/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkBitmapDevice.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkMathPriv.h" #include "SkRegion.h" #if SK_SUPPORT_GPU #include "SkGpuDevice.h" #include "GrContextFactory.h" #else class GrContext; class GrContextFactory; #endif static const int DEV_W = 100, DEV_H = 100; static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H); static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1, DEV_H * SK_Scalar1); static const U8CPU DEV_PAD = 0xee; static SkPMColor getCanvasColor(int x, int y) { SkASSERT(x >= 0 && x < DEV_W); SkASSERT(y >= 0 && y < DEV_H); U8CPU r = x; U8CPU g = y; U8CPU b = 0xc; U8CPU a = 0x0; switch ((x+y) % 5) { case 0: a = 0xff; break; case 1: a = 0x80; break; case 2: a = 0xCC; break; case 3: a = 0x00; break; case 4: a = 0x01; break; } return SkPremultiplyARGBInline(a, r, g, b); } static bool config8888IsPremul(SkCanvas::Config8888 config8888) { switch (config8888) { case SkCanvas::kNative_Premul_Config8888: case SkCanvas::kBGRA_Premul_Config8888: case SkCanvas::kRGBA_Premul_Config8888: return true; case SkCanvas::kNative_Unpremul_Config8888: case SkCanvas::kBGRA_Unpremul_Config8888: case SkCanvas::kRGBA_Unpremul_Config8888: return false; default: SkASSERT(0); return false; } } // assumes any premu/.unpremul has been applied static uint32_t packConfig8888(SkCanvas::Config8888 config8888, U8CPU a, U8CPU r, U8CPU g, U8CPU b) { uint32_t r32; uint8_t* result = reinterpret_cast<uint8_t*>(&r32); switch (config8888) { case SkCanvas::kNative_Premul_Config8888: case SkCanvas::kNative_Unpremul_Config8888: r32 = SkPackARGB32NoCheck(a, r, g, b); break; case SkCanvas::kBGRA_Premul_Config8888: case SkCanvas::kBGRA_Unpremul_Config8888: result[0] = b; result[1] = g; result[2] = r; result[3] = a; break; case SkCanvas::kRGBA_Premul_Config8888: case SkCanvas::kRGBA_Unpremul_Config8888: result[0] = r; result[1] = g; result[2] = b; result[3] = a; break; default: SkASSERT(0); return 0; } return r32; } static uint32_t getBitmapColor(int x, int y, int w, SkCanvas::Config8888 config8888) { int n = y * w + x; U8CPU b = n & 0xff; U8CPU g = (n >> 8) & 0xff; U8CPU r = (n >> 16) & 0xff; U8CPU a = 0; switch ((x+y) % 5) { case 4: a = 0xff; break; case 3: a = 0x80; break; case 2: a = 0xCC; break; case 1: a = 0x01; break; case 0: a = 0x00; break; } if (config8888IsPremul(config8888)) { r = SkMulDiv255Ceiling(r, a); g = SkMulDiv255Ceiling(g, a); b = SkMulDiv255Ceiling(b, a); } return packConfig8888(config8888, a, r, g , b); } static void fillCanvas(SkCanvas* canvas) { static SkBitmap bmp; if (bmp.isNull()) { bmp.setConfig(SkBitmap::kARGB_8888_Config, DEV_W, DEV_H); SkDEBUGCODE(bool alloc = ) bmp.allocPixels(); SkASSERT(alloc); SkAutoLockPixels alp(bmp); intptr_t pixels = reinterpret_cast<intptr_t>(bmp.getPixels()); for (int y = 0; y < DEV_H; ++y) { for (int x = 0; x < DEV_W; ++x) { SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bmp.rowBytes() + x * bmp.bytesPerPixel()); *pixel = getCanvasColor(x, y); } } } canvas->save(); canvas->setMatrix(SkMatrix::I()); canvas->clipRect(DEV_RECT_S, SkRegion::kReplace_Op); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); canvas->drawBitmap(bmp, 0, 0, &paint); canvas->restore(); } static SkPMColor convertConfig8888ToPMColor(SkCanvas::Config8888 config8888, uint32_t color, bool* premul) { const uint8_t* c = reinterpret_cast<uint8_t*>(&color); U8CPU a,r,g,b; *premul = false; switch (config8888) { case SkCanvas::kNative_Premul_Config8888: return color; case SkCanvas::kNative_Unpremul_Config8888: *premul = true; a = SkGetPackedA32(color); r = SkGetPackedR32(color); g = SkGetPackedG32(color); b = SkGetPackedB32(color); break; case SkCanvas::kBGRA_Unpremul_Config8888: *premul = true; // fallthru case SkCanvas::kBGRA_Premul_Config8888: a = static_cast<U8CPU>(c[3]); r = static_cast<U8CPU>(c[2]); g = static_cast<U8CPU>(c[1]); b = static_cast<U8CPU>(c[0]); break; case SkCanvas::kRGBA_Unpremul_Config8888: *premul = true; // fallthru case SkCanvas::kRGBA_Premul_Config8888: a = static_cast<U8CPU>(c[3]); r = static_cast<U8CPU>(c[0]); g = static_cast<U8CPU>(c[1]); b = static_cast<U8CPU>(c[2]); break; default: SkDEBUGFAIL("Unexpected Config8888"); return 0; } if (*premul) { r = SkMulDiv255Ceiling(r, a); g = SkMulDiv255Ceiling(g, a); b = SkMulDiv255Ceiling(b, a); } return SkPackARGB32(a, r, g, b); } static bool checkPixel(SkPMColor a, SkPMColor b, bool didPremulConversion) { if (!didPremulConversion) { return a == b; } int32_t aA = static_cast<int32_t>(SkGetPackedA32(a)); int32_t aR = static_cast<int32_t>(SkGetPackedR32(a)); int32_t aG = static_cast<int32_t>(SkGetPackedG32(a)); int32_t aB = SkGetPackedB32(a); int32_t bA = static_cast<int32_t>(SkGetPackedA32(b)); int32_t bR = static_cast<int32_t>(SkGetPackedR32(b)); int32_t bG = static_cast<int32_t>(SkGetPackedG32(b)); int32_t bB = static_cast<int32_t>(SkGetPackedB32(b)); return aA == bA && SkAbs32(aR - bR) <= 1 && SkAbs32(aG - bG) <= 1 && SkAbs32(aB - bB) <= 1; } static bool checkWrite(skiatest::Reporter* reporter, SkCanvas* canvas, const SkBitmap& bitmap, int writeX, int writeY, SkCanvas::Config8888 config8888) { SkBaseDevice* dev = canvas->getDevice(); if (!dev) { return false; } SkBitmap devBmp = dev->accessBitmap(false); if (devBmp.width() != DEV_W || devBmp.height() != DEV_H || devBmp.config() != SkBitmap::kARGB_8888_Config || devBmp.isNull()) { return false; } SkAutoLockPixels alp(devBmp); intptr_t canvasPixels = reinterpret_cast<intptr_t>(devBmp.getPixels()); size_t canvasRowBytes = devBmp.rowBytes(); SkIRect writeRect = SkIRect::MakeXYWH(writeX, writeY, bitmap.width(), bitmap.height()); for (int cy = 0; cy < DEV_H; ++cy) { const SkPMColor* canvasRow = reinterpret_cast<const SkPMColor*>(canvasPixels); for (int cx = 0; cx < DEV_W; ++cx) { SkPMColor canvasPixel = canvasRow[cx]; if (writeRect.contains(cx, cy)) { int bx = cx - writeX; int by = cy - writeY; uint32_t bmpColor8888 = getBitmapColor(bx, by, bitmap.width(), config8888); bool mul; SkPMColor bmpPMColor = convertConfig8888ToPMColor(config8888, bmpColor8888, &mul); bool check; REPORTER_ASSERT(reporter, check = checkPixel(bmpPMColor, canvasPixel, mul)); if (!check) { return false; } } else { bool check; SkPMColor testColor = getCanvasColor(cx, cy); REPORTER_ASSERT(reporter, check = (canvasPixel == testColor)); if (!check) { return false; } } } if (cy != DEV_H -1) { const char* pad = reinterpret_cast<const char*>(canvasPixels + 4 * DEV_W); for (size_t px = 0; px < canvasRowBytes - 4 * DEV_W; ++px) { bool check; REPORTER_ASSERT(reporter, check = (pad[px] == static_cast<char>(DEV_PAD))); if (!check) { return false; } } } canvasPixels += canvasRowBytes; } return true; } enum DevType { kRaster_DevType, #if SK_SUPPORT_GPU kGpu_BottomLeft_DevType, kGpu_TopLeft_DevType, #endif }; struct CanvasConfig { DevType fDevType; bool fTightRowBytes; }; static const CanvasConfig gCanvasConfigs[] = { {kRaster_DevType, true}, {kRaster_DevType, false}, #if SK_SUPPORT_GPU && defined(SK_SCALAR_IS_FLOAT) {kGpu_BottomLeft_DevType, true}, // row bytes has no meaning on gpu devices {kGpu_TopLeft_DevType, true}, // row bytes has no meaning on gpu devices #endif }; static SkBaseDevice* createDevice(const CanvasConfig& c, GrContext* grCtx) { switch (c.fDevType) { case kRaster_DevType: { SkBitmap bmp; size_t rowBytes = c.fTightRowBytes ? 0 : 4 * DEV_W + 100; bmp.setConfig(SkBitmap::kARGB_8888_Config, DEV_W, DEV_H, rowBytes); if (!bmp.allocPixels()) { sk_throw(); return NULL; } // if rowBytes isn't tight then set the padding to a known value if (rowBytes) { SkAutoLockPixels alp(bmp); memset(bmp.getPixels(), DEV_PAD, bmp.getSafeSize()); } return new SkBitmapDevice(bmp); } #if SK_SUPPORT_GPU case kGpu_BottomLeft_DevType: case kGpu_TopLeft_DevType: GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit; desc.fWidth = DEV_W; desc.fHeight = DEV_H; desc.fConfig = kSkia8888_GrPixelConfig; desc.fOrigin = kGpu_TopLeft_DevType == c.fDevType ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; GrAutoScratchTexture ast(grCtx, desc, GrContext::kExact_ScratchTexMatch); SkAutoTUnref<GrTexture> tex(ast.detach()); return new SkGpuDevice(grCtx, tex); #endif } return NULL; } static bool setupBitmap(SkBitmap* bitmap, SkCanvas::Config8888 config8888, int w, int h, bool tightRowBytes) { size_t rowBytes = tightRowBytes ? 0 : 4 * w + 60; bitmap->setConfig(SkBitmap::kARGB_8888_Config, w, h, rowBytes); if (!bitmap->allocPixels()) { return false; } SkAutoLockPixels alp(*bitmap); intptr_t pixels = reinterpret_cast<intptr_t>(bitmap->getPixels()); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { uint32_t* pixel = reinterpret_cast<uint32_t*>(pixels + y * bitmap->rowBytes() + x * 4); *pixel = getBitmapColor(x, y, w, config8888); } } return true; } static void WritePixelsTest(skiatest::Reporter* reporter, GrContextFactory* factory) { SkCanvas canvas; const SkIRect testRects[] = { // entire thing DEV_RECT, // larger on all sides SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10), // fully contained SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4), // outside top left SkIRect::MakeLTRB(-10, -10, -1, -1), // touching top left corner SkIRect::MakeLTRB(-10, -10, 0, 0), // overlapping top left corner SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4), // overlapping top left and top right corners SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4), // touching entire top edge SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0), // overlapping top right corner SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4), // contained in x, overlapping top edge SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4), // outside top right corner SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1), // touching top right corner SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0), // overlapping top left and bottom left corners SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10), // touching entire left edge SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10), // overlapping bottom left corner SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10), // contained in y, overlapping left edge SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4), // outside bottom left corner SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10), // touching bottom left corner SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10), // overlapping bottom left and bottom right corners SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), // touching entire left edge SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10), // overlapping bottom right corner SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10), // overlapping top right and bottom right corners SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10), }; for (size_t i = 0; i < SK_ARRAY_COUNT(gCanvasConfigs); ++i) { int glCtxTypeCnt = 1; #if SK_SUPPORT_GPU bool isGPUDevice = kGpu_TopLeft_DevType == gCanvasConfigs[i].fDevType || kGpu_BottomLeft_DevType == gCanvasConfigs[i].fDevType; if (isGPUDevice) { glCtxTypeCnt = GrContextFactory::kGLContextTypeCnt; } #endif for (int glCtxType = 0; glCtxType < glCtxTypeCnt; ++glCtxType) { GrContext* context = NULL; #if SK_SUPPORT_GPU if (isGPUDevice) { GrContextFactory::GLContextType type = static_cast<GrContextFactory::GLContextType>(glCtxType); if (!GrContextFactory::IsRenderingGLContext(type)) { continue; } context = factory->get(type); if (NULL == context) { continue; } } #endif SkAutoTUnref<SkBaseDevice> device(createDevice(gCanvasConfigs[i], context)); SkCanvas canvas(device); static const SkCanvas::Config8888 gSrcConfigs[] = { SkCanvas::kNative_Premul_Config8888, SkCanvas::kNative_Unpremul_Config8888, SkCanvas::kBGRA_Premul_Config8888, SkCanvas::kBGRA_Unpremul_Config8888, SkCanvas::kRGBA_Premul_Config8888, SkCanvas::kRGBA_Unpremul_Config8888, }; for (size_t r = 0; r < SK_ARRAY_COUNT(testRects); ++r) { const SkIRect& rect = testRects[r]; for (int tightBmp = 0; tightBmp < 2; ++tightBmp) { for (size_t c = 0; c < SK_ARRAY_COUNT(gSrcConfigs); ++c) { fillCanvas(&canvas); SkCanvas::Config8888 config8888 = gSrcConfigs[c]; SkBitmap bmp; REPORTER_ASSERT(reporter, setupBitmap(&bmp, config8888, rect.width(), rect.height(), SkToBool(tightBmp))); uint32_t idBefore = canvas.getDevice()->accessBitmap(false).getGenerationID(); canvas.writePixels(bmp, rect.fLeft, rect.fTop, config8888); uint32_t idAfter = canvas.getDevice()->accessBitmap(false).getGenerationID(); REPORTER_ASSERT(reporter, checkWrite(reporter, &canvas, bmp, rect.fLeft, rect.fTop, config8888)); // we should change the genID iff pixels were actually written. SkIRect canvasRect = SkIRect::MakeSize(canvas.getDeviceSize()); SkIRect writeRect = SkIRect::MakeXYWH(rect.fLeft, rect.fTop, bmp.width(), bmp.height()); bool intersects = SkIRect::Intersects(canvasRect, writeRect) ; REPORTER_ASSERT(reporter, intersects == (idBefore != idAfter)); } } } } } } #include "TestClassDef.h" DEFINE_GPUTESTCLASS("WritePixels", WritePixelsTestClass, WritePixelsTest)