/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkThread_platform_DEFINED #define SkThread_platform_DEFINED #if defined(SK_BUILD_FOR_ANDROID) #if !defined(SK_BUILD_FOR_ANDROID_FRAMEWORK) #include <stdint.h> /* Just use the GCC atomic intrinsics. They're supported by the NDK toolchain, * have reasonable performance, and provide full memory barriers */ static inline __attribute__((always_inline)) int32_t sk_atomic_inc(int32_t *addr) { return __sync_fetch_and_add(addr, 1); } static inline __attribute__((always_inline)) int32_t sk_atomic_add(int32_t *addr, int32_t inc) { return __sync_fetch_and_add(addr, inc); } static inline __attribute__((always_inline)) int32_t sk_atomic_dec(int32_t *addr) { return __sync_fetch_and_add(addr, -1); } static inline __attribute__((always_inline)) void sk_membar_aquire__after_atomic_dec() { } static inline __attribute__((always_inline)) int32_t sk_atomic_conditional_inc(int32_t* addr) { int32_t value = *addr; while (true) { if (value == 0) { return 0; } int32_t before = __sync_val_compare_and_swap(addr, value, value + 1); if (before == value) { return value; } else { value = before; } } } static inline __attribute__((always_inline)) void sk_membar_aquire__after_atomic_conditional_inc() { } #else // SK_BUILD_FOR_ANDROID_FRAMEWORK /* The platform atomics operations are slightly more efficient than the * GCC built-ins, so use them. */ #include <cutils/atomic.h> #define sk_atomic_inc(addr) android_atomic_inc(addr) #define sk_atomic_add(addr, inc) android_atomic_add(inc, addr) #define sk_atomic_dec(addr) android_atomic_dec(addr) static inline __attribute__((always_inline)) void sk_membar_aquire__after_atomic_dec() { //HACK: Android is actually using full memory barriers. // Should this change, uncomment below. //int dummy; //android_atomic_aquire_store(0, &dummy); } static inline __attribute__((always_inline)) int32_t sk_atomic_conditional_inc(int32_t* addr) { while (true) { int32_t value = *addr; if (value == 0) { return 0; } if (0 == android_atomic_release_cas(value, value + 1, addr)) { return value; } } } static inline __attribute__((always_inline)) void sk_membar_aquire__after_atomic_conditional_inc() { //HACK: Android is actually using full memory barriers. // Should this change, uncomment below. //int dummy; //android_atomic_aquire_store(0, &dummy); } #endif // SK_BUILD_FOR_ANDROID_FRAMEWORK #else // !SK_BUILD_FOR_ANDROID /** Implemented by the porting layer, this function adds one to the int specified by the address (in a thread-safe manner), and returns the previous value. No additional memory barrier is required. This must act as a compiler barrier. */ SK_API int32_t sk_atomic_inc(int32_t* addr); /** Implemented by the porting layer, this function adds inc to the int specified by the address (in a thread-safe manner), and returns the previous value. No additional memory barrier is required. This must act as a compiler barrier. */ SK_API int32_t sk_atomic_add(int32_t* addr, int32_t inc); /** Implemented by the porting layer, this function subtracts one from the int specified by the address (in a thread-safe manner), and returns the previous value. Expected to act as a release (SL/S) memory barrier and a compiler barrier. */ SK_API int32_t sk_atomic_dec(int32_t* addr); /** If sk_atomic_dec does not act as an aquire (L/SL) barrier, this is expected to act as an aquire (L/SL) memory barrier and as a compiler barrier. */ SK_API void sk_membar_aquire__after_atomic_dec(); /** Implemented by the porting layer, this function adds one to the int specified by the address iff the int specified by the address is not zero (in a thread-safe manner), and returns the previous value. No additional memory barrier is required. This must act as a compiler barrier. */ SK_API int32_t sk_atomic_conditional_inc(int32_t*); /** If sk_atomic_conditional_inc does not act as an aquire (L/SL) barrier, this is expected to act as an aquire (L/SL) memory barrier and as a compiler barrier. */ SK_API void sk_membar_aquire__after_atomic_conditional_inc(); #endif // !SK_BUILD_FOR_ANDROID #ifdef SK_USE_POSIX_THREADS #include <pthread.h> // A SkBaseMutex is a POD structure that can be directly initialized // at declaration time with SK_DECLARE_STATIC/GLOBAL_MUTEX. This avoids the // generation of a static initializer in the final machine code (and // a corresponding static finalizer). // struct SkBaseMutex { void acquire() { pthread_mutex_lock(&fMutex); } void release() { pthread_mutex_unlock(&fMutex); } pthread_mutex_t fMutex; }; // Using POD-style initialization prevents the generation of a static initializer // and keeps the acquire() implementation small and fast. #define SK_DECLARE_STATIC_MUTEX(name) static SkBaseMutex name = { PTHREAD_MUTEX_INITIALIZER } // Special case used when the static mutex must be available globally. #define SK_DECLARE_GLOBAL_MUTEX(name) SkBaseMutex name = { PTHREAD_MUTEX_INITIALIZER } // A normal mutex that requires to be initialized through normal C++ construction, // i.e. when it's a member of another class, or allocated on the heap. class SK_API SkMutex : public SkBaseMutex, SkNoncopyable { public: SkMutex(); ~SkMutex(); }; #else // !SK_USE_POSIX_THREADS // In the generic case, SkBaseMutex and SkMutex are the same thing, and we // can't easily get rid of static initializers. // class SK_API SkMutex : SkNoncopyable { public: SkMutex(); ~SkMutex(); void acquire(); void release(); private: bool fIsGlobal; enum { kStorageIntCount = 64 }; uint32_t fStorage[kStorageIntCount]; }; typedef SkMutex SkBaseMutex; #define SK_DECLARE_STATIC_MUTEX(name) static SkBaseMutex name #define SK_DECLARE_GLOBAL_MUTEX(name) SkBaseMutex name #endif // !SK_USE_POSIX_THREADS #endif