) sigma_space = 1; if( d == 0 ) radius = cvRound(sigma_space*1.5); else radius = d/2; radius = MAX(radius, 1); d = radius*2 + 1; // compute the min/max range for the input image (even if multichannel) CV_CALL( cvReshape( src, &src_reshaped, 1 ) ); CV_CALL( cvMinMaxLoc(&src_reshaped, &minValSrc, &maxValSrc) ); // temporary copy of the image with borders for easy processing CV_CALL( temp = cvCreateMat( src->rows + radius*2, src->cols + radius*2, src->type )); temp_step = temp->step/sizeof(float); CV_CALL( cvCopyMakeBorder( src, temp, cvPoint(radius,radius), IPL_BORDER_REPLICATE )); // allocate lookup tables CV_CALL( space_weight = (float*)cvAlloc(d*d*sizeof(space_weight[0]))); CV_CALL( space_ofs = (int*)cvAlloc(d*d*sizeof(space_ofs[0]))); // assign a length which is slightly more than needed len = (float)(maxValSrc - minValSrc) * cn; kExpNumBins = kExpNumBinsPerChannel * cn; CV_CALL( expLUT = (float*)cvAlloc((kExpNumBins+2) * sizeof(expLUT[0]))); scale_index = kExpNumBins/len; // initialize the exp LUT for( i = 0; i < kExpNumBins+2; i++ ) { if( lastExpVal > 0.f ) { double val = i / scale_index; expLUT[i] = (float)exp(val * val * gauss_color_coeff); lastExpVal = expLUT[i]; } else expLUT[i] = 0.f; } // initialize space-related bilateral filter coefficients for( i = -radius, maxk = 0; i <= radius; i++ ) for( j = -radius; j <= radius; j++ ) { double r = sqrt((double)i*i + (double)j*j); if( r > radius ) continue; space_weight[maxk] = (float)exp(r*r*gauss_space_coeff); space_ofs[maxk++] = i*temp_step + j*cn; } for( i = 0; i < size.height; i++ ) { const float* sptr = temp->data.fl + (i+radius)*temp_step + radius*cn; float* dptr = (float*)(dst->data.ptr + i*dst->step); if( cn == 1 ) { for( j = 0; j < size.width; j++ ) { float sum = 0, wsum = 0; float val0 = sptr[j]; for( k = 0; k < maxk; k++ ) { float val = sptr[j + space_ofs[k]]; float alpha = (float)(fabs(val - val0)*scale_index); int idx = cvFloor(alpha); alpha -= idx; float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx])); sum += val*w; wsum += w; } dptr[j] = (float)(sum/wsum); } } else { assert( cn == 3 ); for( j = 0; j < size.width*3; j += 3 ) { float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0; float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2]; for( k = 0; k < maxk; k++ ) { const float* sptr_k = sptr + j + space_ofs[k]; float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2]; float alpha = (float)((fabs(b - b0) + fabs(g - g0) + fabs(r - r0))*scale_index); int idx = cvFloor(alpha); alpha -= idx; float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx])); sum_b += b*w; sum_g += g*w; sum_r += r*w; wsum += w; } wsum = 1.f/wsum; b0 = sum_b*wsum; g0 = sum_g*wsum; r0 = sum_r*wsum; dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0; } } } __END__; cvReleaseMat( &temp ); cvFree( &space_weight ); cvFree( &space_ofs ); cvFree( &expLUT ); } //////////////////////////////// IPP smoothing functions ///////////////////////////////// icvFilterMedian_8u_C1R_t icvFilterMedian_8u_C1R_p = 0; icvFilterMedian_8u_C3R_t icvFilterMedian_8u_C3R_p = 0; icvFilterMedian_8u_C4R_t icvFilterMedian_8u_C4R_p = 0; icvFilterBox_8u_C1R_t icvFilterBox_8u_C1R_p = 0; icvFilterBox_8u_C3R_t icvFilterBox_8u_C3R_p = 0; icvFilterBox_8u_C4R_t icvFilterBox_8u_C4R_p = 0; icvFilterBox_32f_C1R_t icvFilterBox_32f_C1R_p = 0; icvFilterBox_32f_C3R_t icvFilterBox_32f_C3R_p = 0; icvFilterBox_32f_C4R_t icvFilterBox_32f_C4R_p = 0; typedef CvStatus (CV_STDCALL * CvSmoothFixedIPPFunc) ( const void* src, int srcstep, void* dst, int dststep, CvSize size, CvSize ksize, CvPoint anchor ); ////////////////////////////////////////////////////////////////////////////////////////// CV_IMPL void cvSmooth( const void* srcarr, void* dstarr, int smooth_type, int param1, int param2, double param3, double param4 ) { CvBoxFilter box_filter; CvSepFilter gaussian_filter; CvMat* temp = 0; CV_FUNCNAME( "cvSmooth" ); __BEGIN__; int coi1 = 0, coi2 = 0; CvMat srcstub, *src = (CvMat*)srcarr; CvMat dststub, *dst = (CvMat*)dstarr; CvSize size; int src_type, dst_type, depth, cn; double sigma1 = 0, sigma2 = 0; bool have_ipp = icvFilterMedian_8u_C1R_p != 0; CV_CALL( src = cvGetMat( src, &srcstub, &coi1 )); CV_CALL( dst = cvGetMat( dst, &dststub, &coi2 )); if( coi1 != 0 || coi2 != 0 ) CV_ERROR( CV_BadCOI, "" ); src_type = CV_MAT_TYPE( src->type ); dst_type = CV_MAT_TYPE( dst->type ); depth = CV_MAT_DEPTH(src_type); cn = CV_MAT_CN(src_type); size = cvGetMatSize(src); if( !CV_ARE_SIZES_EQ( src, dst )) CV_ERROR( CV_StsUnmatchedSizes, "" ); if( smooth_type != CV_BLUR_NO_SCALE && !CV_ARE_TYPES_EQ( src, dst )) CV_ERROR( CV_StsUnmatchedFormats, "The specified smoothing algorithm requires input and ouput arrays be of the same type" ); if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE || smooth_type == CV_GAUSSIAN || smooth_type == CV_MEDIAN ) { // automatic detection of kernel size from sigma if( smooth_type == CV_GAUSSIAN ) { sigma1 = param3; sigma2 = param4 ? param4 : param3; if( param1 == 0 && sigma1 > 0 ) param1 = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1; if( param2 == 0 && sigma2 > 0 ) param2 = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1; } if( param2 == 0 ) param2 = size.height == 1 ? 1 : param1; if( param1 < 1 || (param1 & 1) == 0 || param2 < 1 || (param2 & 1) == 0 ) CV_ERROR( CV_StsOutOfRange, "Both mask width and height must be >=1 and odd" ); if( param1 == 1 && param2 == 1 ) { cvConvert( src, dst ); EXIT; } } if( have_ipp && (smooth_type == CV_BLUR || (smooth_type == CV_MEDIAN && param1 <= 15)) && size.width >= param1 && size.height >= param2 && param1 > 1 && param2 > 1 ) { CvSmoothFixedIPPFunc ipp_median_box_func = 0; if( smooth_type == CV_BLUR ) { ipp_median_box_func = src_type == CV_8UC1 ? icvFilterBox_8u_C1R_p : src_type == CV_8UC3 ? icvFilterBox_8u_C3R_p : src_type == CV_8UC4 ? icvFilterBox_8u_C4R_p : src_type == CV_32FC1 ? icvFilterBox_32f_C1R_p : src_type == CV_32FC3 ? icvFilterBox_32f_C3R_p : src_type == CV_32FC4 ? icvFilterBox_32f_C4R_p : 0; } else if( smooth_type == CV_MEDIAN ) { ipp_median_box_func = src_type == CV_8UC1 ? icvFilterMedian_8u_C1R_p : src_type == CV_8UC3 ? icvFilterMedian_8u_C3R_p : src_type == CV_8UC4 ? icvFilterMedian_8u_C4R_p : 0; } if( ipp_median_box_func ) { CvSize el_size = { param1, param2 }; CvPoint el_anchor = { param1/2, param2/2 }; int stripe_size = 1 << 14; // the optimal value may depend on CPU cache, // overhead of the current IPP code etc. const uchar* shifted_ptr; int y, dy = 0; int temp_step, dst_step = dst->step; CV_CALL( temp = icvIPPFilterInit( src, stripe_size, el_size )); shifted_ptr = temp->data.ptr + el_anchor.y*temp->step + el_anchor.x*CV_ELEM_SIZE(src_type); temp_step = temp->step ? temp->step : CV_STUB_STEP; for( y = 0; y < src->rows; y += dy ) { dy = icvIPPFilterNextStripe( src, temp, y, el_size, el_anchor ); IPPI_CALL( ipp_median_box_func( shifted_ptr, temp_step, dst->data.ptr + y*dst_step, dst_step, cvSize(src->cols, dy), el_size, el_anchor )); } EXIT; } } if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE ) { CV_CALL( box_filter.init( src->cols, src_type, dst_type, smooth_type == CV_BLUR, cvSize(param1, param2) )); CV_CALL( box_filter.process( src, dst )); } else if( smooth_type == CV_MEDIAN ) { int img_size_mp = size.width*size.height; img_size_mp = (img_size_mp + (1<<19)) >> 20; if( depth != CV_8U || (cn != 1 && cn != 3 && cn != 4) ) CV_ERROR( CV_StsUnsupportedFormat, "Median filter only supports 8uC1, 8uC3 and 8uC4 images" ); if( size.width < param1*2 || size.height < param1*2 || param1 <= 3 + (img_size_mp < 1 ? 12 : img_size_mp < 4 ? 6 : 2)*(MEDIAN_HAVE_SIMD ? 1 : 3)) { // Special case optimized for 3x3 IPPI_CALL( icvMedianBlur_8u_CnR_Om( src->data.ptr, src->step, dst->data.ptr, dst->step, size, param1, cn )); } else { const int r = (param1 - 1) / 2; const int CACHE_SIZE = (int) ( 0.95 * 256 * 1024 / cn ); // assume a 256 kB cache size const int STRIPES = (int) cvCeil( (double) (size.width - 2*r) / (CACHE_SIZE / sizeof(Histogram) - 2*r) ); const int STRIPE_SIZE = (int) cvCeil( (double) ( size.width + STRIPES*2*r - 2*r ) / STRIPES ); for( int i = 0; i < size.width; i += STRIPE_SIZE - 2*r ) { int stripe = STRIPE_SIZE; // Make sure that the filter kernel fits into one stripe. if( i + STRIPE_SIZE - 2*r >= size.width || size.width - (i + STRIPE_SIZE - 2*r) < 2*r+1 ) stripe = size.width - i; IPPI_CALL( icvMedianBlur_8u_CnR_O1( src->data.ptr + cn*i, src->step, dst->data.ptr + cn*i, dst->step, cvSize(stripe, size.height), param1, cn, i == 0, stripe == size.width - i )); if( stripe == size.width - i ) break; } } } else if( smooth_type == CV_GAUSSIAN ) { CvSize ksize = { param1, param2 }; float* kx = (float*)cvStackAlloc( ksize.width*sizeof(kx[0]) ); float* ky = (float*)cvStackAlloc( ksize.height*sizeof(ky[0]) ); CvMat KX = cvMat( 1, ksize.width, CV_32F, kx ); CvMat KY = cvMat( 1, ksize.height, CV_32F, ky ); CvSepFilter::init_gaussian_kernel( &KX, sigma1 ); if( ksize.width != ksize.height || fabs(sigma1 - sigma2) > FLT_EPSILON ) CvSepFilter::init_gaussian_kernel( &KY, sigma2 ); else KY.data.fl = kx; if( have_ipp && size.width >= param1*3 && size.height >= param2 && param1 > 1 && param2 > 1 ) { int done; CV_CALL( done = icvIPPSepFilter( src, dst, &KX, &KY, cvPoint(ksize.width/2,ksize.height/2))); if( done ) EXIT; } CV_CALL( gaussian_filter.init( src->cols, src_type, dst_type, &KX, &KY )); CV_CALL( gaussian_filter.process( src, dst )); } else if( smooth_type == CV_BILATERAL ) { if( param2 != 0 && (param2 != param1 || param1 % 2 == 0) ) CV_ERROR( CV_StsBadSize, "Bilateral filter only supports square windows of odd size" ); switch( src_type ) { case CV_32FC1: case CV_32FC3: CV_CALL( icvBilateralFiltering_32f( src, dst, param1, param3, param4 )); break; case CV_8UC1: case CV_8UC3: CV_CALL( icvBilateralFiltering_8u( src, dst, param1, param3, param4 )); break; default: CV_ERROR( CV_StsUnsupportedFormat, "Unknown/unsupported format: bilateral filter only supports 8uC1, 8uC3, 32fC1 and 32fC3 formats" ); } } __END__; cvReleaseMat( &temp ); } /* End of file. */