// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_MIPS) #include "bootstrapper.h" #include "code-stubs.h" #include "codegen.h" #include "regexp-macro-assembler.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cc, bool never_nan_nan); static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* rhs_not_nan, Label* slow, bool strict); static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc); static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs); // Check if the operand is a heap number. static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand, Register scratch1, Register scratch2, Label* not_a_heap_number) { __ lw(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset)); __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex); __ Branch(not_a_heap_number, ne, scratch1, Operand(scratch2)); } void ToNumberStub::Generate(MacroAssembler* masm) { // The ToNumber stub takes one argument in a0. Label check_heap_number, call_builtin; __ JumpIfNotSmi(a0, &check_heap_number); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); __ bind(&check_heap_number); EmitCheckForHeapNumber(masm, a0, a1, t0, &call_builtin); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); __ bind(&call_builtin); __ push(a0); __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); } void FastNewClosureStub::Generate(MacroAssembler* masm) { // Create a new closure from the given function info in new // space. Set the context to the current context in cp. Label gc; // Pop the function info from the stack. __ pop(a3); // Attempt to allocate new JSFunction in new space. __ AllocateInNewSpace(JSFunction::kSize, v0, a1, a2, &gc, TAG_OBJECT); int map_index = (language_mode_ == CLASSIC_MODE) ? Context::FUNCTION_MAP_INDEX : Context::STRICT_MODE_FUNCTION_MAP_INDEX; // Compute the function map in the current global context and set that // as the map of the allocated object. __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset)); __ lw(a2, MemOperand(a2, Context::SlotOffset(map_index))); __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); // Initialize the rest of the function. We don't have to update the // write barrier because the allocated object is in new space. __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex); __ LoadRoot(a2, Heap::kTheHoleValueRootIndex); __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); __ sw(a1, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sw(a1, FieldMemOperand(v0, JSObject::kElementsOffset)); __ sw(a2, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset)); __ sw(a3, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset)); __ sw(cp, FieldMemOperand(v0, JSFunction::kContextOffset)); __ sw(a1, FieldMemOperand(v0, JSFunction::kLiteralsOffset)); __ sw(t0, FieldMemOperand(v0, JSFunction::kNextFunctionLinkOffset)); // Initialize the code pointer in the function to be the one // found in the shared function info object. __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset)); __ Addu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Return result. The argument function info has been popped already. __ sw(a3, FieldMemOperand(v0, JSFunction::kCodeEntryOffset)); __ Ret(); // Create a new closure through the slower runtime call. __ bind(&gc); __ LoadRoot(t0, Heap::kFalseValueRootIndex); __ Push(cp, a3, t0); __ TailCallRuntime(Runtime::kNewClosure, 3, 1); } void FastNewContextStub::Generate(MacroAssembler* masm) { // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; // Attempt to allocate the context in new space. __ AllocateInNewSpace(FixedArray::SizeFor(length), v0, a1, a2, &gc, TAG_OBJECT); // Load the function from the stack. __ lw(a3, MemOperand(sp, 0)); // Set up the object header. __ LoadRoot(a1, Heap::kFunctionContextMapRootIndex); __ li(a2, Operand(Smi::FromInt(length))); __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset)); __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); // Set up the fixed slots, copy the global object from the previous context. __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); __ li(a1, Operand(Smi::FromInt(0))); __ sw(a3, MemOperand(v0, Context::SlotOffset(Context::CLOSURE_INDEX))); __ sw(cp, MemOperand(v0, Context::SlotOffset(Context::PREVIOUS_INDEX))); __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::EXTENSION_INDEX))); __ sw(a2, MemOperand(v0, Context::SlotOffset(Context::GLOBAL_INDEX))); // Initialize the rest of the slots to undefined. __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { __ sw(a1, MemOperand(v0, Context::SlotOffset(i))); } // Remove the on-stack argument and return. __ mov(cp, v0); __ DropAndRet(1); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1); } void FastNewBlockContextStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [sp]: function. // [sp + kPointerSize]: serialized scope info // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; __ AllocateInNewSpace(FixedArray::SizeFor(length), v0, a1, a2, &gc, TAG_OBJECT); // Load the function from the stack. __ lw(a3, MemOperand(sp, 0)); // Load the serialized scope info from the stack. __ lw(a1, MemOperand(sp, 1 * kPointerSize)); // Set up the object header. __ LoadRoot(a2, Heap::kBlockContextMapRootIndex); __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); __ li(a2, Operand(Smi::FromInt(length))); __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset)); // If this block context is nested in the global context we get a smi // sentinel instead of a function. The block context should get the // canonical empty function of the global context as its closure which // we still have to look up. Label after_sentinel; __ JumpIfNotSmi(a3, &after_sentinel); if (FLAG_debug_code) { const char* message = "Expected 0 as a Smi sentinel"; __ Assert(eq, message, a3, Operand(zero_reg)); } __ lw(a3, GlobalObjectOperand()); __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset)); __ lw(a3, ContextOperand(a3, Context::CLOSURE_INDEX)); __ bind(&after_sentinel); // Set up the fixed slots, copy the global object from the previous context. __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX)); __ sw(a3, ContextOperand(v0, Context::CLOSURE_INDEX)); __ sw(cp, ContextOperand(v0, Context::PREVIOUS_INDEX)); __ sw(a1, ContextOperand(v0, Context::EXTENSION_INDEX)); __ sw(a2, ContextOperand(v0, Context::GLOBAL_INDEX)); // Initialize the rest of the slots to the hole value. __ LoadRoot(a1, Heap::kTheHoleValueRootIndex); for (int i = 0; i < slots_; i++) { __ sw(a1, ContextOperand(v0, i + Context::MIN_CONTEXT_SLOTS)); } // Remove the on-stack argument and return. __ mov(cp, v0); __ DropAndRet(2); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1); } static void GenerateFastCloneShallowArrayCommon( MacroAssembler* masm, int length, FastCloneShallowArrayStub::Mode mode, Label* fail) { // Registers on entry: // a3: boilerplate literal array. ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS); // All sizes here are multiples of kPointerSize. int elements_size = 0; if (length > 0) { elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS ? FixedDoubleArray::SizeFor(length) : FixedArray::SizeFor(length); } int size = JSArray::kSize + elements_size; // Allocate both the JS array and the elements array in one big // allocation. This avoids multiple limit checks. __ AllocateInNewSpace(size, v0, a1, a2, fail, TAG_OBJECT); // Copy the JS array part. for (int i = 0; i < JSArray::kSize; i += kPointerSize) { if ((i != JSArray::kElementsOffset) || (length == 0)) { __ lw(a1, FieldMemOperand(a3, i)); __ sw(a1, FieldMemOperand(v0, i)); } } if (length > 0) { // Get hold of the elements array of the boilerplate and setup the // elements pointer in the resulting object. __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset)); __ Addu(a2, v0, Operand(JSArray::kSize)); __ sw(a2, FieldMemOperand(v0, JSArray::kElementsOffset)); // Copy the elements array. ASSERT((elements_size % kPointerSize) == 0); __ CopyFields(a2, a3, a1.bit(), elements_size / kPointerSize); } } void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [sp]: constant elements. // [sp + kPointerSize]: literal index. // [sp + (2 * kPointerSize)]: literals array. // Load boilerplate object into r3 and check if we need to create a // boilerplate. Label slow_case; __ lw(a3, MemOperand(sp, 2 * kPointerSize)); __ lw(a0, MemOperand(sp, 1 * kPointerSize)); __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); __ Addu(t0, a3, t0); __ lw(a3, MemOperand(t0)); __ LoadRoot(t1, Heap::kUndefinedValueRootIndex); __ Branch(&slow_case, eq, a3, Operand(t1)); FastCloneShallowArrayStub::Mode mode = mode_; if (mode == CLONE_ANY_ELEMENTS) { Label double_elements, check_fast_elements; __ lw(v0, FieldMemOperand(a3, JSArray::kElementsOffset)); __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ LoadRoot(t1, Heap::kFixedCOWArrayMapRootIndex); __ Branch(&check_fast_elements, ne, v0, Operand(t1)); GenerateFastCloneShallowArrayCommon(masm, 0, COPY_ON_WRITE_ELEMENTS, &slow_case); // Return and remove the on-stack parameters. __ DropAndRet(3); __ bind(&check_fast_elements); __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex); __ Branch(&double_elements, ne, v0, Operand(t1)); GenerateFastCloneShallowArrayCommon(masm, length_, CLONE_ELEMENTS, &slow_case); // Return and remove the on-stack parameters. __ DropAndRet(3); __ bind(&double_elements); mode = CLONE_DOUBLE_ELEMENTS; // Fall through to generate the code to handle double elements. } if (FLAG_debug_code) { const char* message; Heap::RootListIndex expected_map_index; if (mode == CLONE_ELEMENTS) { message = "Expected (writable) fixed array"; expected_map_index = Heap::kFixedArrayMapRootIndex; } else if (mode == CLONE_DOUBLE_ELEMENTS) { message = "Expected (writable) fixed double array"; expected_map_index = Heap::kFixedDoubleArrayMapRootIndex; } else { ASSERT(mode == COPY_ON_WRITE_ELEMENTS); message = "Expected copy-on-write fixed array"; expected_map_index = Heap::kFixedCOWArrayMapRootIndex; } __ push(a3); __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset)); __ lw(a3, FieldMemOperand(a3, HeapObject::kMapOffset)); __ LoadRoot(at, expected_map_index); __ Assert(eq, message, a3, Operand(at)); __ pop(a3); } GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case); // Return and remove the on-stack parameters. __ DropAndRet(3); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); } void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [sp]: object literal flags. // [sp + kPointerSize]: constant properties. // [sp + (2 * kPointerSize)]: literal index. // [sp + (3 * kPointerSize)]: literals array. // Load boilerplate object into a3 and check if we need to create a // boilerplate. Label slow_case; __ lw(a3, MemOperand(sp, 3 * kPointerSize)); __ lw(a0, MemOperand(sp, 2 * kPointerSize)); __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); __ Addu(a3, t0, a3); __ lw(a3, MemOperand(a3)); __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); __ Branch(&slow_case, eq, a3, Operand(t0)); // Check that the boilerplate contains only fast properties and we can // statically determine the instance size. int size = JSObject::kHeaderSize + length_ * kPointerSize; __ lw(a0, FieldMemOperand(a3, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceSizeOffset)); __ Branch(&slow_case, ne, a0, Operand(size >> kPointerSizeLog2)); // Allocate the JS object and copy header together with all in-object // properties from the boilerplate. __ AllocateInNewSpace(size, v0, a1, a2, &slow_case, TAG_OBJECT); for (int i = 0; i < size; i += kPointerSize) { __ lw(a1, FieldMemOperand(a3, i)); __ sw(a1, FieldMemOperand(v0, i)); } // Return and remove the on-stack parameters. __ DropAndRet(4); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1); } // Takes a Smi and converts to an IEEE 64 bit floating point value in two // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a // scratch register. Destroys the source register. No GC occurs during this // stub so you don't have to set up the frame. class ConvertToDoubleStub : public CodeStub { public: ConvertToDoubleStub(Register result_reg_1, Register result_reg_2, Register source_reg, Register scratch_reg) : result1_(result_reg_1), result2_(result_reg_2), source_(source_reg), zeros_(scratch_reg) { } private: Register result1_; Register result2_; Register source_; Register zeros_; // Minor key encoding in 16 bits. class ModeBits: public BitField<OverwriteMode, 0, 2> {}; class OpBits: public BitField<Token::Value, 2, 14> {}; Major MajorKey() { return ConvertToDouble; } int MinorKey() { // Encode the parameters in a unique 16 bit value. return result1_.code() + (result2_.code() << 4) + (source_.code() << 8) + (zeros_.code() << 12); } void Generate(MacroAssembler* masm); }; void ConvertToDoubleStub::Generate(MacroAssembler* masm) { #ifndef BIG_ENDIAN_FLOATING_POINT Register exponent = result1_; Register mantissa = result2_; #else Register exponent = result2_; Register mantissa = result1_; #endif Label not_special; // Convert from Smi to integer. __ sra(source_, source_, kSmiTagSize); // Move sign bit from source to destination. This works because the sign bit // in the exponent word of the double has the same position and polarity as // the 2's complement sign bit in a Smi. STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); __ And(exponent, source_, Operand(HeapNumber::kSignMask)); // Subtract from 0 if source was negative. __ subu(at, zero_reg, source_); __ Movn(source_, at, exponent); // We have -1, 0 or 1, which we treat specially. Register source_ contains // absolute value: it is either equal to 1 (special case of -1 and 1), // greater than 1 (not a special case) or less than 1 (special case of 0). __ Branch(¬_special, gt, source_, Operand(1)); // For 1 or -1 we need to or in the 0 exponent (biased to 1023). const uint32_t exponent_word_for_1 = HeapNumber::kExponentBias << HeapNumber::kExponentShift; // Safe to use 'at' as dest reg here. __ Or(at, exponent, Operand(exponent_word_for_1)); __ Movn(exponent, at, source_); // Write exp when source not 0. // 1, 0 and -1 all have 0 for the second word. __ Ret(USE_DELAY_SLOT); __ mov(mantissa, zero_reg); __ bind(¬_special); // Count leading zeros. // Gets the wrong answer for 0, but we already checked for that case above. __ Clz(zeros_, source_); // Compute exponent and or it into the exponent register. // We use mantissa as a scratch register here. __ li(mantissa, Operand(31 + HeapNumber::kExponentBias)); __ subu(mantissa, mantissa, zeros_); __ sll(mantissa, mantissa, HeapNumber::kExponentShift); __ Or(exponent, exponent, mantissa); // Shift up the source chopping the top bit off. __ Addu(zeros_, zeros_, Operand(1)); // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. __ sllv(source_, source_, zeros_); // Compute lower part of fraction (last 12 bits). __ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord); // And the top (top 20 bits). __ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord); __ Ret(USE_DELAY_SLOT); __ or_(exponent, exponent, source_); } void FloatingPointHelper::LoadSmis(MacroAssembler* masm, FloatingPointHelper::Destination destination, Register scratch1, Register scratch2) { if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); __ sra(scratch1, a0, kSmiTagSize); __ mtc1(scratch1, f14); __ cvt_d_w(f14, f14); __ sra(scratch1, a1, kSmiTagSize); __ mtc1(scratch1, f12); __ cvt_d_w(f12, f12); if (destination == kCoreRegisters) { __ Move(a2, a3, f14); __ Move(a0, a1, f12); } } else { ASSERT(destination == kCoreRegisters); // Write Smi from a0 to a3 and a2 in double format. __ mov(scratch1, a0); ConvertToDoubleStub stub1(a3, a2, scratch1, scratch2); __ push(ra); __ Call(stub1.GetCode()); // Write Smi from a1 to a1 and a0 in double format. __ mov(scratch1, a1); ConvertToDoubleStub stub2(a1, a0, scratch1, scratch2); __ Call(stub2.GetCode()); __ pop(ra); } } void FloatingPointHelper::LoadOperands( MacroAssembler* masm, FloatingPointHelper::Destination destination, Register heap_number_map, Register scratch1, Register scratch2, Label* slow) { // Load right operand (a0) to f12 or a2/a3. LoadNumber(masm, destination, a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow); // Load left operand (a1) to f14 or a0/a1. LoadNumber(masm, destination, a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow); } void FloatingPointHelper::LoadNumber(MacroAssembler* masm, Destination destination, Register object, FPURegister dst, Register dst1, Register dst2, Register heap_number_map, Register scratch1, Register scratch2, Label* not_number) { if (FLAG_debug_code) { __ AbortIfNotRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); } Label is_smi, done; // Smi-check __ UntagAndJumpIfSmi(scratch1, object, &is_smi); // Heap number check __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number); // Handle loading a double from a heap number. if (CpuFeatures::IsSupported(FPU) && destination == kFPURegisters) { CpuFeatures::Scope scope(FPU); // Load the double from tagged HeapNumber to double register. // ARM uses a workaround here because of the unaligned HeapNumber // kValueOffset. On MIPS this workaround is built into ldc1 so there's no // point in generating even more instructions. __ ldc1(dst, FieldMemOperand(object, HeapNumber::kValueOffset)); } else { ASSERT(destination == kCoreRegisters); // Load the double from heap number to dst1 and dst2 in double format. __ lw(dst1, FieldMemOperand(object, HeapNumber::kValueOffset)); __ lw(dst2, FieldMemOperand(object, HeapNumber::kValueOffset + kPointerSize)); } __ Branch(&done); // Handle loading a double from a smi. __ bind(&is_smi); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); // Convert smi to double using FPU instructions. __ mtc1(scratch1, dst); __ cvt_d_w(dst, dst); if (destination == kCoreRegisters) { // Load the converted smi to dst1 and dst2 in double format. __ Move(dst1, dst2, dst); } } else { ASSERT(destination == kCoreRegisters); // Write smi to dst1 and dst2 double format. __ mov(scratch1, object); ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2); __ push(ra); __ Call(stub.GetCode()); __ pop(ra); } __ bind(&done); } void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm, Register object, Register dst, Register heap_number_map, Register scratch1, Register scratch2, Register scratch3, FPURegister double_scratch, Label* not_number) { if (FLAG_debug_code) { __ AbortIfNotRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); } Label done; Label not_in_int32_range; __ UntagAndJumpIfSmi(dst, object, &done); __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset)); __ Branch(not_number, ne, scratch1, Operand(heap_number_map)); __ ConvertToInt32(object, dst, scratch1, scratch2, double_scratch, ¬_in_int32_range); __ jmp(&done); __ bind(¬_in_int32_range); __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); __ lw(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset)); __ EmitOutOfInt32RangeTruncate(dst, scratch1, scratch2, scratch3); __ bind(&done); } void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm, Register int_scratch, Destination destination, FPURegister double_dst, Register dst1, Register dst2, Register scratch2, FPURegister single_scratch) { ASSERT(!int_scratch.is(scratch2)); ASSERT(!int_scratch.is(dst1)); ASSERT(!int_scratch.is(dst2)); Label done; if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); __ mtc1(int_scratch, single_scratch); __ cvt_d_w(double_dst, single_scratch); if (destination == kCoreRegisters) { __ Move(dst1, dst2, double_dst); } } else { Label fewer_than_20_useful_bits; // Expected output: // | dst2 | dst1 | // | s | exp | mantissa | // Check for zero. __ mov(dst2, int_scratch); __ mov(dst1, int_scratch); __ Branch(&done, eq, int_scratch, Operand(zero_reg)); // Preload the sign of the value. __ And(dst2, int_scratch, Operand(HeapNumber::kSignMask)); // Get the absolute value of the object (as an unsigned integer). Label skip_sub; __ Branch(&skip_sub, ge, dst2, Operand(zero_reg)); __ Subu(int_scratch, zero_reg, int_scratch); __ bind(&skip_sub); // Get mantissa[51:20]. // Get the position of the first set bit. __ Clz(dst1, int_scratch); __ li(scratch2, 31); __ Subu(dst1, scratch2, dst1); // Set the exponent. __ Addu(scratch2, dst1, Operand(HeapNumber::kExponentBias)); __ Ins(dst2, scratch2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Clear the first non null bit. __ li(scratch2, Operand(1)); __ sllv(scratch2, scratch2, dst1); __ li(at, -1); __ Xor(scratch2, scratch2, at); __ And(int_scratch, int_scratch, scratch2); // Get the number of bits to set in the lower part of the mantissa. __ Subu(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord)); __ Branch(&fewer_than_20_useful_bits, lt, scratch2, Operand(zero_reg)); // Set the higher 20 bits of the mantissa. __ srlv(at, int_scratch, scratch2); __ or_(dst2, dst2, at); __ li(at, 32); __ subu(scratch2, at, scratch2); __ sllv(dst1, int_scratch, scratch2); __ Branch(&done); __ bind(&fewer_than_20_useful_bits); __ li(at, HeapNumber::kMantissaBitsInTopWord); __ subu(scratch2, at, dst1); __ sllv(scratch2, int_scratch, scratch2); __ Or(dst2, dst2, scratch2); // Set dst1 to 0. __ mov(dst1, zero_reg); } __ bind(&done); } void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm, Register object, Destination destination, DoubleRegister double_dst, Register dst1, Register dst2, Register heap_number_map, Register scratch1, Register scratch2, FPURegister single_scratch, Label* not_int32) { ASSERT(!scratch1.is(object) && !scratch2.is(object)); ASSERT(!scratch1.is(scratch2)); ASSERT(!heap_number_map.is(object) && !heap_number_map.is(scratch1) && !heap_number_map.is(scratch2)); Label done, obj_is_not_smi; __ JumpIfNotSmi(object, &obj_is_not_smi); __ SmiUntag(scratch1, object); ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2, scratch2, single_scratch); __ Branch(&done); __ bind(&obj_is_not_smi); if (FLAG_debug_code) { __ AbortIfNotRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); } __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); // Load the number. if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); // Load the double value. __ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset)); Register except_flag = scratch2; __ EmitFPUTruncate(kRoundToZero, single_scratch, double_dst, scratch1, except_flag, kCheckForInexactConversion); // Jump to not_int32 if the operation did not succeed. __ Branch(not_int32, ne, except_flag, Operand(zero_reg)); if (destination == kCoreRegisters) { __ Move(dst1, dst2, double_dst); } } else { ASSERT(!scratch1.is(object) && !scratch2.is(object)); // Load the double value in the destination registers. __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset)); __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset)); // Check for 0 and -0. __ And(scratch1, dst1, Operand(~HeapNumber::kSignMask)); __ Or(scratch1, scratch1, Operand(dst2)); __ Branch(&done, eq, scratch1, Operand(zero_reg)); // Check that the value can be exactly represented by a 32-bit integer. // Jump to not_int32 if that's not the case. DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32); // dst1 and dst2 were trashed. Reload the double value. __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset)); __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset)); } __ bind(&done); } void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm, Register object, Register dst, Register heap_number_map, Register scratch1, Register scratch2, Register scratch3, DoubleRegister double_scratch, Label* not_int32) { ASSERT(!dst.is(object)); ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object)); ASSERT(!scratch1.is(scratch2) && !scratch1.is(scratch3) && !scratch2.is(scratch3)); Label done; __ UntagAndJumpIfSmi(dst, object, &done); if (FLAG_debug_code) { __ AbortIfNotRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); } __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); // Object is a heap number. // Convert the floating point value to a 32-bit integer. if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); // Load the double value. __ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset)); FPURegister single_scratch = double_scratch.low(); Register except_flag = scratch2; __ EmitFPUTruncate(kRoundToZero, single_scratch, double_scratch, scratch1, except_flag, kCheckForInexactConversion); // Jump to not_int32 if the operation did not succeed. __ Branch(not_int32, ne, except_flag, Operand(zero_reg)); // Get the result in the destination register. __ mfc1(dst, single_scratch); } else { // Load the double value in the destination registers. __ lw(scratch2, FieldMemOperand(object, HeapNumber::kExponentOffset)); __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMantissaOffset)); // Check for 0 and -0. __ And(dst, scratch1, Operand(~HeapNumber::kSignMask)); __ Or(dst, scratch2, Operand(dst)); __ Branch(&done, eq, dst, Operand(zero_reg)); DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32); // Registers state after DoubleIs32BitInteger. // dst: mantissa[51:20]. // scratch2: 1 // Shift back the higher bits of the mantissa. __ srlv(dst, dst, scratch3); // Set the implicit first bit. __ li(at, 32); __ subu(scratch3, at, scratch3); __ sllv(scratch2, scratch2, scratch3); __ Or(dst, dst, scratch2); // Set the sign. __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); Label skip_sub; __ Branch(&skip_sub, ge, scratch1, Operand(zero_reg)); __ Subu(dst, zero_reg, dst); __ bind(&skip_sub); } __ bind(&done); } void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm, Register src1, Register src2, Register dst, Register scratch, Label* not_int32) { // Get exponent alone in scratch. __ Ext(scratch, src1, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Substract the bias from the exponent. __ Subu(scratch, scratch, Operand(HeapNumber::kExponentBias)); // src1: higher (exponent) part of the double value. // src2: lower (mantissa) part of the double value. // scratch: unbiased exponent. // Fast cases. Check for obvious non 32-bit integer values. // Negative exponent cannot yield 32-bit integers. __ Branch(not_int32, lt, scratch, Operand(zero_reg)); // Exponent greater than 31 cannot yield 32-bit integers. // Also, a positive value with an exponent equal to 31 is outside of the // signed 32-bit integer range. // Another way to put it is that if (exponent - signbit) > 30 then the // number cannot be represented as an int32. Register tmp = dst; __ srl(at, src1, 31); __ subu(tmp, scratch, at); __ Branch(not_int32, gt, tmp, Operand(30)); // - Bits [21:0] in the mantissa are not null. __ And(tmp, src2, 0x3fffff); __ Branch(not_int32, ne, tmp, Operand(zero_reg)); // Otherwise the exponent needs to be big enough to shift left all the // non zero bits left. So we need the (30 - exponent) last bits of the // 31 higher bits of the mantissa to be null. // Because bits [21:0] are null, we can check instead that the // (32 - exponent) last bits of the 32 higher bits of the mantissa are null. // Get the 32 higher bits of the mantissa in dst. __ Ext(dst, src2, HeapNumber::kMantissaBitsInTopWord, 32 - HeapNumber::kMantissaBitsInTopWord); __ sll(at, src1, HeapNumber::kNonMantissaBitsInTopWord); __ or_(dst, dst, at); // Create the mask and test the lower bits (of the higher bits). __ li(at, 32); __ subu(scratch, at, scratch); __ li(src2, 1); __ sllv(src1, src2, scratch); __ Subu(src1, src1, Operand(1)); __ And(src1, dst, src1); __ Branch(not_int32, ne, src1, Operand(zero_reg)); } void FloatingPointHelper::CallCCodeForDoubleOperation( MacroAssembler* masm, Token::Value op, Register heap_number_result, Register scratch) { // Using core registers: // a0: Left value (least significant part of mantissa). // a1: Left value (sign, exponent, top of mantissa). // a2: Right value (least significant part of mantissa). // a3: Right value (sign, exponent, top of mantissa). // Assert that heap_number_result is saved. // We currently always use s0 to pass it. ASSERT(heap_number_result.is(s0)); // Push the current return address before the C call. __ push(ra); __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments. if (!IsMipsSoftFloatABI) { CpuFeatures::Scope scope(FPU); // We are not using MIPS FPU instructions, and parameters for the runtime // function call are prepaired in a0-a3 registers, but function we are // calling is compiled with hard-float flag and expecting hard float ABI // (parameters in f12/f14 registers). We need to copy parameters from // a0-a3 registers to f12/f14 register pairs. __ Move(f12, a0, a1); __ Move(f14, a2, a3); } { AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2); } // Store answer in the overwritable heap number. if (!IsMipsSoftFloatABI) { CpuFeatures::Scope scope(FPU); // Double returned in register f0. __ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset)); } else { // Double returned in registers v0 and v1. __ sw(v1, FieldMemOperand(heap_number_result, HeapNumber::kExponentOffset)); __ sw(v0, FieldMemOperand(heap_number_result, HeapNumber::kMantissaOffset)); } // Place heap_number_result in v0 and return to the pushed return address. __ pop(ra); __ Ret(USE_DELAY_SLOT); __ mov(v0, heap_number_result); } bool WriteInt32ToHeapNumberStub::IsPregenerated() { // These variants are compiled ahead of time. See next method. if (the_int_.is(a1) && the_heap_number_.is(v0) && scratch_.is(a2) && sign_.is(a3)) { return true; } if (the_int_.is(a2) && the_heap_number_.is(v0) && scratch_.is(a3) && sign_.is(a0)) { return true; } // Other register combinations are generated as and when they are needed, // so it is unsafe to call them from stubs (we can't generate a stub while // we are generating a stub). return false; } void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() { WriteInt32ToHeapNumberStub stub1(a1, v0, a2, a3); WriteInt32ToHeapNumberStub stub2(a2, v0, a3, a0); stub1.GetCode()->set_is_pregenerated(true); stub2.GetCode()->set_is_pregenerated(true); } // See comment for class, this does NOT work for int32's that are in Smi range. void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { Label max_negative_int; // the_int_ has the answer which is a signed int32 but not a Smi. // We test for the special value that has a different exponent. STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); // Test sign, and save for later conditionals. __ And(sign_, the_int_, Operand(0x80000000u)); __ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u)); // Set up the correct exponent in scratch_. All non-Smi int32s have the same. // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). uint32_t non_smi_exponent = (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; __ li(scratch_, Operand(non_smi_exponent)); // Set the sign bit in scratch_ if the value was negative. __ or_(scratch_, scratch_, sign_); // Subtract from 0 if the value was negative. __ subu(at, zero_reg, the_int_); __ Movn(the_int_, at, sign_); // We should be masking the implict first digit of the mantissa away here, // but it just ends up combining harmlessly with the last digit of the // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get // the most significant 1 to hit the last bit of the 12 bit sign and exponent. ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; __ srl(at, the_int_, shift_distance); __ or_(scratch_, scratch_, at); __ sw(scratch_, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); __ sll(scratch_, the_int_, 32 - shift_distance); __ sw(scratch_, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); __ Ret(); __ bind(&max_negative_int); // The max negative int32 is stored as a positive number in the mantissa of // a double because it uses a sign bit instead of using two's complement. // The actual mantissa bits stored are all 0 because the implicit most // significant 1 bit is not stored. non_smi_exponent += 1 << HeapNumber::kExponentShift; __ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent)); __ sw(scratch_, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); __ mov(scratch_, zero_reg); __ sw(scratch_, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); __ Ret(); } // Handle the case where the lhs and rhs are the same object. // Equality is almost reflexive (everything but NaN), so this is a test // for "identity and not NaN". static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cc, bool never_nan_nan) { Label not_identical; Label heap_number, return_equal; Register exp_mask_reg = t5; __ Branch(¬_identical, ne, a0, Operand(a1)); // The two objects are identical. If we know that one of them isn't NaN then // we now know they test equal. if (cc != eq || !never_nan_nan) { __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask)); // Test for NaN. Sadly, we can't just compare to factory->nan_value(), // so we do the second best thing - test it ourselves. // They are both equal and they are not both Smis so both of them are not // Smis. If it's not a heap number, then return equal. if (cc == less || cc == greater) { __ GetObjectType(a0, t4, t4); __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE)); } else { __ GetObjectType(a0, t4, t4); __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE)); // Comparing JS objects with <=, >= is complicated. if (cc != eq) { __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE)); // Normally here we fall through to return_equal, but undefined is // special: (undefined == undefined) == true, but // (undefined <= undefined) == false! See ECMAScript 11.8.5. if (cc == less_equal || cc == greater_equal) { __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE)); __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); __ Branch(&return_equal, ne, a0, Operand(t2)); if (cc == le) { // undefined <= undefined should fail. __ li(v0, Operand(GREATER)); } else { // undefined >= undefined should fail. __ li(v0, Operand(LESS)); } __ Ret(); } } } } __ bind(&return_equal); if (cc == less) { __ li(v0, Operand(GREATER)); // Things aren't less than themselves. } else if (cc == greater) { __ li(v0, Operand(LESS)); // Things aren't greater than themselves. } else { __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves. } __ Ret(); if (cc != eq || !never_nan_nan) { // For less and greater we don't have to check for NaN since the result of // x < x is false regardless. For the others here is some code to check // for NaN. if (cc != lt && cc != gt) { __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if it's // not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // Read top bits of double representation (second word of value). __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); // Test that exponent bits are all set. __ And(t3, t2, Operand(exp_mask_reg)); // If all bits not set (ne cond), then not a NaN, objects are equal. __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg)); // Shift out flag and all exponent bits, retaining only mantissa. __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord); // Or with all low-bits of mantissa. __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); __ Or(v0, t3, Operand(t2)); // For equal we already have the right value in v0: Return zero (equal) // if all bits in mantissa are zero (it's an Infinity) and non-zero if // not (it's a NaN). For <= and >= we need to load v0 with the failing // value if it's a NaN. if (cc != eq) { // All-zero means Infinity means equal. __ Ret(eq, v0, Operand(zero_reg)); if (cc == le) { __ li(v0, Operand(GREATER)); // NaN <= NaN should fail. } else { __ li(v0, Operand(LESS)); // NaN >= NaN should fail. } } __ Ret(); } // No fall through here. } __ bind(¬_identical); } static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* slow, bool strict) { ASSERT((lhs.is(a0) && rhs.is(a1)) || (lhs.is(a1) && rhs.is(a0))); Label lhs_is_smi; __ JumpIfSmi(lhs, &lhs_is_smi); // Rhs is a Smi. // Check whether the non-smi is a heap number. __ GetObjectType(lhs, t4, t4); if (strict) { // If lhs was not a number and rhs was a Smi then strict equality cannot // succeed. Return non-equal (lhs is already not zero). __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE)); __ mov(v0, lhs); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE)); } // Rhs is a smi, lhs is a number. // Convert smi rhs to double. if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); __ sra(at, rhs, kSmiTagSize); __ mtc1(at, f14); __ cvt_d_w(f14, f14); __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); } else { // Load lhs to a double in a2, a3. __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4)); __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset)); // Write Smi from rhs to a1 and a0 in double format. t5 is scratch. __ mov(t6, rhs); ConvertToDoubleStub stub1(a1, a0, t6, t5); __ push(ra); __ Call(stub1.GetCode()); __ pop(ra); } // We now have both loaded as doubles. __ jmp(both_loaded_as_doubles); __ bind(&lhs_is_smi); // Lhs is a Smi. Check whether the non-smi is a heap number. __ GetObjectType(rhs, t4, t4); if (strict) { // If lhs was not a number and rhs was a Smi then strict equality cannot // succeed. Return non-equal. __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE)); __ li(v0, Operand(1)); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE)); } // Lhs is a smi, rhs is a number. // Convert smi lhs to double. if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); __ sra(at, lhs, kSmiTagSize); __ mtc1(at, f12); __ cvt_d_w(f12, f12); __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); } else { // Convert lhs to a double format. t5 is scratch. __ mov(t6, lhs); ConvertToDoubleStub stub2(a3, a2, t6, t5); __ push(ra); __ Call(stub2.GetCode()); __ pop(ra); // Load rhs to a double in a1, a0. if (rhs.is(a0)) { __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); } else { __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); } } // Fall through to both_loaded_as_doubles. } void EmitNanCheck(MacroAssembler* masm, Condition cc) { bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); // Lhs and rhs are already loaded to f12 and f14 register pairs. __ Move(t0, t1, f14); __ Move(t2, t3, f12); } else { // Lhs and rhs are already loaded to GP registers. __ mov(t0, a0); // a0 has LS 32 bits of rhs. __ mov(t1, a1); // a1 has MS 32 bits of rhs. __ mov(t2, a2); // a2 has LS 32 bits of lhs. __ mov(t3, a3); // a3 has MS 32 bits of lhs. } Register rhs_exponent = exp_first ? t0 : t1; Register lhs_exponent = exp_first ? t2 : t3; Register rhs_mantissa = exp_first ? t1 : t0; Register lhs_mantissa = exp_first ? t3 : t2; Label one_is_nan, neither_is_nan; Label lhs_not_nan_exp_mask_is_loaded; Register exp_mask_reg = t4; __ li(exp_mask_reg, HeapNumber::kExponentMask); __ and_(t5, lhs_exponent, exp_mask_reg); __ Branch(&lhs_not_nan_exp_mask_is_loaded, ne, t5, Operand(exp_mask_reg)); __ sll(t5, lhs_exponent, HeapNumber::kNonMantissaBitsInTopWord); __ Branch(&one_is_nan, ne, t5, Operand(zero_reg)); __ Branch(&one_is_nan, ne, lhs_mantissa, Operand(zero_reg)); __ li(exp_mask_reg, HeapNumber::kExponentMask); __ bind(&lhs_not_nan_exp_mask_is_loaded); __ and_(t5, rhs_exponent, exp_mask_reg); __ Branch(&neither_is_nan, ne, t5, Operand(exp_mask_reg)); __ sll(t5, rhs_exponent, HeapNumber::kNonMantissaBitsInTopWord); __ Branch(&one_is_nan, ne, t5, Operand(zero_reg)); __ Branch(&neither_is_nan, eq, rhs_mantissa, Operand(zero_reg)); __ bind(&one_is_nan); // NaN comparisons always fail. // Load whatever we need in v0 to make the comparison fail. if (cc == lt || cc == le) { __ li(v0, Operand(GREATER)); } else { __ li(v0, Operand(LESS)); } __ Ret(); __ bind(&neither_is_nan); } static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) { // f12 and f14 have the two doubles. Neither is a NaN. // Call a native function to do a comparison between two non-NaNs. // Call C routine that may not cause GC or other trouble. // We use a call_was and return manually because we need arguments slots to // be freed. Label return_result_not_equal, return_result_equal; if (cc == eq) { // Doubles are not equal unless they have the same bit pattern. // Exception: 0 and -0. bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); // Lhs and rhs are already loaded to f12 and f14 register pairs. __ Move(t0, t1, f14); __ Move(t2, t3, f12); } else { // Lhs and rhs are already loaded to GP registers. __ mov(t0, a0); // a0 has LS 32 bits of rhs. __ mov(t1, a1); // a1 has MS 32 bits of rhs. __ mov(t2, a2); // a2 has LS 32 bits of lhs. __ mov(t3, a3); // a3 has MS 32 bits of lhs. } Register rhs_exponent = exp_first ? t0 : t1; Register lhs_exponent = exp_first ? t2 : t3; Register rhs_mantissa = exp_first ? t1 : t0; Register lhs_mantissa = exp_first ? t3 : t2; __ xor_(v0, rhs_mantissa, lhs_mantissa); __ Branch(&return_result_not_equal, ne, v0, Operand(zero_reg)); __ subu(v0, rhs_exponent, lhs_exponent); __ Branch(&return_result_equal, eq, v0, Operand(zero_reg)); // 0, -0 case. __ sll(rhs_exponent, rhs_exponent, kSmiTagSize); __ sll(lhs_exponent, lhs_exponent, kSmiTagSize); __ or_(t4, rhs_exponent, lhs_exponent); __ or_(t4, t4, rhs_mantissa); __ Branch(&return_result_not_equal, ne, t4, Operand(zero_reg)); __ bind(&return_result_equal); __ li(v0, Operand(EQUAL)); __ Ret(); } __ bind(&return_result_not_equal); if (!CpuFeatures::IsSupported(FPU)) { __ push(ra); __ PrepareCallCFunction(0, 2, t4); if (!IsMipsSoftFloatABI) { // We are not using MIPS FPU instructions, and parameters for the runtime // function call are prepaired in a0-a3 registers, but function we are // calling is compiled with hard-float flag and expecting hard float ABI // (parameters in f12/f14 registers). We need to copy parameters from // a0-a3 registers to f12/f14 register pairs. __ Move(f12, a0, a1); __ Move(f14, a2, a3); } AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 0, 2); __ pop(ra); // Because this function returns int, result is in v0. __ Ret(); } else { CpuFeatures::Scope scope(FPU); Label equal, less_than; __ BranchF(&equal, NULL, eq, f12, f14); __ BranchF(&less_than, NULL, lt, f12, f14); // Not equal, not less, not NaN, must be greater. __ li(v0, Operand(GREATER)); __ Ret(); __ bind(&equal); __ li(v0, Operand(EQUAL)); __ Ret(); __ bind(&less_than); __ li(v0, Operand(LESS)); __ Ret(); } } static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs) { // If either operand is a JS object or an oddball value, then they are // not equal since their pointers are different. // There is no test for undetectability in strict equality. STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); Label first_non_object; // Get the type of the first operand into a2 and compare it with // FIRST_SPEC_OBJECT_TYPE. __ GetObjectType(lhs, a2, a2); __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE)); // Return non-zero. Label return_not_equal; __ bind(&return_not_equal); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(1)); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE)); __ GetObjectType(rhs, a3, a3); __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); // Check for oddballs: true, false, null, undefined. __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE)); // Now that we have the types we might as well check for symbol-symbol. // Ensure that no non-strings have the symbol bit set. STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); STATIC_ASSERT(kSymbolTag != 0); __ And(t2, a2, Operand(a3)); __ And(t0, t2, Operand(kIsSymbolMask)); __ Branch(&return_not_equal, ne, t0, Operand(zero_reg)); } static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* not_heap_numbers, Label* slow) { __ GetObjectType(lhs, a3, a2); __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE)); __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset)); // If first was a heap number & second wasn't, go to slow case. __ Branch(slow, ne, a3, Operand(a2)); // Both are heap numbers. Load them up then jump to the code we have // for that. if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); } else { __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset)); __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4)); if (rhs.is(a0)) { __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); } else { __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset)); __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4)); } } __ jmp(both_loaded_as_doubles); } // Fast negative check for symbol-to-symbol equality. static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm, Register lhs, Register rhs, Label* possible_strings, Label* not_both_strings) { ASSERT((lhs.is(a0) && rhs.is(a1)) || (lhs.is(a1) && rhs.is(a0))); // a2 is object type of lhs. // Ensure that no non-strings have the symbol bit set. Label object_test; STATIC_ASSERT(kSymbolTag != 0); __ And(at, a2, Operand(kIsNotStringMask)); __ Branch(&object_test, ne, at, Operand(zero_reg)); __ And(at, a2, Operand(kIsSymbolMask)); __ Branch(possible_strings, eq, at, Operand(zero_reg)); __ GetObjectType(rhs, a3, a3); __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE)); __ And(at, a3, Operand(kIsSymbolMask)); __ Branch(possible_strings, eq, at, Operand(zero_reg)); // Both are symbols. We already checked they weren't the same pointer // so they are not equal. __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(1)); // Non-zero indicates not equal. __ bind(&object_test); __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE)); __ GetObjectType(rhs, a2, a3); __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); // If both objects are undetectable, they are equal. Otherwise, they // are not equal, since they are different objects and an object is not // equal to undefined. __ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset)); __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset)); __ and_(a0, a2, a3); __ And(a0, a0, Operand(1 << Map::kIsUndetectable)); __ Ret(USE_DELAY_SLOT); __ xori(v0, a0, 1 << Map::kIsUndetectable); } void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, Register object, Register result, Register scratch1, Register scratch2, Register scratch3, bool object_is_smi, Label* not_found) { // Use of registers. Register result is used as a temporary. Register number_string_cache = result; Register mask = scratch3; // Load the number string cache. __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. __ lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); // Divide length by two (length is a smi). __ sra(mask, mask, kSmiTagSize + 1); __ Addu(mask, mask, -1); // Make mask. // Calculate the entry in the number string cache. The hash value in the // number string cache for smis is just the smi value, and the hash for // doubles is the xor of the upper and lower words. See // Heap::GetNumberStringCache. Isolate* isolate = masm->isolate(); Label is_smi; Label load_result_from_cache; if (!object_is_smi) { __ JumpIfSmi(object, &is_smi); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); __ CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found, DONT_DO_SMI_CHECK); STATIC_ASSERT(8 == kDoubleSize); __ Addu(scratch1, object, Operand(HeapNumber::kValueOffset - kHeapObjectTag)); __ lw(scratch2, MemOperand(scratch1, kPointerSize)); __ lw(scratch1, MemOperand(scratch1, 0)); __ Xor(scratch1, scratch1, Operand(scratch2)); __ And(scratch1, scratch1, Operand(mask)); // Calculate address of entry in string cache: each entry consists // of two pointer sized fields. __ sll(scratch1, scratch1, kPointerSizeLog2 + 1); __ Addu(scratch1, number_string_cache, scratch1); Register probe = mask; __ lw(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); __ JumpIfSmi(probe, not_found); __ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset)); __ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset)); __ BranchF(&load_result_from_cache, NULL, eq, f12, f14); __ Branch(not_found); } else { // Note that there is no cache check for non-FPU case, even though // it seems there could be. May be a tiny opimization for non-FPU // cores. __ Branch(not_found); } } __ bind(&is_smi); Register scratch = scratch1; __ sra(scratch, object, 1); // Shift away the tag. __ And(scratch, mask, Operand(scratch)); // Calculate address of entry in string cache: each entry consists // of two pointer sized fields. __ sll(scratch, scratch, kPointerSizeLog2 + 1); __ Addu(scratch, number_string_cache, scratch); // Check if the entry is the smi we are looking for. Register probe = mask; __ lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); __ Branch(not_found, ne, object, Operand(probe)); // Get the result from the cache. __ bind(&load_result_from_cache); __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); __ IncrementCounter(isolate->counters()->number_to_string_native(), 1, scratch1, scratch2); } void NumberToStringStub::Generate(MacroAssembler* masm) { Label runtime; __ lw(a1, MemOperand(sp, 0)); // Generate code to lookup number in the number string cache. GenerateLookupNumberStringCache(masm, a1, v0, a2, a3, t0, false, &runtime); __ DropAndRet(1); __ bind(&runtime); // Handle number to string in the runtime system if not found in the cache. __ TailCallRuntime(Runtime::kNumberToString, 1, 1); } // On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared. // On exit, v0 is 0, positive, or negative (smi) to indicate the result // of the comparison. void CompareStub::Generate(MacroAssembler* masm) { Label slow; // Call builtin. Label not_smis, both_loaded_as_doubles; if (include_smi_compare_) { Label not_two_smis, smi_done; __ Or(a2, a1, a0); __ JumpIfNotSmi(a2, ¬_two_smis); __ sra(a1, a1, 1); __ sra(a0, a0, 1); __ Ret(USE_DELAY_SLOT); __ subu(v0, a1, a0); __ bind(¬_two_smis); } else if (FLAG_debug_code) { __ Or(a2, a1, a0); __ And(a2, a2, kSmiTagMask); __ Assert(ne, "CompareStub: unexpected smi operands.", a2, Operand(zero_reg)); } // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Handle the case where the objects are identical. Either returns the answer // or goes to slow. Only falls through if the objects were not identical. EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); // If either is a Smi (we know that not both are), then they can only // be strictly equal if the other is a HeapNumber. STATIC_ASSERT(kSmiTag == 0); ASSERT_EQ(0, Smi::FromInt(0)); __ And(t2, lhs_, Operand(rhs_)); __ JumpIfNotSmi(t2, ¬_smis, t0); // One operand is a smi. EmitSmiNonsmiComparison generates code that can: // 1) Return the answer. // 2) Go to slow. // 3) Fall through to both_loaded_as_doubles. // 4) Jump to rhs_not_nan. // In cases 3 and 4 we have found out we were dealing with a number-number // comparison and the numbers have been loaded into f12 and f14 as doubles, // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU. EmitSmiNonsmiComparison(masm, lhs_, rhs_, &both_loaded_as_doubles, &slow, strict_); __ bind(&both_loaded_as_doubles); // f12, f14 are the double representations of the left hand side // and the right hand side if we have FPU. Otherwise a2, a3 represent // left hand side and a0, a1 represent right hand side. Isolate* isolate = masm->isolate(); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); Label nan; __ li(t0, Operand(LESS)); __ li(t1, Operand(GREATER)); __ li(t2, Operand(EQUAL)); // Check if either rhs or lhs is NaN. __ BranchF(NULL, &nan, eq, f12, f14); // Check if LESS condition is satisfied. If true, move conditionally // result to v0. __ c(OLT, D, f12, f14); __ Movt(v0, t0); // Use previous check to store conditionally to v0 oposite condition // (GREATER). If rhs is equal to lhs, this will be corrected in next // check. __ Movf(v0, t1); // Check if EQUAL condition is satisfied. If true, move conditionally // result to v0. __ c(EQ, D, f12, f14); __ Movt(v0, t2); __ Ret(); __ bind(&nan); // NaN comparisons always fail. // Load whatever we need in v0 to make the comparison fail. if (cc_ == lt || cc_ == le) { __ li(v0, Operand(GREATER)); } else { __ li(v0, Operand(LESS)); } __ Ret(); } else { // Checks for NaN in the doubles we have loaded. Can return the answer or // fall through if neither is a NaN. Also binds rhs_not_nan. EmitNanCheck(masm, cc_); // Compares two doubles that are not NaNs. Returns the answer. // Never falls through. EmitTwoNonNanDoubleComparison(masm, cc_); } __ bind(¬_smis); // At this point we know we are dealing with two different objects, // and neither of them is a Smi. The objects are in lhs_ and rhs_. if (strict_) { // This returns non-equal for some object types, or falls through if it // was not lucky. EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_); } Label check_for_symbols; Label flat_string_check; // Check for heap-number-heap-number comparison. Can jump to slow case, // or load both doubles and jump to the code that handles // that case. If the inputs are not doubles then jumps to check_for_symbols. // In this case a2 will contain the type of lhs_. EmitCheckForTwoHeapNumbers(masm, lhs_, rhs_, &both_loaded_as_doubles, &check_for_symbols, &flat_string_check); __ bind(&check_for_symbols); if (cc_ == eq && !strict_) { // Returns an answer for two symbols or two detectable objects. // Otherwise jumps to string case or not both strings case. // Assumes that a2 is the type of lhs_ on entry. EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow); } // Check for both being sequential ASCII strings, and inline if that is the // case. __ bind(&flat_string_check); __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow); __ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3); if (cc_ == eq) { StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs_, rhs_, a2, a3, t0); } else { StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs_, rhs_, a2, a3, t0, t1); } // Never falls through to here. __ bind(&slow); // Prepare for call to builtin. Push object pointers, a0 (lhs) first, // a1 (rhs) second. __ Push(lhs_, rhs_); // Figure out which native to call and setup the arguments. Builtins::JavaScript native; if (cc_ == eq) { native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { native = Builtins::COMPARE; int ncr; // NaN compare result. if (cc_ == lt || cc_ == le) { ncr = GREATER; } else { ASSERT(cc_ == gt || cc_ == ge); // Remaining cases. ncr = LESS; } __ li(a0, Operand(Smi::FromInt(ncr))); __ push(a0); } // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(native, JUMP_FUNCTION); } // The stub expects its argument in the tos_ register and returns its result in // it, too: zero for false, and a non-zero value for true. void ToBooleanStub::Generate(MacroAssembler* masm) { // This stub uses FPU instructions. CpuFeatures::Scope scope(FPU); Label patch; const Register map = t5.is(tos_) ? t3 : t5; // undefined -> false. CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false); // Boolean -> its value. CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false); CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true); // 'null' -> false. CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false); if (types_.Contains(SMI)) { // Smis: 0 -> false, all other -> true __ And(at, tos_, kSmiTagMask); // tos_ contains the correct return value already __ Ret(eq, at, Operand(zero_reg)); } else if (types_.NeedsMap()) { // If we need a map later and have a Smi -> patch. __ JumpIfSmi(tos_, &patch); } if (types_.NeedsMap()) { __ lw(map, FieldMemOperand(tos_, HeapObject::kMapOffset)); if (types_.CanBeUndetectable()) { __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset)); __ And(at, at, Operand(1 << Map::kIsUndetectable)); // Undetectable -> false. __ Movn(tos_, zero_reg, at); __ Ret(ne, at, Operand(zero_reg)); } } if (types_.Contains(SPEC_OBJECT)) { // Spec object -> true. __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); // tos_ contains the correct non-zero return value already. __ Ret(ge, at, Operand(FIRST_SPEC_OBJECT_TYPE)); } if (types_.Contains(STRING)) { // String value -> false iff empty. __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); Label skip; __ Branch(&skip, ge, at, Operand(FIRST_NONSTRING_TYPE)); __ Ret(USE_DELAY_SLOT); // the string length is OK as the return value __ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset)); __ bind(&skip); } if (types_.Contains(HEAP_NUMBER)) { // Heap number -> false iff +0, -0, or NaN. Label not_heap_number; __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); __ Branch(¬_heap_number, ne, map, Operand(at)); Label zero_or_nan, number; __ ldc1(f2, FieldMemOperand(tos_, HeapNumber::kValueOffset)); __ BranchF(&number, &zero_or_nan, ne, f2, kDoubleRegZero); // "tos_" is a register, and contains a non zero value by default. // Hence we only need to overwrite "tos_" with zero to return false for // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true. __ bind(&zero_or_nan); __ mov(tos_, zero_reg); __ bind(&number); __ Ret(); __ bind(¬_heap_number); } __ bind(&patch); GenerateTypeTransition(masm); } void ToBooleanStub::CheckOddball(MacroAssembler* masm, Type type, Heap::RootListIndex value, bool result) { if (types_.Contains(type)) { // If we see an expected oddball, return its ToBoolean value tos_. __ LoadRoot(at, value); __ Subu(at, at, tos_); // This is a check for equality for the movz below. // The value of a root is never NULL, so we can avoid loading a non-null // value into tos_ when we want to return 'true'. if (!result) { __ Movz(tos_, zero_reg, at); } __ Ret(eq, at, Operand(zero_reg)); } } void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) { __ Move(a3, tos_); __ li(a2, Operand(Smi::FromInt(tos_.code()))); __ li(a1, Operand(Smi::FromInt(types_.ToByte()))); __ Push(a3, a2, a1); // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()), 3, 1); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ MultiPush(kJSCallerSaved | ra.bit()); if (save_doubles_ == kSaveFPRegs) { CpuFeatures::Scope scope(FPU); __ MultiPushFPU(kCallerSavedFPU); } const int argument_count = 1; const int fp_argument_count = 0; const Register scratch = a1; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); __ li(a0, Operand(ExternalReference::isolate_address())); __ CallCFunction( ExternalReference::store_buffer_overflow_function(masm->isolate()), argument_count); if (save_doubles_ == kSaveFPRegs) { CpuFeatures::Scope scope(FPU); __ MultiPopFPU(kCallerSavedFPU); } __ MultiPop(kJSCallerSaved | ra.bit()); __ Ret(); } void UnaryOpStub::PrintName(StringStream* stream) { const char* op_name = Token::Name(op_); const char* overwrite_name = NULL; // Make g++ happy. switch (mode_) { case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break; case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break; } stream->Add("UnaryOpStub_%s_%s_%s", op_name, overwrite_name, UnaryOpIC::GetName(operand_type_)); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::Generate(MacroAssembler* masm) { switch (operand_type_) { case UnaryOpIC::UNINITIALIZED: GenerateTypeTransition(masm); break; case UnaryOpIC::SMI: GenerateSmiStub(masm); break; case UnaryOpIC::HEAP_NUMBER: GenerateHeapNumberStub(masm); break; case UnaryOpIC::GENERIC: GenerateGenericStub(masm); break; } } void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { // Argument is in a0 and v0 at this point, so we can overwrite a0. __ li(a2, Operand(Smi::FromInt(op_))); __ li(a1, Operand(Smi::FromInt(mode_))); __ li(a0, Operand(Smi::FromInt(operand_type_))); __ Push(v0, a2, a1, a0); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateSmiStubSub(masm); break; case Token::BIT_NOT: GenerateSmiStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeSub(masm, &non_smi, &slow); __ bind(&non_smi); __ bind(&slow); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) { Label non_smi; GenerateSmiCodeBitNot(masm, &non_smi); __ bind(&non_smi); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm, Label* non_smi, Label* slow) { __ JumpIfNotSmi(a0, non_smi); // The result of negating zero or the smallest negative smi is not a smi. __ And(t0, a0, ~0x80000000); __ Branch(slow, eq, t0, Operand(zero_reg)); // Return '0 - value'. __ Ret(USE_DELAY_SLOT); __ subu(v0, zero_reg, a0); } void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm, Label* non_smi) { __ JumpIfNotSmi(a0, non_smi); // Flip bits and revert inverted smi-tag. __ Neg(v0, a0); __ And(v0, v0, ~kSmiTagMask); __ Ret(); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateHeapNumberStubSub(masm); break; case Token::BIT_NOT: GenerateHeapNumberStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) { Label non_smi, slow, call_builtin; GenerateSmiCodeSub(masm, &non_smi, &call_builtin); __ bind(&non_smi); GenerateHeapNumberCodeSub(masm, &slow); __ bind(&slow); GenerateTypeTransition(masm); __ bind(&call_builtin); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeBitNot(masm, &non_smi); __ bind(&non_smi); GenerateHeapNumberCodeBitNot(masm, &slow); __ bind(&slow); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow) { EmitCheckForHeapNumber(masm, a0, a1, t2, slow); // a0 is a heap number. Get a new heap number in a1. if (mode_ == UNARY_OVERWRITE) { __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign. __ sw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); } else { Label slow_allocate_heapnumber, heapnumber_allocated; __ AllocateHeapNumber(a1, a2, a3, t2, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(a0); __ CallRuntime(Runtime::kNumberAlloc, 0); __ mov(a1, v0); __ pop(a0); } __ bind(&heapnumber_allocated); __ lw(a3, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); __ sw(a3, FieldMemOperand(a1, HeapNumber::kMantissaOffset)); __ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign. __ sw(a2, FieldMemOperand(a1, HeapNumber::kExponentOffset)); __ mov(v0, a1); } __ Ret(); } void UnaryOpStub::GenerateHeapNumberCodeBitNot( MacroAssembler* masm, Label* slow) { Label impossible; EmitCheckForHeapNumber(masm, a0, a1, t2, slow); // Convert the heap number in a0 to an untagged integer in a1. __ ConvertToInt32(a0, a1, a2, a3, f0, slow); // Do the bitwise operation and check if the result fits in a smi. Label try_float; __ Neg(a1, a1); __ Addu(a2, a1, Operand(0x40000000)); __ Branch(&try_float, lt, a2, Operand(zero_reg)); // Tag the result as a smi and we're done. __ SmiTag(v0, a1); __ Ret(); // Try to store the result in a heap number. __ bind(&try_float); if (mode_ == UNARY_NO_OVERWRITE) { Label slow_allocate_heapnumber, heapnumber_allocated; // Allocate a new heap number without zapping v0, which we need if it fails. __ AllocateHeapNumber(a2, a3, t0, t2, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(v0); // Push the heap number, not the untagged int32. __ CallRuntime(Runtime::kNumberAlloc, 0); __ mov(a2, v0); // Move the new heap number into a2. // Get the heap number into v0, now that the new heap number is in a2. __ pop(v0); } // Convert the heap number in v0 to an untagged integer in a1. // This can't go slow-case because it's the same number we already // converted once again. __ ConvertToInt32(v0, a1, a3, t0, f0, &impossible); // Negate the result. __ Xor(a1, a1, -1); __ bind(&heapnumber_allocated); __ mov(v0, a2); // Move newly allocated heap number to v0. } if (CpuFeatures::IsSupported(FPU)) { // Convert the int32 in a1 to the heap number in v0. a2 is corrupted. CpuFeatures::Scope scope(FPU); __ mtc1(a1, f0); __ cvt_d_w(f0, f0); __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset)); __ Ret(); } else { // WriteInt32ToHeapNumberStub does not trigger GC, so we do not // have to set up a frame. WriteInt32ToHeapNumberStub stub(a1, v0, a2, a3); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } __ bind(&impossible); if (FLAG_debug_code) { __ stop("Incorrect assumption in bit-not stub"); } } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateGenericStubSub(masm); break; case Token::BIT_NOT: GenerateGenericStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeSub(masm, &non_smi, &slow); __ bind(&non_smi); GenerateHeapNumberCodeSub(masm, &slow); __ bind(&slow); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeBitNot(masm, &non_smi); __ bind(&non_smi); GenerateHeapNumberCodeBitNot(masm, &slow); __ bind(&slow); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateGenericCodeFallback( MacroAssembler* masm) { // Handle the slow case by jumping to the JavaScript builtin. __ push(a0); switch (op_) { case Token::SUB: __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); break; case Token::BIT_NOT: __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { Label get_result; __ Push(a1, a0); __ li(a2, Operand(Smi::FromInt(MinorKey()))); __ li(a1, Operand(Smi::FromInt(op_))); __ li(a0, Operand(Smi::FromInt(operands_type_))); __ Push(a2, a1, a0); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kBinaryOp_Patch), masm->isolate()), 5, 1); } void BinaryOpStub::GenerateTypeTransitionWithSavedArgs( MacroAssembler* masm) { UNIMPLEMENTED(); } void BinaryOpStub::Generate(MacroAssembler* masm) { // Explicitly allow generation of nested stubs. It is safe here because // generation code does not use any raw pointers. AllowStubCallsScope allow_stub_calls(masm, true); switch (operands_type_) { case BinaryOpIC::UNINITIALIZED: GenerateTypeTransition(masm); break; case BinaryOpIC::SMI: GenerateSmiStub(masm); break; case BinaryOpIC::INT32: GenerateInt32Stub(masm); break; case BinaryOpIC::HEAP_NUMBER: GenerateHeapNumberStub(masm); break; case BinaryOpIC::ODDBALL: GenerateOddballStub(masm); break; case BinaryOpIC::BOTH_STRING: GenerateBothStringStub(masm); break; case BinaryOpIC::STRING: GenerateStringStub(masm); break; case BinaryOpIC::GENERIC: GenerateGeneric(masm); break; default: UNREACHABLE(); } } void BinaryOpStub::PrintName(StringStream* stream) { const char* op_name = Token::Name(op_); const char* overwrite_name; switch (mode_) { case NO_OVERWRITE: overwrite_name = "Alloc"; break; case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; default: overwrite_name = "UnknownOverwrite"; break; } stream->Add("BinaryOpStub_%s_%s_%s", op_name, overwrite_name, BinaryOpIC::GetName(operands_type_)); } void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) { Register left = a1; Register right = a0; Register scratch1 = t0; Register scratch2 = t1; ASSERT(right.is(a0)); STATIC_ASSERT(kSmiTag == 0); Label not_smi_result; switch (op_) { case Token::ADD: __ AdduAndCheckForOverflow(v0, left, right, scratch1); __ RetOnNoOverflow(scratch1); // No need to revert anything - right and left are intact. break; case Token::SUB: __ SubuAndCheckForOverflow(v0, left, right, scratch1); __ RetOnNoOverflow(scratch1); // No need to revert anything - right and left are intact. break; case Token::MUL: { // Remove tag from one of the operands. This way the multiplication result // will be a smi if it fits the smi range. __ SmiUntag(scratch1, right); // Do multiplication. // lo = lower 32 bits of scratch1 * left. // hi = higher 32 bits of scratch1 * left. __ Mult(left, scratch1); // Check for overflowing the smi range - no overflow if higher 33 bits of // the result are identical. __ mflo(scratch1); __ mfhi(scratch2); __ sra(scratch1, scratch1, 31); __ Branch(¬_smi_result, ne, scratch1, Operand(scratch2)); // Go slow on zero result to handle -0. __ mflo(v0); __ Ret(ne, v0, Operand(zero_reg)); // We need -0 if we were multiplying a negative number with 0 to get 0. // We know one of them was zero. __ Addu(scratch2, right, left); Label skip; // ARM uses the 'pl' condition, which is 'ge'. // Negating it results in 'lt'. __ Branch(&skip, lt, scratch2, Operand(zero_reg)); ASSERT(Smi::FromInt(0) == 0); __ Ret(USE_DELAY_SLOT); __ mov(v0, zero_reg); // Return smi 0 if the non-zero one was positive. __ bind(&skip); // We fall through here if we multiplied a negative number with 0, because // that would mean we should produce -0. } break; case Token::DIV: { Label done; __ SmiUntag(scratch2, right); __ SmiUntag(scratch1, left); __ Div(scratch1, scratch2); // A minor optimization: div may be calculated asynchronously, so we check // for division by zero before getting the result. __ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg)); // If the result is 0, we need to make sure the dividsor (right) is // positive, otherwise it is a -0 case. // Quotient is in 'lo', remainder is in 'hi'. // Check for no remainder first. __ mfhi(scratch1); __ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg)); __ mflo(scratch1); __ Branch(&done, ne, scratch1, Operand(zero_reg)); __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg)); __ bind(&done); // Check that the signed result fits in a Smi. __ Addu(scratch2, scratch1, Operand(0x40000000)); __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg)); __ SmiTag(v0, scratch1); __ Ret(); } break; case Token::MOD: { Label done; __ SmiUntag(scratch2, right); __ SmiUntag(scratch1, left); __ Div(scratch1, scratch2); // A minor optimization: div may be calculated asynchronously, so we check // for division by 0 before calling mfhi. // Check for zero on the right hand side. __ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg)); // If the result is 0, we need to make sure the dividend (left) is // positive (or 0), otherwise it is a -0 case. // Remainder is in 'hi'. __ mfhi(scratch2); __ Branch(&done, ne, scratch2, Operand(zero_reg)); __ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg)); __ bind(&done); // Check that the signed result fits in a Smi. __ Addu(scratch1, scratch2, Operand(0x40000000)); __ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg)); __ SmiTag(v0, scratch2); __ Ret(); } break; case Token::BIT_OR: __ Ret(USE_DELAY_SLOT); __ or_(v0, left, right); break; case Token::BIT_AND: __ Ret(USE_DELAY_SLOT); __ and_(v0, left, right); break; case Token::BIT_XOR: __ Ret(USE_DELAY_SLOT); __ xor_(v0, left, right); break; case Token::SAR: // Remove tags from right operand. __ GetLeastBitsFromSmi(scratch1, right, 5); __ srav(scratch1, left, scratch1); // Smi tag result. __ And(v0, scratch1, ~kSmiTagMask); __ Ret(); break; case Token::SHR: // Remove tags from operands. We can't do this on a 31 bit number // because then the 0s get shifted into bit 30 instead of bit 31. __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ srlv(v0, scratch1, scratch2); // Unsigned shift is not allowed to produce a negative number, so // check the sign bit and the sign bit after Smi tagging. __ And(scratch1, v0, Operand(0xc0000000)); __ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg)); // Smi tag result. __ SmiTag(v0); __ Ret(); break; case Token::SHL: // Remove tags from operands. __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ sllv(scratch1, scratch1, scratch2); // Check that the signed result fits in a Smi. __ Addu(scratch2, scratch1, Operand(0x40000000)); __ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg)); __ SmiTag(v0, scratch1); __ Ret(); break; default: UNREACHABLE(); } __ bind(¬_smi_result); } void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, bool smi_operands, Label* not_numbers, Label* gc_required) { Register left = a1; Register right = a0; Register scratch1 = t3; Register scratch2 = t5; Register scratch3 = t0; ASSERT(smi_operands || (not_numbers != NULL)); if (smi_operands && FLAG_debug_code) { __ AbortIfNotSmi(left); __ AbortIfNotSmi(right); } Register heap_number_map = t2; __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: { // Load left and right operands into f12 and f14 or a0/a1 and a2/a3 // depending on whether FPU is available or not. FloatingPointHelper::Destination destination = CpuFeatures::IsSupported(FPU) && op_ != Token::MOD ? FloatingPointHelper::kFPURegisters : FloatingPointHelper::kCoreRegisters; // Allocate new heap number for result. Register result = s0; GenerateHeapResultAllocation( masm, result, heap_number_map, scratch1, scratch2, gc_required); // Load the operands. if (smi_operands) { FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2); } else { FloatingPointHelper::LoadOperands(masm, destination, heap_number_map, scratch1, scratch2, not_numbers); } // Calculate the result. if (destination == FloatingPointHelper::kFPURegisters) { // Using FPU registers: // f12: Left value. // f14: Right value. CpuFeatures::Scope scope(FPU); switch (op_) { case Token::ADD: __ add_d(f10, f12, f14); break; case Token::SUB: __ sub_d(f10, f12, f14); break; case Token::MUL: __ mul_d(f10, f12, f14); break; case Token::DIV: __ div_d(f10, f12, f14); break; default: UNREACHABLE(); } // ARM uses a workaround here because of the unaligned HeapNumber // kValueOffset. On MIPS this workaround is built into sdc1 so // there's no point in generating even more instructions. __ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset)); __ Ret(USE_DELAY_SLOT); __ mov(v0, result); } else { // Call the C function to handle the double operation. FloatingPointHelper::CallCCodeForDoubleOperation(masm, op_, result, scratch1); if (FLAG_debug_code) { __ stop("Unreachable code."); } } break; } case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: case Token::SAR: case Token::SHR: case Token::SHL: { if (smi_operands) { __ SmiUntag(a3, left); __ SmiUntag(a2, right); } else { // Convert operands to 32-bit integers. Right in a2 and left in a3. FloatingPointHelper::ConvertNumberToInt32(masm, left, a3, heap_number_map, scratch1, scratch2, scratch3, f0, not_numbers); FloatingPointHelper::ConvertNumberToInt32(masm, right, a2, heap_number_map, scratch1, scratch2, scratch3, f0, not_numbers); } Label result_not_a_smi; switch (op_) { case Token::BIT_OR: __ Or(a2, a3, Operand(a2)); break; case Token::BIT_XOR: __ Xor(a2, a3, Operand(a2)); break; case Token::BIT_AND: __ And(a2, a3, Operand(a2)); break; case Token::SAR: // Use only the 5 least significant bits of the shift count. __ GetLeastBitsFromInt32(a2, a2, 5); __ srav(a2, a3, a2); break; case Token::SHR: // Use only the 5 least significant bits of the shift count. __ GetLeastBitsFromInt32(a2, a2, 5); __ srlv(a2, a3, a2); // SHR is special because it is required to produce a positive answer. // The code below for writing into heap numbers isn't capable of // writing the register as an unsigned int so we go to slow case if we // hit this case. if (CpuFeatures::IsSupported(FPU)) { __ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg)); } else { __ Branch(not_numbers, lt, a2, Operand(zero_reg)); } break; case Token::SHL: // Use only the 5 least significant bits of the shift count. __ GetLeastBitsFromInt32(a2, a2, 5); __ sllv(a2, a3, a2); break; default: UNREACHABLE(); } // Check that the *signed* result fits in a smi. __ Addu(a3, a2, Operand(0x40000000)); __ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg)); __ SmiTag(v0, a2); __ Ret(); // Allocate new heap number for result. __ bind(&result_not_a_smi); Register result = t1; if (smi_operands) { __ AllocateHeapNumber( result, scratch1, scratch2, heap_number_map, gc_required); } else { GenerateHeapResultAllocation( masm, result, heap_number_map, scratch1, scratch2, gc_required); } // a2: Answer as signed int32. // t1: Heap number to write answer into. // Nothing can go wrong now, so move the heap number to v0, which is the // result. __ mov(v0, t1); if (CpuFeatures::IsSupported(FPU)) { // Convert the int32 in a2 to the heap number in a0. As // mentioned above SHR needs to always produce a positive result. CpuFeatures::Scope scope(FPU); __ mtc1(a2, f0); if (op_ == Token::SHR) { __ Cvt_d_uw(f0, f0, f22); } else { __ cvt_d_w(f0, f0); } // ARM uses a workaround here because of the unaligned HeapNumber // kValueOffset. On MIPS this workaround is built into sdc1 so // there's no point in generating even more instructions. __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset)); __ Ret(); } else { // Tail call that writes the int32 in a2 to the heap number in v0, using // a3 and a0 as scratch. v0 is preserved and returned. WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0); __ TailCallStub(&stub); } break; } default: UNREACHABLE(); } } // Generate the smi code. If the operation on smis are successful this return is // generated. If the result is not a smi and heap number allocation is not // requested the code falls through. If number allocation is requested but a // heap number cannot be allocated the code jumps to the lable gc_required. void BinaryOpStub::GenerateSmiCode( MacroAssembler* masm, Label* use_runtime, Label* gc_required, SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { Label not_smis; Register left = a1; Register right = a0; Register scratch1 = t3; // Perform combined smi check on both operands. __ Or(scratch1, left, Operand(right)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(scratch1, ¬_smis); // If the smi-smi operation results in a smi return is generated. GenerateSmiSmiOperation(masm); // If heap number results are possible generate the result in an allocated // heap number. if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) { GenerateFPOperation(masm, true, use_runtime, gc_required); } __ bind(¬_smis); } void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { Label not_smis, call_runtime; if (result_type_ == BinaryOpIC::UNINITIALIZED || result_type_ == BinaryOpIC::SMI) { // Only allow smi results. GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS); } else { // Allow heap number result and don't make a transition if a heap number // cannot be allocated. GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); } // Code falls through if the result is not returned as either a smi or heap // number. GenerateTypeTransition(masm); __ bind(&call_runtime); GenerateCallRuntime(masm); } void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) { ASSERT(operands_type_ == BinaryOpIC::STRING); // Try to add arguments as strings, otherwise, transition to the generic // BinaryOpIC type. GenerateAddStrings(masm); GenerateTypeTransition(masm); } void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) { Label call_runtime; ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING); ASSERT(op_ == Token::ADD); // If both arguments are strings, call the string add stub. // Otherwise, do a transition. // Registers containing left and right operands respectively. Register left = a1; Register right = a0; // Test if left operand is a string. __ JumpIfSmi(left, &call_runtime); __ GetObjectType(left, a2, a2); __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE)); // Test if right operand is a string. __ JumpIfSmi(right, &call_runtime); __ GetObjectType(right, a2, a2); __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE)); StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_stub); __ bind(&call_runtime); GenerateTypeTransition(masm); } void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { ASSERT(operands_type_ == BinaryOpIC::INT32); Register left = a1; Register right = a0; Register scratch1 = t3; Register scratch2 = t5; FPURegister double_scratch = f0; FPURegister single_scratch = f6; Register heap_number_result = no_reg; Register heap_number_map = t2; __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); Label call_runtime; // Labels for type transition, used for wrong input or output types. // Both label are currently actually bound to the same position. We use two // different label to differentiate the cause leading to type transition. Label transition; // Smi-smi fast case. Label skip; __ Or(scratch1, left, right); __ JumpIfNotSmi(scratch1, &skip); GenerateSmiSmiOperation(masm); // Fall through if the result is not a smi. __ bind(&skip); switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: { // Load both operands and check that they are 32-bit integer. // Jump to type transition if they are not. The registers a0 and a1 (right // and left) are preserved for the runtime call. FloatingPointHelper::Destination destination = (CpuFeatures::IsSupported(FPU) && op_ != Token::MOD) ? FloatingPointHelper::kFPURegisters : FloatingPointHelper::kCoreRegisters; FloatingPointHelper::LoadNumberAsInt32Double(masm, right, destination, f14, a2, a3, heap_number_map, scratch1, scratch2, f2, &transition); FloatingPointHelper::LoadNumberAsInt32Double(masm, left, destination, f12, t0, t1, heap_number_map, scratch1, scratch2, f2, &transition); if (destination == FloatingPointHelper::kFPURegisters) { CpuFeatures::Scope scope(FPU); Label return_heap_number; switch (op_) { case Token::ADD: __ add_d(f10, f12, f14); break; case Token::SUB: __ sub_d(f10, f12, f14); break; case Token::MUL: __ mul_d(f10, f12, f14); break; case Token::DIV: __ div_d(f10, f12, f14); break; default: UNREACHABLE(); } if (op_ != Token::DIV) { // These operations produce an integer result. // Try to return a smi if we can. // Otherwise return a heap number if allowed, or jump to type // transition. Register except_flag = scratch2; __ EmitFPUTruncate(kRoundToZero, single_scratch, f10, scratch1, except_flag); if (result_type_ <= BinaryOpIC::INT32) { // If except_flag != 0, result does not fit in a 32-bit integer. __ Branch(&transition, ne, except_flag, Operand(zero_reg)); } // Check if the result fits in a smi. __ mfc1(scratch1, single_scratch); __ Addu(scratch2, scratch1, Operand(0x40000000)); // If not try to return a heap number. __ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg)); // Check for minus zero. Return heap number for minus zero. Label not_zero; __ Branch(¬_zero, ne, scratch1, Operand(zero_reg)); __ mfc1(scratch2, f11); __ And(scratch2, scratch2, HeapNumber::kSignMask); __ Branch(&return_heap_number, ne, scratch2, Operand(zero_reg)); __ bind(¬_zero); // Tag the result and return. __ SmiTag(v0, scratch1); __ Ret(); } else { // DIV just falls through to allocating a heap number. } __ bind(&return_heap_number); // Return a heap number, or fall through to type transition or runtime // call if we can't. if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER : BinaryOpIC::INT32)) { // We are using FPU registers so s0 is available. heap_number_result = s0; GenerateHeapResultAllocation(masm, heap_number_result, heap_number_map, scratch1, scratch2, &call_runtime); __ mov(v0, heap_number_result); __ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset)); __ Ret(); } // A DIV operation expecting an integer result falls through // to type transition. } else { // We preserved a0 and a1 to be able to call runtime. // Save the left value on the stack. __ Push(t1, t0); Label pop_and_call_runtime; // Allocate a heap number to store the result. heap_number_result = s0; GenerateHeapResultAllocation(masm, heap_number_result, heap_number_map, scratch1, scratch2, &pop_and_call_runtime); // Load the left value from the value saved on the stack. __ Pop(a1, a0); // Call the C function to handle the double operation. FloatingPointHelper::CallCCodeForDoubleOperation( masm, op_, heap_number_result, scratch1); if (FLAG_debug_code) { __ stop("Unreachable code."); } __ bind(&pop_and_call_runtime); __ Drop(2); __ Branch(&call_runtime); } break; } case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: case Token::SAR: case Token::SHR: case Token::SHL: { Label return_heap_number; Register scratch3 = t1; // Convert operands to 32-bit integers. Right in a2 and left in a3. The // registers a0 and a1 (right and left) are preserved for the runtime // call. FloatingPointHelper::LoadNumberAsInt32(masm, left, a3, heap_number_map, scratch1, scratch2, scratch3, f0, &transition); FloatingPointHelper::LoadNumberAsInt32(masm, right, a2, heap_number_map, scratch1, scratch2, scratch3, f0, &transition); // The ECMA-262 standard specifies that, for shift operations, only the // 5 least significant bits of the shift value should be used. switch (op_) { case Token::BIT_OR: __ Or(a2, a3, Operand(a2)); break; case Token::BIT_XOR: __ Xor(a2, a3, Operand(a2)); break; case Token::BIT_AND: __ And(a2, a3, Operand(a2)); break; case Token::SAR: __ And(a2, a2, Operand(0x1f)); __ srav(a2, a3, a2); break; case Token::SHR: __ And(a2, a2, Operand(0x1f)); __ srlv(a2, a3, a2); // SHR is special because it is required to produce a positive answer. // We only get a negative result if the shift value (a2) is 0. // This result cannot be respresented as a signed 32-bit integer, try // to return a heap number if we can. // The non FPU code does not support this special case, so jump to // runtime if we don't support it. if (CpuFeatures::IsSupported(FPU)) { __ Branch((result_type_ <= BinaryOpIC::INT32) ? &transition : &return_heap_number, lt, a2, Operand(zero_reg)); } else { __ Branch((result_type_ <= BinaryOpIC::INT32) ? &transition : &call_runtime, lt, a2, Operand(zero_reg)); } break; case Token::SHL: __ And(a2, a2, Operand(0x1f)); __ sllv(a2, a3, a2); break; default: UNREACHABLE(); } // Check if the result fits in a smi. __ Addu(scratch1, a2, Operand(0x40000000)); // If not try to return a heap number. (We know the result is an int32.) __ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg)); // Tag the result and return. __ SmiTag(v0, a2); __ Ret(); __ bind(&return_heap_number); heap_number_result = t1; GenerateHeapResultAllocation(masm, heap_number_result, heap_number_map, scratch1, scratch2, &call_runtime); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); if (op_ != Token::SHR) { // Convert the result to a floating point value. __ mtc1(a2, double_scratch); __ cvt_d_w(double_scratch, double_scratch); } else { // The result must be interpreted as an unsigned 32-bit integer. __ mtc1(a2, double_scratch); __ Cvt_d_uw(double_scratch, double_scratch, single_scratch); } // Store the result. __ mov(v0, heap_number_result); __ sdc1(double_scratch, FieldMemOperand(v0, HeapNumber::kValueOffset)); __ Ret(); } else { // Tail call that writes the int32 in a2 to the heap number in v0, using // a3 and a0 as scratch. v0 is preserved and returned. __ mov(a0, t1); WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0); __ TailCallStub(&stub); } break; } default: UNREACHABLE(); } // We never expect DIV to yield an integer result, so we always generate // type transition code for DIV operations expecting an integer result: the // code will fall through to this type transition. if (transition.is_linked() || ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) { __ bind(&transition); GenerateTypeTransition(masm); } __ bind(&call_runtime); GenerateCallRuntime(masm); } void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { Label call_runtime; if (op_ == Token::ADD) { // Handle string addition here, because it is the only operation // that does not do a ToNumber conversion on the operands. GenerateAddStrings(masm); } // Convert oddball arguments to numbers. Label check, done; __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); __ Branch(&check, ne, a1, Operand(t0)); if (Token::IsBitOp(op_)) { __ li(a1, Operand(Smi::FromInt(0))); } else { __ LoadRoot(a1, Heap::kNanValueRootIndex); } __ jmp(&done); __ bind(&check); __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); __ Branch(&done, ne, a0, Operand(t0)); if (Token::IsBitOp(op_)) { __ li(a0, Operand(Smi::FromInt(0))); } else { __ LoadRoot(a0, Heap::kNanValueRootIndex); } __ bind(&done); GenerateHeapNumberStub(masm); } void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { Label call_runtime; GenerateFPOperation(masm, false, &call_runtime, &call_runtime); __ bind(&call_runtime); GenerateCallRuntime(masm); } void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) { Label call_runtime, call_string_add_or_runtime; GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime); __ bind(&call_string_add_or_runtime); if (op_ == Token::ADD) { GenerateAddStrings(masm); } __ bind(&call_runtime); GenerateCallRuntime(masm); } void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { ASSERT(op_ == Token::ADD); Label left_not_string, call_runtime; Register left = a1; Register right = a0; // Check if left argument is a string. __ JumpIfSmi(left, &left_not_string); __ GetObjectType(left, a2, a2); __ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE)); StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_left_stub); // Left operand is not a string, test right. __ bind(&left_not_string); __ JumpIfSmi(right, &call_runtime); __ GetObjectType(right, a2, a2); __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE)); StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_right_stub); // At least one argument is not a string. __ bind(&call_runtime); } void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) { GenerateRegisterArgsPush(masm); switch (op_) { case Token::ADD: __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); break; case Token::SUB: __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); break; case Token::MUL: __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); break; case Token::DIV: __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); break; case Token::MOD: __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); break; case Token::BIT_OR: __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); break; case Token::BIT_AND: __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); break; case Token::BIT_XOR: __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); break; case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); break; case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); break; case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateHeapResultAllocation( MacroAssembler* masm, Register result, Register heap_number_map, Register scratch1, Register scratch2, Label* gc_required) { // Code below will scratch result if allocation fails. To keep both arguments // intact for the runtime call result cannot be one of these. ASSERT(!result.is(a0) && !result.is(a1)); if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) { Label skip_allocation, allocated; Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0; // If the overwritable operand is already an object, we skip the // allocation of a heap number. __ JumpIfNotSmi(overwritable_operand, &skip_allocation); // Allocate a heap number for the result. __ AllocateHeapNumber( result, scratch1, scratch2, heap_number_map, gc_required); __ Branch(&allocated); __ bind(&skip_allocation); // Use object holding the overwritable operand for result. __ mov(result, overwritable_operand); __ bind(&allocated); } else { ASSERT(mode_ == NO_OVERWRITE); __ AllocateHeapNumber( result, scratch1, scratch2, heap_number_map, gc_required); } } void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { __ Push(a1, a0); } void TranscendentalCacheStub::Generate(MacroAssembler* masm) { // Untagged case: double input in f4, double result goes // into f4. // Tagged case: tagged input on top of stack and in a0, // tagged result (heap number) goes into v0. Label input_not_smi; Label loaded; Label calculate; Label invalid_cache; const Register scratch0 = t5; const Register scratch1 = t3; const Register cache_entry = a0; const bool tagged = (argument_type_ == TAGGED); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); if (tagged) { // Argument is a number and is on stack and in a0. // Load argument and check if it is a smi. __ JumpIfNotSmi(a0, &input_not_smi); // Input is a smi. Convert to double and load the low and high words // of the double into a2, a3. __ sra(t0, a0, kSmiTagSize); __ mtc1(t0, f4); __ cvt_d_w(f4, f4); __ Move(a2, a3, f4); __ Branch(&loaded); __ bind(&input_not_smi); // Check if input is a HeapNumber. __ CheckMap(a0, a1, Heap::kHeapNumberMapRootIndex, &calculate, DONT_DO_SMI_CHECK); // Input is a HeapNumber. Store the // low and high words into a2, a3. __ lw(a2, FieldMemOperand(a0, HeapNumber::kValueOffset)); __ lw(a3, FieldMemOperand(a0, HeapNumber::kValueOffset + 4)); } else { // Input is untagged double in f4. Output goes to f4. __ Move(a2, a3, f4); } __ bind(&loaded); // a2 = low 32 bits of double value. // a3 = high 32 bits of double value. // Compute hash (the shifts are arithmetic): // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); __ Xor(a1, a2, a3); __ sra(t0, a1, 16); __ Xor(a1, a1, t0); __ sra(t0, a1, 8); __ Xor(a1, a1, t0); ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); __ And(a1, a1, Operand(TranscendentalCache::SubCache::kCacheSize - 1)); // a2 = low 32 bits of double value. // a3 = high 32 bits of double value. // a1 = TranscendentalCache::hash(double value). __ li(cache_entry, Operand( ExternalReference::transcendental_cache_array_address( masm->isolate()))); // a0 points to cache array. __ lw(cache_entry, MemOperand(cache_entry, type_ * sizeof( Isolate::Current()->transcendental_cache()->caches_[0]))); // a0 points to the cache for the type type_. // If NULL, the cache hasn't been initialized yet, so go through runtime. __ Branch(&invalid_cache, eq, cache_entry, Operand(zero_reg)); #ifdef DEBUG // Check that the layout of cache elements match expectations. { TranscendentalCache::SubCache::Element test_elem[2]; char* elem_start = reinterpret_cast<char*>(&test_elem[0]); char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. CHECK_EQ(0, elem_in0 - elem_start); CHECK_EQ(kIntSize, elem_in1 - elem_start); CHECK_EQ(2 * kIntSize, elem_out - elem_start); } #endif // Find the address of the a1'st entry in the cache, i.e., &a0[a1*12]. __ sll(t0, a1, 1); __ Addu(a1, a1, t0); __ sll(t0, a1, 2); __ Addu(cache_entry, cache_entry, t0); // Check if cache matches: Double value is stored in uint32_t[2] array. __ lw(t0, MemOperand(cache_entry, 0)); __ lw(t1, MemOperand(cache_entry, 4)); __ lw(t2, MemOperand(cache_entry, 8)); __ Branch(&calculate, ne, a2, Operand(t0)); __ Branch(&calculate, ne, a3, Operand(t1)); // Cache hit. Load result, cleanup and return. Counters* counters = masm->isolate()->counters(); __ IncrementCounter( counters->transcendental_cache_hit(), 1, scratch0, scratch1); if (tagged) { // Pop input value from stack and load result into v0. __ Drop(1); __ mov(v0, t2); } else { // Load result into f4. __ ldc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset)); } __ Ret(); } // if (CpuFeatures::IsSupported(FPU)) __ bind(&calculate); Counters* counters = masm->isolate()->counters(); __ IncrementCounter( counters->transcendental_cache_miss(), 1, scratch0, scratch1); if (tagged) { __ bind(&invalid_cache); __ TailCallExternalReference(ExternalReference(RuntimeFunction(), masm->isolate()), 1, 1); } else { if (!CpuFeatures::IsSupported(FPU)) UNREACHABLE(); CpuFeatures::Scope scope(FPU); Label no_update; Label skip_cache; // Call C function to calculate the result and update the cache. // Register a0 holds precalculated cache entry address; preserve // it on the stack and pop it into register cache_entry after the // call. __ Push(cache_entry, a2, a3); GenerateCallCFunction(masm, scratch0); __ GetCFunctionDoubleResult(f4); // Try to update the cache. If we cannot allocate a // heap number, we return the result without updating. __ Pop(cache_entry, a2, a3); __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update); __ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset)); __ sw(a2, MemOperand(cache_entry, 0 * kPointerSize)); __ sw(a3, MemOperand(cache_entry, 1 * kPointerSize)); __ sw(t2, MemOperand(cache_entry, 2 * kPointerSize)); __ Ret(USE_DELAY_SLOT); __ mov(v0, cache_entry); __ bind(&invalid_cache); // The cache is invalid. Call runtime which will recreate the // cache. __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(a0, scratch0, scratch1, t1, &skip_cache); __ sdc1(f4, FieldMemOperand(a0, HeapNumber::kValueOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(a0); __ CallRuntime(RuntimeFunction(), 1); } __ ldc1(f4, FieldMemOperand(v0, HeapNumber::kValueOffset)); __ Ret(); __ bind(&skip_cache); // Call C function to calculate the result and answer directly // without updating the cache. GenerateCallCFunction(masm, scratch0); __ GetCFunctionDoubleResult(f4); __ bind(&no_update); // We return the value in f4 without adding it to the cache, but // we cause a scavenging GC so that future allocations will succeed. { FrameScope scope(masm, StackFrame::INTERNAL); // Allocate an aligned object larger than a HeapNumber. ASSERT(4 * kPointerSize >= HeapNumber::kSize); __ li(scratch0, Operand(4 * kPointerSize)); __ push(scratch0); __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); } __ Ret(); } } void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm, Register scratch) { __ push(ra); __ PrepareCallCFunction(2, scratch); if (IsMipsSoftFloatABI) { __ Move(a0, a1, f4); } else { __ mov_d(f12, f4); } AllowExternalCallThatCantCauseGC scope(masm); Isolate* isolate = masm->isolate(); switch (type_) { case TranscendentalCache::SIN: __ CallCFunction( ExternalReference::math_sin_double_function(isolate), 0, 1); break; case TranscendentalCache::COS: __ CallCFunction( ExternalReference::math_cos_double_function(isolate), 0, 1); break; case TranscendentalCache::TAN: __ CallCFunction(ExternalReference::math_tan_double_function(isolate), 0, 1); break; case TranscendentalCache::LOG: __ CallCFunction( ExternalReference::math_log_double_function(isolate), 0, 1); break; default: UNIMPLEMENTED(); break; } __ pop(ra); } Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { switch (type_) { // Add more cases when necessary. case TranscendentalCache::SIN: return Runtime::kMath_sin; case TranscendentalCache::COS: return Runtime::kMath_cos; case TranscendentalCache::TAN: return Runtime::kMath_tan; case TranscendentalCache::LOG: return Runtime::kMath_log; default: UNIMPLEMENTED(); return Runtime::kAbort; } } void StackCheckStub::Generate(MacroAssembler* masm) { __ TailCallRuntime(Runtime::kStackGuard, 0, 1); } void InterruptStub::Generate(MacroAssembler* masm) { __ TailCallRuntime(Runtime::kInterrupt, 0, 1); } void MathPowStub::Generate(MacroAssembler* masm) { CpuFeatures::Scope fpu_scope(FPU); const Register base = a1; const Register exponent = a2; const Register heapnumbermap = t1; const Register heapnumber = v0; const DoubleRegister double_base = f2; const DoubleRegister double_exponent = f4; const DoubleRegister double_result = f0; const DoubleRegister double_scratch = f6; const FPURegister single_scratch = f8; const Register scratch = t5; const Register scratch2 = t3; Label call_runtime, done, int_exponent; if (exponent_type_ == ON_STACK) { Label base_is_smi, unpack_exponent; // The exponent and base are supplied as arguments on the stack. // This can only happen if the stub is called from non-optimized code. // Load input parameters from stack to double registers. __ lw(base, MemOperand(sp, 1 * kPointerSize)); __ lw(exponent, MemOperand(sp, 0 * kPointerSize)); __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); __ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset)); __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap)); __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); __ jmp(&unpack_exponent); __ bind(&base_is_smi); __ mtc1(scratch, single_scratch); __ cvt_d_w(double_base, single_scratch); __ bind(&unpack_exponent); __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap)); __ ldc1(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } else if (exponent_type_ == TAGGED) { // Base is already in double_base. __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ ldc1(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type_ != INTEGER) { Label int_exponent_convert; // Detect integer exponents stored as double. __ EmitFPUTruncate(kRoundToMinusInf, single_scratch, double_exponent, scratch, scratch2, kCheckForInexactConversion); // scratch2 == 0 means there was no conversion error. __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg)); if (exponent_type_ == ON_STACK) { // Detect square root case. Crankshaft detects constant +/-0.5 at // compile time and uses DoMathPowHalf instead. We then skip this check // for non-constant cases of +/-0.5 as these hardly occur. Label not_plus_half; // Test for 0.5. __ Move(double_scratch, 0.5); __ BranchF(USE_DELAY_SLOT, ¬_plus_half, NULL, ne, double_exponent, double_scratch); // double_scratch can be overwritten in the delay slot. // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). __ Move(double_scratch, -V8_INFINITY); __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch); __ neg_d(double_result, double_scratch); // Add +0 to convert -0 to +0. __ add_d(double_scratch, double_base, kDoubleRegZero); __ sqrt_d(double_result, double_scratch); __ jmp(&done); __ bind(¬_plus_half); __ Move(double_scratch, -0.5); __ BranchF(USE_DELAY_SLOT, &call_runtime, NULL, ne, double_exponent, double_scratch); // double_scratch can be overwritten in the delay slot. // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). __ Move(double_scratch, -V8_INFINITY); __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch); __ Move(double_result, kDoubleRegZero); // Add +0 to convert -0 to +0. __ add_d(double_scratch, double_base, kDoubleRegZero); __ Move(double_result, 1); __ sqrt_d(double_scratch, double_scratch); __ div_d(double_result, double_result, double_scratch); __ jmp(&done); } __ push(ra); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ SetCallCDoubleArguments(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(masm->isolate()), 0, 2); } __ pop(ra); __ GetCFunctionDoubleResult(double_result); __ jmp(&done); __ bind(&int_exponent_convert); __ mfc1(scratch, single_scratch); } // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. if (exponent_type_ == INTEGER) { __ mov(scratch, exponent); } else { // Exponent has previously been stored into scratch as untagged integer. __ mov(exponent, scratch); } __ mov_d(double_scratch, double_base); // Back up base. __ Move(double_result, 1.0); // Get absolute value of exponent. Label positive_exponent; __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg)); __ Subu(scratch, zero_reg, scratch); __ bind(&positive_exponent); Label while_true, no_carry, loop_end; __ bind(&while_true); __ And(scratch2, scratch, 1); __ Branch(&no_carry, eq, scratch2, Operand(zero_reg)); __ mul_d(double_result, double_result, double_scratch); __ bind(&no_carry); __ sra(scratch, scratch, 1); __ Branch(&loop_end, eq, scratch, Operand(zero_reg)); __ mul_d(double_scratch, double_scratch, double_scratch); __ Branch(&while_true); __ bind(&loop_end); __ Branch(&done, ge, exponent, Operand(zero_reg)); __ Move(double_scratch, 1.0); __ div_d(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero); // double_exponent may not contain the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ mtc1(exponent, single_scratch); __ cvt_d_w(double_exponent, single_scratch); // Returning or bailing out. Counters* counters = masm->isolate()->counters(); if (exponent_type_ == ON_STACK) { // The arguments are still on the stack. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); // The stub is called from non-optimized code, which expects the result // as heap number in exponent. __ bind(&done); __ AllocateHeapNumber( heapnumber, scratch, scratch2, heapnumbermap, &call_runtime); __ sdc1(double_result, FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); ASSERT(heapnumber.is(v0)); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ DropAndRet(2); } else { __ push(ra); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ SetCallCDoubleArguments(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(masm->isolate()), 0, 2); } __ pop(ra); __ GetCFunctionDoubleResult(double_result); __ bind(&done); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ Ret(); } } bool CEntryStub::NeedsImmovableCode() { return true; } bool CEntryStub::IsPregenerated() { return (!save_doubles_ || ISOLATE->fp_stubs_generated()) && result_size_ == 1; } void CodeStub::GenerateStubsAheadOfTime() { CEntryStub::GenerateAheadOfTime(); WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(); RecordWriteStub::GenerateFixedRegStubsAheadOfTime(); } void CodeStub::GenerateFPStubs() { CEntryStub save_doubles(1, kSaveFPRegs); Handle<Code> code = save_doubles.GetCode(); code->set_is_pregenerated(true); StoreBufferOverflowStub stub(kSaveFPRegs); stub.GetCode()->set_is_pregenerated(true); code->GetIsolate()->set_fp_stubs_generated(true); } void CEntryStub::GenerateAheadOfTime() { CEntryStub stub(1, kDontSaveFPRegs); Handle<Code> code = stub.GetCode(); code->set_is_pregenerated(true); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate) { // v0: result parameter for PerformGC, if any // s0: number of arguments including receiver (C callee-saved) // s1: pointer to the first argument (C callee-saved) // s2: pointer to builtin function (C callee-saved) Isolate* isolate = masm->isolate(); if (do_gc) { // Move result passed in v0 into a0 to call PerformGC. __ mov(a0, v0); __ PrepareCallCFunction(1, 0, a1); __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1, 0); } ExternalReference scope_depth = ExternalReference::heap_always_allocate_scope_depth(isolate); if (always_allocate) { __ li(a0, Operand(scope_depth)); __ lw(a1, MemOperand(a0)); __ Addu(a1, a1, Operand(1)); __ sw(a1, MemOperand(a0)); } // Prepare arguments for C routine. // a0 = argc __ mov(a0, s0); // a1 = argv (set in the delay slot after find_ra below). // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We // also need to reserve the 4 argument slots on the stack. __ AssertStackIsAligned(); __ li(a2, Operand(ExternalReference::isolate_address())); // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); // This branch-and-link sequence is needed to find the current PC on mips, // saved to the ra register. // Use masm-> here instead of the double-underscore macro since extra // coverage code can interfere with the proper calculation of ra. Label find_ra; masm->bal(&find_ra); // bal exposes branch delay slot. masm->mov(a1, s1); masm->bind(&find_ra); // Adjust the value in ra to point to the correct return location, 2nd // instruction past the real call into C code (the jalr(t9)), and push it. // This is the return address of the exit frame. const int kNumInstructionsToJump = 5; masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize); masm->sw(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame. // Stack space reservation moved to the branch delay slot below. // Stack is still aligned. // Call the C routine. masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC. masm->jalr(t9); // Set up sp in the delay slot. masm->addiu(sp, sp, -kCArgsSlotsSize); // Make sure the stored 'ra' points to this position. ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra)); } if (always_allocate) { // It's okay to clobber a2 and a3 here. v0 & v1 contain result. __ li(a2, Operand(scope_depth)); __ lw(a3, MemOperand(a2)); __ Subu(a3, a3, Operand(1)); __ sw(a3, MemOperand(a2)); } // Check for failure result. Label failure_returned; STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); __ addiu(a2, v0, 1); __ andi(t0, a2, kFailureTagMask); __ Branch(USE_DELAY_SLOT, &failure_returned, eq, t0, Operand(zero_reg)); // Restore stack (remove arg slots) in branch delay slot. __ addiu(sp, sp, kCArgsSlotsSize); // Exit C frame and return. // v0:v1: result // sp: stack pointer // fp: frame pointer __ LeaveExitFrame(save_doubles_, s0, true); // Check if we should retry or throw exception. Label retry; __ bind(&failure_returned); STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); __ andi(t0, v0, ((1 << kFailureTypeTagSize) - 1) << kFailureTagSize); __ Branch(&retry, eq, t0, Operand(zero_reg)); // Special handling of out of memory exceptions. Failure* out_of_memory = Failure::OutOfMemoryException(); __ Branch(USE_DELAY_SLOT, throw_out_of_memory_exception, eq, v0, Operand(reinterpret_cast<int32_t>(out_of_memory))); // If we throw the OOM exception, the value of a3 doesn't matter. // Any instruction can be in the delay slot that's not a jump. // Retrieve the pending exception and clear the variable. __ LoadRoot(a3, Heap::kTheHoleValueRootIndex); __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ lw(v0, MemOperand(t0)); __ sw(a3, MemOperand(t0)); // Special handling of termination exceptions which are uncatchable // by javascript code. __ LoadRoot(t0, Heap::kTerminationExceptionRootIndex); __ Branch(throw_termination_exception, eq, v0, Operand(t0)); // Handle normal exception. __ jmp(throw_normal_exception); __ bind(&retry); // Last failure (v0) will be moved to (a0) for parameter when retrying. } void CEntryStub::Generate(MacroAssembler* masm) { // Called from JavaScript; parameters are on stack as if calling JS function // s0: number of arguments including receiver // s1: size of arguments excluding receiver // s2: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // NOTE: Invocations of builtins may return failure objects // instead of a proper result. The builtin entry handles // this by performing a garbage collection and retrying the // builtin once. // NOTE: s0-s2 hold the arguments of this function instead of a0-a2. // The reason for this is that these arguments would need to be saved anyway // so it's faster to set them up directly. // See MacroAssembler::PrepareCEntryArgs and PrepareCEntryFunction. // Compute the argv pointer in a callee-saved register. __ Addu(s1, sp, s1); // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame(save_doubles_); // s0: number of arguments (C callee-saved) // s1: pointer to first argument (C callee-saved) // s2: pointer to builtin function (C callee-saved) Label throw_normal_exception; Label throw_termination_exception; Label throw_out_of_memory_exception; // Call into the runtime system. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, false, false); // Do space-specific GC and retry runtime call. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, false); // Do full GC and retry runtime call one final time. Failure* failure = Failure::InternalError(); __ li(v0, Operand(reinterpret_cast<int32_t>(failure))); GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, true); __ bind(&throw_out_of_memory_exception); // Set external caught exception to false. Isolate* isolate = masm->isolate(); ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress, isolate); __ li(a0, Operand(false, RelocInfo::NONE)); __ li(a2, Operand(external_caught)); __ sw(a0, MemOperand(a2)); // Set pending exception and v0 to out of memory exception. Failure* out_of_memory = Failure::OutOfMemoryException(); __ li(v0, Operand(reinterpret_cast<int32_t>(out_of_memory))); __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ sw(v0, MemOperand(a2)); // Fall through to the next label. __ bind(&throw_termination_exception); __ ThrowUncatchable(v0); __ bind(&throw_normal_exception); __ Throw(v0); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { Label invoke, handler_entry, exit; Isolate* isolate = masm->isolate(); // Registers: // a0: entry address // a1: function // a2: receiver // a3: argc // // Stack: // 4 args slots // args // Save callee saved registers on the stack. __ MultiPush(kCalleeSaved | ra.bit()); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); // Save callee-saved FPU registers. __ MultiPushFPU(kCalleeSavedFPU); // Set up the reserved register for 0.0. __ Move(kDoubleRegZero, 0.0); } // Load argv in s0 register. int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; if (CpuFeatures::IsSupported(FPU)) { offset_to_argv += kNumCalleeSavedFPU * kDoubleSize; } __ InitializeRootRegister(); __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize)); // We build an EntryFrame. __ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used. int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; __ li(t2, Operand(Smi::FromInt(marker))); __ li(t1, Operand(Smi::FromInt(marker))); __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); __ lw(t0, MemOperand(t0)); __ Push(t3, t2, t1, t0); // Set up frame pointer for the frame to be pushed. __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset); // Registers: // a0: entry_address // a1: function // a2: receiver_pointer // a3: argc // s0: argv // // Stack: // caller fp | // function slot | entry frame // context slot | // bad fp (0xff...f) | // callee saved registers + ra // 4 args slots // args // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); __ li(t1, Operand(ExternalReference(js_entry_sp))); __ lw(t2, MemOperand(t1)); __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg)); __ sw(fp, MemOperand(t1)); __ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); Label cont; __ b(&cont); __ nop(); // Branch delay slot nop. __ bind(&non_outermost_js); __ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); __ bind(&cont); __ push(t0); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushTryHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0. __ li(v0, Operand(reinterpret_cast<int32_t>(Failure::Exception()))); __ b(&exit); // b exposes branch delay slot. __ nop(); // Branch delay slot nop. // Invoke: Link this frame into the handler chain. There's only one // handler block in this code object, so its index is 0. __ bind(&invoke); __ PushTryHandler(StackHandler::JS_ENTRY, 0); // If an exception not caught by another handler occurs, this handler // returns control to the code after the bal(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Clear any pending exceptions. __ LoadRoot(t1, Heap::kTheHoleValueRootIndex); __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ sw(t1, MemOperand(t0)); // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Registers: // a0: entry_address // a1: function // a2: receiver_pointer // a3: argc // s0: argv // // Stack: // handler frame // entry frame // callee saved registers + ra // 4 args slots // args if (is_construct) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate); __ li(t0, Operand(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate()); __ li(t0, Operand(entry)); } __ lw(t9, MemOperand(t0)); // Deref address. // Call JSEntryTrampoline. __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag); __ Call(t9); // Unlink this frame from the handler chain. __ PopTryHandler(); __ bind(&exit); // v0 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(t1); __ Branch(&non_outermost_js_2, ne, t1, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); __ li(t1, Operand(ExternalReference(js_entry_sp))); __ sw(zero_reg, MemOperand(t1)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(t1); __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); __ sw(t1, MemOperand(t0)); // Reset the stack to the callee saved registers. __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset); if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); // Restore callee-saved fpu registers. __ MultiPopFPU(kCalleeSavedFPU); } // Restore callee saved registers from the stack. __ MultiPop(kCalleeSaved | ra.bit()); // Return. __ Jump(ra); } // Uses registers a0 to t0. // Expected input (depending on whether args are in registers or on the stack): // * object: a0 or at sp + 1 * kPointerSize. // * function: a1 or at sp. // // An inlined call site may have been generated before calling this stub. // In this case the offset to the inline site to patch is passed on the stack, // in the safepoint slot for register t0. void InstanceofStub::Generate(MacroAssembler* masm) { // Call site inlining and patching implies arguments in registers. ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); // ReturnTrueFalse is only implemented for inlined call sites. ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck()); // Fixed register usage throughout the stub: const Register object = a0; // Object (lhs). Register map = a3; // Map of the object. const Register function = a1; // Function (rhs). const Register prototype = t0; // Prototype of the function. const Register inline_site = t5; const Register scratch = a2; const int32_t kDeltaToLoadBoolResult = 5 * kPointerSize; Label slow, loop, is_instance, is_not_instance, not_js_object; if (!HasArgsInRegisters()) { __ lw(object, MemOperand(sp, 1 * kPointerSize)); __ lw(function, MemOperand(sp, 0)); } // Check that the left hand is a JS object and load map. __ JumpIfSmi(object, ¬_js_object); __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); // If there is a call site cache don't look in the global cache, but do the // real lookup and update the call site cache. if (!HasCallSiteInlineCheck()) { Label miss; __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex); __ Branch(&miss, ne, function, Operand(at)); __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex); __ Branch(&miss, ne, map, Operand(at)); __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); __ DropAndRet(HasArgsInRegisters() ? 0 : 2); __ bind(&miss); } // Get the prototype of the function. __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); // Check that the function prototype is a JS object. __ JumpIfSmi(prototype, &slow); __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); // Update the global instanceof or call site inlined cache with the current // map and function. The cached answer will be set when it is known below. if (!HasCallSiteInlineCheck()) { __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); } else { ASSERT(HasArgsInRegisters()); // Patch the (relocated) inlined map check. // The offset was stored in t0 safepoint slot. // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). __ LoadFromSafepointRegisterSlot(scratch, t0); __ Subu(inline_site, ra, scratch); // Get the map location in scratch and patch it. __ GetRelocatedValue(inline_site, scratch, v1); // v1 used as scratch. __ sw(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset)); } // Register mapping: a3 is object map and t0 is function prototype. // Get prototype of object into a2. __ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); // We don't need map any more. Use it as a scratch register. Register scratch2 = map; map = no_reg; // Loop through the prototype chain looking for the function prototype. __ LoadRoot(scratch2, Heap::kNullValueRootIndex); __ bind(&loop); __ Branch(&is_instance, eq, scratch, Operand(prototype)); __ Branch(&is_not_instance, eq, scratch, Operand(scratch2)); __ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); __ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); __ Branch(&loop); __ bind(&is_instance); ASSERT(Smi::FromInt(0) == 0); if (!HasCallSiteInlineCheck()) { __ mov(v0, zero_reg); __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); } else { // Patch the call site to return true. __ LoadRoot(v0, Heap::kTrueValueRootIndex); __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); // Get the boolean result location in scratch and patch it. __ PatchRelocatedValue(inline_site, scratch, v0); if (!ReturnTrueFalseObject()) { ASSERT_EQ(Smi::FromInt(0), 0); __ mov(v0, zero_reg); } } __ DropAndRet(HasArgsInRegisters() ? 0 : 2); __ bind(&is_not_instance); if (!HasCallSiteInlineCheck()) { __ li(v0, Operand(Smi::FromInt(1))); __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); } else { // Patch the call site to return false. __ LoadRoot(v0, Heap::kFalseValueRootIndex); __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); // Get the boolean result location in scratch and patch it. __ PatchRelocatedValue(inline_site, scratch, v0); if (!ReturnTrueFalseObject()) { __ li(v0, Operand(Smi::FromInt(1))); } } __ DropAndRet(HasArgsInRegisters() ? 0 : 2); Label object_not_null, object_not_null_or_smi; __ bind(¬_js_object); // Before null, smi and string value checks, check that the rhs is a function // as for a non-function rhs an exception needs to be thrown. __ JumpIfSmi(function, &slow); __ GetObjectType(function, scratch2, scratch); __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE)); // Null is not instance of anything. __ Branch(&object_not_null, ne, scratch, Operand(masm->isolate()->factory()->null_value())); __ li(v0, Operand(Smi::FromInt(1))); __ DropAndRet(HasArgsInRegisters() ? 0 : 2); __ bind(&object_not_null); // Smi values are not instances of anything. __ JumpIfNotSmi(object, &object_not_null_or_smi); __ li(v0, Operand(Smi::FromInt(1))); __ DropAndRet(HasArgsInRegisters() ? 0 : 2); __ bind(&object_not_null_or_smi); // String values are not instances of anything. __ IsObjectJSStringType(object, scratch, &slow); __ li(v0, Operand(Smi::FromInt(1))); __ DropAndRet(HasArgsInRegisters() ? 0 : 2); // Slow-case. Tail call builtin. __ bind(&slow); if (!ReturnTrueFalseObject()) { if (HasArgsInRegisters()) { __ Push(a0, a1); } __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } else { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a0, a1); __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); } __ mov(a0, v0); __ LoadRoot(v0, Heap::kTrueValueRootIndex); __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg)); __ LoadRoot(v0, Heap::kFalseValueRootIndex); __ DropAndRet(HasArgsInRegisters() ? 0 : 2); } } Register InstanceofStub::left() { return a0; } Register InstanceofStub::right() { return a1; } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The displacement is the offset of the last parameter (if any) // relative to the frame pointer. const int kDisplacement = StandardFrameConstants::kCallerSPOffset - kPointerSize; // Check that the key is a smiGenerateReadElement. Label slow; __ JumpIfNotSmi(a1, &slow); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); __ Branch(&adaptor, eq, a3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Check index (a1) against formal parameters count limit passed in // through register a0. Use unsigned comparison to get negative // check for free. __ Branch(&slow, hs, a1, Operand(a0)); // Read the argument from the stack and return it. __ subu(a3, a0, a1); __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize); __ Addu(a3, fp, Operand(t3)); __ lw(v0, MemOperand(a3, kDisplacement)); __ Ret(); // Arguments adaptor case: Check index (a1) against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ Branch(&slow, Ugreater_equal, a1, Operand(a0)); // Read the argument from the adaptor frame and return it. __ subu(a3, a0, a1); __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize); __ Addu(a3, a2, Operand(t3)); __ lw(v0, MemOperand(a3, kDisplacement)); __ Ret(); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ push(a1); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) { // sp[0] : number of parameters // sp[4] : receiver displacement // sp[8] : function // Check if the calling frame is an arguments adaptor frame. Label runtime; __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset)); __ Branch(&runtime, ne, a2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Patch the arguments.length and the parameters pointer in the current frame. __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ sw(a2, MemOperand(sp, 0 * kPointerSize)); __ sll(t3, a2, 1); __ Addu(a3, a3, Operand(t3)); __ addiu(a3, a3, StandardFrameConstants::kCallerSPOffset); __ sw(a3, MemOperand(sp, 1 * kPointerSize)); __ bind(&runtime); __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) { // Stack layout: // sp[0] : number of parameters (tagged) // sp[4] : address of receiver argument // sp[8] : function // Registers used over whole function: // t2 : allocated object (tagged) // t5 : mapped parameter count (tagged) __ lw(a1, MemOperand(sp, 0 * kPointerSize)); // a1 = parameter count (tagged) // Check if the calling frame is an arguments adaptor frame. Label runtime; Label adaptor_frame, try_allocate; __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset)); __ Branch(&adaptor_frame, eq, a2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // No adaptor, parameter count = argument count. __ mov(a2, a1); __ b(&try_allocate); __ nop(); // Branch delay slot nop. // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ sll(t6, a2, 1); __ Addu(a3, a3, Operand(t6)); __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset)); __ sw(a3, MemOperand(sp, 1 * kPointerSize)); // a1 = parameter count (tagged) // a2 = argument count (tagged) // Compute the mapped parameter count = min(a1, a2) in a1. Label skip_min; __ Branch(&skip_min, lt, a1, Operand(a2)); __ mov(a1, a2); __ bind(&skip_min); __ bind(&try_allocate); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; // If there are no mapped parameters, we do not need the parameter_map. Label param_map_size; ASSERT_EQ(0, Smi::FromInt(0)); __ Branch(USE_DELAY_SLOT, ¶m_map_size, eq, a1, Operand(zero_reg)); __ mov(t5, zero_reg); // In delay slot: param map size = 0 when a1 == 0. __ sll(t5, a1, 1); __ addiu(t5, t5, kParameterMapHeaderSize); __ bind(¶m_map_size); // 2. Backing store. __ sll(t6, a2, 1); __ Addu(t5, t5, Operand(t6)); __ Addu(t5, t5, Operand(FixedArray::kHeaderSize)); // 3. Arguments object. __ Addu(t5, t5, Operand(Heap::kArgumentsObjectSize)); // Do the allocation of all three objects in one go. __ AllocateInNewSpace(t5, v0, a3, t0, &runtime, TAG_OBJECT); // v0 = address of new object(s) (tagged) // a2 = argument count (tagged) // Get the arguments boilerplate from the current (global) context into t0. const int kNormalOffset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); const int kAliasedOffset = Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX); __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset)); Label skip2_ne, skip2_eq; __ Branch(&skip2_ne, ne, a1, Operand(zero_reg)); __ lw(t0, MemOperand(t0, kNormalOffset)); __ bind(&skip2_ne); __ Branch(&skip2_eq, eq, a1, Operand(zero_reg)); __ lw(t0, MemOperand(t0, kAliasedOffset)); __ bind(&skip2_eq); // v0 = address of new object (tagged) // a1 = mapped parameter count (tagged) // a2 = argument count (tagged) // t0 = address of boilerplate object (tagged) // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ lw(a3, FieldMemOperand(t0, i)); __ sw(a3, FieldMemOperand(v0, i)); } // Set up the callee in-object property. STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); __ lw(a3, MemOperand(sp, 2 * kPointerSize)); const int kCalleeOffset = JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize; __ sw(a3, FieldMemOperand(v0, kCalleeOffset)); // Use the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); const int kLengthOffset = JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize; __ sw(a2, FieldMemOperand(v0, kLengthOffset)); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, t0 will point there, otherwise // it will point to the backing store. __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSize)); __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); // v0 = address of new object (tagged) // a1 = mapped parameter count (tagged) // a2 = argument count (tagged) // t0 = address of parameter map or backing store (tagged) // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map; Label skip3; __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0))); // Move backing store address to a3, because it is // expected there when filling in the unmapped arguments. __ mov(a3, t0); __ bind(&skip3); __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0))); __ LoadRoot(t2, Heap::kNonStrictArgumentsElementsMapRootIndex); __ sw(t2, FieldMemOperand(t0, FixedArray::kMapOffset)); __ Addu(t2, a1, Operand(Smi::FromInt(2))); __ sw(t2, FieldMemOperand(t0, FixedArray::kLengthOffset)); __ sw(cp, FieldMemOperand(t0, FixedArray::kHeaderSize + 0 * kPointerSize)); __ sll(t6, a1, 1); __ Addu(t2, t0, Operand(t6)); __ Addu(t2, t2, Operand(kParameterMapHeaderSize)); __ sw(t2, FieldMemOperand(t0, FixedArray::kHeaderSize + 1 * kPointerSize)); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; __ mov(t2, a1); __ lw(t5, MemOperand(sp, 0 * kPointerSize)); __ Addu(t5, t5, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); __ Subu(t5, t5, Operand(a1)); __ LoadRoot(t3, Heap::kTheHoleValueRootIndex); __ sll(t6, t2, 1); __ Addu(a3, t0, Operand(t6)); __ Addu(a3, a3, Operand(kParameterMapHeaderSize)); // t2 = loop variable (tagged) // a1 = mapping index (tagged) // a3 = address of backing store (tagged) // t0 = address of parameter map (tagged) // t1 = temporary scratch (a.o., for address calculation) // t3 = the hole value __ jmp(¶meters_test); __ bind(¶meters_loop); __ Subu(t2, t2, Operand(Smi::FromInt(1))); __ sll(t1, t2, 1); __ Addu(t1, t1, Operand(kParameterMapHeaderSize - kHeapObjectTag)); __ Addu(t6, t0, t1); __ sw(t5, MemOperand(t6)); __ Subu(t1, t1, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); __ Addu(t6, a3, t1); __ sw(t3, MemOperand(t6)); __ Addu(t5, t5, Operand(Smi::FromInt(1))); __ bind(¶meters_test); __ Branch(¶meters_loop, ne, t2, Operand(Smi::FromInt(0))); __ bind(&skip_parameter_map); // a2 = argument count (tagged) // a3 = address of backing store (tagged) // t1 = scratch // Copy arguments header and remaining slots (if there are any). __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex); __ sw(t1, FieldMemOperand(a3, FixedArray::kMapOffset)); __ sw(a2, FieldMemOperand(a3, FixedArray::kLengthOffset)); Label arguments_loop, arguments_test; __ mov(t5, a1); __ lw(t0, MemOperand(sp, 1 * kPointerSize)); __ sll(t6, t5, 1); __ Subu(t0, t0, Operand(t6)); __ jmp(&arguments_test); __ bind(&arguments_loop); __ Subu(t0, t0, Operand(kPointerSize)); __ lw(t2, MemOperand(t0, 0)); __ sll(t6, t5, 1); __ Addu(t1, a3, Operand(t6)); __ sw(t2, FieldMemOperand(t1, FixedArray::kHeaderSize)); __ Addu(t5, t5, Operand(Smi::FromInt(1))); __ bind(&arguments_test); __ Branch(&arguments_loop, lt, t5, Operand(a2)); // Return and remove the on-stack parameters. __ DropAndRet(3); // Do the runtime call to allocate the arguments object. // a2 = argument count (tagged) __ bind(&runtime); __ sw(a2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { // sp[0] : number of parameters // sp[4] : receiver displacement // sp[8] : function // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); __ Branch(&adaptor_frame, eq, a3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Get the length from the frame. __ lw(a1, MemOperand(sp, 0)); __ Branch(&try_allocate); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ sw(a1, MemOperand(sp, 0)); __ sll(at, a1, kPointerSizeLog2 - kSmiTagSize); __ Addu(a3, a2, Operand(at)); __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset)); __ sw(a3, MemOperand(sp, 1 * kPointerSize)); // Try the new space allocation. Start out with computing the size // of the arguments object and the elements array in words. Label add_arguments_object; __ bind(&try_allocate); __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg)); __ srl(a1, a1, kSmiTagSize); __ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize)); __ bind(&add_arguments_object); __ Addu(a1, a1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize)); // Do the allocation of both objects in one go. __ AllocateInNewSpace(a1, v0, a2, a3, &runtime, static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); // Get the arguments boilerplate from the current (global) context. __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset)); __ lw(t0, MemOperand(t0, Context::SlotOffset( Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX))); // Copy the JS object part. __ CopyFields(v0, t0, a3.bit(), JSObject::kHeaderSize / kPointerSize); // Get the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ lw(a1, MemOperand(sp, 0 * kPointerSize)); __ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize)); Label done; __ Branch(&done, eq, a1, Operand(zero_reg)); // Get the parameters pointer from the stack. __ lw(a2, MemOperand(sp, 1 * kPointerSize)); // Set up the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSizeStrict)); __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex); __ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset)); __ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset)); // Untag the length for the loop. __ srl(a1, a1, kSmiTagSize); // Copy the fixed array slots. Label loop; // Set up t0 to point to the first array slot. __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); // Pre-decrement a2 with kPointerSize on each iteration. // Pre-decrement in order to skip receiver. __ Addu(a2, a2, Operand(-kPointerSize)); __ lw(a3, MemOperand(a2)); // Post-increment t0 with kPointerSize on each iteration. __ sw(a3, MemOperand(t0)); __ Addu(t0, t0, Operand(kPointerSize)); __ Subu(a1, a1, Operand(1)); __ Branch(&loop, ne, a1, Operand(zero_reg)); // Return and remove the on-stack parameters. __ bind(&done); __ DropAndRet(3); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // sp[0]: last_match_info (expected JSArray) // sp[4]: previous index // sp[8]: subject string // sp[12]: JSRegExp object const int kLastMatchInfoOffset = 0 * kPointerSize; const int kPreviousIndexOffset = 1 * kPointerSize; const int kSubjectOffset = 2 * kPointerSize; const int kJSRegExpOffset = 3 * kPointerSize; Isolate* isolate = masm->isolate(); Label runtime, invoke_regexp; // Allocation of registers for this function. These are in callee save // registers and will be preserved by the call to the native RegExp code, as // this code is called using the normal C calling convention. When calling // directly from generated code the native RegExp code will not do a GC and // therefore the content of these registers are safe to use after the call. // MIPS - using s0..s2, since we are not using CEntry Stub. Register subject = s0; Register regexp_data = s1; Register last_match_info_elements = s2; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address( isolate); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate); __ li(a0, Operand(address_of_regexp_stack_memory_size)); __ lw(a0, MemOperand(a0, 0)); __ Branch(&runtime, eq, a0, Operand(zero_reg)); // Check that the first argument is a JSRegExp object. __ lw(a0, MemOperand(sp, kJSRegExpOffset)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(a0, &runtime); __ GetObjectType(a0, a1, a1); __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE)); // Check that the RegExp has been compiled (data contains a fixed array). __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ And(t0, regexp_data, Operand(kSmiTagMask)); __ Check(nz, "Unexpected type for RegExp data, FixedArray expected", t0, Operand(zero_reg)); __ GetObjectType(regexp_data, a0, a0); __ Check(eq, "Unexpected type for RegExp data, FixedArray expected", a0, Operand(FIXED_ARRAY_TYPE)); } // regexp_data: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); // regexp_data: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ lw(a2, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. This // uses the asumption that smis are 2 * their untagged value. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ Addu(a2, a2, Operand(2)); // a2 was a smi. // Check that the static offsets vector buffer is large enough. __ Branch(&runtime, hi, a2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); // a2: Number of capture registers // regexp_data: RegExp data (FixedArray) // Check that the second argument is a string. __ lw(subject, MemOperand(sp, kSubjectOffset)); __ JumpIfSmi(subject, &runtime); __ GetObjectType(subject, a0, a0); __ And(a0, a0, Operand(kIsNotStringMask)); STATIC_ASSERT(kStringTag == 0); __ Branch(&runtime, ne, a0, Operand(zero_reg)); // Get the length of the string to r3. __ lw(a3, FieldMemOperand(subject, String::kLengthOffset)); // a2: Number of capture registers // a3: Length of subject string as a smi // subject: Subject string // regexp_data: RegExp data (FixedArray) // Check that the third argument is a positive smi less than the subject // string length. A negative value will be greater (unsigned comparison). __ lw(a0, MemOperand(sp, kPreviousIndexOffset)); __ JumpIfNotSmi(a0, &runtime); __ Branch(&runtime, ls, a3, Operand(a0)); // a2: Number of capture registers // subject: Subject string // regexp_data: RegExp data (FixedArray) // Check that the fourth object is a JSArray object. __ lw(a0, MemOperand(sp, kLastMatchInfoOffset)); __ JumpIfSmi(a0, &runtime); __ GetObjectType(a0, a1, a1); __ Branch(&runtime, ne, a1, Operand(JS_ARRAY_TYPE)); // Check that the JSArray is in fast case. __ lw(last_match_info_elements, FieldMemOperand(a0, JSArray::kElementsOffset)); __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); __ Branch(&runtime, ne, a0, Operand( isolate->factory()->fixed_array_map())); // Check that the last match info has space for the capture registers and the // additional information. __ lw(a0, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); __ Addu(a2, a2, Operand(RegExpImpl::kLastMatchOverhead)); __ sra(at, a0, kSmiTagSize); // Untag length for comparison. __ Branch(&runtime, gt, a2, Operand(at)); // Reset offset for possibly sliced string. __ mov(t0, zero_reg); // subject: Subject string // regexp_data: RegExp data (FixedArray) // Check the representation and encoding of the subject string. Label seq_string; __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); // First check for flat string. None of the following string type tests will // succeed if subject is not a string or a short external string. __ And(a1, a0, Operand(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); __ Branch(&seq_string, eq, a1, Operand(zero_reg)); // subject: Subject string // a0: instance type if Subject string // regexp_data: RegExp data (FixedArray) // a1: whether subject is a string and if yes, its string representation // Check for flat cons string or sliced string. // A flat cons string is a cons string where the second part is the empty // string. In that case the subject string is just the first part of the cons // string. Also in this case the first part of the cons string is known to be // a sequential string or an external string. // In the case of a sliced string its offset has to be taken into account. Label cons_string, external_string, check_encoding; STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ Branch(&cons_string, lt, a1, Operand(kExternalStringTag)); __ Branch(&external_string, eq, a1, Operand(kExternalStringTag)); // Catch non-string subject or short external string. STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask)); __ Branch(&runtime, ne, at, Operand(zero_reg)); // String is sliced. __ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset)); __ sra(t0, t0, kSmiTagSize); __ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); // t5: offset of sliced string, smi-tagged. __ jmp(&check_encoding); // String is a cons string, check whether it is flat. __ bind(&cons_string); __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset)); __ LoadRoot(a1, Heap::kEmptyStringRootIndex); __ Branch(&runtime, ne, a0, Operand(a1)); __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); // Is first part of cons or parent of slice a flat string? __ bind(&check_encoding); __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSeqStringTag == 0); __ And(at, a0, Operand(kStringRepresentationMask)); __ Branch(&external_string, ne, at, Operand(zero_reg)); __ bind(&seq_string); // subject: Subject string // regexp_data: RegExp data (FixedArray) // a0: Instance type of subject string STATIC_ASSERT(kStringEncodingMask == 4); STATIC_ASSERT(kAsciiStringTag == 4); STATIC_ASSERT(kTwoByteStringTag == 0); // Find the code object based on the assumptions above. __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for ASCII. __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset)); __ sra(a3, a0, 2); // a3 is 1 for ASCII, 0 for UC16 (used below). __ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset)); __ Movz(t9, t1, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset. // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(t9, &runtime); // a3: encoding of subject string (1 if ASCII, 0 if two_byte); // t9: code // subject: Subject string // regexp_data: RegExp data (FixedArray) // Load used arguments before starting to push arguments for call to native // RegExp code to avoid handling changing stack height. __ lw(a1, MemOperand(sp, kPreviousIndexOffset)); __ sra(a1, a1, kSmiTagSize); // Untag the Smi. // a1: previous index // a3: encoding of subject string (1 if ASCII, 0 if two_byte); // t9: code // subject: Subject string // regexp_data: RegExp data (FixedArray) // All checks done. Now push arguments for native regexp code. __ IncrementCounter(isolate->counters()->regexp_entry_native(), 1, a0, a2); // Isolates: note we add an additional parameter here (isolate pointer). const int kRegExpExecuteArguments = 8; const int kParameterRegisters = 4; __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); // Stack pointer now points to cell where return address is to be written. // Arguments are before that on the stack or in registers, meaning we // treat the return address as argument 5. Thus every argument after that // needs to be shifted back by 1. Since DirectCEntryStub will handle // allocating space for the c argument slots, we don't need to calculate // that into the argument positions on the stack. This is how the stack will // look (sp meaning the value of sp at this moment): // [sp + 4] - Argument 8 // [sp + 3] - Argument 7 // [sp + 2] - Argument 6 // [sp + 1] - Argument 5 // [sp + 0] - saved ra // Argument 8: Pass current isolate address. // CFunctionArgumentOperand handles MIPS stack argument slots. __ li(a0, Operand(ExternalReference::isolate_address())); __ sw(a0, MemOperand(sp, 4 * kPointerSize)); // Argument 7: Indicate that this is a direct call from JavaScript. __ li(a0, Operand(1)); __ sw(a0, MemOperand(sp, 3 * kPointerSize)); // Argument 6: Start (high end) of backtracking stack memory area. __ li(a0, Operand(address_of_regexp_stack_memory_address)); __ lw(a0, MemOperand(a0, 0)); __ li(a2, Operand(address_of_regexp_stack_memory_size)); __ lw(a2, MemOperand(a2, 0)); __ addu(a0, a0, a2); __ sw(a0, MemOperand(sp, 2 * kPointerSize)); // Argument 5: static offsets vector buffer. __ li(a0, Operand( ExternalReference::address_of_static_offsets_vector(isolate))); __ sw(a0, MemOperand(sp, 1 * kPointerSize)); // For arguments 4 and 3 get string length, calculate start of string data // and calculate the shift of the index (0 for ASCII and 1 for two byte). __ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte. // Load the length from the original subject string from the previous stack // frame. Therefore we have to use fp, which points exactly to two pointer // sizes below the previous sp. (Because creating a new stack frame pushes // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) __ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); // If slice offset is not 0, load the length from the original sliced string. // Argument 4, a3: End of string data // Argument 3, a2: Start of string data // Prepare start and end index of the input. __ sllv(t1, t0, a3); __ addu(t0, t2, t1); __ sllv(t1, a1, a3); __ addu(a2, t0, t1); __ lw(t2, FieldMemOperand(subject, String::kLengthOffset)); __ sra(t2, t2, kSmiTagSize); __ sllv(t1, t2, a3); __ addu(a3, t0, t1); // Argument 2 (a1): Previous index. // Already there // Argument 1 (a0): Subject string. __ mov(a0, subject); // Locate the code entry and call it. __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag)); DirectCEntryStub stub; stub.GenerateCall(masm, t9); __ LeaveExitFrame(false, no_reg); // v0: result // subject: subject string (callee saved) // regexp_data: RegExp data (callee saved) // last_match_info_elements: Last match info elements (callee saved) // Check the result. Label success; __ Branch(&success, eq, v0, Operand(NativeRegExpMacroAssembler::SUCCESS)); Label failure; __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE)); // If not exception it can only be retry. Handle that in the runtime system. __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. __ li(a1, Operand(isolate->factory()->the_hole_value())); __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ lw(v0, MemOperand(a2, 0)); __ Branch(&runtime, eq, v0, Operand(a1)); __ sw(a1, MemOperand(a2, 0)); // Clear pending exception. // Check if the exception is a termination. If so, throw as uncatchable. __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex); Label termination_exception; __ Branch(&termination_exception, eq, v0, Operand(a0)); __ Throw(v0); __ bind(&termination_exception); __ ThrowUncatchable(v0); __ bind(&failure); // For failure and exception return null. __ li(v0, Operand(isolate->factory()->null_value())); __ DropAndRet(4); // Process the result from the native regexp code. __ bind(&success); __ lw(a1, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ Addu(a1, a1, Operand(2)); // a1 was a smi. // a1: number of capture registers // subject: subject string // Store the capture count. __ sll(a2, a1, kSmiTagSize + kSmiShiftSize); // To smi. __ sw(a2, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastCaptureCountOffset)); // Store last subject and last input. __ sw(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastSubjectOffset)); __ mov(a2, subject); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset, a2, t3, kRAHasNotBeenSaved, kDontSaveFPRegs); __ sw(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastInputOffset)); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset, subject, t3, kRAHasNotBeenSaved, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate); __ li(a2, Operand(address_of_static_offsets_vector)); // a1: number of capture registers // a2: offsets vector Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wrapping after zero. __ Addu(a0, last_match_info_elements, Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); __ bind(&next_capture); __ Subu(a1, a1, Operand(1)); __ Branch(&done, lt, a1, Operand(zero_reg)); // Read the value from the static offsets vector buffer. __ lw(a3, MemOperand(a2, 0)); __ addiu(a2, a2, kPointerSize); // Store the smi value in the last match info. __ sll(a3, a3, kSmiTagSize); // Convert to Smi. __ sw(a3, MemOperand(a0, 0)); __ Branch(&next_capture, USE_DELAY_SLOT); __ addiu(a0, a0, kPointerSize); // In branch delay slot. __ bind(&done); // Return last match info. __ lw(v0, MemOperand(sp, kLastMatchInfoOffset)); __ DropAndRet(4); // External string. Short external strings have already been ruled out. // a0: scratch __ bind(&external_string); __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ And(at, a0, Operand(kIsIndirectStringMask)); __ Assert(eq, "external string expected, but not found", at, Operand(zero_reg)); } __ lw(subject, FieldMemOperand(subject, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); __ Subu(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag); __ jmp(&seq_string); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #endif // V8_INTERPRETED_REGEXP } void RegExpConstructResultStub::Generate(MacroAssembler* masm) { const int kMaxInlineLength = 100; Label slowcase; Label done; __ lw(a1, MemOperand(sp, kPointerSize * 2)); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); __ JumpIfNotSmi(a1, &slowcase); __ Branch(&slowcase, hi, a1, Operand(Smi::FromInt(kMaxInlineLength))); // Smi-tagging is equivalent to multiplying by 2. // Allocate RegExpResult followed by FixedArray with size in ebx. // JSArray: [Map][empty properties][Elements][Length-smi][index][input] // Elements: [Map][Length][..elements..] // Size of JSArray with two in-object properties and the header of a // FixedArray. int objects_size = (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize; __ srl(t1, a1, kSmiTagSize + kSmiShiftSize); __ Addu(a2, t1, Operand(objects_size)); __ AllocateInNewSpace( a2, // In: Size, in words. v0, // Out: Start of allocation (tagged). a3, // Scratch register. t0, // Scratch register. &slowcase, static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); // v0: Start of allocated area, object-tagged. // a1: Number of elements in array, as smi. // t1: Number of elements, untagged. // Set JSArray map to global.regexp_result_map(). // Set empty properties FixedArray. // Set elements to point to FixedArray allocated right after the JSArray. // Interleave operations for better latency. __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX)); __ Addu(a3, v0, Operand(JSRegExpResult::kSize)); __ li(t0, Operand(masm->isolate()->factory()->empty_fixed_array())); __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset)); __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset)); __ lw(a2, ContextOperand(a2, Context::REGEXP_RESULT_MAP_INDEX)); __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); // Set input, index and length fields from arguments. __ lw(a1, MemOperand(sp, kPointerSize * 0)); __ lw(a2, MemOperand(sp, kPointerSize * 1)); __ lw(t2, MemOperand(sp, kPointerSize * 2)); __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kInputOffset)); __ sw(a2, FieldMemOperand(v0, JSRegExpResult::kIndexOffset)); __ sw(t2, FieldMemOperand(v0, JSArray::kLengthOffset)); // Fill out the elements FixedArray. // v0: JSArray, tagged. // a3: FixedArray, tagged. // t1: Number of elements in array, untagged. // Set map. __ li(a2, Operand(masm->isolate()->factory()->fixed_array_map())); __ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset)); // Set FixedArray length. __ sll(t2, t1, kSmiTagSize); __ sw(t2, FieldMemOperand(a3, FixedArray::kLengthOffset)); // Fill contents of fixed-array with the-hole. __ li(a2, Operand(masm->isolate()->factory()->the_hole_value())); __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // Fill fixed array elements with hole. // v0: JSArray, tagged. // a2: the hole. // a3: Start of elements in FixedArray. // t1: Number of elements to fill. Label loop; __ sll(t1, t1, kPointerSizeLog2); // Convert num elements to num bytes. __ addu(t1, t1, a3); // Point past last element to store. __ bind(&loop); __ Branch(&done, ge, a3, Operand(t1)); // Break when a3 past end of elem. __ sw(a2, MemOperand(a3)); __ Branch(&loop, USE_DELAY_SLOT); __ addiu(a3, a3, kPointerSize); // In branch delay slot. __ bind(&done); __ DropAndRet(3); __ bind(&slowcase); __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a global property cell. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // a1 : the function to call // a2 : cache cell for call target Label done; ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->undefined_value()); ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()), masm->isolate()->heap()->the_hole_value()); // Load the cache state into a3. __ lw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. __ Branch(&done, eq, a3, Operand(a1)); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&done, eq, a3, Operand(at)); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Branch(USE_DELAY_SLOT, &done, eq, a3, Operand(at)); // An uninitialized cache is patched with the function. // Store a1 in the delay slot. This may or may not get overwritten depending // on the result of the comparison. __ sw(a1, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset)); // No need for a write barrier here - cells are rescanned. // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ sw(at, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset)); __ bind(&done); } void CallFunctionStub::Generate(MacroAssembler* masm) { // a1 : the function to call // a2 : cache cell for call target Label slow, non_function; // The receiver might implicitly be the global object. This is // indicated by passing the hole as the receiver to the call // function stub. if (ReceiverMightBeImplicit()) { Label call; // Get the receiver from the stack. // function, receiver [, arguments] __ lw(t0, MemOperand(sp, argc_ * kPointerSize)); // Call as function is indicated with the hole. __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Branch(&call, ne, t0, Operand(at)); // Patch the receiver on the stack with the global receiver object. __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset)); __ sw(a2, MemOperand(sp, argc_ * kPointerSize)); __ bind(&call); } // Check that the function is really a JavaScript function. // a1: pushed function (to be verified) __ JumpIfSmi(a1, &non_function); // Get the map of the function object. __ GetObjectType(a1, a2, a2); __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE)); // Fast-case: Invoke the function now. // a1: pushed function ParameterCount actual(argc_); if (ReceiverMightBeImplicit()) { Label call_as_function; __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Branch(&call_as_function, eq, t0, Operand(at)); __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&call_as_function); } __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_FUNCTION); // Slow-case: Non-function called. __ bind(&slow); // Check for function proxy. __ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_PROXY_TYPE)); __ push(a1); // Put proxy as additional argument. __ li(a0, Operand(argc_ + 1, RelocInfo::NONE)); __ li(a2, Operand(0, RelocInfo::NONE)); __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY); __ SetCallKind(t1, CALL_AS_METHOD); { Handle<Code> adaptor = masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); __ Jump(adaptor, RelocInfo::CODE_TARGET); } // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ bind(&non_function); __ sw(a1, MemOperand(sp, argc_ * kPointerSize)); __ li(a0, Operand(argc_)); // Set up the number of arguments. __ mov(a2, zero_reg); __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION); __ SetCallKind(t1, CALL_AS_METHOD); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } void CallConstructStub::Generate(MacroAssembler* masm) { // a0 : number of arguments // a1 : the function to call // a2 : cache cell for call target Label slow, non_function_call; // Check that the function is not a smi. __ JumpIfSmi(a1, &non_function_call); // Check that the function is a JSFunction. __ GetObjectType(a1, a3, a3); __ Branch(&slow, ne, a3, Operand(JS_FUNCTION_TYPE)); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); } // Jump to the function-specific construct stub. __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kConstructStubOffset)); __ Addu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); // a0: number of arguments // a1: called object // a3: object type Label do_call; __ bind(&slow); __ Branch(&non_function_call, ne, a3, Operand(JS_FUNCTION_PROXY_TYPE)); __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); __ jmp(&do_call); __ bind(&non_function_call); __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ bind(&do_call); // Set expected number of arguments to zero (not changing r0). __ li(a2, Operand(0, RelocInfo::NONE)); __ SetCallKind(t1, CALL_AS_METHOD); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. void CompareStub::PrintName(StringStream* stream) { ASSERT((lhs_.is(a0) && rhs_.is(a1)) || (lhs_.is(a1) && rhs_.is(a0))); const char* cc_name; switch (cc_) { case lt: cc_name = "LT"; break; case gt: cc_name = "GT"; break; case le: cc_name = "LE"; break; case ge: cc_name = "GE"; break; case eq: cc_name = "EQ"; break; case ne: cc_name = "NE"; break; default: cc_name = "UnknownCondition"; break; } bool is_equality = cc_ == eq || cc_ == ne; stream->Add("CompareStub_%s", cc_name); stream->Add(lhs_.is(a0) ? "_a0" : "_a1"); stream->Add(rhs_.is(a0) ? "_a0" : "_a1"); if (strict_ && is_equality) stream->Add("_STRICT"); if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN"); if (!include_number_compare_) stream->Add("_NO_NUMBER"); if (!include_smi_compare_) stream->Add("_NO_SMI"); } int CompareStub::MinorKey() { // Encode the two parameters in a unique 16 bit value. ASSERT(static_cast<unsigned>(cc_) < (1 << 14)); ASSERT((lhs_.is(a0) && rhs_.is(a1)) || (lhs_.is(a1) && rhs_.is(a0))); return ConditionField::encode(static_cast<unsigned>(cc_)) | RegisterField::encode(lhs_.is(a0)) | StrictField::encode(strict_) | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) | IncludeSmiCompareField::encode(include_smi_compare_); } // StringCharCodeAtGenerator. void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { Label flat_string; Label ascii_string; Label got_char_code; Label sliced_string; ASSERT(!t0.is(index_)); ASSERT(!t0.is(result_)); ASSERT(!t0.is(object_)); // If the receiver is a smi trigger the non-string case. __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ And(t0, result_, Operand(kIsNotStringMask)); __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg)); // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ lw(t0, FieldMemOperand(object_, String::kLengthOffset)); __ Branch(index_out_of_range_, ls, t0, Operand(index_)); __ sra(index_, index_, kSmiTagSize); StringCharLoadGenerator::Generate(masm, object_, index_, result_, &call_runtime_); __ sll(result_, result_, kSmiTagSize); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharCodeAt slow case"); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); // Consumed by runtime conversion function: __ Push(object_, index_); if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); } else { ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi, 1); } // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ Move(index_, v0); __ pop(object_); // Reload the instance type. __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ Branch(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ sll(index_, index_, kSmiTagSize); __ Push(object_, index_); __ CallRuntime(Runtime::kStringCharCodeAt, 2); __ Move(result_, v0); call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort("Unexpected fallthrough from CharCodeAt slow case"); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. ASSERT(!t0.is(result_)); ASSERT(!t0.is(code_)); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiShiftSize == 0); ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); __ And(t0, code_, Operand(kSmiTagMask | ((~String::kMaxAsciiCharCode) << kSmiTagSize))); __ Branch(&slow_case_, ne, t0, Operand(zero_reg)); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); // At this point code register contains smi tagged ASCII char code. STATIC_ASSERT(kSmiTag == 0); __ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize); __ Addu(result_, result_, t0); __ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); __ LoadRoot(t0, Heap::kUndefinedValueRootIndex); __ Branch(&slow_case_, eq, result_, Operand(t0)); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharFromCode slow case"); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kCharFromCode, 1); __ Move(result_, v0); call_helper.AfterCall(masm); __ Branch(&exit_); __ Abort("Unexpected fallthrough from CharFromCode slow case"); } // ------------------------------------------------------------------------- // StringCharAtGenerator void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { char_code_at_generator_.GenerateFast(masm); char_from_code_generator_.GenerateFast(masm); } void StringCharAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { char_code_at_generator_.GenerateSlow(masm, call_helper); char_from_code_generator_.GenerateSlow(masm, call_helper); } void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, bool ascii) { Label loop; Label done; // This loop just copies one character at a time, as it is only used for // very short strings. if (!ascii) { __ addu(count, count, count); } __ Branch(&done, eq, count, Operand(zero_reg)); __ addu(count, dest, count); // Count now points to the last dest byte. __ bind(&loop); __ lbu(scratch, MemOperand(src)); __ addiu(src, src, 1); __ sb(scratch, MemOperand(dest)); __ addiu(dest, dest, 1); __ Branch(&loop, lt, dest, Operand(count)); __ bind(&done); } enum CopyCharactersFlags { COPY_ASCII = 1, DEST_ALWAYS_ALIGNED = 2 }; void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5, int flags) { bool ascii = (flags & COPY_ASCII) != 0; bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; if (dest_always_aligned && FLAG_debug_code) { // Check that destination is actually word aligned if the flag says // that it is. __ And(scratch4, dest, Operand(kPointerAlignmentMask)); __ Check(eq, "Destination of copy not aligned.", scratch4, Operand(zero_reg)); } const int kReadAlignment = 4; const int kReadAlignmentMask = kReadAlignment - 1; // Ensure that reading an entire aligned word containing the last character // of a string will not read outside the allocated area (because we pad up // to kObjectAlignment). STATIC_ASSERT(kObjectAlignment >= kReadAlignment); // Assumes word reads and writes are little endian. // Nothing to do for zero characters. Label done; if (!ascii) { __ addu(count, count, count); } __ Branch(&done, eq, count, Operand(zero_reg)); Label byte_loop; // Must copy at least eight bytes, otherwise just do it one byte at a time. __ Subu(scratch1, count, Operand(8)); __ Addu(count, dest, Operand(count)); Register limit = count; // Read until src equals this. __ Branch(&byte_loop, lt, scratch1, Operand(zero_reg)); if (!dest_always_aligned) { // Align dest by byte copying. Copies between zero and three bytes. __ And(scratch4, dest, Operand(kReadAlignmentMask)); Label dest_aligned; __ Branch(&dest_aligned, eq, scratch4, Operand(zero_reg)); Label aligned_loop; __ bind(&aligned_loop); __ lbu(scratch1, MemOperand(src)); __ addiu(src, src, 1); __ sb(scratch1, MemOperand(dest)); __ addiu(dest, dest, 1); __ addiu(scratch4, scratch4, 1); __ Branch(&aligned_loop, le, scratch4, Operand(kReadAlignmentMask)); __ bind(&dest_aligned); } Label simple_loop; __ And(scratch4, src, Operand(kReadAlignmentMask)); __ Branch(&simple_loop, eq, scratch4, Operand(zero_reg)); // Loop for src/dst that are not aligned the same way. // This loop uses lwl and lwr instructions. These instructions // depend on the endianness, and the implementation assumes little-endian. { Label loop; __ bind(&loop); __ lwr(scratch1, MemOperand(src)); __ Addu(src, src, Operand(kReadAlignment)); __ lwl(scratch1, MemOperand(src, -1)); __ sw(scratch1, MemOperand(dest)); __ Addu(dest, dest, Operand(kReadAlignment)); __ Subu(scratch2, limit, dest); __ Branch(&loop, ge, scratch2, Operand(kReadAlignment)); } __ Branch(&byte_loop); // Simple loop. // Copy words from src to dest, until less than four bytes left. // Both src and dest are word aligned. __ bind(&simple_loop); { Label loop; __ bind(&loop); __ lw(scratch1, MemOperand(src)); __ Addu(src, src, Operand(kReadAlignment)); __ sw(scratch1, MemOperand(dest)); __ Addu(dest, dest, Operand(kReadAlignment)); __ Subu(scratch2, limit, dest); __ Branch(&loop, ge, scratch2, Operand(kReadAlignment)); } // Copy bytes from src to dest until dest hits limit. __ bind(&byte_loop); // Test if dest has already reached the limit. __ Branch(&done, ge, dest, Operand(limit)); __ lbu(scratch1, MemOperand(src)); __ addiu(src, src, 1); __ sb(scratch1, MemOperand(dest)); __ addiu(dest, dest, 1); __ Branch(&byte_loop); __ bind(&done); } void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Register scratch5, Label* not_found) { // Register scratch3 is the general scratch register in this function. Register scratch = scratch3; // Make sure that both characters are not digits as such strings has a // different hash algorithm. Don't try to look for these in the symbol table. Label not_array_index; __ Subu(scratch, c1, Operand(static_cast<int>('0'))); __ Branch(¬_array_index, Ugreater, scratch, Operand(static_cast<int>('9' - '0'))); __ Subu(scratch, c2, Operand(static_cast<int>('0'))); // If check failed combine both characters into single halfword. // This is required by the contract of the method: code at the // not_found branch expects this combination in c1 register. Label tmp; __ sll(scratch1, c2, kBitsPerByte); __ Branch(&tmp, Ugreater, scratch, Operand(static_cast<int>('9' - '0'))); __ Or(c1, c1, scratch1); __ bind(&tmp); __ Branch( not_found, Uless_equal, scratch, Operand(static_cast<int>('9' - '0'))); __ bind(¬_array_index); // Calculate the two character string hash. Register hash = scratch1; StringHelper::GenerateHashInit(masm, hash, c1); StringHelper::GenerateHashAddCharacter(masm, hash, c2); StringHelper::GenerateHashGetHash(masm, hash); // Collect the two characters in a register. Register chars = c1; __ sll(scratch, c2, kBitsPerByte); __ Or(chars, chars, scratch); // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string. // Load symbol table. // Load address of first element of the symbol table. Register symbol_table = c2; __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); Register undefined = scratch4; __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); // Calculate capacity mask from the symbol table capacity. Register mask = scratch2; __ lw(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset)); __ sra(mask, mask, 1); __ Addu(mask, mask, -1); // Calculate untagged address of the first element of the symbol table. Register first_symbol_table_element = symbol_table; __ Addu(first_symbol_table_element, symbol_table, Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag)); // Registers. // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string // mask: capacity mask // first_symbol_table_element: address of the first element of // the symbol table // undefined: the undefined object // scratch: - // Perform a number of probes in the symbol table. const int kProbes = 4; Label found_in_symbol_table; Label next_probe[kProbes]; Register candidate = scratch5; // Scratch register contains candidate. for (int i = 0; i < kProbes; i++) { // Calculate entry in symbol table. if (i > 0) { __ Addu(candidate, hash, Operand(SymbolTable::GetProbeOffset(i))); } else { __ mov(candidate, hash); } __ And(candidate, candidate, Operand(mask)); // Load the entry from the symble table. STATIC_ASSERT(SymbolTable::kEntrySize == 1); __ sll(scratch, candidate, kPointerSizeLog2); __ Addu(scratch, scratch, first_symbol_table_element); __ lw(candidate, MemOperand(scratch)); // If entry is undefined no string with this hash can be found. Label is_string; __ GetObjectType(candidate, scratch, scratch); __ Branch(&is_string, ne, scratch, Operand(ODDBALL_TYPE)); __ Branch(not_found, eq, undefined, Operand(candidate)); // Must be the hole (deleted entry). if (FLAG_debug_code) { __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); __ Assert(eq, "oddball in symbol table is not undefined or the hole", scratch, Operand(candidate)); } __ jmp(&next_probe[i]); __ bind(&is_string); // Check that the candidate is a non-external ASCII string. The instance // type is still in the scratch register from the CompareObjectType // operation. __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]); // If length is not 2 the string is not a candidate. __ lw(scratch, FieldMemOperand(candidate, String::kLengthOffset)); __ Branch(&next_probe[i], ne, scratch, Operand(Smi::FromInt(2))); // Check if the two characters match. // Assumes that word load is little endian. __ lhu(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize)); __ Branch(&found_in_symbol_table, eq, chars, Operand(scratch)); __ bind(&next_probe[i]); } // No matching 2 character string found by probing. __ jmp(not_found); // Scratch register contains result when we fall through to here. Register result = candidate; __ bind(&found_in_symbol_table); __ mov(v0, result); } void StringHelper::GenerateHashInit(MacroAssembler* masm, Register hash, Register character) { // hash = seed + character + ((seed + character) << 10); __ LoadRoot(hash, Heap::kHashSeedRootIndex); // Untag smi seed and add the character. __ SmiUntag(hash); __ addu(hash, hash, character); __ sll(at, hash, 10); __ addu(hash, hash, at); // hash ^= hash >> 6; __ srl(at, hash, 6); __ xor_(hash, hash, at); } void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character) { // hash += character; __ addu(hash, hash, character); // hash += hash << 10; __ sll(at, hash, 10); __ addu(hash, hash, at); // hash ^= hash >> 6; __ srl(at, hash, 6); __ xor_(hash, hash, at); } void StringHelper::GenerateHashGetHash(MacroAssembler* masm, Register hash) { // hash += hash << 3; __ sll(at, hash, 3); __ addu(hash, hash, at); // hash ^= hash >> 11; __ srl(at, hash, 11); __ xor_(hash, hash, at); // hash += hash << 15; __ sll(at, hash, 15); __ addu(hash, hash, at); __ li(at, Operand(String::kHashBitMask)); __ and_(hash, hash, at); // if (hash == 0) hash = 27; __ ori(at, zero_reg, StringHasher::kZeroHash); __ Movz(hash, at, hash); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // ra: return address // sp[0]: to // sp[4]: from // sp[8]: string // This stub is called from the native-call %_SubString(...), so // nothing can be assumed about the arguments. It is tested that: // "string" is a sequential string, // both "from" and "to" are smis, and // 0 <= from <= to <= string.length. // If any of these assumptions fail, we call the runtime system. const int kToOffset = 0 * kPointerSize; const int kFromOffset = 1 * kPointerSize; const int kStringOffset = 2 * kPointerSize; __ lw(a2, MemOperand(sp, kToOffset)); __ lw(a3, MemOperand(sp, kFromOffset)); STATIC_ASSERT(kFromOffset == kToOffset + 4); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is // safe in this case. __ UntagAndJumpIfNotSmi(a2, a2, &runtime); __ UntagAndJumpIfNotSmi(a3, a3, &runtime); // Both a2 and a3 are untagged integers. __ Branch(&runtime, lt, a3, Operand(zero_reg)); // From < 0. __ Branch(&runtime, gt, a3, Operand(a2)); // Fail if from > to. __ Subu(a2, a2, a3); // Make sure first argument is a string. __ lw(v0, MemOperand(sp, kStringOffset)); __ JumpIfSmi(v0, &runtime); __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset)); __ And(t0, a1, Operand(kIsNotStringMask)); __ Branch(&runtime, ne, t0, Operand(zero_reg)); // Short-cut for the case of trivial substring. Label return_v0; // v0: original string // a2: result string length __ lw(t0, FieldMemOperand(v0, String::kLengthOffset)); __ sra(t0, t0, 1); __ Branch(&return_v0, eq, a2, Operand(t0)); Label result_longer_than_two; // Check for special case of two character ASCII string, in which case // we do a lookup in the symbol table first. __ li(t0, 2); __ Branch(&result_longer_than_two, gt, a2, Operand(t0)); __ Branch(&runtime, lt, a2, Operand(t0)); __ JumpIfInstanceTypeIsNotSequentialAscii(a1, a1, &runtime); // Get the two characters forming the sub string. __ Addu(v0, v0, Operand(a3)); __ lbu(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize)); __ lbu(t0, FieldMemOperand(v0, SeqAsciiString::kHeaderSize + 1)); // Try to lookup two character string in symbol table. Label make_two_character_string; StringHelper::GenerateTwoCharacterSymbolTableProbe( masm, a3, t0, a1, t1, t2, t3, t4, &make_two_character_string); __ jmp(&return_v0); // a2: result string length. // a3: two characters combined into halfword in little endian byte order. __ bind(&make_two_character_string); __ AllocateAsciiString(v0, a2, t0, t1, t4, &runtime); __ sh(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize)); __ jmp(&return_v0); __ bind(&result_longer_than_two); // Deal with different string types: update the index if necessary // and put the underlying string into t1. // v0: original string // a1: instance type // a2: length // a3: from index (untagged) Label underlying_unpacked, sliced_string, seq_or_external_string; // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); __ And(t0, a1, Operand(kIsIndirectStringMask)); __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, t0, Operand(zero_reg)); // t0 is used as a scratch register and can be overwritten in either case. __ And(t0, a1, Operand(kSlicedNotConsMask)); __ Branch(&sliced_string, ne, t0, Operand(zero_reg)); // Cons string. Check whether it is flat, then fetch first part. __ lw(t1, FieldMemOperand(v0, ConsString::kSecondOffset)); __ LoadRoot(t0, Heap::kEmptyStringRootIndex); __ Branch(&runtime, ne, t1, Operand(t0)); __ lw(t1, FieldMemOperand(v0, ConsString::kFirstOffset)); // Update instance type. __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked); __ bind(&sliced_string); // Sliced string. Fetch parent and correct start index by offset. __ lw(t1, FieldMemOperand(v0, SlicedString::kParentOffset)); __ lw(t0, FieldMemOperand(v0, SlicedString::kOffsetOffset)); __ sra(t0, t0, 1); // Add offset to index. __ Addu(a3, a3, t0); // Update instance type. __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked); __ bind(&seq_or_external_string); // Sequential or external string. Just move string to the expected register. __ mov(t1, v0); __ bind(&underlying_unpacked); if (FLAG_string_slices) { Label copy_routine; // t1: underlying subject string // a1: instance type of underlying subject string // a2: length // a3: adjusted start index (untagged) // Short slice. Copy instead of slicing. __ Branch(©_routine, lt, a2, Operand(SlicedString::kMinLength)); // Allocate new sliced string. At this point we do not reload the instance // type including the string encoding because we simply rely on the info // provided by the original string. It does not matter if the original // string's encoding is wrong because we always have to recheck encoding of // the newly created string's parent anyways due to externalized strings. Label two_byte_slice, set_slice_header; STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ And(t0, a1, Operand(kStringEncodingMask)); __ Branch(&two_byte_slice, eq, t0, Operand(zero_reg)); __ AllocateAsciiSlicedString(v0, a2, t2, t3, &runtime); __ jmp(&set_slice_header); __ bind(&two_byte_slice); __ AllocateTwoByteSlicedString(v0, a2, t2, t3, &runtime); __ bind(&set_slice_header); __ sll(a3, a3, 1); __ sw(t1, FieldMemOperand(v0, SlicedString::kParentOffset)); __ sw(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset)); __ jmp(&return_v0); __ bind(©_routine); } // t1: underlying subject string // a1: instance type of underlying subject string // a2: length // a3: adjusted start index (untagged) Label two_byte_sequential, sequential_string, allocate_result; STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); __ And(t0, a1, Operand(kExternalStringTag)); __ Branch(&sequential_string, eq, t0, Operand(zero_reg)); // Handle external string. // Rule out short external strings. STATIC_CHECK(kShortExternalStringTag != 0); __ And(t0, a1, Operand(kShortExternalStringTag)); __ Branch(&runtime, ne, t0, Operand(zero_reg)); __ lw(t1, FieldMemOperand(t1, ExternalString::kResourceDataOffset)); // t1 already points to the first character of underlying string. __ jmp(&allocate_result); __ bind(&sequential_string); // Locate first character of underlying subject string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); __ Addu(t1, t1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); __ bind(&allocate_result); // Sequential acii string. Allocate the result. STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0); __ And(t0, a1, Operand(kStringEncodingMask)); __ Branch(&two_byte_sequential, eq, t0, Operand(zero_reg)); // Allocate and copy the resulting ASCII string. __ AllocateAsciiString(v0, a2, t0, t2, t3, &runtime); // Locate first character of substring to copy. __ Addu(t1, t1, a3); // Locate first character of result. __ Addu(a1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // v0: result string // a1: first character of result string // a2: result string length // t1: first character of substring to copy STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharactersLong( masm, a1, t1, a2, a3, t0, t2, t3, t4, COPY_ASCII | DEST_ALWAYS_ALIGNED); __ jmp(&return_v0); // Allocate and copy the resulting two-byte string. __ bind(&two_byte_sequential); __ AllocateTwoByteString(v0, a2, t0, t2, t3, &runtime); // Locate first character of substring to copy. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ sll(t0, a3, 1); __ Addu(t1, t1, t0); // Locate first character of result. __ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // v0: result string. // a1: first character of result. // a2: result length. // t1: first character of substring to copy. STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharactersLong( masm, a1, t1, a2, a3, t0, t2, t3, t4, DEST_ALWAYS_ALIGNED); __ bind(&return_v0); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->sub_string_native(), 1, a3, t0); __ DropAndRet(3); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); } void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ lw(length, FieldMemOperand(left, String::kLengthOffset)); __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ Branch(&check_zero_length, eq, length, Operand(scratch2)); __ bind(&strings_not_equal); __ li(v0, Operand(Smi::FromInt(NOT_EQUAL))); __ Ret(); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ Branch(&compare_chars, ne, length, Operand(zero_reg)); __ li(v0, Operand(Smi::FromInt(EQUAL))); __ Ret(); // Compare characters. __ bind(&compare_chars); GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2, scratch3, v0, &strings_not_equal); // Characters are equal. __ li(v0, Operand(Smi::FromInt(EQUAL))); __ Ret(); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { Label result_not_equal, compare_lengths; // Find minimum length and length difference. __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset)); __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ Subu(scratch3, scratch1, Operand(scratch2)); Register length_delta = scratch3; __ slt(scratch4, scratch2, scratch1); __ Movn(scratch1, scratch2, scratch4); Register min_length = scratch1; STATIC_ASSERT(kSmiTag == 0); __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg)); // Compare loop. GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2, scratch4, v0, &result_not_equal); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); // Use length_delta as result if it's zero. __ mov(scratch2, length_delta); __ mov(scratch4, zero_reg); __ mov(v0, zero_reg); __ bind(&result_not_equal); // Conditionally update the result based either on length_delta or // the last comparion performed in the loop above. Label ret; __ Branch(&ret, eq, scratch2, Operand(scratch4)); __ li(v0, Operand(Smi::FromInt(GREATER))); __ Branch(&ret, gt, scratch2, Operand(scratch4)); __ li(v0, Operand(Smi::FromInt(LESS))); __ bind(&ret); __ Ret(); } void StringCompareStub::GenerateAsciiCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Register scratch2, Register scratch3, Label* chars_not_equal) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ Addu(scratch1, length, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); __ Addu(left, left, Operand(scratch1)); __ Addu(right, right, Operand(scratch1)); __ Subu(length, zero_reg, length); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ Addu(scratch3, left, index); __ lbu(scratch1, MemOperand(scratch3)); __ Addu(scratch3, right, index); __ lbu(scratch2, MemOperand(scratch3)); __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2)); __ Addu(index, index, 1); __ Branch(&loop, ne, index, Operand(zero_reg)); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; Counters* counters = masm->isolate()->counters(); // Stack frame on entry. // sp[0]: right string // sp[4]: left string __ lw(a1, MemOperand(sp, 1 * kPointerSize)); // Left. __ lw(a0, MemOperand(sp, 0 * kPointerSize)); // Right. Label not_same; __ Branch(¬_same, ne, a0, Operand(a1)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ li(v0, Operand(Smi::FromInt(EQUAL))); __ IncrementCounter(counters->string_compare_native(), 1, a1, a2); __ DropAndRet(2); __ bind(¬_same); // Check that both objects are sequential ASCII strings. __ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime); // Compare flat ASCII strings natively. Remove arguments from stack first. __ IncrementCounter(counters->string_compare_native(), 1, a2, a3); __ Addu(sp, sp, Operand(2 * kPointerSize)); GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, t0, t1); __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } void StringAddStub::Generate(MacroAssembler* masm) { Label call_runtime, call_builtin; Builtins::JavaScript builtin_id = Builtins::ADD; Counters* counters = masm->isolate()->counters(); // Stack on entry: // sp[0]: second argument (right). // sp[4]: first argument (left). // Load the two arguments. __ lw(a0, MemOperand(sp, 1 * kPointerSize)); // First argument. __ lw(a1, MemOperand(sp, 0 * kPointerSize)); // Second argument. // Make sure that both arguments are strings if not known in advance. if (flags_ == NO_STRING_ADD_FLAGS) { __ JumpIfEitherSmi(a0, a1, &call_runtime); // Load instance types. __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); STATIC_ASSERT(kStringTag == 0); // If either is not a string, go to runtime. __ Or(t4, t0, Operand(t1)); __ And(t4, t4, Operand(kIsNotStringMask)); __ Branch(&call_runtime, ne, t4, Operand(zero_reg)); } else { // Here at least one of the arguments is definitely a string. // We convert the one that is not known to be a string. if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); GenerateConvertArgument( masm, 1 * kPointerSize, a0, a2, a3, t0, t1, &call_builtin); builtin_id = Builtins::STRING_ADD_RIGHT; } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); GenerateConvertArgument( masm, 0 * kPointerSize, a1, a2, a3, t0, t1, &call_builtin); builtin_id = Builtins::STRING_ADD_LEFT; } } // Both arguments are strings. // a0: first string // a1: second string // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) { Label strings_not_empty; // Check if either of the strings are empty. In that case return the other. // These tests use zero-length check on string-length whch is an Smi. // Assert that Smi::FromInt(0) is really 0. STATIC_ASSERT(kSmiTag == 0); ASSERT(Smi::FromInt(0) == 0); __ lw(a2, FieldMemOperand(a0, String::kLengthOffset)); __ lw(a3, FieldMemOperand(a1, String::kLengthOffset)); __ mov(v0, a0); // Assume we'll return first string (from a0). __ Movz(v0, a1, a2); // If first is empty, return second (from a1). __ slt(t4, zero_reg, a2); // if (a2 > 0) t4 = 1. __ slt(t5, zero_reg, a3); // if (a3 > 0) t5 = 1. __ and_(t4, t4, t5); // Branch if both strings were non-empty. __ Branch(&strings_not_empty, ne, t4, Operand(zero_reg)); __ IncrementCounter(counters->string_add_native(), 1, a2, a3); __ DropAndRet(2); __ bind(&strings_not_empty); } // Untag both string-lengths. __ sra(a2, a2, kSmiTagSize); __ sra(a3, a3, kSmiTagSize); // Both strings are non-empty. // a0: first string // a1: second string // a2: length of first string // a3: length of second string // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) // Look at the length of the result of adding the two strings. Label string_add_flat_result, longer_than_two; // Adding two lengths can't overflow. STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2); __ Addu(t2, a2, Operand(a3)); // Use the symbol table when adding two one character strings, as it // helps later optimizations to return a symbol here. __ Branch(&longer_than_two, ne, t2, Operand(2)); // Check that both strings are non-external ASCII strings. if (flags_ != NO_STRING_ADD_FLAGS) { __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); } __ JumpIfBothInstanceTypesAreNotSequentialAscii(t0, t1, t2, t3, &call_runtime); // Get the two characters forming the sub string. __ lbu(a2, FieldMemOperand(a0, SeqAsciiString::kHeaderSize)); __ lbu(a3, FieldMemOperand(a1, SeqAsciiString::kHeaderSize)); // Try to lookup two character string in symbol table. If it is not found // just allocate a new one. Label make_two_character_string; StringHelper::GenerateTwoCharacterSymbolTableProbe( masm, a2, a3, t2, t3, t0, t1, t5, &make_two_character_string); __ IncrementCounter(counters->string_add_native(), 1, a2, a3); __ DropAndRet(2); __ bind(&make_two_character_string); // Resulting string has length 2 and first chars of two strings // are combined into single halfword in a2 register. // So we can fill resulting string without two loops by a single // halfword store instruction (which assumes that processor is // in a little endian mode). __ li(t2, Operand(2)); __ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime); __ sh(a2, FieldMemOperand(v0, SeqAsciiString::kHeaderSize)); __ IncrementCounter(counters->string_add_native(), 1, a2, a3); __ DropAndRet(2); __ bind(&longer_than_two); // Check if resulting string will be flat. __ Branch(&string_add_flat_result, lt, t2, Operand(ConsString::kMinLength)); // Handle exceptionally long strings in the runtime system. STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); ASSERT(IsPowerOf2(String::kMaxLength + 1)); // kMaxLength + 1 is representable as shifted literal, kMaxLength is not. __ Branch(&call_runtime, hs, t2, Operand(String::kMaxLength + 1)); // If result is not supposed to be flat, allocate a cons string object. // If both strings are ASCII the result is an ASCII cons string. if (flags_ != NO_STRING_ADD_FLAGS) { __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); } Label non_ascii, allocated, ascii_data; STATIC_ASSERT(kTwoByteStringTag == 0); // Branch to non_ascii if either string-encoding field is zero (non-ASCII). __ And(t4, t0, Operand(t1)); __ And(t4, t4, Operand(kStringEncodingMask)); __ Branch(&non_ascii, eq, t4, Operand(zero_reg)); // Allocate an ASCII cons string. __ bind(&ascii_data); __ AllocateAsciiConsString(v0, t2, t0, t1, &call_runtime); __ bind(&allocated); // Fill the fields of the cons string. __ sw(a0, FieldMemOperand(v0, ConsString::kFirstOffset)); __ sw(a1, FieldMemOperand(v0, ConsString::kSecondOffset)); __ IncrementCounter(counters->string_add_native(), 1, a2, a3); __ DropAndRet(2); __ bind(&non_ascii); // At least one of the strings is two-byte. Check whether it happens // to contain only ASCII characters. // t0: first instance type. // t1: second instance type. // Branch to if _both_ instances have kAsciiDataHintMask set. __ And(at, t0, Operand(kAsciiDataHintMask)); __ and_(at, at, t1); __ Branch(&ascii_data, ne, at, Operand(zero_reg)); __ xor_(t0, t0, t1); STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); __ And(t0, t0, Operand(kAsciiStringTag | kAsciiDataHintTag)); __ Branch(&ascii_data, eq, t0, Operand(kAsciiStringTag | kAsciiDataHintTag)); // Allocate a two byte cons string. __ AllocateTwoByteConsString(v0, t2, t0, t1, &call_runtime); __ Branch(&allocated); // We cannot encounter sliced strings or cons strings here since: STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength); // Handle creating a flat result from either external or sequential strings. // Locate the first characters' locations. // a0: first string // a1: second string // a2: length of first string // a3: length of second string // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS) // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS) // t2: sum of lengths. Label first_prepared, second_prepared; __ bind(&string_add_flat_result); if (flags_ != NO_STRING_ADD_FLAGS) { __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset)); } // Check whether both strings have same encoding __ Xor(t3, t0, Operand(t1)); __ And(t3, t3, Operand(kStringEncodingMask)); __ Branch(&call_runtime, ne, t3, Operand(zero_reg)); STATIC_ASSERT(kSeqStringTag == 0); __ And(t4, t0, Operand(kStringRepresentationMask)); STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); Label skip_first_add; __ Branch(&skip_first_add, ne, t4, Operand(zero_reg)); __ Branch(USE_DELAY_SLOT, &first_prepared); __ addiu(t3, a0, SeqAsciiString::kHeaderSize - kHeapObjectTag); __ bind(&skip_first_add); // External string: rule out short external string and load string resource. STATIC_ASSERT(kShortExternalStringTag != 0); __ And(t4, t0, Operand(kShortExternalStringMask)); __ Branch(&call_runtime, ne, t4, Operand(zero_reg)); __ lw(t3, FieldMemOperand(a0, ExternalString::kResourceDataOffset)); __ bind(&first_prepared); STATIC_ASSERT(kSeqStringTag == 0); __ And(t4, t1, Operand(kStringRepresentationMask)); STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); Label skip_second_add; __ Branch(&skip_second_add, ne, t4, Operand(zero_reg)); __ Branch(USE_DELAY_SLOT, &second_prepared); __ addiu(a1, a1, SeqAsciiString::kHeaderSize - kHeapObjectTag); __ bind(&skip_second_add); // External string: rule out short external string and load string resource. STATIC_ASSERT(kShortExternalStringTag != 0); __ And(t4, t1, Operand(kShortExternalStringMask)); __ Branch(&call_runtime, ne, t4, Operand(zero_reg)); __ lw(a1, FieldMemOperand(a1, ExternalString::kResourceDataOffset)); __ bind(&second_prepared); Label non_ascii_string_add_flat_result; // t3: first character of first string // a1: first character of second string // a2: length of first string // a3: length of second string // t2: sum of lengths. // Both strings have the same encoding. STATIC_ASSERT(kTwoByteStringTag == 0); __ And(t4, t1, Operand(kStringEncodingMask)); __ Branch(&non_ascii_string_add_flat_result, eq, t4, Operand(zero_reg)); __ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime); __ Addu(t2, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // v0: result string. // t3: first character of first string. // a1: first character of second string // a2: length of first string. // a3: length of second string. // t2: first character of result. StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, true); // t2: next character of result. StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, true); __ IncrementCounter(counters->string_add_native(), 1, a2, a3); __ DropAndRet(2); __ bind(&non_ascii_string_add_flat_result); __ AllocateTwoByteString(v0, t2, t0, t1, t5, &call_runtime); __ Addu(t2, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // v0: result string. // t3: first character of first string. // a1: first character of second string. // a2: length of first string. // a3: length of second string. // t2: first character of result. StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, false); // t2: next character of result. StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, false); __ IncrementCounter(counters->string_add_native(), 1, a2, a3); __ DropAndRet(2); // Just jump to runtime to add the two strings. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kStringAdd, 2, 1); if (call_builtin.is_linked()) { __ bind(&call_builtin); __ InvokeBuiltin(builtin_id, JUMP_FUNCTION); } } void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, int stack_offset, Register arg, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label* slow) { // First check if the argument is already a string. Label not_string, done; __ JumpIfSmi(arg, ¬_string); __ GetObjectType(arg, scratch1, scratch1); __ Branch(&done, lt, scratch1, Operand(FIRST_NONSTRING_TYPE)); // Check the number to string cache. Label not_cached; __ bind(¬_string); // Puts the cached result into scratch1. NumberToStringStub::GenerateLookupNumberStringCache(masm, arg, scratch1, scratch2, scratch3, scratch4, false, ¬_cached); __ mov(arg, scratch1); __ sw(arg, MemOperand(sp, stack_offset)); __ jmp(&done); // Check if the argument is a safe string wrapper. __ bind(¬_cached); __ JumpIfSmi(arg, slow); __ GetObjectType(arg, scratch1, scratch2); // map -> scratch1. __ Branch(slow, ne, scratch2, Operand(JS_VALUE_TYPE)); __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset)); __ li(scratch4, 1 << Map::kStringWrapperSafeForDefaultValueOf); __ And(scratch2, scratch2, scratch4); __ Branch(slow, ne, scratch2, Operand(scratch4)); __ lw(arg, FieldMemOperand(arg, JSValue::kValueOffset)); __ sw(arg, MemOperand(sp, stack_offset)); __ bind(&done); } void ICCompareStub::GenerateSmis(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SMIS); Label miss; __ Or(a2, a1, a0); __ JumpIfNotSmi(a2, &miss); if (GetCondition() == eq) { // For equality we do not care about the sign of the result. __ Subu(v0, a0, a1); } else { // Untag before subtracting to avoid handling overflow. __ SmiUntag(a1); __ SmiUntag(a0); __ Subu(v0, a1, a0); } __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { ASSERT(state_ == CompareIC::HEAP_NUMBERS); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; __ And(a2, a1, Operand(a0)); __ JumpIfSmi(a2, &generic_stub); __ GetObjectType(a0, a2, a2); __ Branch(&maybe_undefined1, ne, a2, Operand(HEAP_NUMBER_TYPE)); __ GetObjectType(a1, a2, a2); __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE)); // Inlining the double comparison and falling back to the general compare // stub if NaN is involved or FPU is unsupported. if (CpuFeatures::IsSupported(FPU)) { CpuFeatures::Scope scope(FPU); // Load left and right operand. __ Subu(a2, a1, Operand(kHeapObjectTag)); __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset)); __ Subu(a2, a0, Operand(kHeapObjectTag)); __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset)); // Return a result of -1, 0, or 1, or use CompareStub for NaNs. Label fpu_eq, fpu_lt; // Test if equal, and also handle the unordered/NaN case. __ BranchF(&fpu_eq, &unordered, eq, f0, f2); // Test if less (unordered case is already handled). __ BranchF(&fpu_lt, NULL, lt, f0, f2); // Otherwise it's greater, so just fall thru, and return. __ li(v0, Operand(GREATER)); __ Ret(); __ bind(&fpu_eq); __ li(v0, Operand(EQUAL)); __ Ret(); __ bind(&fpu_lt); __ li(v0, Operand(LESS)); __ Ret(); } __ bind(&unordered); CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0); __ bind(&generic_stub); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op_)) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&miss, ne, a0, Operand(at)); __ GetObjectType(a1, a2, a2); __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE)); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op_)) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&unordered, eq, a1, Operand(at)); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateSymbols(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SYMBOLS); Label miss; // Registers containing left and right operands respectively. Register left = a1; Register right = a0; Register tmp1 = a2; Register tmp2 = a3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are symbols. __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSymbolTag != 0); __ And(tmp1, tmp1, Operand(tmp2)); __ And(tmp1, tmp1, kIsSymbolMask); __ Branch(&miss, eq, tmp1, Operand(zero_reg)); // Make sure a0 is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(a0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(v0, right); // Symbols are compared by identity. __ Ret(ne, left, Operand(right)); __ li(v0, Operand(Smi::FromInt(EQUAL))); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateStrings(MacroAssembler* masm) { ASSERT(state_ == CompareIC::STRINGS); Label miss; bool equality = Token::IsEqualityOp(op_); // Registers containing left and right operands respectively. Register left = a1; Register right = a0; Register tmp1 = a2; Register tmp2 = a3; Register tmp3 = t0; Register tmp4 = t1; Register tmp5 = t2; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ Or(tmp3, tmp1, tmp2); __ And(tmp5, tmp3, Operand(kIsNotStringMask)); __ Branch(&miss, ne, tmp5, Operand(zero_reg)); // Fast check for identical strings. Label left_ne_right; STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Branch(&left_ne_right, ne, left, Operand(right)); __ Ret(USE_DELAY_SLOT); __ mov(v0, zero_reg); // In the delay slot. __ bind(&left_ne_right); // Handle not identical strings. // Check that both strings are symbols. If they are, we're done // because we already know they are not identical. if (equality) { ASSERT(GetCondition() == eq); STATIC_ASSERT(kSymbolTag != 0); __ And(tmp3, tmp1, Operand(tmp2)); __ And(tmp5, tmp3, Operand(kIsSymbolMask)); Label is_symbol; __ Branch(&is_symbol, eq, tmp5, Operand(zero_reg)); // Make sure a0 is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(a0)); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); // In the delay slot. __ bind(&is_symbol); } // Check that both strings are sequential ASCII. Label runtime; __ JumpIfBothInstanceTypesAreNotSequentialAscii( tmp1, tmp2, tmp3, tmp4, &runtime); // Compare flat ASCII strings. Returns when done. if (equality) { StringCompareStub::GenerateFlatAsciiStringEquals( masm, left, right, tmp1, tmp2, tmp3); } else { StringCompareStub::GenerateCompareFlatAsciiStrings( masm, left, right, tmp1, tmp2, tmp3, tmp4); } // Handle more complex cases in runtime. __ bind(&runtime); __ Push(left, right); if (equality) { __ TailCallRuntime(Runtime::kStringEquals, 2, 1); } else { __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateObjects(MacroAssembler* masm) { ASSERT(state_ == CompareIC::OBJECTS); Label miss; __ And(a2, a1, Operand(a0)); __ JumpIfSmi(a2, &miss); __ GetObjectType(a0, a2, a2); __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE)); __ GetObjectType(a1, a2, a2); __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE)); ASSERT(GetCondition() == eq); __ Ret(USE_DELAY_SLOT); __ subu(v0, a0, a1); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { Label miss; __ And(a2, a1, a0); __ JumpIfSmi(a2, &miss); __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset)); __ Branch(&miss, ne, a2, Operand(known_map_)); __ Branch(&miss, ne, a3, Operand(known_map_)); __ Ret(USE_DELAY_SLOT); __ subu(v0, a0, a1); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1, a0); __ push(ra); __ Push(a1, a0); __ li(t0, Operand(Smi::FromInt(op_))); __ addiu(sp, sp, -kPointerSize); __ CallExternalReference(miss, 3, USE_DELAY_SLOT); __ sw(t0, MemOperand(sp)); // In the delay slot. // Compute the entry point of the rewritten stub. __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Restore registers. __ Pop(a1, a0, ra); } __ Jump(a2); } void DirectCEntryStub::Generate(MacroAssembler* masm) { // No need to pop or drop anything, LeaveExitFrame will restore the old // stack, thus dropping the allocated space for the return value. // The saved ra is after the reserved stack space for the 4 args. __ lw(t9, MemOperand(sp, kCArgsSlotsSize)); if (FLAG_debug_code && FLAG_enable_slow_asserts) { // In case of an error the return address may point to a memory area // filled with kZapValue by the GC. // Dereference the address and check for this. __ lw(t0, MemOperand(t9)); __ Assert(ne, "Received invalid return address.", t0, Operand(reinterpret_cast<uint32_t>(kZapValue))); } __ Jump(t9); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, ExternalReference function) { __ li(t9, Operand(function)); this->GenerateCall(masm, t9); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { __ Move(t9, target); __ AssertStackIsAligned(); // Allocate space for arg slots. __ Subu(sp, sp, kCArgsSlotsSize); // Block the trampoline pool through the whole function to make sure the // number of generated instructions is constant. Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); // We need to get the current 'pc' value, which is not available on MIPS. Label find_ra; masm->bal(&find_ra); // ra = pc + 8. masm->nop(); // Branch delay slot nop. masm->bind(&find_ra); const int kNumInstructionsToJump = 6; masm->addiu(ra, ra, kNumInstructionsToJump * kPointerSize); // Push return address (accessible to GC through exit frame pc). // This spot for ra was reserved in EnterExitFrame. masm->sw(ra, MemOperand(sp, kCArgsSlotsSize)); masm->li(ra, Operand(reinterpret_cast<intptr_t>(GetCode().location()), RelocInfo::CODE_TARGET), CONSTANT_SIZE); // Call the function. masm->Jump(t9); // Make sure the stored 'ra' points to this position. ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra)); } void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle<String> name, Register scratch0) { // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch0; // Capacity is smi 2^n. __ lw(index, FieldMemOperand(properties, kCapacityOffset)); __ Subu(index, index, Operand(1)); __ And(index, index, Operand( Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i)))); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ sll(at, index, 1); __ Addu(index, index, at); Register entity_name = scratch0; // Having undefined at this place means the name is not contained. ASSERT_EQ(kSmiTagSize, 1); Register tmp = properties; __ sll(scratch0, index, 1); __ Addu(tmp, properties, scratch0); __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); ASSERT(!tmp.is(entity_name)); __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); __ Branch(done, eq, entity_name, Operand(tmp)); if (i != kInlinedProbes - 1) { // Load the hole ready for use below: __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); // Stop if found the property. __ Branch(miss, eq, entity_name, Operand(Handle<String>(name))); Label the_hole; __ Branch(&the_hole, eq, entity_name, Operand(tmp)); // Check if the entry name is not a symbol. __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ lbu(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ And(scratch0, entity_name, Operand(kIsSymbolMask)); __ Branch(miss, eq, scratch0, Operand(zero_reg)); __ bind(&the_hole); // Restore the properties. __ lw(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); } } const int spill_mask = (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()); __ MultiPush(spill_mask); __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ li(a1, Operand(Handle<String>(name))); StringDictionaryLookupStub stub(NEGATIVE_LOOKUP); __ CallStub(&stub); __ mov(at, v0); __ MultiPop(spill_mask); __ Branch(done, eq, at, Operand(zero_reg)); __ Branch(miss, ne, at, Operand(zero_reg)); } // Probe the string dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found. Jump to // the |miss| label otherwise. // If lookup was successful |scratch2| will be equal to elements + 4 * index. void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register scratch1, Register scratch2) { ASSERT(!elements.is(scratch1)); ASSERT(!elements.is(scratch2)); ASSERT(!name.is(scratch1)); ASSERT(!name.is(scratch2)); // Assert that name contains a string. if (FLAG_debug_code) __ AbortIfNotString(name); // Compute the capacity mask. __ lw(scratch1, FieldMemOperand(elements, kCapacityOffset)); __ sra(scratch1, scratch1, kSmiTagSize); // convert smi to int __ Subu(scratch1, scratch1, Operand(1)); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ lw(scratch2, FieldMemOperand(name, String::kHashFieldOffset)); if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. ASSERT(StringDictionary::GetProbeOffset(i) < 1 << (32 - String::kHashFieldOffset)); __ Addu(scratch2, scratch2, Operand( StringDictionary::GetProbeOffset(i) << String::kHashShift)); } __ srl(scratch2, scratch2, String::kHashShift); __ And(scratch2, scratch1, scratch2); // Scale the index by multiplying by the element size. ASSERT(StringDictionary::kEntrySize == 3); // scratch2 = scratch2 * 3. __ sll(at, scratch2, 1); __ Addu(scratch2, scratch2, at); // Check if the key is identical to the name. __ sll(at, scratch2, 2); __ Addu(scratch2, elements, at); __ lw(at, FieldMemOperand(scratch2, kElementsStartOffset)); __ Branch(done, eq, name, Operand(at)); } const int spill_mask = (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) & ~(scratch1.bit() | scratch2.bit()); __ MultiPush(spill_mask); if (name.is(a0)) { ASSERT(!elements.is(a1)); __ Move(a1, name); __ Move(a0, elements); } else { __ Move(a0, elements); __ Move(a1, name); } StringDictionaryLookupStub stub(POSITIVE_LOOKUP); __ CallStub(&stub); __ mov(scratch2, a2); __ mov(at, v0); __ MultiPop(spill_mask); __ Branch(done, ne, at, Operand(zero_reg)); __ Branch(miss, eq, at, Operand(zero_reg)); } void StringDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Registers: // result: StringDictionary to probe // a1: key // : StringDictionary to probe. // index_: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Register result = v0; Register dictionary = a0; Register key = a1; Register index = a2; Register mask = a3; Register hash = t0; Register undefined = t1; Register entry_key = t2; Label in_dictionary, maybe_in_dictionary, not_in_dictionary; __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset)); __ sra(mask, mask, kSmiTagSize); __ Subu(mask, mask, Operand(1)); __ lw(hash, FieldMemOperand(key, String::kHashFieldOffset)); __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. // Capacity is smi 2^n. if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. ASSERT(StringDictionary::GetProbeOffset(i) < 1 << (32 - String::kHashFieldOffset)); __ Addu(index, hash, Operand( StringDictionary::GetProbeOffset(i) << String::kHashShift)); } else { __ mov(index, hash); } __ srl(index, index, String::kHashShift); __ And(index, mask, index); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); // index *= 3. __ mov(at, index); __ sll(index, index, 1); __ Addu(index, index, at); ASSERT_EQ(kSmiTagSize, 1); __ sll(index, index, 2); __ Addu(index, index, dictionary); __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset)); // Having undefined at this place means the name is not contained. __ Branch(¬_in_dictionary, eq, entry_key, Operand(undefined)); // Stop if found the property. __ Branch(&in_dictionary, eq, entry_key, Operand(key)); if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { // Check if the entry name is not a symbol. __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); __ lbu(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); __ And(result, entry_key, Operand(kIsSymbolMask)); __ Branch(&maybe_in_dictionary, eq, result, Operand(zero_reg)); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode_ == POSITIVE_LOOKUP) { __ Ret(USE_DELAY_SLOT); __ mov(result, zero_reg); } __ bind(&in_dictionary); __ Ret(USE_DELAY_SLOT); __ li(result, 1); __ bind(¬_in_dictionary); __ Ret(USE_DELAY_SLOT); __ mov(result, zero_reg); } struct AheadOfTimeWriteBarrierStubList { Register object, value, address; RememberedSetAction action; }; #define REG(Name) { kRegister_ ## Name ## _Code } static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = { // Used in RegExpExecStub. { REG(s2), REG(s0), REG(t3), EMIT_REMEMBERED_SET }, { REG(s2), REG(a2), REG(t3), EMIT_REMEMBERED_SET }, // Used in CompileArrayPushCall. // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore. // Also used in KeyedStoreIC::GenerateGeneric. { REG(a3), REG(t0), REG(t1), EMIT_REMEMBERED_SET }, // Used in CompileStoreGlobal. { REG(t0), REG(a1), REG(a2), OMIT_REMEMBERED_SET }, // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField. { REG(a1), REG(a2), REG(a3), EMIT_REMEMBERED_SET }, { REG(a3), REG(a2), REG(a1), EMIT_REMEMBERED_SET }, // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField. { REG(a2), REG(a1), REG(a3), EMIT_REMEMBERED_SET }, { REG(a3), REG(a1), REG(a2), EMIT_REMEMBERED_SET }, // KeyedStoreStubCompiler::GenerateStoreFastElement. { REG(a3), REG(a2), REG(t0), EMIT_REMEMBERED_SET }, { REG(a2), REG(a3), REG(t0), EMIT_REMEMBERED_SET }, // ElementsTransitionGenerator::GenerateSmiOnlyToObject // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble // and ElementsTransitionGenerator::GenerateDoubleToObject { REG(a2), REG(a3), REG(t5), EMIT_REMEMBERED_SET }, { REG(a2), REG(a3), REG(t5), OMIT_REMEMBERED_SET }, // ElementsTransitionGenerator::GenerateDoubleToObject { REG(t2), REG(a2), REG(a0), EMIT_REMEMBERED_SET }, { REG(a2), REG(t2), REG(t5), EMIT_REMEMBERED_SET }, // StoreArrayLiteralElementStub::Generate { REG(t1), REG(a0), REG(t2), EMIT_REMEMBERED_SET }, // Null termination. { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET} }; #undef REG bool RecordWriteStub::IsPregenerated() { for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; !entry->object.is(no_reg); entry++) { if (object_.is(entry->object) && value_.is(entry->value) && address_.is(entry->address) && remembered_set_action_ == entry->action && save_fp_regs_mode_ == kDontSaveFPRegs) { return true; } } return false; } bool StoreBufferOverflowStub::IsPregenerated() { return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated(); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() { StoreBufferOverflowStub stub1(kDontSaveFPRegs); stub1.GetCode()->set_is_pregenerated(true); } void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() { for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; !entry->object.is(no_reg); entry++) { RecordWriteStub stub(entry->object, entry->value, entry->address, entry->action, kDontSaveFPRegs); stub.GetCode()->set_is_pregenerated(true); } } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two branch+nop instructions are generated with labels so as to // get the offset fixed up correctly by the bind(Label*) call. We patch it // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this // position) and the "beq zero_reg, zero_reg, ..." when we start and stop // incremental heap marking. // See RecordWriteStub::Patch for details. __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting); __ nop(); __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting); __ nop(); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } __ Ret(); __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. PatchBranchIntoNop(masm, 0); PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ CheckPageFlag(regs_.object(), regs_.scratch0(), 1 << MemoryChunk::SCAN_ON_SCAVENGE, ne, &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm, mode); regs_.Restore(masm); __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm, mode); regs_.Restore(masm); __ Ret(); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); Register address = a0.is(regs_.address()) ? regs_.scratch0() : regs_.address(); ASSERT(!address.is(regs_.object())); ASSERT(!address.is(a0)); __ Move(address, regs_.address()); __ Move(a0, regs_.object()); if (mode == INCREMENTAL_COMPACTION) { __ Move(a1, address); } else { ASSERT(mode == INCREMENTAL); __ lw(a1, MemOperand(address, 0)); } __ li(a2, Operand(ExternalReference::isolate_address())); AllowExternalCallThatCantCauseGC scope(masm); if (mode == INCREMENTAL_COMPACTION) { __ CallCFunction( ExternalReference::incremental_evacuation_record_write_function( masm->isolate()), argument_count); } else { ASSERT(mode == INCREMENTAL); __ CallCFunction( ExternalReference::incremental_marking_record_write_function( masm->isolate()), argument_count); } regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_scratch; // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&on_black); // Get the value from the slot. __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, eq, &ensure_not_white); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq, &need_incremental); __ bind(&ensure_not_white); } // We need extra registers for this, so we push the object and the address // register temporarily. __ Push(regs_.object(), regs_.address()); __ EnsureNotWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. regs_.address(), // Scratch. &need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : element value to store // -- a1 : array literal // -- a2 : map of array literal // -- a3 : element index as smi // -- t0 : array literal index in function as smi // ----------------------------------- Label element_done; Label double_elements; Label smi_element; Label slow_elements; Label fast_elements; __ CheckFastElements(a2, t1, &double_elements); // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS __ JumpIfSmi(a0, &smi_element); __ CheckFastSmiOnlyElements(a2, t1, &fast_elements); // Store into the array literal requires a elements transition. Call into // the runtime. __ bind(&slow_elements); // call. __ Push(a1, a3, a0); __ lw(t1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ lw(t1, FieldMemOperand(t1, JSFunction::kLiteralsOffset)); __ Push(t1, t0); __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); // Array literal has ElementsKind of FAST_ELEMENTS and value is an object. __ bind(&fast_elements); __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset)); __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize); __ Addu(t2, t1, t2); __ Addu(t2, t2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ sw(a0, MemOperand(t2, 0)); // Update the write barrier for the array store. __ RecordWrite(t1, t2, a0, kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or // FAST_ELEMENTS, and value is Smi. __ bind(&smi_element); __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset)); __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize); __ Addu(t2, t1, t2); __ sw(a0, FieldMemOperand(t2, FixedArray::kHeaderSize)); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. __ bind(&double_elements); __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset)); __ StoreNumberToDoubleElements(a0, a3, a1, t1, t2, t3, t5, a2, &slow_elements); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS