// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_MIPS) #include "codegen.h" #include "debug.h" #include "deoptimizer.h" #include "full-codegen.h" #include "runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- a0 : number of arguments excluding receiver // -- a1 : called function (only guaranteed when // -- extra_args requires it) // -- cp : context // -- sp[0] : last argument // -- ... // -- sp[4 * (argc - 1)] : first argument // -- sp[4 * agrc] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ push(a1); } else { ASSERT(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects s0 to contain the number of arguments // including the receiver and the extra arguments. __ Addu(s0, a0, num_extra_args + 1); __ sll(s1, s0, kPointerSizeLog2); __ Subu(s1, s1, kPointerSize); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the global context. __ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); __ lw(result, FieldMemOperand(result, GlobalObject::kGlobalContextOffset)); // Load the InternalArray function from the global context. __ lw(result, MemOperand(result, Context::SlotOffset( Context::INTERNAL_ARRAY_FUNCTION_INDEX))); } // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the global context. __ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); __ lw(result, FieldMemOperand(result, GlobalObject::kGlobalContextOffset)); // Load the Array function from the global context. __ lw(result, MemOperand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } // Allocate an empty JSArray. The allocated array is put into the result // register. An elements backing store is allocated with size initial_capacity // and filled with the hole values. static void AllocateEmptyJSArray(MacroAssembler* masm, Register array_function, Register result, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { const int initial_capacity = JSArray::kPreallocatedArrayElements; STATIC_ASSERT(initial_capacity >= 0); __ LoadInitialArrayMap(array_function, scratch2, scratch1); // Allocate the JSArray object together with space for a fixed array with the // requested elements. int size = JSArray::kSize; if (initial_capacity > 0) { size += FixedArray::SizeFor(initial_capacity); } __ AllocateInNewSpace(size, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Allocated the JSArray. Now initialize the fields except for the elements // array. // result: JSObject // scratch1: initial map // scratch2: start of next object __ sw(scratch1, FieldMemOperand(result, JSObject::kMapOffset)); __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex); __ sw(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset)); // Field JSArray::kElementsOffset is initialized later. __ mov(scratch3, zero_reg); __ sw(scratch3, FieldMemOperand(result, JSArray::kLengthOffset)); if (initial_capacity == 0) { __ sw(scratch1, FieldMemOperand(result, JSArray::kElementsOffset)); return; } // Calculate the location of the elements array and set elements array member // of the JSArray. // result: JSObject // scratch2: start of next object __ Addu(scratch1, result, Operand(JSArray::kSize)); __ sw(scratch1, FieldMemOperand(result, JSArray::kElementsOffset)); // Clear the heap tag on the elements array. __ And(scratch1, scratch1, Operand(~kHeapObjectTagMask)); // Initialize the FixedArray and fill it with holes. FixedArray length is // stored as a smi. // result: JSObject // scratch1: elements array (untagged) // scratch2: start of next object __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex); STATIC_ASSERT(0 * kPointerSize == FixedArray::kMapOffset); __ sw(scratch3, MemOperand(scratch1)); __ Addu(scratch1, scratch1, kPointerSize); __ li(scratch3, Operand(Smi::FromInt(initial_capacity))); STATIC_ASSERT(1 * kPointerSize == FixedArray::kLengthOffset); __ sw(scratch3, MemOperand(scratch1)); __ Addu(scratch1, scratch1, kPointerSize); // Fill the FixedArray with the hole value. Inline the code if short. STATIC_ASSERT(2 * kPointerSize == FixedArray::kHeaderSize); __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex); static const int kLoopUnfoldLimit = 4; if (initial_capacity <= kLoopUnfoldLimit) { for (int i = 0; i < initial_capacity; i++) { __ sw(scratch3, MemOperand(scratch1, i * kPointerSize)); } } else { Label loop, entry; __ Addu(scratch2, scratch1, Operand(initial_capacity * kPointerSize)); __ Branch(&entry); __ bind(&loop); __ sw(scratch3, MemOperand(scratch1)); __ Addu(scratch1, scratch1, kPointerSize); __ bind(&entry); __ Branch(&loop, lt, scratch1, Operand(scratch2)); } } // Allocate a JSArray with the number of elements stored in a register. The // register array_function holds the built-in Array function and the register // array_size holds the size of the array as a smi. The allocated array is put // into the result register and beginning and end of the FixedArray elements // storage is put into registers elements_array_storage and elements_array_end // (see below for when that is not the case). If the parameter fill_with_holes // is true the allocated elements backing store is filled with the hole values // otherwise it is left uninitialized. When the backing store is filled the // register elements_array_storage is scratched. static void AllocateJSArray(MacroAssembler* masm, Register array_function, // Array function. Register array_size, // As a smi, cannot be 0. Register result, Register elements_array_storage, Register elements_array_end, Register scratch1, Register scratch2, bool fill_with_hole, Label* gc_required) { // Load the initial map from the array function. __ LoadInitialArrayMap(array_function, scratch2, elements_array_storage); if (FLAG_debug_code) { // Assert that array size is not zero. __ Assert( ne, "array size is unexpectedly 0", array_size, Operand(zero_reg)); } // Allocate the JSArray object together with space for a FixedArray with the // requested number of elements. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ li(elements_array_end, (JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize); __ sra(scratch1, array_size, kSmiTagSize); __ Addu(elements_array_end, elements_array_end, scratch1); __ AllocateInNewSpace( elements_array_end, result, scratch1, scratch2, gc_required, static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); // Allocated the JSArray. Now initialize the fields except for the elements // array. // result: JSObject // elements_array_storage: initial map // array_size: size of array (smi) __ sw(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset)); __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex); __ sw(elements_array_storage, FieldMemOperand(result, JSArray::kPropertiesOffset)); // Field JSArray::kElementsOffset is initialized later. __ sw(array_size, FieldMemOperand(result, JSArray::kLengthOffset)); // Calculate the location of the elements array and set elements array member // of the JSArray. // result: JSObject // array_size: size of array (smi) __ Addu(elements_array_storage, result, Operand(JSArray::kSize)); __ sw(elements_array_storage, FieldMemOperand(result, JSArray::kElementsOffset)); // Clear the heap tag on the elements array. __ And(elements_array_storage, elements_array_storage, Operand(~kHeapObjectTagMask)); // Initialize the fixed array and fill it with holes. FixedArray length is // stored as a smi. // result: JSObject // elements_array_storage: elements array (untagged) // array_size: size of array (smi) __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex); ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset); __ sw(scratch1, MemOperand(elements_array_storage)); __ Addu(elements_array_storage, elements_array_storage, kPointerSize); // Length of the FixedArray is the number of pre-allocated elements if // the actual JSArray has length 0 and the size of the JSArray for non-empty // JSArrays. The length of a FixedArray is stored as a smi. STATIC_ASSERT(kSmiTag == 0); ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); __ sw(array_size, MemOperand(elements_array_storage)); __ Addu(elements_array_storage, elements_array_storage, kPointerSize); // Calculate elements array and elements array end. // result: JSObject // elements_array_storage: elements array element storage // array_size: smi-tagged size of elements array STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); __ sll(elements_array_end, array_size, kPointerSizeLog2 - kSmiTagSize); __ Addu(elements_array_end, elements_array_storage, elements_array_end); // Fill the allocated FixedArray with the hole value if requested. // result: JSObject // elements_array_storage: elements array element storage // elements_array_end: start of next object if (fill_with_hole) { Label loop, entry; __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex); __ Branch(&entry); __ bind(&loop); __ sw(scratch1, MemOperand(elements_array_storage)); __ Addu(elements_array_storage, elements_array_storage, kPointerSize); __ bind(&entry); __ Branch(&loop, lt, elements_array_storage, Operand(elements_array_end)); } } // Create a new array for the built-in Array function. This function allocates // the JSArray object and the FixedArray elements array and initializes these. // If the Array cannot be constructed in native code the runtime is called. This // function assumes the following state: // a0: argc // a1: constructor (built-in Array function) // ra: return address // sp[0]: last argument // This function is used for both construct and normal calls of Array. The only // difference between handling a construct call and a normal call is that for a // construct call the constructor function in a1 needs to be preserved for // entering the generic code. In both cases argc in a0 needs to be preserved. // Both registers are preserved by this code so no need to differentiate between // construct call and normal call. static void ArrayNativeCode(MacroAssembler* masm, Label* call_generic_code) { Counters* counters = masm->isolate()->counters(); Label argc_one_or_more, argc_two_or_more, not_empty_array, empty_array, has_non_smi_element, finish, cant_transition_map, not_double; // Check for array construction with zero arguments or one. __ Branch(&argc_one_or_more, ne, a0, Operand(zero_reg)); // Handle construction of an empty array. __ bind(&empty_array); AllocateEmptyJSArray(masm, a1, a2, a3, t0, t1, call_generic_code); __ IncrementCounter(counters->array_function_native(), 1, a3, t0); // Set up return value, remove receiver from stack and return. __ mov(v0, a2); __ Addu(sp, sp, Operand(kPointerSize)); __ Ret(); // Check for one argument. Bail out if argument is not smi or if it is // negative. __ bind(&argc_one_or_more); __ Branch(&argc_two_or_more, ne, a0, Operand(1)); STATIC_ASSERT(kSmiTag == 0); __ lw(a2, MemOperand(sp)); // Get the argument from the stack. __ Branch(¬_empty_array, ne, a2, Operand(zero_reg)); __ Drop(1); // Adjust stack. __ mov(a0, zero_reg); // Treat this as a call with argc of zero. __ Branch(&empty_array); __ bind(¬_empty_array); __ And(a3, a2, Operand(kIntptrSignBit | kSmiTagMask)); __ Branch(call_generic_code, eq, a3, Operand(zero_reg)); // Handle construction of an empty array of a certain size. Bail out if size // is too large to actually allocate an elements array. STATIC_ASSERT(kSmiTag == 0); __ Branch(call_generic_code, Ugreater_equal, a2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize)); // a0: argc // a1: constructor // a2: array_size (smi) // sp[0]: argument AllocateJSArray(masm, a1, a2, a3, t0, t1, t2, t3, true, call_generic_code); __ IncrementCounter(counters->array_function_native(), 1, a2, t0); // Set up return value, remove receiver and argument from stack and return. __ mov(v0, a3); __ Addu(sp, sp, Operand(2 * kPointerSize)); __ Ret(); // Handle construction of an array from a list of arguments. __ bind(&argc_two_or_more); __ sll(a2, a0, kSmiTagSize); // Convert argc to a smi. // a0: argc // a1: constructor // a2: array_size (smi) // sp[0]: last argument AllocateJSArray(masm, a1, a2, a3, t0, t1, t2, t3, false, call_generic_code); __ IncrementCounter(counters->array_function_native(), 1, a2, t2); // Fill arguments as array elements. Copy from the top of the stack (last // element) to the array backing store filling it backwards. Note: // elements_array_end points after the backing store. // a0: argc // a3: JSArray // t0: elements_array storage start (untagged) // t1: elements_array_end (untagged) // sp[0]: last argument Label loop, entry; __ Branch(USE_DELAY_SLOT, &entry); __ mov(t3, sp); __ bind(&loop); __ lw(a2, MemOperand(t3)); if (FLAG_smi_only_arrays) { __ JumpIfNotSmi(a2, &has_non_smi_element); } __ Addu(t3, t3, kPointerSize); __ Addu(t1, t1, -kPointerSize); __ sw(a2, MemOperand(t1)); __ bind(&entry); __ Branch(&loop, lt, t0, Operand(t1)); __ bind(&finish); __ mov(sp, t3); // Remove caller arguments and receiver from the stack, setup return value and // return. // a0: argc // a3: JSArray // sp[0]: receiver __ Addu(sp, sp, Operand(kPointerSize)); __ mov(v0, a3); __ Ret(); __ bind(&has_non_smi_element); // Double values are handled by the runtime. __ CheckMap( a2, t5, Heap::kHeapNumberMapRootIndex, ¬_double, DONT_DO_SMI_CHECK); __ bind(&cant_transition_map); __ UndoAllocationInNewSpace(a3, t0); __ Branch(call_generic_code); __ bind(¬_double); // Transition FAST_SMI_ONLY_ELEMENTS to FAST_ELEMENTS. // a3: JSArray __ lw(a2, FieldMemOperand(a3, HeapObject::kMapOffset)); __ LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS, FAST_ELEMENTS, a2, t5, &cant_transition_map); __ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset)); __ RecordWriteField(a3, HeapObject::kMapOffset, a2, t5, kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); Label loop2; __ bind(&loop2); __ lw(a2, MemOperand(t3)); __ Addu(t3, t3, kPointerSize); __ Subu(t1, t1, kPointerSize); __ sw(a2, MemOperand(t1)); __ Branch(&loop2, lt, t0, Operand(t1)); __ Branch(&finish); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, a1); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ And(t0, a2, Operand(kSmiTagMask)); __ Assert(ne, "Unexpected initial map for InternalArray function", t0, Operand(zero_reg)); __ GetObjectType(a2, a3, t0); __ Assert(eq, "Unexpected initial map for InternalArray function", t0, Operand(MAP_TYPE)); } // Run the native code for the InternalArray function called as a normal // function. ArrayNativeCode(masm, &generic_array_code); // Jump to the generic array code if the specialized code cannot handle the // construction. __ bind(&generic_array_code); Handle<Code> array_code = masm->isolate()->builtins()->InternalArrayCodeGeneric(); __ Jump(array_code, RelocInfo::CODE_TARGET); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code; // Get the Array function. GenerateLoadArrayFunction(masm, a1); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ And(t0, a2, Operand(kSmiTagMask)); __ Assert(ne, "Unexpected initial map for Array function (1)", t0, Operand(zero_reg)); __ GetObjectType(a2, a3, t0); __ Assert(eq, "Unexpected initial map for Array function (2)", t0, Operand(MAP_TYPE)); } // Run the native code for the Array function called as a normal function. ArrayNativeCode(masm, &generic_array_code); // Jump to the generic array code if the specialized code cannot handle // the construction. __ bind(&generic_array_code); Handle<Code> array_code = masm->isolate()->builtins()->ArrayCodeGeneric(); __ Jump(array_code, RelocInfo::CODE_TARGET); } void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_constructor; if (FLAG_debug_code) { // The array construct code is only set for the builtin and internal // Array functions which always have a map. // Initial map for the builtin Array function should be a map. __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ And(t0, a2, Operand(kSmiTagMask)); __ Assert(ne, "Unexpected initial map for Array function (3)", t0, Operand(zero_reg)); __ GetObjectType(a2, a3, t0); __ Assert(eq, "Unexpected initial map for Array function (4)", t0, Operand(MAP_TYPE)); } // Run the native code for the Array function called as a constructor. ArrayNativeCode(masm, &generic_constructor); // Jump to the generic construct code in case the specialized code cannot // handle the construction. __ bind(&generic_constructor); Handle<Code> generic_construct_stub = masm->isolate()->builtins()->JSConstructStubGeneric(); __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- ra : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) // -- sp[argc * 4] : receiver // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3); Register function = a1; if (FLAG_debug_code) { __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2); __ Assert(eq, "Unexpected String function", function, Operand(a2)); } // Load the first arguments in a0 and get rid of the rest. Label no_arguments; __ Branch(&no_arguments, eq, a0, Operand(zero_reg)); // First args = sp[(argc - 1) * 4]. __ Subu(a0, a0, Operand(1)); __ sll(a0, a0, kPointerSizeLog2); __ Addu(sp, a0, sp); __ lw(a0, MemOperand(sp)); // sp now point to args[0], drop args[0] + receiver. __ Drop(2); Register argument = a2; Label not_cached, argument_is_string; NumberToStringStub::GenerateLookupNumberStringCache( masm, a0, // Input. argument, // Result. a3, // Scratch. t0, // Scratch. t1, // Scratch. false, // Is it a Smi? ¬_cached); __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0); __ bind(&argument_is_string); // ----------- S t a t e ------------- // -- a2 : argument converted to string // -- a1 : constructor function // -- ra : return address // ----------------------------------- Label gc_required; __ AllocateInNewSpace(JSValue::kSize, v0, // Result. a3, // Scratch. t0, // Scratch. &gc_required, TAG_OBJECT); // Initialising the String Object. Register map = a3; __ LoadGlobalFunctionInitialMap(function, map, t0); if (FLAG_debug_code) { __ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset)); __ Assert(eq, "Unexpected string wrapper instance size", t0, Operand(JSValue::kSize >> kPointerSizeLog2)); __ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset)); __ Assert(eq, "Unexpected unused properties of string wrapper", t0, Operand(zero_reg)); } __ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset)); __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex); __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset)); __ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset)); // Ensure the object is fully initialized. STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); __ Ret(); // The argument was not found in the number to string cache. Check // if it's a string already before calling the conversion builtin. Label convert_argument; __ bind(¬_cached); __ JumpIfSmi(a0, &convert_argument); // Is it a String? __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ And(t0, a3, Operand(kIsNotStringMask)); __ Branch(&convert_argument, ne, t0, Operand(zero_reg)); __ mov(argument, a0); __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0); __ Branch(&argument_is_string); // Invoke the conversion builtin and put the result into a2. __ bind(&convert_argument); __ push(function); // Preserve the function. __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(v0); __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); } __ pop(function); __ mov(argument, v0); __ Branch(&argument_is_string); // Load the empty string into a2, remove the receiver from the // stack, and jump back to the case where the argument is a string. __ bind(&no_arguments); __ LoadRoot(argument, Heap::kEmptyStringRootIndex); __ Drop(1); __ Branch(&argument_is_string); // At this point the argument is already a string. Call runtime to // create a string wrapper. __ bind(&gc_required); __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(argument); __ CallRuntime(Runtime::kNewStringWrapper, 1); } __ Ret(); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool count_constructions) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- // Should never count constructions for api objects. ASSERT(!is_api_function || !count_constructions); Isolate* isolate = masm->isolate(); // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the two incoming parameters on the stack. __ sll(a0, a0, kSmiTagSize); // Tag arguments count. __ MultiPushReversed(a0.bit() | a1.bit()); // Use t7 to hold undefined, which is used in several places below. __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); Label rt_call, allocated; // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. if (FLAG_inline_new) { Label undo_allocation; #ifdef ENABLE_DEBUGGER_SUPPORT ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(isolate); __ li(a2, Operand(debug_step_in_fp)); __ lw(a2, MemOperand(a2)); __ Branch(&rt_call, ne, a2, Operand(zero_reg)); #endif // Load the initial map and verify that it is in fact a map. // a1: constructor function __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(a2, &rt_call); __ GetObjectType(a2, a3, t4); __ Branch(&rt_call, ne, t4, Operand(MAP_TYPE)); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // a1: constructor function // a2: initial map __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE)); if (count_constructions) { Label allocate; // Decrease generous allocation count. __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); MemOperand constructor_count = FieldMemOperand(a3, SharedFunctionInfo::kConstructionCountOffset); __ lbu(t0, constructor_count); __ Subu(t0, t0, Operand(1)); __ sb(t0, constructor_count); __ Branch(&allocate, ne, t0, Operand(zero_reg)); __ Push(a1, a2); __ push(a1); // Constructor. // The call will replace the stub, so the countdown is only done once. __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ pop(a2); __ pop(a1); __ bind(&allocate); } // Now allocate the JSObject on the heap. // a1: constructor function // a2: initial map __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset)); __ AllocateInNewSpace(a3, t4, t5, t6, &rt_call, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to // initial map and properties and elements are set to empty fixed array. // a1: constructor function // a2: initial map // a3: object size // t4: JSObject (not tagged) __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex); __ mov(t5, t4); __ sw(a2, MemOperand(t5, JSObject::kMapOffset)); __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset)); __ sw(t6, MemOperand(t5, JSObject::kElementsOffset)); __ Addu(t5, t5, Operand(3*kPointerSize)); ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset); // Fill all the in-object properties with appropriate filler. // a1: constructor function // a2: initial map // a3: object size (in words) // t4: JSObject (not tagged) // t5: First in-object property of JSObject (not tagged) __ sll(t0, a3, kPointerSizeLog2); __ addu(t6, t4, t0); // End of object. ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize); __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); if (count_constructions) { __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset)); __ Ext(a0, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ sll(t0, a0, kPointerSizeLog2); __ addu(a0, t5, t0); // a0: offset of first field after pre-allocated fields if (FLAG_debug_code) { __ Assert(le, "Unexpected number of pre-allocated property fields.", a0, Operand(t6)); } __ InitializeFieldsWithFiller(t5, a0, t7); // To allow for truncation. __ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex); } __ InitializeFieldsWithFiller(t5, t6, t7); // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. Any // failures need to undo the allocation, so that the heap is in a // consistent state and verifiable. __ Addu(t4, t4, Operand(kHeapObjectTag)); // Check if a non-empty properties array is needed. Continue with // allocated object if not fall through to runtime call if it is. // a1: constructor function // t4: JSObject // t5: start of next object (not tagged) __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset)); // The field instance sizes contains both pre-allocated property fields // and in-object properties. __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset)); __ Ext(t6, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ Addu(a3, a3, Operand(t6)); __ Ext(t6, a0, Map::kInObjectPropertiesByte * kBitsPerByte, kBitsPerByte); __ subu(a3, a3, t6); // Done if no extra properties are to be allocated. __ Branch(&allocated, eq, a3, Operand(zero_reg)); __ Assert(greater_equal, "Property allocation count failed.", a3, Operand(zero_reg)); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // a1: constructor // a3: number of elements in properties array // t4: JSObject // t5: start of next object __ Addu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize)); __ AllocateInNewSpace( a0, t5, t6, a2, &undo_allocation, static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS)); // Initialize the FixedArray. // a1: constructor // a3: number of elements in properties array (untagged) // t4: JSObject // t5: start of next object __ LoadRoot(t6, Heap::kFixedArrayMapRootIndex); __ mov(a2, t5); __ sw(t6, MemOperand(a2, JSObject::kMapOffset)); __ sll(a0, a3, kSmiTagSize); __ sw(a0, MemOperand(a2, FixedArray::kLengthOffset)); __ Addu(a2, a2, Operand(2 * kPointerSize)); ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset); ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset); // Initialize the fields to undefined. // a1: constructor // a2: First element of FixedArray (not tagged) // a3: number of elements in properties array // t4: JSObject // t5: FixedArray (not tagged) __ sll(t3, a3, kPointerSizeLog2); __ addu(t6, a2, t3); // End of object. ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize); { Label loop, entry; if (count_constructions) { __ LoadRoot(t7, Heap::kUndefinedValueRootIndex); } else if (FLAG_debug_code) { __ LoadRoot(t8, Heap::kUndefinedValueRootIndex); __ Assert(eq, "Undefined value not loaded.", t7, Operand(t8)); } __ jmp(&entry); __ bind(&loop); __ sw(t7, MemOperand(a2)); __ addiu(a2, a2, kPointerSize); __ bind(&entry); __ Branch(&loop, less, a2, Operand(t6)); } // Store the initialized FixedArray into the properties field of // the JSObject. // a1: constructor function // t4: JSObject // t5: FixedArray (not tagged) __ Addu(t5, t5, Operand(kHeapObjectTag)); // Add the heap tag. __ sw(t5, FieldMemOperand(t4, JSObject::kPropertiesOffset)); // Continue with JSObject being successfully allocated. // a1: constructor function // a4: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // t4: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(t4, t5); } __ bind(&rt_call); // Allocate the new receiver object using the runtime call. // a1: constructor function __ push(a1); // Argument for Runtime_NewObject. __ CallRuntime(Runtime::kNewObject, 1); __ mov(t4, v0); // Receiver for constructor call allocated. // t4: JSObject __ bind(&allocated); __ push(t4); __ push(t4); // Reload the number of arguments from the stack. // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) __ lw(a1, MemOperand(sp, 2 * kPointerSize)); __ lw(a3, MemOperand(sp, 3 * kPointerSize)); // Set up pointer to last argument. __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Set up number of arguments for function call below. __ srl(a0, a3, kSmiTagSize); // Copy arguments and receiver to the expression stack. // a0: number of arguments // a1: constructor function // a2: address of last argument (caller sp) // a3: number of arguments (smi-tagged) // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) Label loop, entry; __ jmp(&entry); __ bind(&loop); __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize); __ Addu(t0, a2, Operand(t0)); __ lw(t1, MemOperand(t0)); __ push(t1); __ bind(&entry); __ Addu(a3, a3, Operand(-2)); __ Branch(&loop, greater_equal, a3, Operand(zero_reg)); // Call the function. // a0: number of arguments // a1: constructor function if (is_api_function) { __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); Handle<Code> code = masm->isolate()->builtins()->HandleApiCallConstruct(); ParameterCount expected(0); __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET, CALL_FUNCTION, CALL_AS_METHOD); } else { ParameterCount actual(a0); __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } // Store offset of return address for deoptimizer. if (!is_api_function && !count_constructions) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // v0: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ JumpIfSmi(v0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ GetObjectType(v0, a3, a3); __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ lw(v0, MemOperand(sp)); // Remove receiver from the stack, remove caller arguments, and // return. __ bind(&exit); // v0: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ lw(a1, MemOperand(sp, 2 * kPointerSize)); // Leave construct frame. } __ sll(t0, a1, kPointerSizeLog2 - 1); __ Addu(sp, sp, t0); __ Addu(sp, sp, kPointerSize); __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2); __ Ret(); } void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from JSEntryStub::GenerateBody // ----------- S t a t e ------------- // -- a0: code entry // -- a1: function // -- a2: receiver_pointer // -- a3: argc // -- s0: argv // ----------------------------------- // Clear the context before we push it when entering the JS frame. __ mov(cp, zero_reg); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Set up the context from the function argument. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Push the function and the receiver onto the stack. __ Push(a1, a2); // Copy arguments to the stack in a loop. // a3: argc // s0: argv, i.e. points to first arg Label loop, entry; __ sll(t0, a3, kPointerSizeLog2); __ addu(t2, s0, t0); __ b(&entry); __ nop(); // Branch delay slot nop. // t2 points past last arg. __ bind(&loop); __ lw(t0, MemOperand(s0)); // Read next parameter. __ addiu(s0, s0, kPointerSize); __ lw(t0, MemOperand(t0)); // Dereference handle. __ push(t0); // Push parameter. __ bind(&entry); __ Branch(&loop, ne, s0, Operand(t2)); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); __ mov(s1, t0); __ mov(s2, t0); __ mov(s3, t0); __ mov(s4, t0); __ mov(s5, t0); // s6 holds the root address. Do not clobber. // s7 is cp. Do not init. // Invoke the code and pass argc as a0. __ mov(a0, a3); if (is_construct) { CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); __ CallStub(&stub); } else { ParameterCount actual(a0); __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } // Leave internal frame. } __ Jump(ra); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_LazyCompile(MacroAssembler* masm) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve the function. __ push(a1); // Push call kind information. __ push(t1); // Push the function on the stack as the argument to the runtime function. __ push(a1); // Call the runtime function. __ CallRuntime(Runtime::kLazyCompile, 1); // Calculate the entry point. __ addiu(t9, v0, Code::kHeaderSize - kHeapObjectTag); // Restore call kind information. __ pop(t1); // Restore saved function. __ pop(a1); // Tear down temporary frame. } // Do a tail-call of the compiled function. __ Jump(t9); } void Builtins::Generate_LazyRecompile(MacroAssembler* masm) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve the function. __ push(a1); // Push call kind information. __ push(t1); // Push the function on the stack as the argument to the runtime function. __ push(a1); __ CallRuntime(Runtime::kLazyRecompile, 1); // Calculate the entry point. __ Addu(t9, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Restore call kind information. __ pop(t1); // Restore saved function. __ pop(a1); // Tear down temporary frame. } // Do a tail-call of the compiled function. __ Jump(t9); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the function and deoptimization type to the runtime system. __ li(a0, Operand(Smi::FromInt(static_cast<int>(type)))); __ push(a0); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); } // Get the full codegen state from the stack and untag it -> t2. __ lw(t2, MemOperand(sp, 0 * kPointerSize)); __ SmiUntag(t2); // Switch on the state. Label with_tos_register, unknown_state; __ Branch(&with_tos_register, ne, t2, Operand(FullCodeGenerator::NO_REGISTERS)); __ Addu(sp, sp, Operand(1 * kPointerSize)); // Remove state. __ Ret(); __ bind(&with_tos_register); __ lw(v0, MemOperand(sp, 1 * kPointerSize)); __ Branch(&unknown_state, ne, t2, Operand(FullCodeGenerator::TOS_REG)); __ Addu(sp, sp, Operand(2 * kPointerSize)); // Remove state. __ Ret(); __ bind(&unknown_state); __ stop("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_NotifyOSR(MacroAssembler* masm) { // For now, we are relying on the fact that Runtime::NotifyOSR // doesn't do any garbage collection which allows us to save/restore // the registers without worrying about which of them contain // pointers. This seems a bit fragile. RegList saved_regs = (kJSCallerSaved | kCalleeSaved | ra.bit() | fp.bit()) & ~sp.bit(); __ MultiPush(saved_regs); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyOSR, 0); } __ MultiPop(saved_regs); __ Ret(); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { CpuFeatures::TryForceFeatureScope scope(VFP3); if (!CpuFeatures::IsSupported(FPU)) { __ Abort("Unreachable code: Cannot optimize without FPU support."); return; } // Lookup the function in the JavaScript frame and push it as an // argument to the on-stack replacement function. __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(a0); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } // If the result was -1 it means that we couldn't optimize the // function. Just return and continue in the unoptimized version. __ Ret(eq, v0, Operand(Smi::FromInt(-1))); // Untag the AST id and push it on the stack. __ SmiUntag(v0); __ push(v0); // Generate the code for doing the frame-to-frame translation using // the deoptimizer infrastructure. Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR); generator.Generate(); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // a0: actual number of arguments { Label done; __ Branch(&done, ne, a0, Operand(zero_reg)); __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); __ push(t2); __ Addu(a0, a0, Operand(1)); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. // a0: actual number of arguments Label slow, non_function; __ sll(at, a0, kPointerSizeLog2); __ addu(at, sp, at); __ lw(a1, MemOperand(at)); __ JumpIfSmi(a1, &non_function); __ GetObjectType(a1, a2, a2); __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE)); // 3a. Patch the first argument if necessary when calling a function. // a0: actual number of arguments // a1: function Label shift_arguments; __ li(t0, Operand(0, RelocInfo::NONE)); // Indicate regular JS_FUNCTION. { Label convert_to_object, use_global_receiver, patch_receiver; // Change context eagerly in case we need the global receiver. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset)); __ And(t3, a3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize))); __ Branch(&shift_arguments, ne, t3, Operand(zero_reg)); // Do not transform the receiver for native (Compilerhints already in a3). __ And(t3, a3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); __ Branch(&shift_arguments, ne, t3, Operand(zero_reg)); // Compute the receiver in non-strict mode. // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2). __ sll(at, a0, kPointerSizeLog2); __ addu(a2, sp, at); __ lw(a2, MemOperand(a2, -kPointerSize)); // a0: actual number of arguments // a1: function // a2: first argument __ JumpIfSmi(a2, &convert_to_object, t2); __ LoadRoot(a3, Heap::kUndefinedValueRootIndex); __ Branch(&use_global_receiver, eq, a2, Operand(a3)); __ LoadRoot(a3, Heap::kNullValueRootIndex); __ Branch(&use_global_receiver, eq, a2, Operand(a3)); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ GetObjectType(a2, a3, a3); __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); __ bind(&convert_to_object); // Enter an internal frame in order to preserve argument count. { FrameScope scope(masm, StackFrame::INTERNAL); __ sll(a0, a0, kSmiTagSize); // Smi tagged. __ push(a0); __ push(a2); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(a2, v0); __ pop(a0); __ sra(a0, a0, kSmiTagSize); // Un-tag. // Leave internal frame. } // Restore the function to a1, and the flag to t0. __ sll(at, a0, kPointerSizeLog2); __ addu(at, sp, at); __ lw(a1, MemOperand(at)); __ li(t0, Operand(0, RelocInfo::NONE)); __ Branch(&patch_receiver); // Use the global receiver object from the called function as the // receiver. __ bind(&use_global_receiver); const int kGlobalIndex = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ lw(a2, FieldMemOperand(cp, kGlobalIndex)); __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset)); __ lw(a2, FieldMemOperand(a2, kGlobalIndex)); __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset)); __ bind(&patch_receiver); __ sll(at, a0, kPointerSizeLog2); __ addu(a3, sp, at); __ sw(a2, MemOperand(a3, -kPointerSize)); __ Branch(&shift_arguments); } // 3b. Check for function proxy. __ bind(&slow); __ li(t0, Operand(1, RelocInfo::NONE)); // Indicate function proxy. __ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE)); __ bind(&non_function); __ li(t0, Operand(2, RelocInfo::NONE)); // Indicate non-function. // 3c. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. // a0: actual number of arguments // a1: function // t0: call type (0: JS function, 1: function proxy, 2: non-function) __ sll(at, a0, kPointerSizeLog2); __ addu(a2, sp, at); __ sw(a1, MemOperand(a2, -kPointerSize)); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // a0: actual number of arguments // a1: function // t0: call type (0: JS function, 1: function proxy, 2: non-function) __ bind(&shift_arguments); { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ sll(at, a0, kPointerSizeLog2); __ addu(a2, sp, at); __ bind(&loop); __ lw(at, MemOperand(a2, -kPointerSize)); __ sw(at, MemOperand(a2)); __ Subu(a2, a2, Operand(kPointerSize)); __ Branch(&loop, ne, a2, Operand(sp)); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Subu(a0, a0, Operand(1)); __ Pop(); } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin, // or a function proxy via CALL_FUNCTION_PROXY. // a0: actual number of arguments // a1: function // t0: call type (0: JS function, 1: function proxy, 2: non-function) { Label function, non_proxy; __ Branch(&function, eq, t0, Operand(zero_reg)); // Expected number of arguments is 0 for CALL_NON_FUNCTION. __ mov(a2, zero_reg); __ SetCallKind(t1, CALL_AS_METHOD); __ Branch(&non_proxy, ne, t0, Operand(1)); __ push(a1); // Re-add proxy object as additional argument. __ Addu(a0, a0, Operand(1)); __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&non_proxy); __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. // a0: actual number of arguments // a1: function __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(a2, FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); __ sra(a2, a2, kSmiTagSize); __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ SetCallKind(t1, CALL_AS_METHOD); // Check formal and actual parameter counts. __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET, ne, a2, Operand(a0)); ParameterCount expected(0); __ InvokeCode(a3, expected, expected, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { const int kIndexOffset = -5 * kPointerSize; const int kLimitOffset = -4 * kPointerSize; const int kArgsOffset = 2 * kPointerSize; const int kRecvOffset = 3 * kPointerSize; const int kFunctionOffset = 4 * kPointerSize; { FrameScope frame_scope(masm, StackFrame::INTERNAL); __ lw(a0, MemOperand(fp, kFunctionOffset)); // Get the function. __ push(a0); __ lw(a0, MemOperand(fp, kArgsOffset)); // Get the args array. __ push(a0); // Returns (in v0) number of arguments to copy to stack as Smi. __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); // Make a2 the space we have left. The stack might already be overflowed // here which will cause a2 to become negative. __ subu(a2, sp, a2); // Check if the arguments will overflow the stack. __ sll(t3, v0, kPointerSizeLog2 - kSmiTagSize); __ Branch(&okay, gt, a2, Operand(t3)); // Signed comparison. // Out of stack space. __ lw(a1, MemOperand(fp, kFunctionOffset)); __ push(a1); __ push(v0); __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); // End of stack check. // Push current limit and index. __ bind(&okay); __ push(v0); // Limit. __ mov(a1, zero_reg); // Initial index. __ push(a1); // Get the receiver. __ lw(a0, MemOperand(fp, kRecvOffset)); // Check that the function is a JS function (otherwise it must be a proxy). Label push_receiver; __ lw(a1, MemOperand(fp, kFunctionOffset)); __ GetObjectType(a1, a2, a2); __ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE)); // Change context eagerly to get the right global object if necessary. __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Load the shared function info while the function is still in a1. __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); // Compute the receiver. // Do not transform the receiver for strict mode functions. Label call_to_object, use_global_receiver; __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset)); __ And(t3, a2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize))); __ Branch(&push_receiver, ne, t3, Operand(zero_reg)); // Do not transform the receiver for native (Compilerhints already in a2). __ And(t3, a2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); __ Branch(&push_receiver, ne, t3, Operand(zero_reg)); // Compute the receiver in non-strict mode. __ JumpIfSmi(a0, &call_to_object); __ LoadRoot(a1, Heap::kNullValueRootIndex); __ Branch(&use_global_receiver, eq, a0, Operand(a1)); __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ Branch(&use_global_receiver, eq, a0, Operand(a2)); // Check if the receiver is already a JavaScript object. // a0: receiver STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ GetObjectType(a0, a1, a1); __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); // Convert the receiver to a regular object. // a0: receiver __ bind(&call_to_object); __ push(a0); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(a0, v0); // Put object in a0 to match other paths to push_receiver. __ Branch(&push_receiver); // Use the current global receiver object as the receiver. __ bind(&use_global_receiver); const int kGlobalOffset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; __ lw(a0, FieldMemOperand(cp, kGlobalOffset)); __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset)); __ lw(a0, FieldMemOperand(a0, kGlobalOffset)); __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset)); // Push the receiver. // a0: receiver __ bind(&push_receiver); __ push(a0); // Copy all arguments from the array to the stack. Label entry, loop; __ lw(a0, MemOperand(fp, kIndexOffset)); __ Branch(&entry); // Load the current argument from the arguments array and push it to the // stack. // a0: current argument index __ bind(&loop); __ lw(a1, MemOperand(fp, kArgsOffset)); __ push(a1); __ push(a0); // Call the runtime to access the property in the arguments array. __ CallRuntime(Runtime::kGetProperty, 2); __ push(v0); // Use inline caching to access the arguments. __ lw(a0, MemOperand(fp, kIndexOffset)); __ Addu(a0, a0, Operand(1 << kSmiTagSize)); __ sw(a0, MemOperand(fp, kIndexOffset)); // Test if the copy loop has finished copying all the elements from the // arguments object. __ bind(&entry); __ lw(a1, MemOperand(fp, kLimitOffset)); __ Branch(&loop, ne, a0, Operand(a1)); // Invoke the function. Label call_proxy; ParameterCount actual(a0); __ sra(a0, a0, kSmiTagSize); __ lw(a1, MemOperand(fp, kFunctionOffset)); __ GetObjectType(a1, a2, a2); __ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE)); __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); frame_scope.GenerateLeaveFrame(); __ Ret(USE_DELAY_SLOT); __ Addu(sp, sp, Operand(3 * kPointerSize)); // In delay slot. // Invoke the function proxy. __ bind(&call_proxy); __ push(a1); // Add function proxy as last argument. __ Addu(a0, a0, Operand(1)); __ li(a2, Operand(0, RelocInfo::NONE)); __ SetCallKind(t1, CALL_AS_METHOD); __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY); __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); // Tear down the internal frame and remove function, receiver and args. } __ Ret(USE_DELAY_SLOT); __ Addu(sp, sp, Operand(3 * kPointerSize)); // In delay slot. } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ sll(a0, a0, kSmiTagSize); __ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit()); __ Addu(fp, sp, Operand(3 * kPointerSize)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ lw(a1, MemOperand(fp, -3 * kPointerSize)); __ mov(sp, fp); __ MultiPop(fp.bit() | ra.bit()); __ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize); __ Addu(sp, sp, t0); // Adjust for the receiver. __ Addu(sp, sp, Operand(kPointerSize)); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // State setup as expected by MacroAssembler::InvokePrologue. // ----------- S t a t e ------------- // -- a0: actual arguments count // -- a1: function (passed through to callee) // -- a2: expected arguments count // -- a3: callee code entry // -- t1: call kind information // ----------------------------------- Label invoke, dont_adapt_arguments; Label enough, too_few; __ Branch(&dont_adapt_arguments, eq, a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); // We use Uless as the number of argument should always be greater than 0. __ Branch(&too_few, Uless, a0, Operand(a2)); { // Enough parameters: actual >= expected. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: code entry to call __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into a0 and copy end address into a2. __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize); __ Addu(a0, fp, a0); // Adjust for return address and receiver. __ Addu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. __ sll(a2, a2, kPointerSizeLog2); __ subu(a2, a0, a2); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: copy end address // a3: code entry to call Label copy; __ bind(©); __ lw(t0, MemOperand(a0)); __ push(t0); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a2)); __ addiu(a0, a0, -kPointerSize); // In delay slot. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into a0 and copy end address is fp. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: code entry to call __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize); __ Addu(a0, fp, a0); // Adjust for return address and receiver. __ Addu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. Also adjust for return address. __ Addu(t3, fp, kPointerSize); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: code entry to call // t3: copy end address Label copy; __ bind(©); __ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver. __ Subu(sp, sp, kPointerSize); __ Subu(a0, a0, kPointerSize); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(t3)); __ sw(t0, MemOperand(sp)); // In the delay slot. // Fill the remaining expected arguments with undefined. // a1: function // a2: expected number of arguments // a3: code entry to call __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); __ sll(t2, a2, kPointerSizeLog2); __ Subu(a2, fp, Operand(t2)); __ Addu(a2, a2, Operand(-4 * kPointerSize)); // Adjust for frame. Label fill; __ bind(&fill); __ Subu(sp, sp, kPointerSize); __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2)); __ sw(t0, MemOperand(sp)); } // Call the entry point. __ bind(&invoke); __ Call(a3); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // ------------------------------------------- // Don't adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ Jump(a3); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS