//M*////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /****************************************************************************************\ * Very fast SAD-based (Sum-of-Absolute-Diffrences) stereo correspondence algorithm. * * Contributed by Kurt Konolige * \****************************************************************************************/ #include "_cv.h" /* #undef CV_SSE2 #define CV_SSE2 1 #include "emmintrin.h" */ CV_IMPL CvStereoBMState* cvCreateStereoBMState( int /*preset*/, int numberOfDisparities ) { CvStereoBMState* state = 0; //CV_FUNCNAME( "cvCreateStereoBMState" ); __BEGIN__; state = (CvStereoBMState*)cvAlloc( sizeof(*state) ); if( !state ) EXIT; state->preFilterType = CV_STEREO_BM_NORMALIZED_RESPONSE; state->preFilterSize = 9; state->preFilterCap = 31; state->SADWindowSize = 15; state->minDisparity = 0; state->numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : 64; state->textureThreshold = 10; state->uniquenessRatio = 15; state->speckleRange = state->speckleWindowSize = 0; state->preFilteredImg0 = state->preFilteredImg1 = state->slidingSumBuf = 0; __END__; if( cvGetErrStatus() < 0 ) cvReleaseStereoBMState( &state ); return state; } CV_IMPL void cvReleaseStereoBMState( CvStereoBMState** state ) { CV_FUNCNAME( "cvReleaseStereoBMState" ); __BEGIN__; if( !state ) CV_ERROR( CV_StsNullPtr, "" ); if( !*state ) EXIT; cvReleaseMat( &(*state)->preFilteredImg0 ); cvReleaseMat( &(*state)->preFilteredImg1 ); cvReleaseMat( &(*state)->slidingSumBuf ); cvFree( state ); __END__; } static void icvPrefilter( const CvMat* src, CvMat* dst, int winsize, int ftzero, uchar* buf ) { int x, y, wsz2 = winsize/2; int* vsum = (int*)cvAlignPtr(buf + (wsz2 + 1)*sizeof(vsum[0]), 32); int scale_g = winsize*winsize/8, scale_s = (1024 + scale_g)/(scale_g*2); const int OFS = 256*5, TABSZ = OFS*2 + 256; uchar tab[TABSZ]; const uchar* sptr = src->data.ptr; int srcstep = src->step; CvSize size = cvGetMatSize(src); scale_g *= scale_s; for( x = 0; x < TABSZ; x++ ) tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero*2 : x - OFS + ftzero); for( x = 0; x < size.width; x++ ) vsum[x] = (ushort)(sptr[x]*(wsz2 + 2)); for( y = 1; y < wsz2; y++ ) { for( x = 0; x < size.width; x++ ) vsum[x] = (ushort)(vsum[x] + sptr[srcstep*y + x]); } for( y = 0; y < size.height; y++ ) { const uchar* top = sptr + srcstep*MAX(y-wsz2-1,0); const uchar* bottom = sptr + srcstep*MIN(y+wsz2,size.height-1); const uchar* prev = sptr + srcstep*MAX(y-1,0); const uchar* curr = sptr + srcstep*y; const uchar* next = sptr + srcstep*MIN(y+1,size.height-1); uchar* dptr = dst->data.ptr + dst->step*y; x = 0; for( ; x < size.width; x++ ) vsum[x] = (ushort)(vsum[x] + bottom[x] - top[x]); for( x = 0; x <= wsz2; x++ ) { vsum[-x-1] = vsum[0]; vsum[size.width+x] = vsum[size.width-1]; } int sum = vsum[0]*(wsz2 + 1); for( x = 1; x <= wsz2; x++ ) sum += vsum[x]; int val = ((curr[0]*5 + curr[1] + prev[0] + next[0])*scale_g - sum*scale_s) >> 10; dptr[0] = tab[val + OFS]; for( x = 1; x < size.width-1; x++ ) { sum += vsum[x+wsz2] - vsum[x-wsz2-1]; val = ((curr[x]*4 + curr[x-1] + curr[x+1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10; dptr[x] = tab[val + OFS]; } sum += vsum[x+wsz2] - vsum[x-wsz2-1]; val = ((curr[x]*5 + curr[x-1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10; dptr[x] = tab[val + OFS]; } } static const int DISPARITY_SHIFT = 4; #if CV_SSE2 static void icvFindStereoCorrespondenceBM_SSE2( const CvMat* left, const CvMat* right, CvMat* disp, CvStereoBMState* state, uchar* buf, int _dy0, int _dy1 ) { int x, y, d; int wsz = state->SADWindowSize, wsz2 = wsz/2; int dy0 = MIN(_dy0, wsz2+1), dy1 = MIN(_dy1, wsz2+1); int ndisp = state->numberOfDisparities; int mindisp = state->minDisparity; int lofs = MAX(ndisp - 1 + mindisp, 0); int rofs = -MIN(ndisp - 1 + mindisp, 0); int width = left->cols, height = left->rows; int width1 = width - rofs - ndisp + 1; int ftzero = state->preFilterCap; int textureThreshold = state->textureThreshold; int uniquenessRatio = state->uniquenessRatio; short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT); ushort *sad, *hsad0, *hsad, *hsad_sub; int *htext; uchar *cbuf0, *cbuf; const uchar* lptr0 = left->data.ptr + lofs; const uchar* rptr0 = right->data.ptr + rofs; const uchar *lptr, *lptr_sub, *rptr; short* dptr = disp->data.s; int sstep = left->step; int dstep = disp->step/sizeof(dptr[0]); int cstep = (height + dy0 + dy1)*ndisp; const int TABSZ = 256; uchar tab[TABSZ]; const __m128i d0_8 = _mm_setr_epi16(0,1,2,3,4,5,6,7), dd_8 = _mm_set1_epi16(8); sad = (ushort*)cvAlignPtr(buf + sizeof(sad[0])); hsad0 = (ushort*)cvAlignPtr(sad + ndisp + 1 + dy0*ndisp); htext = (int*)cvAlignPtr((int*)(hsad0 + (height+dy1)*ndisp) + wsz2 + 2); cbuf0 = (uchar*)cvAlignPtr(htext + height + wsz2 + 2 + dy0*ndisp); for( x = 0; x < TABSZ; x++ ) tab[x] = (uchar)abs(x - ftzero); // initialize buffers memset( hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]) ); memset( htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]) ); for( x = -wsz2-1; x < wsz2; x++ ) { hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp; lptr = lptr0 + MIN(MAX(x, -lofs), width-lofs-1) - dy0*sstep; rptr = rptr0 + MIN(MAX(x, -rofs), width-rofs-1) - dy0*sstep; for( y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep ) { int lval = lptr[0]; for( d = 0; d < ndisp; d++ ) { int diff = abs(lval - rptr[d]); cbuf[d] = (uchar)diff; hsad[d] = (ushort)(hsad[d] + diff); } htext[y] += tab[lval]; } } // initialize the left and right borders of the disparity map for( y = 0; y < height; y++ ) { for( x = 0; x < lofs; x++ ) dptr[y*dstep + x] = FILTERED; for( x = lofs + width1; x < width; x++ ) dptr[y*dstep + x] = FILTERED; } dptr += lofs; for( x = 0; x < width1; x++, dptr++ ) { int x0 = x - wsz2 - 1, x1 = x + wsz2; const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; uchar* cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; hsad = hsad0 - dy0*ndisp; lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width-1-lofs) - dy0*sstep; lptr = lptr0 + MIN(MAX(x1, -lofs), width-1-lofs) - dy0*sstep; rptr = rptr0 + MIN(MAX(x1, -rofs), width-1-rofs) - dy0*sstep; for( y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp, hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep ) { int lval = lptr[0]; __m128i lv = _mm_set1_epi8((char)lval), z = _mm_setzero_si128(); for( d = 0; d < ndisp; d += 16 ) { __m128i rv = _mm_loadu_si128((const __m128i*)(rptr + d)); __m128i hsad_l = _mm_load_si128((__m128i*)(hsad + d)); __m128i hsad_h = _mm_load_si128((__m128i*)(hsad + d + 8)); __m128i cbs = _mm_load_si128((const __m128i*)(cbuf_sub + d)); __m128i diff = _mm_adds_epu8(_mm_subs_epu8(lv, rv), _mm_subs_epu8(rv, lv)); __m128i diff_h = _mm_sub_epi16(_mm_unpackhi_epi8(diff, z), _mm_unpackhi_epi8(cbs, z)); _mm_store_si128((__m128i*)(cbuf + d), diff); diff = _mm_sub_epi16(_mm_unpacklo_epi8(diff, z), _mm_unpacklo_epi8(cbs, z)); hsad_h = _mm_add_epi16(hsad_h, diff_h); hsad_l = _mm_add_epi16(hsad_l, diff); _mm_store_si128((__m128i*)(hsad + d), hsad_l); _mm_store_si128((__m128i*)(hsad + d + 8), hsad_h); } htext[y] += tab[lval] - tab[lptr_sub[0]]; } // fill borders for( y = dy1; y <= wsz2; y++ ) htext[height+y] = htext[height+dy1-1]; for( y = -wsz2-1; y < -dy0; y++ ) htext[y] = htext[-dy0]; // initialize sums for( d = 0; d < ndisp; d++ ) sad[d] = (ushort)(hsad0[d-ndisp*dy0]*(wsz2 + 2 - dy0)); hsad = hsad0 + (1 - dy0)*ndisp; for( y = 1 - dy0; y < wsz2; y++, hsad += ndisp ) for( d = 0; d < ndisp; d++ ) sad[d] = (ushort)(sad[d] + hsad[d]); int tsum = 0; for( y = -wsz2-1; y < wsz2; y++ ) tsum += htext[y]; // finally, start the real processing for( y = 0; y < height; y++ ) { int minsad = INT_MAX, mind = -1; hsad = hsad0 + MIN(y + wsz2, height+dy1-1)*ndisp; hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp; __m128i minsad8 = _mm_set1_epi16(SHRT_MAX); __m128i mind8 = _mm_set1_epi16(-1), d8 = d0_8, mask; for( d = 0; d < ndisp; d += 8 ) { __m128i v0 = _mm_load_si128((__m128i*)(hsad_sub + d)); __m128i v1 = _mm_load_si128((__m128i*)(hsad + d)); __m128i sad8 = _mm_load_si128((__m128i*)(sad + d)); sad8 = _mm_sub_epi16(sad8, v0); sad8 = _mm_add_epi16(sad8, v1); mask = _mm_cmpgt_epi16(minsad8, sad8); _mm_store_si128((__m128i*)(sad + d), sad8); minsad8 = _mm_min_epi16(minsad8, sad8); mind8 = _mm_xor_si128(mind8,_mm_and_si128(_mm_xor_si128(d8,mind8),mask)); d8 = _mm_add_epi16(d8, dd_8); } __m128i minsad82 = _mm_unpackhi_epi64(minsad8, minsad8); __m128i mind82 = _mm_unpackhi_epi64(mind8, mind8); mask = _mm_cmpgt_epi16(minsad8, minsad82); mind8 = _mm_xor_si128(mind8,_mm_and_si128(_mm_xor_si128(mind82,mind8),mask)); minsad8 = _mm_min_epi16(minsad8, minsad82); minsad82 = _mm_shufflelo_epi16(minsad8, _MM_SHUFFLE(3,2,3,2)); mind82 = _mm_shufflelo_epi16(mind8, _MM_SHUFFLE(3,2,3,2)); mask = _mm_cmpgt_epi16(minsad8, minsad82); mind8 = _mm_xor_si128(mind8,_mm_and_si128(_mm_xor_si128(mind82,mind8),mask)); minsad8 = _mm_min_epi16(minsad8, minsad82); minsad82 = _mm_shufflelo_epi16(minsad8, 1); mind82 = _mm_shufflelo_epi16(mind8, 1); mask = _mm_cmpgt_epi16(minsad8, minsad82); mind8 = _mm_xor_si128(mind8,_mm_and_si128(_mm_xor_si128(mind82,mind8),mask)); mind = (short)_mm_cvtsi128_si32(mind8); minsad = sad[mind]; tsum += htext[y + wsz2] - htext[y - wsz2 - 1]; if( tsum < textureThreshold ) { dptr[y*dstep] = FILTERED; continue; } if( uniquenessRatio > 0 ) { int thresh = minsad + (minsad * uniquenessRatio/100); __m128i thresh8 = _mm_set1_epi16((short)(thresh + 1)); __m128i d1 = _mm_set1_epi16((short)(mind-1)), d2 = _mm_set1_epi16((short)(mind+1)); __m128i d8 = d0_8; for( d = 0; d < ndisp; d += 8 ) { __m128i sad8 = _mm_load_si128((__m128i*)(sad + d)); __m128i mask = _mm_cmpgt_epi16( thresh8, sad8 ); mask = _mm_and_si128(mask, _mm_or_si128(_mm_cmpgt_epi16(d1,d8), _mm_cmpgt_epi16(d8,d2))); if( _mm_movemask_epi8(mask) ) break; d8 = _mm_add_epi16(d8, dd_8); } if( d < ndisp ) { dptr[y*dstep] = FILTERED; continue; } } { sad[-1] = sad[1]; sad[ndisp] = sad[ndisp-2]; int p = sad[mind+1], n = sad[mind-1], d = p + n - 2*sad[mind]; dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp)*256 + (d != 0 ? (p-n)*128/d : 0) + 15) >> 4); } } } } #endif static void icvFindStereoCorrespondenceBM( const CvMat* left, const CvMat* right, CvMat* disp, CvStereoBMState* state, uchar* buf, int _dy0, int _dy1 ) { int x, y, d; int wsz = state->SADWindowSize, wsz2 = wsz/2; int dy0 = MIN(_dy0, wsz2+1), dy1 = MIN(_dy1, wsz2+1); int ndisp = state->numberOfDisparities; int mindisp = state->minDisparity; int lofs = MAX(ndisp - 1 + mindisp, 0); int rofs = -MIN(ndisp - 1 + mindisp, 0); int width = left->cols, height = left->rows; int width1 = width - rofs - ndisp + 1; int ftzero = state->preFilterCap; int textureThreshold = state->textureThreshold; int uniquenessRatio = state->uniquenessRatio; short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT); int *sad, *hsad0, *hsad, *hsad_sub, *htext; uchar *cbuf0, *cbuf; const uchar* lptr0 = left->data.ptr + lofs; const uchar* rptr0 = right->data.ptr + rofs; const uchar *lptr, *lptr_sub, *rptr; short* dptr = disp->data.s; int sstep = left->step; int dstep = disp->step/sizeof(dptr[0]); int cstep = (height+dy0+dy1)*ndisp; const int TABSZ = 256; uchar tab[TABSZ]; sad = (int*)cvAlignPtr(buf + sizeof(sad[0])); hsad0 = (int*)cvAlignPtr(sad + ndisp + 1 + dy0*ndisp); htext = (int*)cvAlignPtr((int*)(hsad0 + (height+dy1)*ndisp) + wsz2 + 2); cbuf0 = (uchar*)cvAlignPtr(htext + height + wsz2 + 2 + dy0*ndisp); for( x = 0; x < TABSZ; x++ ) tab[x] = (uchar)abs(x - ftzero); // initialize buffers memset( hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]) ); memset( htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]) ); for( x = -wsz2-1; x < wsz2; x++ ) { hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp; lptr = lptr0 + MIN(MAX(x, -lofs), width-lofs-1) - dy0*sstep; rptr = rptr0 + MIN(MAX(x, -rofs), width-rofs-1) - dy0*sstep; for( y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep ) { int lval = lptr[0]; for( d = 0; d < ndisp; d++ ) { int diff = abs(lval - rptr[d]); cbuf[d] = (uchar)diff; hsad[d] = (int)(hsad[d] + diff); } htext[y] += tab[lval]; } } // initialize the left and right borders of the disparity map for( y = 0; y < height; y++ ) { for( x = 0; x < lofs; x++ ) dptr[y*dstep + x] = FILTERED; for( x = lofs + width1; x < width; x++ ) dptr[y*dstep + x] = FILTERED; } dptr += lofs; for( x = 0; x < width1; x++, dptr++ ) { int x0 = x - wsz2 - 1, x1 = x + wsz2; const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; uchar* cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp; hsad = hsad0 - dy0*ndisp; lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width-1-lofs) - dy0*sstep; lptr = lptr0 + MIN(MAX(x1, -lofs), width-1-lofs) - dy0*sstep; rptr = rptr0 + MIN(MAX(x1, -rofs), width-1-rofs) - dy0*sstep; for( y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp, hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep ) { int lval = lptr[0]; for( d = 0; d < ndisp; d++ ) { int diff = abs(lval - rptr[d]); cbuf[d] = (uchar)diff; hsad[d] = hsad[d] + diff - cbuf_sub[d]; } htext[y] += tab[lval] - tab[lptr_sub[0]]; } // fill borders for( y = dy1; y <= wsz2; y++ ) htext[height+y] = htext[height+dy1-1]; for( y = -wsz2-1; y < -dy0; y++ ) htext[y] = htext[-dy0]; // initialize sums for( d = 0; d < ndisp; d++ ) sad[d] = (int)(hsad0[d-ndisp*dy0]*(wsz2 + 2 - dy0)); hsad = hsad0 + (1 - dy0)*ndisp; for( y = 1 - dy0; y < wsz2; y++, hsad += ndisp ) for( d = 0; d < ndisp; d++ ) sad[d] = (int)(sad[d] + hsad[d]); int tsum = 0; for( y = -wsz2-1; y < wsz2; y++ ) tsum += htext[y]; // finally, start the real processing for( y = 0; y < height; y++ ) { int minsad = INT_MAX, mind = -1; hsad = hsad0 + MIN(y + wsz2, height+dy1-1)*ndisp; hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp; for( d = 0; d < ndisp; d++ ) { int currsad = sad[d] + hsad[d] - hsad_sub[d]; sad[d] = currsad; if( currsad < minsad ) { minsad = currsad; mind = d; } } tsum += htext[y + wsz2] - htext[y - wsz2 - 1]; if( tsum < textureThreshold ) { dptr[y*dstep] = FILTERED; continue; } if( uniquenessRatio > 0 ) { int thresh = minsad + (minsad * uniquenessRatio/100); for( d = 0; d < ndisp; d++ ) { if( sad[d] <= thresh && (d < mind-1 || d > mind+1)) break; } if( d < ndisp ) { dptr[y*dstep] = FILTERED; continue; } } { sad[-1] = sad[1]; sad[ndisp] = sad[ndisp-2]; int p = sad[mind+1], n = sad[mind-1], d = p + n - 2*sad[mind]; dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp)*256 + (d != 0 ? (p-n)*128/d : 0) + 15) >> 4); } } } } CV_IMPL void cvFindStereoCorrespondenceBM( const CvArr* leftarr, const CvArr* rightarr, CvArr* disparr, CvStereoBMState* state ) { CV_FUNCNAME( "cvFindStereoCorrespondenceBM" ); __BEGIN__; CvMat lstub, *left0 = cvGetMat( leftarr, &lstub ); CvMat rstub, *right0 = cvGetMat( rightarr, &rstub ); CvMat left, right; CvMat dstub, *disp = cvGetMat( disparr, &dstub ); int bufSize0, bufSize1, bufSize, width, width1, height; int wsz, ndisp, mindisp, lofs, rofs; int i, n = cvGetNumThreads(); if( !CV_ARE_SIZES_EQ(left0, right0) || !CV_ARE_SIZES_EQ(disp, left0) ) CV_ERROR( CV_StsUnmatchedSizes, "All the images must have the same size" ); if( CV_MAT_TYPE(left0->type) != CV_8UC1 || !CV_ARE_TYPES_EQ(left0, right0) || CV_MAT_TYPE(disp->type) != CV_16SC1 ) CV_ERROR( CV_StsUnsupportedFormat, "Both input images must have 8uC1 format and the disparity image must have 16sC1 format" ); if( !state ) CV_ERROR( CV_StsNullPtr, "Stereo BM state is NULL." ); if( state->preFilterType != CV_STEREO_BM_NORMALIZED_RESPONSE ) CV_ERROR( CV_StsOutOfRange, "preFilterType must be =CV_STEREO_BM_NORMALIZED_RESPONSE" ); if( state->preFilterSize < 5 || state->preFilterSize > 255 || state->preFilterSize % 2 == 0 ) CV_ERROR( CV_StsOutOfRange, "preFilterSize must be odd and be within 5..255" ); if( state->preFilterCap < 1 || state->preFilterCap > 63 ) CV_ERROR( CV_StsOutOfRange, "preFilterCap must be within 1..63" ); if( state->SADWindowSize < 5 || state->SADWindowSize > 255 || state->SADWindowSize % 2 == 0 || state->SADWindowSize >= MIN(left0->cols, left0->rows) ) CV_ERROR( CV_StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and " "be not larger than image width or height" ); if( state->numberOfDisparities <= 0 || state->numberOfDisparities % 16 != 0 ) CV_ERROR( CV_StsOutOfRange, "numberOfDisparities must be positive and divisble by 16" ); if( state->textureThreshold < 0 ) CV_ERROR( CV_StsOutOfRange, "texture threshold must be non-negative" ); if( state->uniquenessRatio < 0 ) CV_ERROR( CV_StsOutOfRange, "uniqueness ratio must be non-negative" ); if( !state->preFilteredImg0 || state->preFilteredImg0->cols*state->preFilteredImg0->rows < left0->cols*left0->rows ) { cvReleaseMat( &state->preFilteredImg0 ); cvReleaseMat( &state->preFilteredImg1 ); state->preFilteredImg0 = cvCreateMat( left0->rows, left0->cols, CV_8U ); state->preFilteredImg1 = cvCreateMat( left0->rows, left0->cols, CV_8U ); } left = cvMat(left0->rows, left0->cols, CV_8U, state->preFilteredImg0->data.ptr); right = cvMat(right0->rows, right0->cols, CV_8U, state->preFilteredImg1->data.ptr); mindisp = state->minDisparity; ndisp = state->numberOfDisparities; width = left0->cols; height = left0->rows; lofs = MAX(ndisp - 1 + mindisp, 0); rofs = -MIN(ndisp - 1 + mindisp, 0); width1 = width - rofs - ndisp + 1; if( lofs >= width || rofs >= width || width1 < 1 ) { int FILTERED = (short)((state->minDisparity - 1) << DISPARITY_SHIFT); cvSet( disp, cvScalarAll(FILTERED) ); EXIT; } wsz = state->SADWindowSize; bufSize0 = (ndisp + 2)*sizeof(int) + (height+wsz+2)*ndisp*sizeof(int) + (height + wsz + 2)*sizeof(int) + (height+wsz+2)*ndisp*(wsz+1)*sizeof(uchar) + 256; bufSize1 = (width + state->preFilterSize + 2)*sizeof(int) + 256; bufSize = MAX(bufSize0, bufSize1); n = MAX(MIN(height/wsz, n), 1); if( !state->slidingSumBuf || state->slidingSumBuf->cols < bufSize*n ) { cvReleaseMat( &state->slidingSumBuf ); state->slidingSumBuf = cvCreateMat( 1, bufSize*n, CV_8U ); } #ifdef _OPENMP #pragma omp parallel sections num_threads(n) #endif { #ifdef _OPENMP #pragma omp section #endif icvPrefilter( left0, &left, state->preFilterSize, state->preFilterCap, state->slidingSumBuf->data.ptr ); #ifdef _OPENMP #pragma omp section #endif icvPrefilter( right0, &right, state->preFilterSize, state->preFilterCap, state->slidingSumBuf->data.ptr + bufSize1*(n>1) ); } #ifdef _OPENMP #pragma omp parallel for num_threads(n) schedule(static) #endif for( i = 0; i < n; i++ ) { int thread_id = cvGetThreadNum(); CvMat left_i, right_i, disp_i; int row0 = i*left.rows/n, row1 = (i+1)*left.rows/n; cvGetRows( &left, &left_i, row0, row1 ); cvGetRows( &right, &right_i, row0, row1 ); cvGetRows( disp, &disp_i, row0, row1 ); #if CV_SSE2 if( state->preFilterCap <= 31 && state->SADWindowSize <= 21 ) { icvFindStereoCorrespondenceBM_SSE2( &left_i, &right_i, &disp_i, state, state->slidingSumBuf->data.ptr + thread_id*bufSize0, row0, left.rows-row1 ); } else #endif { icvFindStereoCorrespondenceBM( &left_i, &right_i, &disp_i, state, state->slidingSumBuf->data.ptr + thread_id*bufSize0, row0, left.rows-row1 ); } } __END__; } /* End of file. */