// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been modified // significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #include "v8.h" #if defined(V8_TARGET_ARCH_IA32) #include "disassembler.h" #include "macro-assembler.h" #include "serialize.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // Implementation of CpuFeatures #ifdef DEBUG bool CpuFeatures::initialized_ = false; #endif uint64_t CpuFeatures::supported_ = 0; uint64_t CpuFeatures::found_by_runtime_probing_ = 0; // The Probe method needs executable memory, so it uses Heap::CreateCode. // Allocation failure is silent and leads to safe default. void CpuFeatures::Probe() { ASSERT(!initialized_); ASSERT(supported_ == 0); #ifdef DEBUG initialized_ = true; #endif if (Serializer::enabled()) { supported_ |= OS::CpuFeaturesImpliedByPlatform(); return; // No features if we might serialize. } const int kBufferSize = 4 * KB; VirtualMemory* memory = new VirtualMemory(kBufferSize); if (!memory->IsReserved()) { delete memory; return; } ASSERT(memory->size() >= static_cast<size_t>(kBufferSize)); if (!memory->Commit(memory->address(), kBufferSize, true/*executable*/)) { delete memory; return; } Assembler assm(NULL, memory->address(), kBufferSize); Label cpuid, done; #define __ assm. // Save old esp, since we are going to modify the stack. __ push(ebp); __ pushfd(); __ push(ecx); __ push(ebx); __ mov(ebp, esp); // If we can modify bit 21 of the EFLAGS register, then CPUID is supported. __ pushfd(); __ pop(eax); __ mov(edx, eax); __ xor_(eax, 0x200000); // Flip bit 21. __ push(eax); __ popfd(); __ pushfd(); __ pop(eax); __ xor_(eax, edx); // Different if CPUID is supported. __ j(not_zero, &cpuid); // CPUID not supported. Clear the supported features in edx:eax. __ xor_(eax, eax); __ xor_(edx, edx); __ jmp(&done); // Invoke CPUID with 1 in eax to get feature information in // ecx:edx. Temporarily enable CPUID support because we know it's // safe here. __ bind(&cpuid); __ mov(eax, 1); supported_ = (1 << CPUID); { Scope fscope(CPUID); __ cpuid(); } supported_ = 0; // Move the result from ecx:edx to edx:eax and make sure to mark the // CPUID feature as supported. __ mov(eax, edx); __ or_(eax, 1 << CPUID); __ mov(edx, ecx); // Done. __ bind(&done); __ mov(esp, ebp); __ pop(ebx); __ pop(ecx); __ popfd(); __ pop(ebp); __ ret(0); #undef __ typedef uint64_t (*F0)(); F0 probe = FUNCTION_CAST<F0>(reinterpret_cast<Address>(memory->address())); supported_ = probe(); found_by_runtime_probing_ = supported_; uint64_t os_guarantees = OS::CpuFeaturesImpliedByPlatform(); supported_ |= os_guarantees; found_by_runtime_probing_ &= ~os_guarantees; delete memory; } // ----------------------------------------------------------------------------- // Implementation of Displacement void Displacement::init(Label* L, Type type) { ASSERT(!L->is_bound()); int next = 0; if (L->is_linked()) { next = L->pos(); ASSERT(next > 0); // Displacements must be at positions > 0 } // Ensure that we _never_ overflow the next field. ASSERT(NextField::is_valid(Assembler::kMaximalBufferSize)); data_ = NextField::encode(next) | TypeField::encode(type); } // ----------------------------------------------------------------------------- // Implementation of RelocInfo const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY | 1 << RelocInfo::JS_RETURN | 1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::DEBUG_BREAK_SLOT; bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially coded. Being // specially coded on IA32 means that it is a relative address, as used by // branch instructions. These are also the ones that need changing when a // code object moves. return (1 << rmode_) & kApplyMask; } void RelocInfo::PatchCode(byte* instructions, int instruction_count) { // Patch the code at the current address with the supplied instructions. for (int i = 0; i < instruction_count; i++) { *(pc_ + i) = *(instructions + i); } // Indicate that code has changed. CPU::FlushICache(pc_, instruction_count); } // Patch the code at the current PC with a call to the target address. // Additional guard int3 instructions can be added if required. void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { // Call instruction takes up 5 bytes and int3 takes up one byte. static const int kCallCodeSize = 5; int code_size = kCallCodeSize + guard_bytes; // Create a code patcher. CodePatcher patcher(pc_, code_size); // Add a label for checking the size of the code used for returning. #ifdef DEBUG Label check_codesize; patcher.masm()->bind(&check_codesize); #endif // Patch the code. patcher.masm()->call(target, RelocInfo::NONE); // Check that the size of the code generated is as expected. ASSERT_EQ(kCallCodeSize, patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize)); // Add the requested number of int3 instructions after the call. ASSERT_GE(guard_bytes, 0); for (int i = 0; i < guard_bytes; i++) { patcher.masm()->int3(); } } // ----------------------------------------------------------------------------- // Implementation of Operand Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) { // [base + disp/r] if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { // [base] set_modrm(0, base); if (base.is(esp)) set_sib(times_1, esp, base); } else if (is_int8(disp) && rmode == RelocInfo::NONE) { // [base + disp8] set_modrm(1, base); if (base.is(esp)) set_sib(times_1, esp, base); set_disp8(disp); } else { // [base + disp/r] set_modrm(2, base); if (base.is(esp)) set_sib(times_1, esp, base); set_dispr(disp, rmode); } } Operand::Operand(Register base, Register index, ScaleFactor scale, int32_t disp, RelocInfo::Mode rmode) { ASSERT(!index.is(esp)); // illegal addressing mode // [base + index*scale + disp/r] if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { // [base + index*scale] set_modrm(0, esp); set_sib(scale, index, base); } else if (is_int8(disp) && rmode == RelocInfo::NONE) { // [base + index*scale + disp8] set_modrm(1, esp); set_sib(scale, index, base); set_disp8(disp); } else { // [base + index*scale + disp/r] set_modrm(2, esp); set_sib(scale, index, base); set_dispr(disp, rmode); } } Operand::Operand(Register index, ScaleFactor scale, int32_t disp, RelocInfo::Mode rmode) { ASSERT(!index.is(esp)); // illegal addressing mode // [index*scale + disp/r] set_modrm(0, esp); set_sib(scale, index, ebp); set_dispr(disp, rmode); } bool Operand::is_reg(Register reg) const { return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only. && ((buf_[0] & 0x07) == reg.code()); // register codes match. } bool Operand::is_reg_only() const { return (buf_[0] & 0xF8) == 0xC0; // Addressing mode is register only. } Register Operand::reg() const { ASSERT(is_reg_only()); return Register::from_code(buf_[0] & 0x07); } // ----------------------------------------------------------------------------- // Implementation of Assembler. // Emit a single byte. Must always be inlined. #define EMIT(x) \ *pc_++ = (x) #ifdef GENERATED_CODE_COVERAGE static void InitCoverageLog(); #endif Assembler::Assembler(Isolate* arg_isolate, void* buffer, int buffer_size) : AssemblerBase(arg_isolate), positions_recorder_(this), emit_debug_code_(FLAG_debug_code) { if (buffer == NULL) { // Do our own buffer management. if (buffer_size <= kMinimalBufferSize) { buffer_size = kMinimalBufferSize; if (isolate()->assembler_spare_buffer() != NULL) { buffer = isolate()->assembler_spare_buffer(); isolate()->set_assembler_spare_buffer(NULL); } } if (buffer == NULL) { buffer_ = NewArray<byte>(buffer_size); } else { buffer_ = static_cast<byte*>(buffer); } buffer_size_ = buffer_size; own_buffer_ = true; } else { // Use externally provided buffer instead. ASSERT(buffer_size > 0); buffer_ = static_cast<byte*>(buffer); buffer_size_ = buffer_size; own_buffer_ = false; } // Clear the buffer in debug mode unless it was provided by the // caller in which case we can't be sure it's okay to overwrite // existing code in it; see CodePatcher::CodePatcher(...). #ifdef DEBUG if (own_buffer_) { memset(buffer_, 0xCC, buffer_size); // int3 } #endif // Set up buffer pointers. ASSERT(buffer_ != NULL); pc_ = buffer_; reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); #ifdef GENERATED_CODE_COVERAGE InitCoverageLog(); #endif } Assembler::~Assembler() { if (own_buffer_) { if (isolate()->assembler_spare_buffer() == NULL && buffer_size_ == kMinimalBufferSize) { isolate()->set_assembler_spare_buffer(buffer_); } else { DeleteArray(buffer_); } } } void Assembler::GetCode(CodeDesc* desc) { // Finalize code (at this point overflow() may be true, but the gap ensures // that we are still not overlapping instructions and relocation info). ASSERT(pc_ <= reloc_info_writer.pos()); // No overlap. // Set up code descriptor. desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); desc->origin = this; } void Assembler::Align(int m) { ASSERT(IsPowerOf2(m)); int mask = m - 1; int addr = pc_offset(); Nop((m - (addr & mask)) & mask); } bool Assembler::IsNop(Address addr) { Address a = addr; while (*a == 0x66) a++; if (*a == 0x90) return true; if (a[0] == 0xf && a[1] == 0x1f) return true; return false; } void Assembler::Nop(int bytes) { EnsureSpace ensure_space(this); if (!CpuFeatures::IsSupported(SSE2)) { // Older CPUs that do not support SSE2 may not support multibyte NOP // instructions. for (; bytes > 0; bytes--) { EMIT(0x90); } return; } // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf while (bytes > 0) { switch (bytes) { case 2: EMIT(0x66); case 1: EMIT(0x90); return; case 3: EMIT(0xf); EMIT(0x1f); EMIT(0); return; case 4: EMIT(0xf); EMIT(0x1f); EMIT(0x40); EMIT(0); return; case 6: EMIT(0x66); case 5: EMIT(0xf); EMIT(0x1f); EMIT(0x44); EMIT(0); EMIT(0); return; case 7: EMIT(0xf); EMIT(0x1f); EMIT(0x80); EMIT(0); EMIT(0); EMIT(0); EMIT(0); return; default: case 11: EMIT(0x66); bytes--; case 10: EMIT(0x66); bytes--; case 9: EMIT(0x66); bytes--; case 8: EMIT(0xf); EMIT(0x1f); EMIT(0x84); EMIT(0); EMIT(0); EMIT(0); EMIT(0); EMIT(0); bytes -= 8; } } } void Assembler::CodeTargetAlign() { Align(16); // Preferred alignment of jump targets on ia32. } void Assembler::cpuid() { ASSERT(CpuFeatures::IsEnabled(CPUID)); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xA2); } void Assembler::pushad() { EnsureSpace ensure_space(this); EMIT(0x60); } void Assembler::popad() { EnsureSpace ensure_space(this); EMIT(0x61); } void Assembler::pushfd() { EnsureSpace ensure_space(this); EMIT(0x9C); } void Assembler::popfd() { EnsureSpace ensure_space(this); EMIT(0x9D); } void Assembler::push(const Immediate& x) { EnsureSpace ensure_space(this); if (x.is_int8()) { EMIT(0x6a); EMIT(x.x_); } else { EMIT(0x68); emit(x); } } void Assembler::push_imm32(int32_t imm32) { EnsureSpace ensure_space(this); EMIT(0x68); emit(imm32); } void Assembler::push(Register src) { EnsureSpace ensure_space(this); EMIT(0x50 | src.code()); } void Assembler::push(const Operand& src) { EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(esi, src); } void Assembler::pop(Register dst) { ASSERT(reloc_info_writer.last_pc() != NULL); EnsureSpace ensure_space(this); EMIT(0x58 | dst.code()); } void Assembler::pop(const Operand& dst) { EnsureSpace ensure_space(this); EMIT(0x8F); emit_operand(eax, dst); } void Assembler::enter(const Immediate& size) { EnsureSpace ensure_space(this); EMIT(0xC8); emit_w(size); EMIT(0); } void Assembler::leave() { EnsureSpace ensure_space(this); EMIT(0xC9); } void Assembler::mov_b(Register dst, const Operand& src) { CHECK(dst.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x8A); emit_operand(dst, src); } void Assembler::mov_b(const Operand& dst, int8_t imm8) { EnsureSpace ensure_space(this); EMIT(0xC6); emit_operand(eax, dst); EMIT(imm8); } void Assembler::mov_b(const Operand& dst, Register src) { CHECK(src.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x88); emit_operand(src, dst); } void Assembler::mov_w(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x8B); emit_operand(dst, src); } void Assembler::mov_w(const Operand& dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x89); emit_operand(src, dst); } void Assembler::mov(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); EMIT(0xB8 | dst.code()); emit(imm32); } void Assembler::mov(Register dst, const Immediate& x) { EnsureSpace ensure_space(this); EMIT(0xB8 | dst.code()); emit(x); } void Assembler::mov(Register dst, Handle<Object> handle) { EnsureSpace ensure_space(this); EMIT(0xB8 | dst.code()); emit(handle); } void Assembler::mov(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x8B); emit_operand(dst, src); } void Assembler::mov(Register dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x89); EMIT(0xC0 | src.code() << 3 | dst.code()); } void Assembler::mov(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); EMIT(0xC7); emit_operand(eax, dst); emit(x); } void Assembler::mov(const Operand& dst, Handle<Object> handle) { EnsureSpace ensure_space(this); EMIT(0xC7); emit_operand(eax, dst); emit(handle); } void Assembler::mov(const Operand& dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x89); emit_operand(src, dst); } void Assembler::movsx_b(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xBE); emit_operand(dst, src); } void Assembler::movsx_w(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xBF); emit_operand(dst, src); } void Assembler::movzx_b(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xB6); emit_operand(dst, src); } void Assembler::movzx_w(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xB7); emit_operand(dst, src); } void Assembler::cmov(Condition cc, Register dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(CMOV)); EnsureSpace ensure_space(this); // Opcode: 0f 40 + cc /r. EMIT(0x0F); EMIT(0x40 + cc); emit_operand(dst, src); } void Assembler::cld() { EnsureSpace ensure_space(this); EMIT(0xFC); } void Assembler::rep_movs() { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0xA5); } void Assembler::rep_stos() { EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0xAB); } void Assembler::stos() { EnsureSpace ensure_space(this); EMIT(0xAB); } void Assembler::xchg(Register dst, Register src) { EnsureSpace ensure_space(this); if (src.is(eax) || dst.is(eax)) { // Single-byte encoding. EMIT(0x90 | (src.is(eax) ? dst.code() : src.code())); } else { EMIT(0x87); EMIT(0xC0 | src.code() << 3 | dst.code()); } } void Assembler::adc(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); emit_arith(2, Operand(dst), Immediate(imm32)); } void Assembler::adc(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x13); emit_operand(dst, src); } void Assembler::add(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x03); emit_operand(dst, src); } void Assembler::add(const Operand& dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x01); emit_operand(src, dst); } void Assembler::add(const Operand& dst, const Immediate& x) { ASSERT(reloc_info_writer.last_pc() != NULL); EnsureSpace ensure_space(this); emit_arith(0, dst, x); } void Assembler::and_(Register dst, int32_t imm32) { and_(dst, Immediate(imm32)); } void Assembler::and_(Register dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(4, Operand(dst), x); } void Assembler::and_(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x23); emit_operand(dst, src); } void Assembler::and_(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(4, dst, x); } void Assembler::and_(const Operand& dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x21); emit_operand(src, dst); } void Assembler::cmpb(const Operand& op, int8_t imm8) { EnsureSpace ensure_space(this); if (op.is_reg(eax)) { EMIT(0x3C); } else { EMIT(0x80); emit_operand(edi, op); // edi == 7 } EMIT(imm8); } void Assembler::cmpb(const Operand& op, Register reg) { CHECK(reg.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x38); emit_operand(reg, op); } void Assembler::cmpb(Register reg, const Operand& op) { CHECK(reg.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x3A); emit_operand(reg, op); } void Assembler::cmpw(const Operand& op, Immediate imm16) { ASSERT(imm16.is_int16()); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x81); emit_operand(edi, op); emit_w(imm16); } void Assembler::cmp(Register reg, int32_t imm32) { EnsureSpace ensure_space(this); emit_arith(7, Operand(reg), Immediate(imm32)); } void Assembler::cmp(Register reg, Handle<Object> handle) { EnsureSpace ensure_space(this); emit_arith(7, Operand(reg), Immediate(handle)); } void Assembler::cmp(Register reg, const Operand& op) { EnsureSpace ensure_space(this); EMIT(0x3B); emit_operand(reg, op); } void Assembler::cmp(const Operand& op, const Immediate& imm) { EnsureSpace ensure_space(this); emit_arith(7, op, imm); } void Assembler::cmp(const Operand& op, Handle<Object> handle) { EnsureSpace ensure_space(this); emit_arith(7, op, Immediate(handle)); } void Assembler::cmpb_al(const Operand& op) { EnsureSpace ensure_space(this); EMIT(0x38); // CMP r/m8, r8 emit_operand(eax, op); // eax has same code as register al. } void Assembler::cmpw_ax(const Operand& op) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x39); // CMP r/m16, r16 emit_operand(eax, op); // eax has same code as register ax. } void Assembler::dec_b(Register dst) { CHECK(dst.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0xFE); EMIT(0xC8 | dst.code()); } void Assembler::dec_b(const Operand& dst) { EnsureSpace ensure_space(this); EMIT(0xFE); emit_operand(ecx, dst); } void Assembler::dec(Register dst) { EnsureSpace ensure_space(this); EMIT(0x48 | dst.code()); } void Assembler::dec(const Operand& dst) { EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(ecx, dst); } void Assembler::cdq() { EnsureSpace ensure_space(this); EMIT(0x99); } void Assembler::idiv(Register src) { EnsureSpace ensure_space(this); EMIT(0xF7); EMIT(0xF8 | src.code()); } void Assembler::imul(Register reg) { EnsureSpace ensure_space(this); EMIT(0xF7); EMIT(0xE8 | reg.code()); } void Assembler::imul(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xAF); emit_operand(dst, src); } void Assembler::imul(Register dst, Register src, int32_t imm32) { EnsureSpace ensure_space(this); if (is_int8(imm32)) { EMIT(0x6B); EMIT(0xC0 | dst.code() << 3 | src.code()); EMIT(imm32); } else { EMIT(0x69); EMIT(0xC0 | dst.code() << 3 | src.code()); emit(imm32); } } void Assembler::inc(Register dst) { EnsureSpace ensure_space(this); EMIT(0x40 | dst.code()); } void Assembler::inc(const Operand& dst) { EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(eax, dst); } void Assembler::lea(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x8D); emit_operand(dst, src); } void Assembler::mul(Register src) { EnsureSpace ensure_space(this); EMIT(0xF7); EMIT(0xE0 | src.code()); } void Assembler::neg(Register dst) { EnsureSpace ensure_space(this); EMIT(0xF7); EMIT(0xD8 | dst.code()); } void Assembler::not_(Register dst) { EnsureSpace ensure_space(this); EMIT(0xF7); EMIT(0xD0 | dst.code()); } void Assembler::or_(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); emit_arith(1, Operand(dst), Immediate(imm32)); } void Assembler::or_(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x0B); emit_operand(dst, src); } void Assembler::or_(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(1, dst, x); } void Assembler::or_(const Operand& dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x09); emit_operand(src, dst); } void Assembler::rcl(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); ASSERT(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xD0 | dst.code()); } else { EMIT(0xC1); EMIT(0xD0 | dst.code()); EMIT(imm8); } } void Assembler::rcr(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); ASSERT(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xD8 | dst.code()); } else { EMIT(0xC1); EMIT(0xD8 | dst.code()); EMIT(imm8); } } void Assembler::sar(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); ASSERT(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xF8 | dst.code()); } else { EMIT(0xC1); EMIT(0xF8 | dst.code()); EMIT(imm8); } } void Assembler::sar_cl(Register dst) { EnsureSpace ensure_space(this); EMIT(0xD3); EMIT(0xF8 | dst.code()); } void Assembler::sbb(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x1B); emit_operand(dst, src); } void Assembler::shld(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xA5); emit_operand(dst, src); } void Assembler::shl(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); ASSERT(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xE0 | dst.code()); } else { EMIT(0xC1); EMIT(0xE0 | dst.code()); EMIT(imm8); } } void Assembler::shl_cl(Register dst) { EnsureSpace ensure_space(this); EMIT(0xD3); EMIT(0xE0 | dst.code()); } void Assembler::shrd(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xAD); emit_operand(dst, src); } void Assembler::shr(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); ASSERT(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xE8 | dst.code()); } else { EMIT(0xC1); EMIT(0xE8 | dst.code()); EMIT(imm8); } } void Assembler::shr_cl(Register dst) { EnsureSpace ensure_space(this); EMIT(0xD3); EMIT(0xE8 | dst.code()); } void Assembler::sub(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(5, dst, x); } void Assembler::sub(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x2B); emit_operand(dst, src); } void Assembler::sub(const Operand& dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x29); emit_operand(src, dst); } void Assembler::test(Register reg, const Immediate& imm) { EnsureSpace ensure_space(this); // Only use test against byte for registers that have a byte // variant: eax, ebx, ecx, and edx. if (imm.rmode_ == RelocInfo::NONE && is_uint8(imm.x_) && reg.is_byte_register()) { uint8_t imm8 = imm.x_; if (reg.is(eax)) { EMIT(0xA8); EMIT(imm8); } else { emit_arith_b(0xF6, 0xC0, reg, imm8); } } else { // This is not using emit_arith because test doesn't support // sign-extension of 8-bit operands. if (reg.is(eax)) { EMIT(0xA9); } else { EMIT(0xF7); EMIT(0xC0 | reg.code()); } emit(imm); } } void Assembler::test(Register reg, const Operand& op) { EnsureSpace ensure_space(this); EMIT(0x85); emit_operand(reg, op); } void Assembler::test_b(Register reg, const Operand& op) { CHECK(reg.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x84); emit_operand(reg, op); } void Assembler::test(const Operand& op, const Immediate& imm) { EnsureSpace ensure_space(this); EMIT(0xF7); emit_operand(eax, op); emit(imm); } void Assembler::test_b(const Operand& op, uint8_t imm8) { if (op.is_reg_only() && !op.reg().is_byte_register()) { test(op, Immediate(imm8)); return; } EnsureSpace ensure_space(this); EMIT(0xF6); emit_operand(eax, op); EMIT(imm8); } void Assembler::xor_(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); emit_arith(6, Operand(dst), Immediate(imm32)); } void Assembler::xor_(Register dst, const Operand& src) { EnsureSpace ensure_space(this); EMIT(0x33); emit_operand(dst, src); } void Assembler::xor_(const Operand& dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x31); emit_operand(src, dst); } void Assembler::xor_(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); emit_arith(6, dst, x); } void Assembler::bt(const Operand& dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xA3); emit_operand(src, dst); } void Assembler::bts(const Operand& dst, Register src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0xAB); emit_operand(src, dst); } void Assembler::hlt() { EnsureSpace ensure_space(this); EMIT(0xF4); } void Assembler::int3() { EnsureSpace ensure_space(this); EMIT(0xCC); } void Assembler::nop() { EnsureSpace ensure_space(this); EMIT(0x90); } void Assembler::rdtsc() { ASSERT(CpuFeatures::IsEnabled(RDTSC)); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x31); } void Assembler::ret(int imm16) { EnsureSpace ensure_space(this); ASSERT(is_uint16(imm16)); if (imm16 == 0) { EMIT(0xC3); } else { EMIT(0xC2); EMIT(imm16 & 0xFF); EMIT((imm16 >> 8) & 0xFF); } } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the 32bit // Displacement of the last instruction using the label. void Assembler::print(Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l = *L; PrintF("unbound label"); while (l.is_linked()) { Displacement disp = disp_at(&l); PrintF("@ %d ", l.pos()); disp.print(); PrintF("\n"); disp.next(&l); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { EnsureSpace ensure_space(this); ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position while (L->is_linked()) { Displacement disp = disp_at(L); int fixup_pos = L->pos(); if (disp.type() == Displacement::CODE_RELATIVE) { // Relative to Code* heap object pointer. long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag); } else { if (disp.type() == Displacement::UNCONDITIONAL_JUMP) { ASSERT(byte_at(fixup_pos - 1) == 0xE9); // jmp expected } // Relative address, relative to point after address. int imm32 = pos - (fixup_pos + sizeof(int32_t)); long_at_put(fixup_pos, imm32); } disp.next(L); } while (L->is_near_linked()) { int fixup_pos = L->near_link_pos(); int offset_to_next = static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos))); ASSERT(offset_to_next <= 0); // Relative address, relative to point after address. int disp = pos - fixup_pos - sizeof(int8_t); ASSERT(0 <= disp && disp <= 127); set_byte_at(fixup_pos, disp); if (offset_to_next < 0) { L->link_to(fixup_pos + offset_to_next, Label::kNear); } else { L->UnuseNear(); } } L->bind_to(pos); } void Assembler::bind(Label* L) { EnsureSpace ensure_space(this); ASSERT(!L->is_bound()); // label can only be bound once bind_to(L, pc_offset()); } void Assembler::call(Label* L) { positions_recorder()->WriteRecordedPositions(); EnsureSpace ensure_space(this); if (L->is_bound()) { const int long_size = 5; int offs = L->pos() - pc_offset(); ASSERT(offs <= 0); // 1110 1000 #32-bit disp. EMIT(0xE8); emit(offs - long_size); } else { // 1110 1000 #32-bit disp. EMIT(0xE8); emit_disp(L, Displacement::OTHER); } } void Assembler::call(byte* entry, RelocInfo::Mode rmode) { positions_recorder()->WriteRecordedPositions(); EnsureSpace ensure_space(this); ASSERT(!RelocInfo::IsCodeTarget(rmode)); EMIT(0xE8); emit(entry - (pc_ + sizeof(int32_t)), rmode); } int Assembler::CallSize(const Operand& adr) { // Call size is 1 (opcode) + adr.len_ (operand). return 1 + adr.len_; } void Assembler::call(const Operand& adr) { positions_recorder()->WriteRecordedPositions(); EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(edx, adr); } int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) { return 1 /* EMIT */ + sizeof(uint32_t) /* emit */; } void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode, unsigned ast_id) { positions_recorder()->WriteRecordedPositions(); EnsureSpace ensure_space(this); ASSERT(RelocInfo::IsCodeTarget(rmode)); EMIT(0xE8); emit(reinterpret_cast<intptr_t>(code.location()), rmode, ast_id); } void Assembler::jmp(Label* L, Label::Distance distance) { EnsureSpace ensure_space(this); if (L->is_bound()) { const int short_size = 2; const int long_size = 5; int offs = L->pos() - pc_offset(); ASSERT(offs <= 0); if (is_int8(offs - short_size)) { // 1110 1011 #8-bit disp. EMIT(0xEB); EMIT((offs - short_size) & 0xFF); } else { // 1110 1001 #32-bit disp. EMIT(0xE9); emit(offs - long_size); } } else if (distance == Label::kNear) { EMIT(0xEB); emit_near_disp(L); } else { // 1110 1001 #32-bit disp. EMIT(0xE9); emit_disp(L, Displacement::UNCONDITIONAL_JUMP); } } void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); ASSERT(!RelocInfo::IsCodeTarget(rmode)); EMIT(0xE9); emit(entry - (pc_ + sizeof(int32_t)), rmode); } void Assembler::jmp(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xFF); emit_operand(esp, adr); } void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); ASSERT(RelocInfo::IsCodeTarget(rmode)); EMIT(0xE9); emit(reinterpret_cast<intptr_t>(code.location()), rmode); } void Assembler::j(Condition cc, Label* L, Label::Distance distance) { EnsureSpace ensure_space(this); ASSERT(0 <= cc && cc < 16); if (L->is_bound()) { const int short_size = 2; const int long_size = 6; int offs = L->pos() - pc_offset(); ASSERT(offs <= 0); if (is_int8(offs - short_size)) { // 0111 tttn #8-bit disp EMIT(0x70 | cc); EMIT((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp EMIT(0x0F); EMIT(0x80 | cc); emit(offs - long_size); } } else if (distance == Label::kNear) { EMIT(0x70 | cc); emit_near_disp(L); } else { // 0000 1111 1000 tttn #32-bit disp // Note: could eliminate cond. jumps to this jump if condition // is the same however, seems to be rather unlikely case. EMIT(0x0F); EMIT(0x80 | cc); emit_disp(L, Displacement::OTHER); } } void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); ASSERT((0 <= cc) && (cc < 16)); // 0000 1111 1000 tttn #32-bit disp. EMIT(0x0F); EMIT(0x80 | cc); emit(entry - (pc_ + sizeof(int32_t)), rmode); } void Assembler::j(Condition cc, Handle<Code> code) { EnsureSpace ensure_space(this); // 0000 1111 1000 tttn #32-bit disp EMIT(0x0F); EMIT(0x80 | cc); emit(reinterpret_cast<intptr_t>(code.location()), RelocInfo::CODE_TARGET); } // FPU instructions. void Assembler::fld(int i) { EnsureSpace ensure_space(this); emit_farith(0xD9, 0xC0, i); } void Assembler::fstp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDD, 0xD8, i); } void Assembler::fld1() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xE8); } void Assembler::fldpi() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xEB); } void Assembler::fldz() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xEE); } void Assembler::fldln2() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xED); } void Assembler::fld_s(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xD9); emit_operand(eax, adr); } void Assembler::fld_d(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xDD); emit_operand(eax, adr); } void Assembler::fstp_s(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xD9); emit_operand(ebx, adr); } void Assembler::fstp_d(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xDD); emit_operand(ebx, adr); } void Assembler::fst_d(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xDD); emit_operand(edx, adr); } void Assembler::fild_s(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xDB); emit_operand(eax, adr); } void Assembler::fild_d(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xDF); emit_operand(ebp, adr); } void Assembler::fistp_s(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xDB); emit_operand(ebx, adr); } void Assembler::fisttp_s(const Operand& adr) { ASSERT(CpuFeatures::IsEnabled(SSE3)); EnsureSpace ensure_space(this); EMIT(0xDB); emit_operand(ecx, adr); } void Assembler::fisttp_d(const Operand& adr) { ASSERT(CpuFeatures::IsEnabled(SSE3)); EnsureSpace ensure_space(this); EMIT(0xDD); emit_operand(ecx, adr); } void Assembler::fist_s(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xDB); emit_operand(edx, adr); } void Assembler::fistp_d(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xDF); emit_operand(edi, adr); } void Assembler::fabs() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xE1); } void Assembler::fchs() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xE0); } void Assembler::fcos() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xFF); } void Assembler::fsin() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xFE); } void Assembler::fptan() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF2); } void Assembler::fyl2x() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF1); } void Assembler::f2xm1() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF0); } void Assembler::fscale() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xFD); } void Assembler::fninit() { EnsureSpace ensure_space(this); EMIT(0xDB); EMIT(0xE3); } void Assembler::fadd(int i) { EnsureSpace ensure_space(this); emit_farith(0xDC, 0xC0, i); } void Assembler::fsub(int i) { EnsureSpace ensure_space(this); emit_farith(0xDC, 0xE8, i); } void Assembler::fisub_s(const Operand& adr) { EnsureSpace ensure_space(this); EMIT(0xDA); emit_operand(esp, adr); } void Assembler::fmul(int i) { EnsureSpace ensure_space(this); emit_farith(0xDC, 0xC8, i); } void Assembler::fdiv(int i) { EnsureSpace ensure_space(this); emit_farith(0xDC, 0xF8, i); } void Assembler::faddp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xC0, i); } void Assembler::fsubp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xE8, i); } void Assembler::fsubrp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xE0, i); } void Assembler::fmulp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xC8, i); } void Assembler::fdivp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDE, 0xF8, i); } void Assembler::fprem() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF8); } void Assembler::fprem1() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF5); } void Assembler::fxch(int i) { EnsureSpace ensure_space(this); emit_farith(0xD9, 0xC8, i); } void Assembler::fincstp() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xF7); } void Assembler::ffree(int i) { EnsureSpace ensure_space(this); emit_farith(0xDD, 0xC0, i); } void Assembler::ftst() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xE4); } void Assembler::fucomp(int i) { EnsureSpace ensure_space(this); emit_farith(0xDD, 0xE8, i); } void Assembler::fucompp() { EnsureSpace ensure_space(this); EMIT(0xDA); EMIT(0xE9); } void Assembler::fucomi(int i) { EnsureSpace ensure_space(this); EMIT(0xDB); EMIT(0xE8 + i); } void Assembler::fucomip() { EnsureSpace ensure_space(this); EMIT(0xDF); EMIT(0xE9); } void Assembler::fcompp() { EnsureSpace ensure_space(this); EMIT(0xDE); EMIT(0xD9); } void Assembler::fnstsw_ax() { EnsureSpace ensure_space(this); EMIT(0xDF); EMIT(0xE0); } void Assembler::fwait() { EnsureSpace ensure_space(this); EMIT(0x9B); } void Assembler::frndint() { EnsureSpace ensure_space(this); EMIT(0xD9); EMIT(0xFC); } void Assembler::fnclex() { EnsureSpace ensure_space(this); EMIT(0xDB); EMIT(0xE2); } void Assembler::sahf() { EnsureSpace ensure_space(this); EMIT(0x9E); } void Assembler::setcc(Condition cc, Register reg) { ASSERT(reg.is_byte_register()); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x90 | cc); EMIT(0xC0 | reg.code()); } void Assembler::cvttss2si(Register dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x2C); emit_operand(dst, src); } void Assembler::cvttsd2si(Register dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x2C); emit_operand(dst, src); } void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x2A); emit_sse_operand(dst, src); } void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x5A); emit_sse_operand(dst, src); } void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x5A); emit_sse_operand(dst, src); } void Assembler::addsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x58); emit_sse_operand(dst, src); } void Assembler::mulsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x59); emit_sse_operand(dst, src); } void Assembler::subsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x5C); emit_sse_operand(dst, src); } void Assembler::divsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x5E); emit_sse_operand(dst, src); } void Assembler::xorpd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x57); emit_sse_operand(dst, src); } void Assembler::xorps(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x57); emit_sse_operand(dst, src); } void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x51); emit_sse_operand(dst, src); } void Assembler::andpd(XMMRegister dst, XMMRegister src) { EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x54); emit_sse_operand(dst, src); } void Assembler::ucomisd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x2E); emit_sse_operand(dst, src); } void Assembler::ucomisd(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x2E); emit_sse_operand(dst, src); } void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) { ASSERT(CpuFeatures::IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x0B); emit_sse_operand(dst, src); // Mask precision exeption. EMIT(static_cast<byte>(mode) | 0x8); } void Assembler::movmskpd(Register dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x50); emit_sse_operand(dst, src); } void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0xC2); emit_sse_operand(dst, src); EMIT(1); // LT == 1 } void Assembler::movaps(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x28); emit_sse_operand(dst, src); } void Assembler::movdqa(const Operand& dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x7F); emit_sse_operand(src, dst); } void Assembler::movdqa(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x6F); emit_sse_operand(dst, src); } void Assembler::movdqu(const Operand& dst, XMMRegister src ) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x7F); emit_sse_operand(src, dst); } void Assembler::movdqu(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x6F); emit_sse_operand(dst, src); } void Assembler::movntdqa(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x38); EMIT(0x2A); emit_sse_operand(dst, src); } void Assembler::movntdq(const Operand& dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xE7); emit_sse_operand(src, dst); } void Assembler::prefetch(const Operand& src, int level) { ASSERT(is_uint2(level)); EnsureSpace ensure_space(this); EMIT(0x0F); EMIT(0x18); XMMRegister code = { level }; // Emit hint number in Reg position of RegR/M. emit_sse_operand(code, src); } void Assembler::movdbl(XMMRegister dst, const Operand& src) { EnsureSpace ensure_space(this); movsd(dst, src); } void Assembler::movdbl(const Operand& dst, XMMRegister src) { EnsureSpace ensure_space(this); movsd(dst, src); } void Assembler::movsd(const Operand& dst, XMMRegister src ) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); // double EMIT(0x0F); EMIT(0x11); // store emit_sse_operand(src, dst); } void Assembler::movsd(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); // double EMIT(0x0F); EMIT(0x10); // load emit_sse_operand(dst, src); } void Assembler::movsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF2); EMIT(0x0F); EMIT(0x10); emit_sse_operand(dst, src); } void Assembler::movss(const Operand& dst, XMMRegister src ) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF3); // float EMIT(0x0F); EMIT(0x11); // store emit_sse_operand(src, dst); } void Assembler::movss(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF3); // float EMIT(0x0F); EMIT(0x10); // load emit_sse_operand(dst, src); } void Assembler::movss(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0xF3); EMIT(0x0F); EMIT(0x10); emit_sse_operand(dst, src); } void Assembler::movd(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x6E); emit_sse_operand(dst, src); } void Assembler::movd(const Operand& dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x7E); emit_sse_operand(src, dst); } void Assembler::extractps(Register dst, XMMRegister src, byte imm8) { ASSERT(CpuFeatures::IsSupported(SSE4_1)); ASSERT(is_uint8(imm8)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x17); emit_sse_operand(dst, src); EMIT(imm8); } void Assembler::pand(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xDB); emit_sse_operand(dst, src); } void Assembler::pxor(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xEF); emit_sse_operand(dst, src); } void Assembler::por(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xEB); emit_sse_operand(dst, src); } void Assembler::ptest(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x38); EMIT(0x17); emit_sse_operand(dst, src); } void Assembler::psllq(XMMRegister reg, int8_t shift) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x73); emit_sse_operand(esi, reg); // esi == 6 EMIT(shift); } void Assembler::psllq(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xF3); emit_sse_operand(dst, src); } void Assembler::psrlq(XMMRegister reg, int8_t shift) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x73); emit_sse_operand(edx, reg); // edx == 2 EMIT(shift); } void Assembler::psrlq(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0xD3); emit_sse_operand(dst, src); } void Assembler::pshufd(XMMRegister dst, XMMRegister src, int8_t shuffle) { ASSERT(CpuFeatures::IsEnabled(SSE2)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x70); emit_sse_operand(dst, src); EMIT(shuffle); } void Assembler::pextrd(const Operand& dst, XMMRegister src, int8_t offset) { ASSERT(CpuFeatures::IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x16); emit_sse_operand(src, dst); EMIT(offset); } void Assembler::pinsrd(XMMRegister dst, const Operand& src, int8_t offset) { ASSERT(CpuFeatures::IsEnabled(SSE4_1)); EnsureSpace ensure_space(this); EMIT(0x66); EMIT(0x0F); EMIT(0x3A); EMIT(0x22); emit_sse_operand(dst, src); EMIT(offset); } void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) { Register ireg = { reg.code() }; emit_operand(ireg, adr); } void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) { EMIT(0xC0 | dst.code() << 3 | src.code()); } void Assembler::emit_sse_operand(Register dst, XMMRegister src) { EMIT(0xC0 | dst.code() << 3 | src.code()); } void Assembler::Print() { Disassembler::Decode(stdout, buffer_, pc_); } void Assembler::RecordJSReturn() { positions_recorder()->WriteRecordedPositions(); EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::JS_RETURN); } void Assembler::RecordDebugBreakSlot() { positions_recorder()->WriteRecordedPositions(); EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT); } void Assembler::RecordComment(const char* msg, bool force) { if (FLAG_code_comments || force) { EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); } } void Assembler::GrowBuffer() { ASSERT(overflow()); if (!own_buffer_) FATAL("external code buffer is too small"); // Compute new buffer size. CodeDesc desc; // the new buffer if (buffer_size_ < 4*KB) { desc.buffer_size = 4*KB; } else { desc.buffer_size = 2*buffer_size_; } // Some internal data structures overflow for very large buffers, // they must ensure that kMaximalBufferSize is not too large. if ((desc.buffer_size > kMaximalBufferSize) || (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) { V8::FatalProcessOutOfMemory("Assembler::GrowBuffer"); } // Set up new buffer. desc.buffer = NewArray<byte>(desc.buffer_size); desc.instr_size = pc_offset(); desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos()); // Clear the buffer in debug mode. Use 'int3' instructions to make // sure to get into problems if we ever run uninitialized code. #ifdef DEBUG memset(desc.buffer, 0xCC, desc.buffer_size); #endif // Copy the data. int pc_delta = desc.buffer - buffer_; int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); memmove(desc.buffer, buffer_, desc.instr_size); memmove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(), desc.reloc_size); // Switch buffers. if (isolate()->assembler_spare_buffer() == NULL && buffer_size_ == kMinimalBufferSize) { isolate()->set_assembler_spare_buffer(buffer_); } else { DeleteArray(buffer_); } buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // Relocate runtime entries. for (RelocIterator it(desc); !it.done(); it.next()) { RelocInfo::Mode rmode = it.rinfo()->rmode(); if (rmode == RelocInfo::RUNTIME_ENTRY) { int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc()); *p -= pc_delta; // relocate entry } else if (rmode == RelocInfo::INTERNAL_REFERENCE) { int32_t* p = reinterpret_cast<int32_t*>(it.rinfo()->pc()); if (*p != 0) { // 0 means uninitialized. *p += pc_delta; } } } ASSERT(!overflow()); } void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { ASSERT(is_uint8(op1) && is_uint8(op2)); // wrong opcode ASSERT(is_uint8(imm8)); ASSERT((op1 & 0x01) == 0); // should be 8bit operation EMIT(op1); EMIT(op2 | dst.code()); EMIT(imm8); } void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) { ASSERT((0 <= sel) && (sel <= 7)); Register ireg = { sel }; if (x.is_int8()) { EMIT(0x83); // using a sign-extended 8-bit immediate. emit_operand(ireg, dst); EMIT(x.x_ & 0xFF); } else if (dst.is_reg(eax)) { EMIT((sel << 3) | 0x05); // short form if the destination is eax. emit(x); } else { EMIT(0x81); // using a literal 32-bit immediate. emit_operand(ireg, dst); emit(x); } } void Assembler::emit_operand(Register reg, const Operand& adr) { const unsigned length = adr.len_; ASSERT(length > 0); // Emit updated ModRM byte containing the given register. pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3); // Emit the rest of the encoded operand. for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i]; pc_ += length; // Emit relocation information if necessary. if (length >= sizeof(int32_t) && adr.rmode_ != RelocInfo::NONE) { pc_ -= sizeof(int32_t); // pc_ must be *at* disp32 RecordRelocInfo(adr.rmode_); pc_ += sizeof(int32_t); } } void Assembler::emit_farith(int b1, int b2, int i) { ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode ASSERT(0 <= i && i < 8); // illegal stack offset EMIT(b1); EMIT(b2 + i); } void Assembler::db(uint8_t data) { EnsureSpace ensure_space(this); EMIT(data); } void Assembler::dd(uint32_t data) { EnsureSpace ensure_space(this); emit(data); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { ASSERT(rmode != RelocInfo::NONE); // Don't record external references unless the heap will be serialized. if (rmode == RelocInfo::EXTERNAL_REFERENCE) { #ifdef DEBUG if (!Serializer::enabled()) { Serializer::TooLateToEnableNow(); } #endif if (!Serializer::enabled() && !emit_debug_code()) { return; } } RelocInfo rinfo(pc_, rmode, data, NULL); reloc_info_writer.Write(&rinfo); } #ifdef GENERATED_CODE_COVERAGE static FILE* coverage_log = NULL; static void InitCoverageLog() { char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); if (file_name != NULL) { coverage_log = fopen(file_name, "aw+"); } } void LogGeneratedCodeCoverage(const char* file_line) { const char* return_address = (&file_line)[-1]; char* push_insn = const_cast<char*>(return_address - 12); push_insn[0] = 0xeb; // Relative branch insn. push_insn[1] = 13; // Skip over coverage insns. if (coverage_log != NULL) { fprintf(coverage_log, "%s\n", file_line); fflush(coverage_log); } } #endif } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32