// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "mips/lithium-codegen-mips.h" #include "mips/lithium-gap-resolver-mips.h" #include "code-stubs.h" #include "stub-cache.h" namespace v8 { namespace internal { class SafepointGenerator : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) { } virtual ~SafepointGenerator() { } virtual void BeforeCall(int call_size) const { } virtual void AfterCall() const { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; #define __ masm()-> bool LCodeGen::GenerateCode() { HPhase phase("Z_Code generation", chunk()); ASSERT(is_unused()); status_ = GENERATING; CpuFeatures::Scope scope(FPU); CodeStub::GenerateFPStubs(); // Open a frame scope to indicate that there is a frame on the stack. The // NONE indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::NONE); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle<Code> code) { ASSERT(is_done()); code->set_stack_slots(GetStackSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); } void LCodeGen::Abort(const char* format, ...) { if (FLAG_trace_bailout) { SmartArrayPointer<char> name( info()->shared_info()->DebugName()->ToCString()); PrintF("Aborting LCodeGen in @\"%s\": ", *name); va_list arguments; va_start(arguments, format); OS::VPrint(format, arguments); va_end(arguments); PrintF("\n"); } status_ = ABORTED; } void LCodeGen::Comment(const char* format, ...) { if (!FLAG_code_comments) return; char buffer[4 * KB]; StringBuilder builder(buffer, ARRAY_SIZE(buffer)); va_list arguments; va_start(arguments, format); builder.AddFormattedList(format, arguments); va_end(arguments); // Copy the string before recording it in the assembler to avoid // issues when the stack allocated buffer goes out of scope. size_t length = builder.position(); Vector<char> copy = Vector<char>::New(length + 1); memcpy(copy.start(), builder.Finalize(), copy.length()); masm()->RecordComment(copy.start()); } bool LCodeGen::GeneratePrologue() { ASSERT(is_generating()); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { __ stop("stop_at"); } #endif // a1: Callee's JS function. // cp: Callee's context. // fp: Caller's frame pointer. // lr: Caller's pc. // Strict mode functions and builtins need to replace the receiver // with undefined when called as functions (without an explicit // receiver object). r5 is zero for method calls and non-zero for // function calls. if (!info_->is_classic_mode() || info_->is_native()) { Label ok; __ Branch(&ok, eq, t1, Operand(zero_reg)); int receiver_offset = scope()->num_parameters() * kPointerSize; __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ sw(a2, MemOperand(sp, receiver_offset)); __ bind(&ok); } __ Push(ra, fp, cp, a1); __ Addu(fp, sp, Operand(2 * kPointerSize)); // Adj. FP to point to saved FP. // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { if (FLAG_debug_code) { __ li(a0, Operand(slots)); __ li(a2, Operand(kSlotsZapValue)); Label loop; __ bind(&loop); __ push(a2); __ Subu(a0, a0, 1); __ Branch(&loop, ne, a0, Operand(zero_reg)); } else { __ Subu(sp, sp, Operand(slots * kPointerSize)); } } // Possibly allocate a local context. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment(";;; Allocate local context"); // Argument to NewContext is the function, which is in a1. __ push(a1); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewFunctionContext, 1); } RecordSafepoint(Safepoint::kNoLazyDeopt); // Context is returned in both v0 and cp. It replaces the context // passed to us. It's saved in the stack and kept live in cp. __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* var = scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ lw(a0, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextOperand(cp, var->index()); __ sw(a0, target); // Update the write barrier. This clobbers a3 and a0. __ RecordWriteContextSlot( cp, target.offset(), a0, a3, kRAHasBeenSaved, kSaveFPRegs); } } Comment(";;; End allocate local context"); } // Trace the call. if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } EnsureSpaceForLazyDeopt(); return !is_aborted(); } bool LCodeGen::GenerateBody() { ASSERT(is_generating()); bool emit_instructions = true; for (current_instruction_ = 0; !is_aborted() && current_instruction_ < instructions_->length(); current_instruction_++) { LInstruction* instr = instructions_->at(current_instruction_); if (instr->IsLabel()) { LLabel* label = LLabel::cast(instr); emit_instructions = !label->HasReplacement(); } if (emit_instructions) { Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic()); instr->CompileToNative(this); } } return !is_aborted(); } bool LCodeGen::GenerateDeferredCode() { ASSERT(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; __ bind(code->entry()); Comment(";;; Deferred code @%d: %s.", code->instruction_index(), code->instr()->Mnemonic()); code->Generate(); __ jmp(code->exit()); } } // Deferred code is the last part of the instruction sequence. Mark // the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateDeoptJumpTable() { // TODO(plind): not clear that this will have advantage for MIPS. // Skipping it for now. Raised issue #100 for this. Abort("Unimplemented: %s", "GenerateDeoptJumpTable"); return false; } bool LCodeGen::GenerateSafepointTable() { ASSERT(is_done()); safepoints_.Emit(masm(), GetStackSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int index) const { return Register::FromAllocationIndex(index); } DoubleRegister LCodeGen::ToDoubleRegister(int index) const { return DoubleRegister::FromAllocationIndex(index); } Register LCodeGen::ToRegister(LOperand* op) const { ASSERT(op->IsRegister()); return ToRegister(op->index()); } Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { if (op->IsRegister()) { return ToRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); Handle<Object> literal = chunk_->LookupLiteral(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { ASSERT(literal->IsNumber()); __ li(scratch, Operand(static_cast<int32_t>(literal->Number()))); } else if (r.IsDouble()) { Abort("EmitLoadRegister: Unsupported double immediate."); } else { ASSERT(r.IsTagged()); if (literal->IsSmi()) { __ li(scratch, Operand(literal)); } else { __ LoadHeapObject(scratch, Handle<HeapObject>::cast(literal)); } } return scratch; } else if (op->IsStackSlot() || op->IsArgument()) { __ lw(scratch, ToMemOperand(op)); return scratch; } UNREACHABLE(); return scratch; } DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { ASSERT(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, FloatRegister flt_scratch, DoubleRegister dbl_scratch) { if (op->IsDoubleRegister()) { return ToDoubleRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); Handle<Object> literal = chunk_->LookupLiteral(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { ASSERT(literal->IsNumber()); __ li(at, Operand(static_cast<int32_t>(literal->Number()))); __ mtc1(at, flt_scratch); __ cvt_d_w(dbl_scratch, flt_scratch); return dbl_scratch; } else if (r.IsDouble()) { Abort("unsupported double immediate"); } else if (r.IsTagged()) { Abort("unsupported tagged immediate"); } } else if (op->IsStackSlot() || op->IsArgument()) { MemOperand mem_op = ToMemOperand(op); __ ldc1(dbl_scratch, mem_op); return dbl_scratch; } UNREACHABLE(); return dbl_scratch; } Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { Handle<Object> literal = chunk_->LookupLiteral(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged()); return literal; } bool LCodeGen::IsInteger32(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsInteger32(); } int LCodeGen::ToInteger32(LConstantOperand* op) const { Handle<Object> value = chunk_->LookupLiteral(op); ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32()); ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) == value->Number()); return static_cast<int32_t>(value->Number()); } double LCodeGen::ToDouble(LConstantOperand* op) const { Handle<Object> value = chunk_->LookupLiteral(op); return value->Number(); } Operand LCodeGen::ToOperand(LOperand* op) { if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); Handle<Object> literal = chunk_->LookupLiteral(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { ASSERT(literal->IsNumber()); return Operand(static_cast<int32_t>(literal->Number())); } else if (r.IsDouble()) { Abort("ToOperand Unsupported double immediate."); } ASSERT(r.IsTagged()); return Operand(literal); } else if (op->IsRegister()) { return Operand(ToRegister(op)); } else if (op->IsDoubleRegister()) { Abort("ToOperand IsDoubleRegister unimplemented"); return Operand(0); } // Stack slots not implemented, use ToMemOperand instead. UNREACHABLE(); return Operand(0); } MemOperand LCodeGen::ToMemOperand(LOperand* op) const { ASSERT(!op->IsRegister()); ASSERT(!op->IsDoubleRegister()); ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); int index = op->index(); if (index >= 0) { // Local or spill slot. Skip the frame pointer, function, and // context in the fixed part of the frame. return MemOperand(fp, -(index + 3) * kPointerSize); } else { // Incoming parameter. Skip the return address. return MemOperand(fp, -(index - 1) * kPointerSize); } } MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { ASSERT(op->IsDoubleStackSlot()); int index = op->index(); if (index >= 0) { // Local or spill slot. Skip the frame pointer, function, context, // and the first word of the double in the fixed part of the frame. return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize); } else { // Incoming parameter. Skip the return address and the first word of // the double. return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize); } } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->values()->length(); // The output frame height does not include the parameters. int height = translation_size - environment->parameter_count(); WriteTranslation(environment->outer(), translation); int closure_id = DefineDeoptimizationLiteral(environment->closure()); switch (environment->frame_type()) { case JS_FUNCTION: translation->BeginJSFrame(environment->ast_id(), closure_id, height); break; case JS_CONSTRUCT: translation->BeginConstructStubFrame(closure_id, translation_size); break; case ARGUMENTS_ADAPTOR: translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); break; default: UNREACHABLE(); } for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); // spilled_registers_ and spilled_double_registers_ are either // both NULL or both set. if (environment->spilled_registers() != NULL && value != NULL) { if (value->IsRegister() && environment->spilled_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation(translation, environment->spilled_registers()[value->index()], environment->HasTaggedValueAt(i)); } else if ( value->IsDoubleRegister() && environment->spilled_double_registers()[value->index()] != NULL) { translation->MarkDuplicate(); AddToTranslation( translation, environment->spilled_double_registers()[value->index()], false); } } AddToTranslation(translation, value, environment->HasTaggedValueAt(i)); } } void LCodeGen::AddToTranslation(Translation* translation, LOperand* op, bool is_tagged) { if (op == NULL) { // TODO(twuerthinger): Introduce marker operands to indicate that this value // is not present and must be reconstructed from the deoptimizer. Currently // this is only used for the arguments object. translation->StoreArgumentsObject(); } else if (op->IsStackSlot()) { if (is_tagged) { translation->StoreStackSlot(op->index()); } else { translation->StoreInt32StackSlot(op->index()); } } else if (op->IsDoubleStackSlot()) { translation->StoreDoubleStackSlot(op->index()); } else if (op->IsArgument()) { ASSERT(is_tagged); int src_index = GetStackSlotCount() + op->index(); translation->StoreStackSlot(src_index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { DoubleRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(literal); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode) { ASSERT(instr != NULL); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); __ Call(code, mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode); } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr) { ASSERT(instr != NULL); LPointerMap* pointers = instr->pointer_map(); ASSERT(pointers != NULL); RecordPosition(pointers->position()); __ CallRuntime(function, num_arguments); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr) { __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode) { if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; int jsframe_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; if (e->frame_type() == JS_FUNCTION) { ++jsframe_count; } } Translation translation(&translations_, frame_count, jsframe_count); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment); } } void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment, Register src1, const Operand& src2) { RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); ASSERT(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER); if (entry == NULL) { Abort("bailout was not prepared"); return; } ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on MIPS. if (FLAG_deopt_every_n_times == 1 && info_->shared_info()->opt_count() == id) { __ Jump(entry, RelocInfo::RUNTIME_ENTRY); return; } if (FLAG_trap_on_deopt) { Label skip; if (cc != al) { __ Branch(&skip, NegateCondition(cc), src1, src2); } __ stop("trap_on_deopt"); __ bind(&skip); } // TODO(plind): The Arm port is a little different here, due to their // DeOpt jump table, which is not used for Mips yet. __ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc, src1, src2); } void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { int length = deoptimizations_.length(); if (length == 0) return; Handle<DeoptimizationInputData> data = factory()->NewDeoptimizationInputData(length, TENURED); Handle<ByteArray> translations = translations_.CreateByteArray(); data->SetTranslationByteArray(*translations); data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); Handle<FixedArray> literals = factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); for (int i = 0; i < deoptimization_literals_.length(); i++) { literals->set(i, *deoptimization_literals_[i]); } data->SetLiteralArray(*literals); data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id())); data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); // Populate the deoptimization entries. for (int i = 0; i < length; i++) { LEnvironment* env = deoptimizations_[i]; data->SetAstId(i, Smi::FromInt(env->ast_id())); data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); data->SetArgumentsStackHeight(i, Smi::FromInt(env->arguments_stack_height())); data->SetPc(i, Smi::FromInt(env->pc_offset())); } code->set_deoptimization_data(*data); } int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { int result = deoptimization_literals_.length(); for (int i = 0; i < deoptimization_literals_.length(); ++i) { if (deoptimization_literals_[i].is_identical_to(literal)) return i; } deoptimization_literals_.Add(literal); return result; } void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { ASSERT(deoptimization_literals_.length() == 0); const ZoneList<Handle<JSFunction> >* inlined_closures = chunk()->inlined_closures(); for (int i = 0, length = inlined_closures->length(); i < length; i++) { DefineDeoptimizationLiteral(inlined_closures->at(i)); } inlined_function_count_ = deoptimization_literals_.length(); } void LCodeGen::RecordSafepointWithLazyDeopt( LInstruction* instr, SafepointMode safepoint_mode) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { ASSERT(expected_safepoint_kind_ == kind); const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer)); } } if (kind & Safepoint::kWithRegisters) { // Register cp always contains a pointer to the context. safepoint.DefinePointerRegister(cp); } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { LPointerMap empty_pointers(RelocInfo::kNoPosition); RecordSafepoint(&empty_pointers, deopt_mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint( pointers, Safepoint::kWithRegisters, arguments, deopt_mode); } void LCodeGen::RecordSafepointWithRegistersAndDoubles( LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint( pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode); } void LCodeGen::RecordPosition(int position) { if (position == RelocInfo::kNoPosition) return; masm()->positions_recorder()->RecordPosition(position); } void LCodeGen::DoLabel(LLabel* label) { if (label->is_loop_header()) { Comment(";;; B%d - LOOP entry", label->block_id()); } else { Comment(";;; B%d", label->block_id()); } __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoCallStub(LCallStub* instr) { ASSERT(ToRegister(instr->result()).is(v0)); switch (instr->hydrogen()->major_key()) { case CodeStub::RegExpConstructResult: { RegExpConstructResultStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::RegExpExec: { RegExpExecStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::SubString: { SubStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::NumberToString: { NumberToStringStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringAdd: { StringAddStub stub(NO_STRING_ADD_FLAGS); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::StringCompare: { StringCompareStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } case CodeStub::TranscendentalCache: { __ lw(a0, MemOperand(sp, 0)); TranscendentalCacheStub stub(instr->transcendental_type(), TranscendentalCacheStub::TAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); break; } default: UNREACHABLE(); } } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { // Nothing to do. } void LCodeGen::DoModI(LModI* instr) { Register scratch = scratch0(); const Register left = ToRegister(instr->InputAt(0)); const Register result = ToRegister(instr->result()); Label done; if (instr->hydrogen()->HasPowerOf2Divisor()) { Register scratch = scratch0(); ASSERT(!left.is(scratch)); __ mov(scratch, left); int32_t p2constant = HConstant::cast( instr->hydrogen()->right())->Integer32Value(); ASSERT(p2constant != 0); // Result always takes the sign of the dividend (left). p2constant = abs(p2constant); Label positive_dividend; __ Branch(USE_DELAY_SLOT, &positive_dividend, ge, left, Operand(zero_reg)); __ subu(result, zero_reg, left); __ And(result, result, p2constant - 1); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); } __ Branch(USE_DELAY_SLOT, &done); __ subu(result, zero_reg, result); __ bind(&positive_dividend); __ And(result, scratch, p2constant - 1); } else { // div runs in the background while we check for special cases. Register right = EmitLoadRegister(instr->InputAt(1), scratch); __ div(left, right); // Check for x % 0. if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg)); } __ Branch(USE_DELAY_SLOT, &done, ge, left, Operand(zero_reg)); __ mfhi(result); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); } } __ bind(&done); } void LCodeGen::DoDivI(LDivI* instr) { const Register left = ToRegister(instr->InputAt(0)); const Register right = ToRegister(instr->InputAt(1)); const Register result = ToRegister(instr->result()); // On MIPS div is asynchronous - it will run in the background while we // check for special cases. __ div(left, right); // Check for x / 0. if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIf(eq, instr->environment(), right, Operand(zero_reg)); } // Check for (0 / -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label left_not_zero; __ Branch(&left_not_zero, ne, left, Operand(zero_reg)); DeoptimizeIf(lt, instr->environment(), right, Operand(zero_reg)); __ bind(&left_not_zero); } // Check for (-kMinInt / -1). if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { Label left_not_min_int; __ Branch(&left_not_min_int, ne, left, Operand(kMinInt)); DeoptimizeIf(eq, instr->environment(), right, Operand(-1)); __ bind(&left_not_min_int); } __ mfhi(result); DeoptimizeIf(ne, instr->environment(), result, Operand(zero_reg)); __ mflo(result); } void LCodeGen::DoMulI(LMulI* instr) { Register scratch = scratch0(); Register result = ToRegister(instr->result()); // Note that result may alias left. Register left = ToRegister(instr->InputAt(0)); LOperand* right_op = instr->InputAt(1); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); bool bailout_on_minus_zero = instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); if (right_op->IsConstantOperand() && !can_overflow) { // Use optimized code for specific constants. int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); if (bailout_on_minus_zero && (constant < 0)) { // The case of a null constant will be handled separately. // If constant is negative and left is null, the result should be -0. DeoptimizeIf(eq, instr->environment(), left, Operand(zero_reg)); } switch (constant) { case -1: __ Subu(result, zero_reg, left); break; case 0: if (bailout_on_minus_zero) { // If left is strictly negative and the constant is null, the // result is -0. Deoptimize if required, otherwise return 0. DeoptimizeIf(lt, instr->environment(), left, Operand(zero_reg)); } __ mov(result, zero_reg); break; case 1: // Nothing to do. __ Move(result, left); break; default: // Multiplying by powers of two and powers of two plus or minus // one can be done faster with shifted operands. // For other constants we emit standard code. int32_t mask = constant >> 31; uint32_t constant_abs = (constant + mask) ^ mask; if (IsPowerOf2(constant_abs) || IsPowerOf2(constant_abs - 1) || IsPowerOf2(constant_abs + 1)) { if (IsPowerOf2(constant_abs)) { int32_t shift = WhichPowerOf2(constant_abs); __ sll(result, left, shift); } else if (IsPowerOf2(constant_abs - 1)) { int32_t shift = WhichPowerOf2(constant_abs - 1); __ sll(result, left, shift); __ Addu(result, result, left); } else if (IsPowerOf2(constant_abs + 1)) { int32_t shift = WhichPowerOf2(constant_abs + 1); __ sll(result, left, shift); __ Subu(result, result, left); } // Correct the sign of the result is the constant is negative. if (constant < 0) { __ Subu(result, zero_reg, result); } } else { // Generate standard code. __ li(at, constant); __ Mul(result, left, at); } } } else { Register right = EmitLoadRegister(right_op, scratch); if (bailout_on_minus_zero) { __ Or(ToRegister(instr->TempAt(0)), left, right); } if (can_overflow) { // hi:lo = left * right. __ mult(left, right); __ mfhi(scratch); __ mflo(result); __ sra(at, result, 31); DeoptimizeIf(ne, instr->environment(), scratch, Operand(at)); } else { __ Mul(result, left, right); } if (bailout_on_minus_zero) { // Bail out if the result is supposed to be negative zero. Label done; __ Branch(&done, ne, result, Operand(zero_reg)); DeoptimizeIf(lt, instr->environment(), ToRegister(instr->TempAt(0)), Operand(zero_reg)); __ bind(&done); } } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left_op = instr->InputAt(0); LOperand* right_op = instr->InputAt(1); ASSERT(left_op->IsRegister()); Register left = ToRegister(left_op); Register result = ToRegister(instr->result()); Operand right(no_reg); if (right_op->IsStackSlot() || right_op->IsArgument()) { right = Operand(EmitLoadRegister(right_op, at)); } else { ASSERT(right_op->IsRegister() || right_op->IsConstantOperand()); right = ToOperand(right_op); } switch (instr->op()) { case Token::BIT_AND: __ And(result, left, right); break; case Token::BIT_OR: __ Or(result, left, right); break; case Token::BIT_XOR: __ Xor(result, left, right); break; default: UNREACHABLE(); break; } } void LCodeGen::DoShiftI(LShiftI* instr) { // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so // result may alias either of them. LOperand* right_op = instr->InputAt(1); Register left = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); if (right_op->IsRegister()) { // No need to mask the right operand on MIPS, it is built into the variable // shift instructions. switch (instr->op()) { case Token::SAR: __ srav(result, left, ToRegister(right_op)); break; case Token::SHR: __ srlv(result, left, ToRegister(right_op)); if (instr->can_deopt()) { DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg)); } break; case Token::SHL: __ sllv(result, left, ToRegister(right_op)); break; default: UNREACHABLE(); break; } } else { // Mask the right_op operand. int value = ToInteger32(LConstantOperand::cast(right_op)); uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); switch (instr->op()) { case Token::SAR: if (shift_count != 0) { __ sra(result, left, shift_count); } else { __ Move(result, left); } break; case Token::SHR: if (shift_count != 0) { __ srl(result, left, shift_count); } else { if (instr->can_deopt()) { __ And(at, left, Operand(0x80000000)); DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg)); } __ Move(result, left); } break; case Token::SHL: if (shift_count != 0) { __ sll(result, left, shift_count); } else { __ Move(result, left); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (!can_overflow) { if (right->IsStackSlot() || right->IsArgument()) { Register right_reg = EmitLoadRegister(right, at); __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg)); } else { ASSERT(right->IsRegister() || right->IsConstantOperand()); __ Subu(ToRegister(result), ToRegister(left), ToOperand(right)); } } else { // can_overflow. Register overflow = scratch0(); Register scratch = scratch1(); if (right->IsStackSlot() || right->IsArgument() || right->IsConstantOperand()) { Register right_reg = EmitLoadRegister(right, scratch); __ SubuAndCheckForOverflow(ToRegister(result), ToRegister(left), right_reg, overflow); // Reg at also used as scratch. } else { ASSERT(right->IsRegister()); // Due to overflow check macros not supporting constant operands, // handling the IsConstantOperand case was moved to prev if clause. __ SubuAndCheckForOverflow(ToRegister(result), ToRegister(left), ToRegister(right), overflow); // Reg at also used as scratch. } DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg)); } } void LCodeGen::DoConstantI(LConstantI* instr) { ASSERT(instr->result()->IsRegister()); __ li(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantD(LConstantD* instr) { ASSERT(instr->result()->IsDoubleRegister()); DoubleRegister result = ToDoubleRegister(instr->result()); double v = instr->value(); __ Move(result, v); } void LCodeGen::DoConstantT(LConstantT* instr) { Handle<Object> value = instr->value(); if (value->IsSmi()) { __ li(ToRegister(instr->result()), Operand(value)); } else { __ LoadHeapObject(ToRegister(instr->result()), Handle<HeapObject>::cast(value)); } } void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ lw(result, FieldMemOperand(array, JSArray::kLengthOffset)); } void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) { Register result = ToRegister(instr->result()); Register array = ToRegister(instr->InputAt(0)); __ lw(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset)); } void LCodeGen::DoElementsKind(LElementsKind* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->InputAt(0)); // Load map into |result|. __ lw(result, FieldMemOperand(input, HeapObject::kMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following bit field extraction takes care of that anyway. __ lbu(result, FieldMemOperand(result, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ Ext(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount); } void LCodeGen::DoValueOf(LValueOf* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Register map = ToRegister(instr->TempAt(0)); Label done; // If the object is a smi return the object. __ Move(result, input); __ JumpIfSmi(input, &done); // If the object is not a value type, return the object. __ GetObjectType(input, map, map); __ Branch(&done, ne, map, Operand(JS_VALUE_TYPE)); __ lw(result, FieldMemOperand(input, JSValue::kValueOffset)); __ bind(&done); } void LCodeGen::DoDateField(LDateField* instr) { Register object = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Register scratch = ToRegister(instr->TempAt(0)); Smi* index = instr->index(); Label runtime, done; ASSERT(object.is(a0)); ASSERT(result.is(v0)); ASSERT(!scratch.is(scratch0())); ASSERT(!scratch.is(object)); #ifdef DEBUG __ AbortIfSmi(object); __ GetObjectType(object, scratch, scratch); __ Assert(eq, "Trying to get date field from non-date.", scratch, Operand(JS_DATE_TYPE)); #endif if (index->value() == 0) { __ lw(result, FieldMemOperand(object, JSDate::kValueOffset)); } else { if (index->value() < JSDate::kFirstUncachedField) { ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); __ li(scratch, Operand(stamp)); __ lw(scratch, MemOperand(scratch)); __ lw(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset)); __ Branch(&runtime, ne, scratch, Operand(scratch0())); __ lw(result, FieldMemOperand(object, JSDate::kValueOffset + kPointerSize * index->value())); __ jmp(&done); } __ bind(&runtime); __ PrepareCallCFunction(2, scratch); __ li(a1, Operand(index)); __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); __ bind(&done); } } void LCodeGen::DoBitNotI(LBitNotI* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); __ Nor(result, zero_reg, Operand(input)); } void LCodeGen::DoThrow(LThrow* instr) { Register input_reg = EmitLoadRegister(instr->InputAt(0), at); __ push(input_reg); CallRuntime(Runtime::kThrow, 1, instr); if (FLAG_debug_code) { __ stop("Unreachable code."); } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); LOperand* result = instr->result(); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (!can_overflow) { if (right->IsStackSlot() || right->IsArgument()) { Register right_reg = EmitLoadRegister(right, at); __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg)); } else { ASSERT(right->IsRegister() || right->IsConstantOperand()); __ Addu(ToRegister(result), ToRegister(left), ToOperand(right)); } } else { // can_overflow. Register overflow = scratch0(); Register scratch = scratch1(); if (right->IsStackSlot() || right->IsArgument() || right->IsConstantOperand()) { Register right_reg = EmitLoadRegister(right, scratch); __ AdduAndCheckForOverflow(ToRegister(result), ToRegister(left), right_reg, overflow); // Reg at also used as scratch. } else { ASSERT(right->IsRegister()); // Due to overflow check macros not supporting constant operands, // handling the IsConstantOperand case was moved to prev if clause. __ AdduAndCheckForOverflow(ToRegister(result), ToRegister(left), ToRegister(right), overflow); // Reg at also used as scratch. } DeoptimizeIf(lt, instr->environment(), overflow, Operand(zero_reg)); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { DoubleRegister left = ToDoubleRegister(instr->InputAt(0)); DoubleRegister right = ToDoubleRegister(instr->InputAt(1)); DoubleRegister result = ToDoubleRegister(instr->result()); switch (instr->op()) { case Token::ADD: __ add_d(result, left, right); break; case Token::SUB: __ sub_d(result, left, right); break; case Token::MUL: __ mul_d(result, left, right); break; case Token::DIV: __ div_d(result, left, right); break; case Token::MOD: { // Save a0-a3 on the stack. RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit(); __ MultiPush(saved_regs); __ PrepareCallCFunction(0, 2, scratch0()); __ SetCallCDoubleArguments(left, right); __ CallCFunction( ExternalReference::double_fp_operation(Token::MOD, isolate()), 0, 2); // Move the result in the double result register. __ GetCFunctionDoubleResult(result); // Restore saved register. __ MultiPop(saved_regs); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(a1)); ASSERT(ToRegister(instr->InputAt(1)).is(a0)); ASSERT(ToRegister(instr->result()).is(v0)); BinaryOpStub stub(instr->op(), NO_OVERWRITE); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); // Other arch use a nop here, to signal that there is no inlined // patchable code. Mips does not need the nop, since our marker // instruction (andi zero_reg) will never be used in normal code. } int LCodeGen::GetNextEmittedBlock(int block) { for (int i = block + 1; i < graph()->blocks()->length(); ++i) { LLabel* label = chunk_->GetLabel(i); if (!label->HasReplacement()) return i; } return -1; } void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc, Register src1, const Operand& src2) { int next_block = GetNextEmittedBlock(current_block_); right_block = chunk_->LookupDestination(right_block); left_block = chunk_->LookupDestination(left_block); if (right_block == left_block) { EmitGoto(left_block); } else if (left_block == next_block) { __ Branch(chunk_->GetAssemblyLabel(right_block), NegateCondition(cc), src1, src2); } else if (right_block == next_block) { __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2); } else { __ Branch(chunk_->GetAssemblyLabel(left_block), cc, src1, src2); __ Branch(chunk_->GetAssemblyLabel(right_block)); } } void LCodeGen::EmitBranchF(int left_block, int right_block, Condition cc, FPURegister src1, FPURegister src2) { int next_block = GetNextEmittedBlock(current_block_); right_block = chunk_->LookupDestination(right_block); left_block = chunk_->LookupDestination(left_block); if (right_block == left_block) { EmitGoto(left_block); } else if (left_block == next_block) { __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL, NegateCondition(cc), src1, src2); } else if (right_block == next_block) { __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2); } else { __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL, cc, src1, src2); __ Branch(chunk_->GetAssemblyLabel(right_block)); } } void LCodeGen::DoBranch(LBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Representation r = instr->hydrogen()->value()->representation(); if (r.IsInteger32()) { Register reg = ToRegister(instr->InputAt(0)); EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg)); } else if (r.IsDouble()) { DoubleRegister reg = ToDoubleRegister(instr->InputAt(0)); // Test the double value. Zero and NaN are false. EmitBranchF(true_block, false_block, ne, reg, kDoubleRegZero); } else { ASSERT(r.IsTagged()); Register reg = ToRegister(instr->InputAt(0)); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { __ LoadRoot(at, Heap::kTrueValueRootIndex); EmitBranch(true_block, false_block, eq, reg, Operand(at)); } else if (type.IsSmi()) { EmitBranch(true_block, false_block, ne, reg, Operand(zero_reg)); } else { Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); // Avoid deopts in the case where we've never executed this path before. if (expected.IsEmpty()) expected = ToBooleanStub::all_types(); if (expected.Contains(ToBooleanStub::UNDEFINED)) { // undefined -> false. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(false_label, eq, reg, Operand(at)); } if (expected.Contains(ToBooleanStub::BOOLEAN)) { // Boolean -> its value. __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(true_label, eq, reg, Operand(at)); __ LoadRoot(at, Heap::kFalseValueRootIndex); __ Branch(false_label, eq, reg, Operand(at)); } if (expected.Contains(ToBooleanStub::NULL_TYPE)) { // 'null' -> false. __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(false_label, eq, reg, Operand(at)); } if (expected.Contains(ToBooleanStub::SMI)) { // Smis: 0 -> false, all other -> true. __ Branch(false_label, eq, reg, Operand(zero_reg)); __ JumpIfSmi(reg, true_label); } else if (expected.NeedsMap()) { // If we need a map later and have a Smi -> deopt. __ And(at, reg, Operand(kSmiTagMask)); DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); } const Register map = scratch0(); if (expected.NeedsMap()) { __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset)); if (expected.CanBeUndetectable()) { // Undetectable -> false. __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset)); __ And(at, at, Operand(1 << Map::kIsUndetectable)); __ Branch(false_label, ne, at, Operand(zero_reg)); } } if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { // spec object -> true. __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(true_label, ge, at, Operand(FIRST_SPEC_OBJECT_TYPE)); } if (expected.Contains(ToBooleanStub::STRING)) { // String value -> false iff empty. Label not_string; __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(¬_string, ge , at, Operand(FIRST_NONSTRING_TYPE)); __ lw(at, FieldMemOperand(reg, String::kLengthOffset)); __ Branch(true_label, ne, at, Operand(zero_reg)); __ Branch(false_label); __ bind(¬_string); } if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { // heap number -> false iff +0, -0, or NaN. DoubleRegister dbl_scratch = double_scratch0(); Label not_heap_number; __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); __ Branch(¬_heap_number, ne, map, Operand(at)); __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); __ BranchF(true_label, false_label, ne, dbl_scratch, kDoubleRegZero); // Falls through if dbl_scratch == 0. __ Branch(false_label); __ bind(¬_heap_number); } // We've seen something for the first time -> deopt. DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg)); } } } void LCodeGen::EmitGoto(int block) { block = chunk_->LookupDestination(block); int next_block = GetNextEmittedBlock(current_block_); if (block != next_block) { __ jmp(chunk_->GetAssemblyLabel(block)); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = kNoCondition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = eq; break; case Token::LT: cond = is_unsigned ? lo : lt; break; case Token::GT: cond = is_unsigned ? hi : gt; break; case Token::LTE: cond = is_unsigned ? ls : le; break; case Token::GTE: cond = is_unsigned ? hs : ge; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) { LOperand* left = instr->InputAt(0); LOperand* right = instr->InputAt(1); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); Condition cond = TokenToCondition(instr->op(), false); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = EvalComparison(instr->op(), left_val, right_val) ? true_block : false_block; EmitGoto(next_block); } else { if (instr->is_double()) { // Compare left and right as doubles and load the // resulting flags into the normal status register. FPURegister left_reg = ToDoubleRegister(left); FPURegister right_reg = ToDoubleRegister(right); // If a NaN is involved, i.e. the result is unordered, // jump to false block label. __ BranchF(NULL, chunk_->GetAssemblyLabel(false_block), eq, left_reg, right_reg); EmitBranchF(true_block, false_block, cond, left_reg, right_reg); } else { Register cmp_left; Operand cmp_right = Operand(0); if (right->IsConstantOperand()) { cmp_left = ToRegister(left); cmp_right = Operand(ToInteger32(LConstantOperand::cast(right))); } else if (left->IsConstantOperand()) { cmp_left = ToRegister(right); cmp_right = Operand(ToInteger32(LConstantOperand::cast(left))); // We transposed the operands. Reverse the condition. cond = ReverseCondition(cond); } else { cmp_left = ToRegister(left); cmp_right = Operand(ToRegister(right)); } EmitBranch(true_block, false_block, cond, cmp_left, cmp_right); } } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->InputAt(0)); Register right = ToRegister(instr->InputAt(1)); int false_block = chunk_->LookupDestination(instr->false_block_id()); int true_block = chunk_->LookupDestination(instr->true_block_id()); EmitBranch(true_block, false_block, eq, left, Operand(right)); } void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) { Register left = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); EmitBranch(true_block, false_block, eq, left, Operand(instr->hydrogen()->right())); } void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) { Register scratch = scratch0(); Register reg = ToRegister(instr->InputAt(0)); int false_block = chunk_->LookupDestination(instr->false_block_id()); // If the expression is known to be untagged or a smi, then it's definitely // not null, and it can't be a an undetectable object. if (instr->hydrogen()->representation().IsSpecialization() || instr->hydrogen()->type().IsSmi()) { EmitGoto(false_block); return; } int true_block = chunk_->LookupDestination(instr->true_block_id()); Heap::RootListIndex nil_value = instr->nil() == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ LoadRoot(at, nil_value); if (instr->kind() == kStrictEquality) { EmitBranch(true_block, false_block, eq, reg, Operand(at)); } else { Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ? Heap::kUndefinedValueRootIndex : Heap::kNullValueRootIndex; Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at)); __ LoadRoot(at, other_nil_value); // In the delay slot. __ Branch(USE_DELAY_SLOT, true_label, eq, reg, Operand(at)); __ JumpIfSmi(reg, false_label); // In the delay slot. // Check for undetectable objects by looking in the bit field in // the map. The object has already been smi checked. __ lw(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ And(scratch, scratch, 1 << Map::kIsUndetectable); EmitBranch(true_block, false_block, ne, scratch, Operand(zero_reg)); } } Condition LCodeGen::EmitIsObject(Register input, Register temp1, Register temp2, Label* is_not_object, Label* is_object) { __ JumpIfSmi(input, is_not_object); __ LoadRoot(temp2, Heap::kNullValueRootIndex); __ Branch(is_object, eq, input, Operand(temp2)); // Load map. __ lw(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); // Undetectable objects behave like undefined. __ lbu(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset)); __ And(temp2, temp2, Operand(1 << Map::kIsUndetectable)); __ Branch(is_not_object, ne, temp2, Operand(zero_reg)); // Load instance type and check that it is in object type range. __ lbu(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset)); __ Branch(is_not_object, lt, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); return le; } void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); Register temp1 = ToRegister(instr->TempAt(0)); Register temp2 = scratch0(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition true_cond = EmitIsObject(reg, temp1, temp2, false_label, true_label); EmitBranch(true_block, false_block, true_cond, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string) { __ JumpIfSmi(input, is_not_string); __ GetObjectType(input, temp1, temp1); return lt; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); Register temp1 = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* false_label = chunk_->GetAssemblyLabel(false_block); Condition true_cond = EmitIsString(reg, temp1, false_label); EmitBranch(true_block, false_block, true_cond, temp1, Operand(FIRST_NONSTRING_TYPE)); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Register input_reg = EmitLoadRegister(instr->InputAt(0), at); __ And(at, input_reg, kSmiTagMask); EmitBranch(true_block, false_block, eq, at, Operand(zero_reg)); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block)); __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset)); __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); __ And(at, temp, Operand(1 << Map::kIsUndetectable)); EmitBranch(true_block, false_block, ne, at, Operand(zero_reg)); } static Condition ComputeCompareCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { Token::Value op = instr->op(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Handle<Code> ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); Condition condition = ComputeCompareCondition(op); EmitBranch(true_block, false_block, condition, v0, Operand(zero_reg)); } static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; ASSERT(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return eq; if (to == LAST_TYPE) return hs; if (from == FIRST_TYPE) return ls; UNREACHABLE(); return eq; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register scratch = scratch0(); Register input = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* false_label = chunk_->GetAssemblyLabel(false_block); __ JumpIfSmi(input, false_label); __ GetObjectType(input, scratch, scratch); EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()), scratch, Operand(TestType(instr->hydrogen()))); } void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); if (FLAG_debug_code) { __ AbortIfNotString(input); } __ lw(result, FieldMemOperand(input, String::kHashFieldOffset)); __ IndexFromHash(result, result); } void LCodeGen::DoHasCachedArrayIndexAndBranch( LHasCachedArrayIndexAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register scratch = scratch0(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); __ lw(scratch, FieldMemOperand(input, String::kHashFieldOffset)); __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask)); EmitBranch(true_block, false_block, eq, at, Operand(zero_reg)); } // Branches to a label or falls through with the answer in flags. Trashes // the temp registers, but not the input. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handle<String>class_name, Register input, Register temp, Register temp2) { ASSERT(!input.is(temp)); ASSERT(!input.is(temp2)); ASSERT(!temp.is(temp2)); __ JumpIfSmi(input, is_false); if (class_name->IsEqualTo(CStrVector("Function"))) { // Assuming the following assertions, we can use the same compares to test // for both being a function type and being in the object type range. STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == FIRST_SPEC_OBJECT_TYPE + 1); STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ GetObjectType(input, temp, temp2); __ Branch(is_false, lt, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); __ Branch(is_true, eq, temp2, Operand(FIRST_SPEC_OBJECT_TYPE)); __ Branch(is_true, eq, temp2, Operand(LAST_SPEC_OBJECT_TYPE)); } else { // Faster code path to avoid two compares: subtract lower bound from the // actual type and do a signed compare with the width of the type range. __ GetObjectType(input, temp, temp2); __ Subu(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ Branch(is_false, gt, temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); } // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. // Check if the constructor in the map is a function. __ lw(temp, FieldMemOperand(temp, Map::kConstructorOffset)); // Objects with a non-function constructor have class 'Object'. __ GetObjectType(temp, temp2, temp2); if (class_name->IsEqualTo(CStrVector("Object"))) { __ Branch(is_true, ne, temp2, Operand(JS_FUNCTION_TYPE)); } else { __ Branch(is_false, ne, temp2, Operand(JS_FUNCTION_TYPE)); } // temp now contains the constructor function. Grab the // instance class name from there. __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ lw(temp, FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is a symbol because it's a literal. // The name in the constructor is a symbol because of the way the context is // booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are symbols it is sufficient to use an identity // comparison. // End with the address of this class_name instance in temp register. // On MIPS, the caller must do the comparison with Handle<String>class_name. } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); Register temp = scratch0(); Register temp2 = ToRegister(instr->TempAt(0)); Handle<String> class_name = instr->hydrogen()->class_name(); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2); EmitBranch(true_block, false_block, eq, temp, Operand(class_name)); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); int true_block = instr->true_block_id(); int false_block = instr->false_block_id(); __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); EmitBranch(true_block, false_block, eq, temp, Operand(instr->map())); } void LCodeGen::DoInstanceOf(LInstanceOf* instr) { Label true_label, done; ASSERT(ToRegister(instr->InputAt(0)).is(a0)); // Object is in a0. ASSERT(ToRegister(instr->InputAt(1)).is(a1)); // Function is in a1. Register result = ToRegister(instr->result()); ASSERT(result.is(v0)); InstanceofStub stub(InstanceofStub::kArgsInRegisters); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ Branch(&true_label, eq, result, Operand(zero_reg)); __ li(result, Operand(factory()->false_value())); __ Branch(&done); __ bind(&true_label); __ li(result, Operand(factory()->true_value())); __ bind(&done); } void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { class DeferredInstanceOfKnownGlobal: public LDeferredCode { public: DeferredInstanceOfKnownGlobal(LCodeGen* codegen, LInstanceOfKnownGlobal* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_); } virtual LInstruction* instr() { return instr_; } Label* map_check() { return &map_check_; } private: LInstanceOfKnownGlobal* instr_; Label map_check_; }; DeferredInstanceOfKnownGlobal* deferred; deferred = new DeferredInstanceOfKnownGlobal(this, instr); Label done, false_result; Register object = ToRegister(instr->InputAt(0)); Register temp = ToRegister(instr->TempAt(0)); Register result = ToRegister(instr->result()); ASSERT(object.is(a0)); ASSERT(result.is(v0)); // A Smi is not instance of anything. __ JumpIfSmi(object, &false_result); // This is the inlined call site instanceof cache. The two occurences of the // hole value will be patched to the last map/result pair generated by the // instanceof stub. Label cache_miss; Register map = temp; __ lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); __ bind(deferred->map_check()); // Label for calculating code patching. // We use Factory::the_hole_value() on purpose instead of loading from the // root array to force relocation to be able to later patch with // the cached map. Handle<JSGlobalPropertyCell> cell = factory()->NewJSGlobalPropertyCell(factory()->the_hole_value()); __ li(at, Operand(Handle<Object>(cell))); __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); __ Branch(&cache_miss, ne, map, Operand(at)); // We use Factory::the_hole_value() on purpose instead of loading from the // root array to force relocation to be able to later patch // with true or false. __ li(result, Operand(factory()->the_hole_value()), CONSTANT_SIZE); __ Branch(&done); // The inlined call site cache did not match. Check null and string before // calling the deferred code. __ bind(&cache_miss); // Null is not instance of anything. __ LoadRoot(temp, Heap::kNullValueRootIndex); __ Branch(&false_result, eq, object, Operand(temp)); // String values is not instance of anything. Condition cc = __ IsObjectStringType(object, temp, temp); __ Branch(&false_result, cc, temp, Operand(zero_reg)); // Go to the deferred code. __ Branch(deferred->entry()); __ bind(&false_result); __ LoadRoot(result, Heap::kFalseValueRootIndex); // Here result has either true or false. Deferred code also produces true or // false object. __ bind(deferred->exit()); __ bind(&done); } void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, Label* map_check) { Register result = ToRegister(instr->result()); ASSERT(result.is(v0)); InstanceofStub::Flags flags = InstanceofStub::kNoFlags; flags = static_cast<InstanceofStub::Flags>( flags | InstanceofStub::kArgsInRegisters); flags = static_cast<InstanceofStub::Flags>( flags | InstanceofStub::kCallSiteInlineCheck); flags = static_cast<InstanceofStub::Flags>( flags | InstanceofStub::kReturnTrueFalseObject); InstanceofStub stub(flags); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); // Get the temp register reserved by the instruction. This needs to be t0 as // its slot of the pushing of safepoint registers is used to communicate the // offset to the location of the map check. Register temp = ToRegister(instr->TempAt(0)); ASSERT(temp.is(t0)); __ LoadHeapObject(InstanceofStub::right(), instr->function()); static const int kAdditionalDelta = 7; int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta; Label before_push_delta; __ bind(&before_push_delta); { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); __ li(temp, Operand(delta * kPointerSize), CONSTANT_SIZE); __ StoreToSafepointRegisterSlot(temp, temp); } CallCodeGeneric(stub.GetCode(), RelocInfo::CODE_TARGET, instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); ASSERT(instr->HasDeoptimizationEnvironment()); LEnvironment* env = instr->deoptimization_environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); // Put the result value into the result register slot and // restore all registers. __ StoreToSafepointRegisterSlot(result, result); } void LCodeGen::DoCmpT(LCmpT* instr) { Token::Value op = instr->op(); Handle<Code> ic = CompareIC::GetUninitialized(op); CallCode(ic, RelocInfo::CODE_TARGET, instr); // On MIPS there is no need for a "no inlined smi code" marker (nop). Condition condition = ComputeCompareCondition(op); // A minor optimization that relies on LoadRoot always emitting one // instruction. Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); Label done; __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg)); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); ASSERT_EQ(3, masm()->InstructionsGeneratedSince(&done)); __ bind(&done); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in v0. __ push(v0); __ CallRuntime(Runtime::kTraceExit, 1); } int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize; __ mov(sp, fp); __ Pop(ra, fp); __ Addu(sp, sp, Operand(sp_delta)); __ Jump(ra); } void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { Register result = ToRegister(instr->result()); __ li(at, Operand(Handle<Object>(instr->hydrogen()->cell()))); __ lw(result, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); if (instr->hydrogen()->RequiresHoleCheck()) { __ LoadRoot(at, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr->environment(), result, Operand(at)); } } void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(a0)); ASSERT(ToRegister(instr->result()).is(v0)); __ li(a2, Operand(instr->name())); RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, mode, instr); } void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { Register value = ToRegister(instr->value()); Register cell = scratch0(); // Load the cell. __ li(cell, Operand(instr->hydrogen()->cell())); // If the cell we are storing to contains the hole it could have // been deleted from the property dictionary. In that case, we need // to update the property details in the property dictionary to mark // it as no longer deleted. if (instr->hydrogen()->RequiresHoleCheck()) { // We use a temp to check the payload. Register payload = ToRegister(instr->TempAt(0)); __ lw(payload, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset)); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr->environment(), payload, Operand(at)); } // Store the value. __ sw(value, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset)); // Cells are always rescanned, so no write barrier here. } void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { ASSERT(ToRegister(instr->global_object()).is(a1)); ASSERT(ToRegister(instr->value()).is(a0)); __ li(a2, Operand(instr->name())); Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ lw(result, ContextOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { __ LoadRoot(at, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr->environment(), result, Operand(at)); } else { Label is_not_hole; __ Branch(&is_not_hole, ne, result, Operand(at)); __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ bind(&is_not_hole); } } } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Register scratch = scratch0(); MemOperand target = ContextOperand(context, instr->slot_index()); Label skip_assignment; if (instr->hydrogen()->RequiresHoleCheck()) { __ lw(scratch, target); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr->environment(), scratch, Operand(at)); } else { __ Branch(&skip_assignment, ne, scratch, Operand(at)); } } __ sw(value, target); if (instr->hydrogen()->NeedsWriteBarrier()) { HType type = instr->hydrogen()->value()->type(); SmiCheck check_needed = type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; __ RecordWriteContextSlot(context, target.offset(), value, scratch0(), kRAHasBeenSaved, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ bind(&skip_assignment); } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { Register object = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); if (instr->hydrogen()->is_in_object()) { __ lw(result, FieldMemOperand(object, instr->hydrogen()->offset())); } else { __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ lw(result, FieldMemOperand(result, instr->hydrogen()->offset())); } } void LCodeGen::EmitLoadFieldOrConstantFunction(Register result, Register object, Handle<Map> type, Handle<String> name) { LookupResult lookup(isolate()); type->LookupInDescriptors(NULL, *name, &lookup); ASSERT(lookup.IsFound() && (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION)); if (lookup.type() == FIELD) { int index = lookup.GetLocalFieldIndexFromMap(*type); int offset = index * kPointerSize; if (index < 0) { // Negative property indices are in-object properties, indexed // from the end of the fixed part of the object. __ lw(result, FieldMemOperand(object, offset + type->instance_size())); } else { // Non-negative property indices are in the properties array. __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ lw(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize)); } } else { Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type)); __ LoadHeapObject(result, function); } } void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) { Register object = ToRegister(instr->object()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); int map_count = instr->hydrogen()->types()->length(); Handle<String> name = instr->hydrogen()->name(); if (map_count == 0) { ASSERT(instr->hydrogen()->need_generic()); __ li(a2, Operand(name)); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } else { Label done; __ lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); for (int i = 0; i < map_count - 1; ++i) { Handle<Map> map = instr->hydrogen()->types()->at(i); Label next; __ Branch(&next, ne, scratch, Operand(map)); EmitLoadFieldOrConstantFunction(result, object, map, name); __ Branch(&done); __ bind(&next); } Handle<Map> map = instr->hydrogen()->types()->last(); if (instr->hydrogen()->need_generic()) { Label generic; __ Branch(&generic, ne, scratch, Operand(map)); EmitLoadFieldOrConstantFunction(result, object, map, name); __ Branch(&done); __ bind(&generic); __ li(a2, Operand(name)); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } else { DeoptimizeIf(ne, instr->environment(), scratch, Operand(map)); EmitLoadFieldOrConstantFunction(result, object, map, name); } __ bind(&done); } } void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(a0)); ASSERT(ToRegister(instr->result()).is(v0)); // Name is always in a2. __ li(a2, Operand(instr->name())); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register scratch = scratch0(); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // Check that the function really is a function. Load map into the // result register. __ GetObjectType(function, result, scratch); DeoptimizeIf(ne, instr->environment(), scratch, Operand(JS_FUNCTION_TYPE)); // Make sure that the function has an instance prototype. Label non_instance; __ lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); __ And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); __ Branch(&non_instance, ne, scratch, Operand(zero_reg)); // Get the prototype or initial map from the function. __ lw(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ LoadRoot(at, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr->environment(), result, Operand(at)); // If the function does not have an initial map, we're done. Label done; __ GetObjectType(result, scratch, scratch); __ Branch(&done, ne, scratch, Operand(MAP_TYPE)); // Get the prototype from the initial map. __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); __ Branch(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. __ bind(&non_instance); __ lw(result, FieldMemOperand(result, Map::kConstructorOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadElements(LLoadElements* instr) { Register result = ToRegister(instr->result()); Register input = ToRegister(instr->InputAt(0)); Register scratch = scratch0(); __ lw(result, FieldMemOperand(input, JSObject::kElementsOffset)); if (FLAG_debug_code) { Label done, fail; __ lw(scratch, FieldMemOperand(result, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kFixedArrayMapRootIndex); __ Branch(USE_DELAY_SLOT, &done, eq, scratch, Operand(at)); __ LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); // In the delay slot. __ Branch(&done, eq, scratch, Operand(at)); // |scratch| still contains |input|'s map. __ lbu(scratch, FieldMemOperand(scratch, Map::kBitField2Offset)); __ Ext(scratch, scratch, Map::kElementsKindShift, Map::kElementsKindBitCount); __ Branch(&done, eq, scratch, Operand(FAST_ELEMENTS)); __ Branch(&fail, lt, scratch, Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND)); __ Branch(&done, le, scratch, Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND)); __ bind(&fail); __ Abort("Check for fast or external elements failed."); __ bind(&done); } } void LCodeGen::DoLoadExternalArrayPointer( LLoadExternalArrayPointer* instr) { Register to_reg = ToRegister(instr->result()); Register from_reg = ToRegister(instr->InputAt(0)); __ lw(to_reg, FieldMemOperand(from_reg, ExternalArray::kExternalPointerOffset)); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register length = ToRegister(instr->length()); Register index = ToRegister(instr->index()); Register result = ToRegister(instr->result()); // Bailout index is not a valid argument index. Use unsigned check to get // negative check for free. // TODO(plind): Shoud be optimized to do the sub before the DeoptimizeIf(), // as they do in Arm. It will save us an instruction. DeoptimizeIf(ls, instr->environment(), length, Operand(index)); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them, add one more. __ subu(length, length, index); __ Addu(length, length, Operand(1)); __ sll(length, length, kPointerSizeLog2); __ Addu(at, arguments, Operand(length)); __ lw(result, MemOperand(at, 0)); } void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) { Register elements = ToRegister(instr->elements()); Register key = EmitLoadRegister(instr->key(), scratch0()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // Load the result. __ sll(scratch, key, kPointerSizeLog2); // Key indexes words. __ addu(scratch, elements, scratch); __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize)); // Check for the hole value. if (instr->hydrogen()->RequiresHoleCheck()) { __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr->environment(), result, Operand(scratch)); } } void LCodeGen::DoLoadKeyedFastDoubleElement( LLoadKeyedFastDoubleElement* instr) { Register elements = ToRegister(instr->elements()); bool key_is_constant = instr->key()->IsConstantOperand(); Register key = no_reg; DoubleRegister result = ToDoubleRegister(instr->result()); Register scratch = scratch0(); int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort("array index constant value too big."); } } else { key = ToRegister(instr->key()); } if (key_is_constant) { __ Addu(elements, elements, Operand(constant_key * (1 << shift_size) + FixedDoubleArray::kHeaderSize - kHeapObjectTag)); } else { __ sll(scratch, key, shift_size); __ Addu(elements, elements, Operand(scratch)); __ Addu(elements, elements, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); } __ lw(scratch, MemOperand(elements, sizeof(kHoleNanLower32))); DeoptimizeIf(eq, instr->environment(), scratch, Operand(kHoleNanUpper32)); __ ldc1(result, MemOperand(elements)); } void LCodeGen::DoLoadKeyedSpecializedArrayElement( LLoadKeyedSpecializedArrayElement* instr) { Register external_pointer = ToRegister(instr->external_pointer()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort("array index constant value too big."); } } else { key = ToRegister(instr->key()); } int shift_size = ElementsKindToShiftSize(elements_kind); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { FPURegister result = ToDoubleRegister(instr->result()); if (key_is_constant) { __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size)); } else { __ sll(scratch0(), key, shift_size); __ Addu(scratch0(), scratch0(), external_pointer); } if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { __ lwc1(result, MemOperand(scratch0())); __ cvt_d_s(result, result); } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS __ ldc1(result, MemOperand(scratch0())); } } else { Register result = ToRegister(instr->result()); Register scratch = scratch0(); MemOperand mem_operand(zero_reg); if (key_is_constant) { mem_operand = MemOperand(external_pointer, constant_key * (1 << shift_size)); } else { __ sll(scratch, key, shift_size); __ Addu(scratch, scratch, external_pointer); mem_operand = MemOperand(scratch); } switch (elements_kind) { case EXTERNAL_BYTE_ELEMENTS: __ lb(result, mem_operand); break; case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ lbu(result, mem_operand); break; case EXTERNAL_SHORT_ELEMENTS: __ lh(result, mem_operand); break; case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ lhu(result, mem_operand); break; case EXTERNAL_INT_ELEMENTS: __ lw(result, mem_operand); break; case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ lw(result, mem_operand); // TODO(danno): we could be more clever here, perhaps having a special // version of the stub that detects if the overflow case actually // happens, and generate code that returns a double rather than int. DeoptimizeIf(Ugreater_equal, instr->environment(), result, Operand(0x80000000)); break; case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(a1)); ASSERT(ToRegister(instr->key()).is(a0)); Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register scratch = scratch0(); Register temp = scratch1(); Register result = ToRegister(instr->result()); // Check if the calling frame is an arguments adaptor frame. Label done, adapted; __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne). __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq). } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register elem = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. __ Addu(result, zero_reg, Operand(scope()->num_parameters())); __ Branch(&done, eq, fp, Operand(elem)); // Arguments adaptor frame present. Get argument length from there. __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(result, MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(result); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register scratch = scratch0(); // If the receiver is null or undefined, we have to pass the global // object as a receiver to normal functions. Values have to be // passed unchanged to builtins and strict-mode functions. Label global_object, receiver_ok; // Do not transform the receiver to object for strict mode // functions. __ lw(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ lw(scratch, FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); // Do not transform the receiver to object for builtins. int32_t strict_mode_function_mask = 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize); int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize); __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask)); __ Branch(&receiver_ok, ne, scratch, Operand(zero_reg)); // Normal function. Replace undefined or null with global receiver. __ LoadRoot(scratch, Heap::kNullValueRootIndex); __ Branch(&global_object, eq, receiver, Operand(scratch)); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Branch(&global_object, eq, receiver, Operand(scratch)); // Deoptimize if the receiver is not a JS object. __ And(scratch, receiver, Operand(kSmiTagMask)); DeoptimizeIf(eq, instr->environment(), scratch, Operand(zero_reg)); __ GetObjectType(receiver, scratch, scratch); DeoptimizeIf(lt, instr->environment(), scratch, Operand(FIRST_SPEC_OBJECT_TYPE)); __ Branch(&receiver_ok); __ bind(&global_object); __ lw(receiver, GlobalObjectOperand()); __ lw(receiver, FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); __ bind(&receiver_ok); } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); Register scratch = scratch0(); ASSERT(receiver.is(a0)); // Used for parameter count. ASSERT(function.is(a1)); // Required by InvokeFunction. ASSERT(ToRegister(instr->result()).is(v0)); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; DeoptimizeIf(hi, instr->environment(), length, Operand(kArgumentsLimit)); // Push the receiver and use the register to keep the original // number of arguments. __ push(receiver); __ Move(receiver, length); // The arguments are at a one pointer size offset from elements. __ Addu(elements, elements, Operand(1 * kPointerSize)); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg)); __ sll(scratch, length, 2); __ bind(&loop); __ Addu(scratch, elements, scratch); __ lw(scratch, MemOperand(scratch)); __ push(scratch); __ Subu(length, length, Operand(1)); __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg)); __ sll(scratch, length, 2); __ bind(&invoke); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); // The number of arguments is stored in receiver which is a0, as expected // by InvokeFunction. ParameterCount actual(receiver); __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator, CALL_AS_METHOD); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->InputAt(0); if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { Abort("DoPushArgument not implemented for double type."); } else { Register argument_reg = EmitLoadRegister(argument, at); __ push(argument_reg); } } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ LoadHeapObject(result, instr->hydrogen()->closure()); } void LCodeGen::DoContext(LContext* instr) { Register result = ToRegister(instr->result()); __ mov(result, cp); } void LCodeGen::DoOuterContext(LOuterContext* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ lw(result, MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX))); } void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { __ LoadHeapObject(scratch0(), instr->hydrogen()->pairs()); __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags()))); // The context is the first argument. __ Push(cp, scratch0(), scratch1()); CallRuntime(Runtime::kDeclareGlobals, 3, instr); } void LCodeGen::DoGlobalObject(LGlobalObject* instr) { Register result = ToRegister(instr->result()); __ lw(result, ContextOperand(cp, Context::GLOBAL_INDEX)); } void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { Register global = ToRegister(instr->global()); Register result = ToRegister(instr->result()); __ lw(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset)); } void LCodeGen::CallKnownFunction(Handle<JSFunction> function, int arity, LInstruction* instr, CallKind call_kind) { bool can_invoke_directly = !function->NeedsArgumentsAdaption() || function->shared()->formal_parameter_count() == arity; LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); if (can_invoke_directly) { __ LoadHeapObject(a1, function); // Change context if needed. bool change_context = (info()->closure()->context() != function->context()) || scope()->contains_with() || (scope()->num_heap_slots() > 0); if (change_context) { __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); } // Set r0 to arguments count if adaption is not needed. Assumes that r0 // is available to write to at this point. if (!function->NeedsArgumentsAdaption()) { __ li(a0, Operand(arity)); } // Invoke function. __ SetCallKind(t1, call_kind); __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ Call(at); // Set up deoptimization. RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } else { SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount count(arity); __ InvokeFunction(function, count, CALL_FUNCTION, generator, call_kind); } // Restore context. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { ASSERT(ToRegister(instr->result()).is(v0)); __ mov(a0, v0); CallKnownFunction(instr->function(), instr->arity(), instr, CALL_AS_METHOD); } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // Deoptimize if not a heap number. __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); DeoptimizeIf(ne, instr->environment(), scratch, Operand(at)); Label done; Register exponent = scratch0(); scratch = no_reg; __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. __ Move(result, input); __ And(at, exponent, Operand(HeapNumber::kSignMask)); __ Branch(&done, eq, at, Operand(zero_reg)); // Input is negative. Reverse its sign. // Preserve the value of all registers. { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); // Registers were saved at the safepoint, so we can use // many scratch registers. Register tmp1 = input.is(a1) ? a0 : a1; Register tmp2 = input.is(a2) ? a0 : a2; Register tmp3 = input.is(a3) ? a0 : a3; Register tmp4 = input.is(t0) ? a0 : t0; // exponent: floating point exponent value. Label allocated, slow; __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); __ Branch(&allocated); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); // Set the pointer to the new heap number in tmp. if (!tmp1.is(v0)) __ mov(tmp1, v0); // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input, input); __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); __ bind(&allocated); // exponent: floating point exponent value. // tmp1: allocated heap number. __ And(exponent, exponent, Operand(~HeapNumber::kSignMask)); __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); __ StoreToSafepointRegisterSlot(tmp1, result); } __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) { Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Label done; __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg)); __ mov(result, input); ASSERT_EQ(2, masm()->InstructionsGeneratedSince(&done)); __ subu(result, zero_reg, input); // Overflow if result is still negative, i.e. 0x80000000. DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg)); __ bind(&done); } void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber: public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LUnaryMathOperation* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } virtual LInstruction* instr() { return instr_; } private: LUnaryMathOperation* instr_; }; Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { FPURegister input = ToDoubleRegister(instr->InputAt(0)); FPURegister result = ToDoubleRegister(instr->result()); __ abs_d(result, input); } else if (r.IsInteger32()) { EmitIntegerMathAbs(instr); } else { // Representation is tagged. DeferredMathAbsTaggedHeapNumber* deferred = new DeferredMathAbsTaggedHeapNumber(this, instr); Register input = ToRegister(instr->InputAt(0)); // Smi check. __ JumpIfNotSmi(input, deferred->entry()); // If smi, handle it directly. EmitIntegerMathAbs(instr); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) { DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); FPURegister single_scratch = double_scratch0().low(); Register scratch1 = scratch0(); Register except_flag = ToRegister(instr->TempAt(0)); __ EmitFPUTruncate(kRoundToMinusInf, single_scratch, input, scratch1, except_flag); // Deopt if the operation did not succeed. DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); // Load the result. __ mfc1(result, single_scratch); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. Label done; __ Branch(&done, ne, result, Operand(zero_reg)); __ mfc1(scratch1, input.high()); __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg)); __ bind(&done); } } void LCodeGen::DoMathRound(LUnaryMathOperation* instr) { DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); Register scratch = scratch0(); Label done, check_sign_on_zero; // Extract exponent bits. __ mfc1(result, input.high()); __ Ext(scratch, result, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // If the number is in ]-0.5, +0.5[, the result is +/- 0. Label skip1; __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2)); __ mov(result, zero_reg); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Branch(&check_sign_on_zero); } else { __ Branch(&done); } __ bind(&skip1); // The following conversion will not work with numbers // outside of ]-2^32, 2^32[. DeoptimizeIf(ge, instr->environment(), scratch, Operand(HeapNumber::kExponentBias + 32)); // Save the original sign for later comparison. __ And(scratch, result, Operand(HeapNumber::kSignMask)); __ Move(double_scratch0(), 0.5); __ add_d(double_scratch0(), input, double_scratch0()); // Check sign of the result: if the sign changed, the input // value was in ]0.5, 0[ and the result should be -0. __ mfc1(result, double_scratch0().high()); __ Xor(result, result, Operand(scratch)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // ARM uses 'mi' here, which is 'lt' DeoptimizeIf(lt, instr->environment(), result, Operand(zero_reg)); } else { Label skip2; // ARM uses 'mi' here, which is 'lt' // Negating it results in 'ge' __ Branch(&skip2, ge, result, Operand(zero_reg)); __ mov(result, zero_reg); __ Branch(&done); __ bind(&skip2); } Register except_flag = scratch; __ EmitFPUTruncate(kRoundToMinusInf, double_scratch0().low(), double_scratch0(), result, except_flag); DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); __ mfc1(result, double_scratch0().low()); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. __ Branch(&done, ne, result, Operand(zero_reg)); __ bind(&check_sign_on_zero); __ mfc1(scratch, input.high()); __ And(scratch, scratch, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg)); } __ bind(&done); } void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) { DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); DoubleRegister result = ToDoubleRegister(instr->result()); __ sqrt_d(result, input); } void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) { DoubleRegister input = ToDoubleRegister(instr->InputAt(0)); DoubleRegister result = ToDoubleRegister(instr->result()); DoubleRegister temp = ToDoubleRegister(instr->TempAt(0)); ASSERT(!input.is(result)); // Note that according to ECMA-262 15.8.2.13: // Math.pow(-Infinity, 0.5) == Infinity // Math.sqrt(-Infinity) == NaN Label done; __ Move(temp, -V8_INFINITY); __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input); // Set up Infinity in the delay slot. // result is overwritten if the branch is not taken. __ neg_d(result, temp); // Add +0 to convert -0 to +0. __ add_d(result, input, kDoubleRegZero); __ sqrt_d(result, result); __ bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. ASSERT(!instr->InputAt(1)->IsDoubleRegister() || ToDoubleRegister(instr->InputAt(1)).is(f4)); ASSERT(!instr->InputAt(1)->IsRegister() || ToRegister(instr->InputAt(1)).is(a2)); ASSERT(ToDoubleRegister(instr->InputAt(0)).is(f2)); ASSERT(ToDoubleRegister(instr->result()).is(f0)); if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(a2, &no_deopt); __ lw(t3, FieldMemOperand(a2, HeapObject::kMapOffset)); DeoptimizeIf(ne, instr->environment(), t3, Operand(at)); __ bind(&no_deopt); MathPowStub stub(MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { MathPowStub stub(MathPowStub::INTEGER); __ CallStub(&stub); } else { ASSERT(exponent_type.IsDouble()); MathPowStub stub(MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoRandom(LRandom* instr) { class DeferredDoRandom: public LDeferredCode { public: DeferredDoRandom(LCodeGen* codegen, LRandom* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredRandom(instr_); } virtual LInstruction* instr() { return instr_; } private: LRandom* instr_; }; DeferredDoRandom* deferred = new DeferredDoRandom(this, instr); // Having marked this instruction as a call we can use any // registers. ASSERT(ToDoubleRegister(instr->result()).is(f0)); ASSERT(ToRegister(instr->InputAt(0)).is(a0)); static const int kSeedSize = sizeof(uint32_t); STATIC_ASSERT(kPointerSize == kSeedSize); __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset)); static const int kRandomSeedOffset = FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize; __ lw(a2, FieldMemOperand(a0, kRandomSeedOffset)); // a2: FixedArray of the global context's random seeds // Load state[0]. __ lw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize)); __ Branch(deferred->entry(), eq, a1, Operand(zero_reg)); // Load state[1]. __ lw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize)); // a1: state[0]. // a0: state[1]. // state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16) __ And(a3, a1, Operand(0xFFFF)); __ li(t0, Operand(18273)); __ Mul(a3, a3, t0); __ srl(a1, a1, 16); __ Addu(a1, a3, a1); // Save state[0]. __ sw(a1, FieldMemOperand(a2, ByteArray::kHeaderSize)); // state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16) __ And(a3, a0, Operand(0xFFFF)); __ li(t0, Operand(36969)); __ Mul(a3, a3, t0); __ srl(a0, a0, 16), __ Addu(a0, a3, a0); // Save state[1]. __ sw(a0, FieldMemOperand(a2, ByteArray::kHeaderSize + kSeedSize)); // Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF) __ And(a0, a0, Operand(0x3FFFF)); __ sll(a1, a1, 14); __ Addu(v0, a0, a1); __ bind(deferred->exit()); // 0x41300000 is the top half of 1.0 x 2^20 as a double. __ li(a2, Operand(0x41300000)); // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU. __ Move(f12, v0, a2); // Move 0x4130000000000000 to FPU. __ Move(f14, zero_reg, a2); // Subtract to get the result. __ sub_d(f0, f12, f14); } void LCodeGen::DoDeferredRandom(LRandom* instr) { __ PrepareCallCFunction(1, scratch0()); __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); // Return value is in v0. } void LCodeGen::DoMathLog(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(f4)); TranscendentalCacheStub stub(TranscendentalCache::LOG, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathTan(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(f4)); TranscendentalCacheStub stub(TranscendentalCache::TAN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathCos(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(f4)); TranscendentalCacheStub stub(TranscendentalCache::COS, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoMathSin(LUnaryMathOperation* instr) { ASSERT(ToDoubleRegister(instr->result()).is(f4)); TranscendentalCacheStub stub(TranscendentalCache::SIN, TranscendentalCacheStub::UNTAGGED); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) { switch (instr->op()) { case kMathAbs: DoMathAbs(instr); break; case kMathFloor: DoMathFloor(instr); break; case kMathRound: DoMathRound(instr); break; case kMathSqrt: DoMathSqrt(instr); break; case kMathPowHalf: DoMathPowHalf(instr); break; case kMathCos: DoMathCos(instr); break; case kMathSin: DoMathSin(instr); break; case kMathTan: DoMathTan(instr); break; case kMathLog: DoMathLog(instr); break; default: Abort("Unimplemented type of LUnaryMathOperation."); UNREACHABLE(); } } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { ASSERT(ToRegister(instr->function()).is(a1)); ASSERT(instr->HasPointerMap()); ASSERT(instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount count(instr->arity()); __ InvokeFunction(a1, count, CALL_FUNCTION, generator, CALL_AS_METHOD); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallKeyed(LCallKeyed* instr) { ASSERT(ToRegister(instr->result()).is(v0)); int arity = instr->arity(); Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(arity); CallCode(ic, RelocInfo::CODE_TARGET, instr); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallNamed(LCallNamed* instr) { ASSERT(ToRegister(instr->result()).is(v0)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET; Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(arity, mode); __ li(a2, Operand(instr->name())); CallCode(ic, mode, instr); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallFunction(LCallFunction* instr) { ASSERT(ToRegister(instr->function()).is(a1)); ASSERT(ToRegister(instr->result()).is(v0)); int arity = instr->arity(); CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallGlobal(LCallGlobal* instr) { ASSERT(ToRegister(instr->result()).is(v0)); int arity = instr->arity(); RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(arity, mode); __ li(a2, Operand(instr->name())); CallCode(ic, mode, instr); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { ASSERT(ToRegister(instr->result()).is(v0)); CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION); } void LCodeGen::DoCallNew(LCallNew* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(a1)); ASSERT(ToRegister(instr->result()).is(v0)); CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); __ li(a0, Operand(instr->arity())); CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Register object = ToRegister(instr->object()); Register value = ToRegister(instr->value()); Register scratch = scratch0(); int offset = instr->offset(); ASSERT(!object.is(value)); if (!instr->transition().is_null()) { __ li(scratch, Operand(instr->transition())); __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); } // Do the store. HType type = instr->hydrogen()->value()->type(); SmiCheck check_needed = type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; if (instr->is_in_object()) { __ sw(value, FieldMemOperand(object, offset)); if (instr->hydrogen()->NeedsWriteBarrier()) { // Update the write barrier for the object for in-object properties. __ RecordWriteField(object, offset, value, scratch, kRAHasBeenSaved, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } else { __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ sw(value, FieldMemOperand(scratch, offset)); if (instr->hydrogen()->NeedsWriteBarrier()) { // Update the write barrier for the properties array. // object is used as a scratch register. __ RecordWriteField(scratch, offset, value, object, kRAHasBeenSaved, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } } void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(a1)); ASSERT(ToRegister(instr->value()).is(a0)); // Name is always in a2. __ li(a2, Operand(instr->name())); Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->StoreIC_Initialize_Strict() : isolate()->builtins()->StoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { DeoptimizeIf(hs, instr->environment(), ToRegister(instr->index()), Operand(ToRegister(instr->length()))); } void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) { Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->object()); Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; Register scratch = scratch0(); // Do the store. if (instr->key()->IsConstantOperand()) { ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); int offset = ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize; __ sw(value, FieldMemOperand(elements, offset)); } else { __ sll(scratch, key, kPointerSizeLog2); __ addu(scratch, elements, scratch); __ sw(value, FieldMemOperand(scratch, FixedArray::kHeaderSize)); } if (instr->hydrogen()->NeedsWriteBarrier()) { HType type = instr->hydrogen()->value()->type(); SmiCheck check_needed = type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. __ Addu(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ RecordWrite(elements, key, value, kRAHasBeenSaved, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } } void LCodeGen::DoStoreKeyedFastDoubleElement( LStoreKeyedFastDoubleElement* instr) { DoubleRegister value = ToDoubleRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register key = no_reg; Register scratch = scratch0(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; Label not_nan; // Calculate the effective address of the slot in the array to store the // double value. if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort("array index constant value too big."); } } else { key = ToRegister(instr->key()); } int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); if (key_is_constant) { __ Addu(scratch, elements, Operand(constant_key * (1 << shift_size) + FixedDoubleArray::kHeaderSize - kHeapObjectTag)); } else { __ sll(scratch, key, shift_size); __ Addu(scratch, elements, Operand(scratch)); __ Addu(scratch, scratch, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); } Label is_nan; // Check for NaN. All NaNs must be canonicalized. __ BranchF(NULL, &is_nan, eq, value, value); __ Branch(¬_nan); // Only load canonical NaN if the comparison above set the overflow. __ bind(&is_nan); __ Move(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double()); __ bind(¬_nan); __ sdc1(value, MemOperand(scratch)); } void LCodeGen::DoStoreKeyedSpecializedArrayElement( LStoreKeyedSpecializedArrayElement* instr) { Register external_pointer = ToRegister(instr->external_pointer()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort("array index constant value too big."); } } else { key = ToRegister(instr->key()); } int shift_size = ElementsKindToShiftSize(elements_kind); if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { FPURegister value(ToDoubleRegister(instr->value())); if (key_is_constant) { __ Addu(scratch0(), external_pointer, constant_key * (1 << shift_size)); } else { __ sll(scratch0(), key, shift_size); __ Addu(scratch0(), scratch0(), external_pointer); } if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { __ cvt_s_d(double_scratch0(), value); __ swc1(double_scratch0(), MemOperand(scratch0())); } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS __ sdc1(value, MemOperand(scratch0())); } } else { Register value(ToRegister(instr->value())); MemOperand mem_operand(zero_reg); Register scratch = scratch0(); if (key_is_constant) { mem_operand = MemOperand(external_pointer, constant_key * (1 << shift_size)); } else { __ sll(scratch, key, shift_size); __ Addu(scratch, scratch, external_pointer); mem_operand = MemOperand(scratch); } switch (elements_kind) { case EXTERNAL_PIXEL_ELEMENTS: case EXTERNAL_BYTE_ELEMENTS: case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: __ sb(value, mem_operand); break; case EXTERNAL_SHORT_ELEMENTS: case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: __ sh(value, mem_operand); break; case EXTERNAL_INT_ELEMENTS: case EXTERNAL_UNSIGNED_INT_ELEMENTS: __ sw(value, mem_operand); break; case EXTERNAL_FLOAT_ELEMENTS: case EXTERNAL_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ONLY_ELEMENTS: case DICTIONARY_ELEMENTS: case NON_STRICT_ARGUMENTS_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { ASSERT(ToRegister(instr->object()).is(a2)); ASSERT(ToRegister(instr->key()).is(a1)); ASSERT(ToRegister(instr->value()).is(a0)); Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() : isolate()->builtins()->KeyedStoreIC_Initialize(); CallCode(ic, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object_reg = ToRegister(instr->object()); Register new_map_reg = ToRegister(instr->new_map_reg()); Register scratch = scratch0(); Handle<Map> from_map = instr->original_map(); Handle<Map> to_map = instr->transitioned_map(); ElementsKind from_kind = from_map->elements_kind(); ElementsKind to_kind = to_map->elements_kind(); __ mov(ToRegister(instr->result()), object_reg); Label not_applicable; __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); __ Branch(¬_applicable, ne, scratch, Operand(from_map)); __ li(new_map_reg, Operand(to_map)); if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) { __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); // Write barrier. __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg, scratch, kRAHasBeenSaved, kDontSaveFPRegs); } else if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_DOUBLE_ELEMENTS) { Register fixed_object_reg = ToRegister(instr->temp_reg()); ASSERT(fixed_object_reg.is(a2)); ASSERT(new_map_reg.is(a3)); __ mov(fixed_object_reg, object_reg); CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(), RelocInfo::CODE_TARGET, instr); } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) { Register fixed_object_reg = ToRegister(instr->temp_reg()); ASSERT(fixed_object_reg.is(a2)); ASSERT(new_map_reg.is(a3)); __ mov(fixed_object_reg, object_reg); CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(), RelocInfo::CODE_TARGET, instr); } else { UNREACHABLE(); } __ bind(¬_applicable); } void LCodeGen::DoStringAdd(LStringAdd* instr) { __ push(ToRegister(instr->left())); __ push(ToRegister(instr->right())); StringAddStub stub(NO_STRING_CHECK_IN_STUB); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt: public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate(masm(), ToRegister(instr->string()), ToRegister(instr->index()), ToRegister(instr->result()), deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, zero_reg); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index))); __ push(scratch); } else { Register index = ToRegister(instr->index()); __ SmiTag(index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr); if (FLAG_debug_code) { __ AbortIfNotSmi(v0); } __ SmiUntag(v0); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode: public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode(this, instr); ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); ASSERT(!char_code.is(result)); __ Branch(deferred->entry(), hi, char_code, Operand(String::kMaxAsciiCharCode)); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ sll(scratch, char_code, kPointerSizeLog2); __ Addu(result, result, scratch); __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize)); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Branch(deferred->entry(), eq, result, Operand(scratch)); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, zero_reg); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ SmiTag(char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoStringLength(LStringLength* instr) { Register string = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); __ lw(result, FieldMemOperand(string, String::kLengthOffset)); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); ASSERT(output->IsDoubleRegister()); FPURegister single_scratch = double_scratch0().low(); if (input->IsStackSlot()) { Register scratch = scratch0(); __ lw(scratch, ToMemOperand(input)); __ mtc1(scratch, single_scratch); } else { __ mtc1(ToRegister(input), single_scratch); } __ cvt_d_w(ToDoubleRegister(output), single_scratch); } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { class DeferredNumberTagI: public LDeferredCode { public: DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); } virtual LInstruction* instr() { return instr_; } private: LNumberTagI* instr_; }; Register src = ToRegister(instr->InputAt(0)); Register dst = ToRegister(instr->result()); Register overflow = scratch0(); DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr); __ SmiTagCheckOverflow(dst, src, overflow); __ BranchOnOverflow(deferred->entry(), overflow); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) { Label slow; Register src = ToRegister(instr->InputAt(0)); Register dst = ToRegister(instr->result()); FPURegister dbl_scratch = double_scratch0(); // Preserve the value of all registers. PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); // There was overflow, so bits 30 and 31 of the original integer // disagree. Try to allocate a heap number in new space and store // the value in there. If that fails, call the runtime system. Label done; if (dst.is(src)) { __ SmiUntag(src, dst); __ Xor(src, src, Operand(0x80000000)); } __ mtc1(src, dbl_scratch); __ cvt_d_w(dbl_scratch, dbl_scratch); if (FLAG_inline_new) { __ LoadRoot(t2, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(t1, a3, t0, t2, &slow); __ Move(dst, t1); __ Branch(&done); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); // TODO(3095996): Put a valid pointer value in the stack slot where the result // register is stored, as this register is in the pointer map, but contains an // integer value. __ StoreToSafepointRegisterSlot(zero_reg, dst); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); __ Move(dst, v0); // Done. Put the value in dbl_scratch into the value of the allocated heap // number. __ bind(&done); __ sdc1(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); __ StoreToSafepointRegisterSlot(dst, dst); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD: public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } virtual LInstruction* instr() { return instr_; } private: LNumberTagD* instr_; }; DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0)); Register scratch = scratch0(); Register reg = ToRegister(instr->result()); Register temp1 = ToRegister(instr->TempAt(0)); Register temp2 = ToRegister(instr->TempAt(1)); DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry()); } else { __ Branch(deferred->entry()); } __ bind(deferred->exit()); __ sdc1(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset)); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ mov(reg, zero_reg); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr); __ StoreToSafepointRegisterSlot(v0, reg); } void LCodeGen::DoSmiTag(LSmiTag* instr) { ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); __ SmiTag(ToRegister(instr->result()), ToRegister(instr->InputAt(0))); } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { Register scratch = scratch0(); Register input = ToRegister(instr->InputAt(0)); Register result = ToRegister(instr->result()); if (instr->needs_check()) { STATIC_ASSERT(kHeapObjectTag == 1); // If the input is a HeapObject, value of scratch won't be zero. __ And(scratch, input, Operand(kHeapObjectTag)); __ SmiUntag(result, input); DeoptimizeIf(ne, instr->environment(), scratch, Operand(zero_reg)); } else { __ SmiUntag(result, input); } } void LCodeGen::EmitNumberUntagD(Register input_reg, DoubleRegister result_reg, bool deoptimize_on_undefined, bool deoptimize_on_minus_zero, LEnvironment* env) { Register scratch = scratch0(); Label load_smi, heap_number, done; // Smi check. __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); // Heap number map check. __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); if (deoptimize_on_undefined) { DeoptimizeIf(ne, env, scratch, Operand(at)); } else { Label heap_number; __ Branch(&heap_number, eq, scratch, Operand(at)); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); DeoptimizeIf(ne, env, input_reg, Operand(at)); // Convert undefined to NaN. __ LoadRoot(at, Heap::kNanValueRootIndex); __ ldc1(result_reg, FieldMemOperand(at, HeapNumber::kValueOffset)); __ Branch(&done); __ bind(&heap_number); } // Heap number to double register conversion. __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); if (deoptimize_on_minus_zero) { __ mfc1(at, result_reg.low()); __ Branch(&done, ne, at, Operand(zero_reg)); __ mfc1(scratch, result_reg.high()); DeoptimizeIf(eq, env, scratch, Operand(HeapNumber::kSignMask)); } __ Branch(&done); // Smi to double register conversion __ bind(&load_smi); // scratch: untagged value of input_reg __ mtc1(scratch, result_reg); __ cvt_d_w(result_reg, result_reg); __ bind(&done); } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { Register input_reg = ToRegister(instr->InputAt(0)); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->TempAt(0)); DoubleRegister double_scratch = double_scratch0(); FPURegister single_scratch = double_scratch.low(); ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2)); ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1)); Label done; // The input is a tagged HeapObject. // Heap number map check. __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); // This 'at' value and scratch1 map value are used for tests in both clauses // of the if. if (instr->truncating()) { Register scratch3 = ToRegister(instr->TempAt(1)); DoubleRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2)); ASSERT(!scratch3.is(input_reg) && !scratch3.is(scratch1) && !scratch3.is(scratch2)); // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. Label heap_number; __ Branch(&heap_number, eq, scratch1, Operand(at)); // HeapNumber map? // Check for undefined. Undefined is converted to zero for truncating // conversions. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); DeoptimizeIf(ne, instr->environment(), input_reg, Operand(at)); ASSERT(ToRegister(instr->result()).is(input_reg)); __ mov(input_reg, zero_reg); __ Branch(&done); __ bind(&heap_number); __ ldc1(double_scratch2, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); __ EmitECMATruncate(input_reg, double_scratch2, single_scratch, scratch1, scratch2, scratch3); } else { // Deoptimize if we don't have a heap number. DeoptimizeIf(ne, instr->environment(), scratch1, Operand(at)); // Load the double value. __ ldc1(double_scratch, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); Register except_flag = scratch2; __ EmitFPUTruncate(kRoundToZero, single_scratch, double_scratch, scratch1, except_flag, kCheckForInexactConversion); // Deopt if the operation did not succeed. DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); // Load the result. __ mfc1(input_reg, single_scratch); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Branch(&done, ne, input_reg, Operand(zero_reg)); __ mfc1(scratch1, double_scratch.high()); __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask)); DeoptimizeIf(ne, instr->environment(), scratch1, Operand(zero_reg)); } } __ bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI: public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); } virtual LInstruction* instr() { return instr_; } private: LTaggedToI* instr_; }; LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); ASSERT(input->Equals(instr->result())); Register input_reg = ToRegister(input); DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr); // Let the deferred code handle the HeapObject case. __ JumpIfNotSmi(input_reg, deferred->entry()); // Smi to int32 conversion. __ SmiUntag(input_reg); __ bind(deferred->exit()); } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); LOperand* result = instr->result(); ASSERT(result->IsDoubleRegister()); Register input_reg = ToRegister(input); DoubleRegister result_reg = ToDoubleRegister(result); EmitNumberUntagD(input_reg, result_reg, instr->hydrogen()->deoptimize_on_undefined(), instr->hydrogen()->deoptimize_on_minus_zero(), instr->environment()); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->TempAt(0)); DoubleRegister double_input = ToDoubleRegister(instr->InputAt(0)); FPURegister single_scratch = double_scratch0().low(); if (instr->truncating()) { Register scratch3 = ToRegister(instr->TempAt(1)); __ EmitECMATruncate(result_reg, double_input, single_scratch, scratch1, scratch2, scratch3); } else { Register except_flag = scratch2; __ EmitFPUTruncate(kRoundToMinusInf, single_scratch, double_input, scratch1, except_flag, kCheckForInexactConversion); // Deopt if the operation did not succeed (except_flag != 0). DeoptimizeIf(ne, instr->environment(), except_flag, Operand(zero_reg)); // Load the result. __ mfc1(result_reg, single_scratch); } } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->InputAt(0); __ And(at, ToRegister(input), Operand(kSmiTagMask)); DeoptimizeIf(ne, instr->environment(), at, Operand(zero_reg)); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { LOperand* input = instr->InputAt(0); __ And(at, ToRegister(input), Operand(kSmiTagMask)); DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->InputAt(0)); Register scratch = scratch0(); __ GetObjectType(input, scratch, scratch); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(ne, instr->environment(), scratch, Operand(first)); } else { DeoptimizeIf(lo, instr->environment(), scratch, Operand(first)); // Omit check for the last type. if (last != LAST_TYPE) { DeoptimizeIf(hi, instr->environment(), scratch, Operand(last)); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (IsPowerOf2(mask)) { ASSERT(tag == 0 || IsPowerOf2(tag)); __ And(at, scratch, mask); DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(), at, Operand(zero_reg)); } else { __ And(scratch, scratch, Operand(mask)); DeoptimizeIf(ne, instr->environment(), scratch, Operand(tag)); } } } void LCodeGen::DoCheckFunction(LCheckFunction* instr) { Register reg = ToRegister(instr->value()); Handle<JSFunction> target = instr->hydrogen()->target(); if (isolate()->heap()->InNewSpace(*target)) { Register reg = ToRegister(instr->value()); Handle<JSGlobalPropertyCell> cell = isolate()->factory()->NewJSGlobalPropertyCell(target); __ li(at, Operand(Handle<Object>(cell))); __ lw(at, FieldMemOperand(at, JSGlobalPropertyCell::kValueOffset)); DeoptimizeIf(ne, instr->environment(), reg, Operand(at)); } else { DeoptimizeIf(ne, instr->environment(), reg, Operand(target)); } } void LCodeGen::DoCheckMapCommon(Register reg, Register scratch, Handle<Map> map, CompareMapMode mode, LEnvironment* env) { Label success; __ CompareMapAndBranch(reg, scratch, map, &success, eq, &success, mode); DeoptimizeIf(al, env); __ bind(&success); } void LCodeGen::DoCheckMap(LCheckMap* instr) { Register scratch = scratch0(); LOperand* input = instr->InputAt(0); ASSERT(input->IsRegister()); Register reg = ToRegister(input); Handle<Map> map = instr->hydrogen()->map(); DoCheckMapCommon(reg, scratch, map, instr->hydrogen()->mode(), instr->environment()); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { DoubleRegister value_reg = ToDoubleRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0)); __ ClampDoubleToUint8(result_reg, value_reg, temp_reg); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { Register unclamped_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); __ ClampUint8(result_reg, unclamped_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { Register scratch = scratch0(); Register input_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0)); Label is_smi, done, heap_number; // Both smi and heap number cases are handled. __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi); // Check for heap number __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map())); // Check for undefined. Undefined is converted to zero for clamping // conversions. DeoptimizeIf(ne, instr->environment(), input_reg, Operand(factory()->undefined_value())); __ mov(result_reg, zero_reg); __ jmp(&done); // Heap number __ bind(&heap_number); __ ldc1(double_scratch0(), FieldMemOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg); __ jmp(&done); __ bind(&is_smi); __ ClampUint8(result_reg, scratch); __ bind(&done); } void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) { Register temp1 = ToRegister(instr->TempAt(0)); Register temp2 = ToRegister(instr->TempAt(1)); Handle<JSObject> holder = instr->holder(); Handle<JSObject> current_prototype = instr->prototype(); // Load prototype object. __ LoadHeapObject(temp1, current_prototype); // Check prototype maps up to the holder. while (!current_prototype.is_identical_to(holder)) { DoCheckMapCommon(temp1, temp2, Handle<Map>(current_prototype->map()), ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment()); current_prototype = Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype())); // Load next prototype object. __ LoadHeapObject(temp1, current_prototype); } // Check the holder map. DoCheckMapCommon(temp1, temp2, Handle<Map>(current_prototype->map()), ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment()); } void LCodeGen::DoAllocateObject(LAllocateObject* instr) { class DeferredAllocateObject: public LDeferredCode { public: DeferredAllocateObject(LCodeGen* codegen, LAllocateObject* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredAllocateObject(instr_); } virtual LInstruction* instr() { return instr_; } private: LAllocateObject* instr_; }; DeferredAllocateObject* deferred = new DeferredAllocateObject(this, instr); Register result = ToRegister(instr->result()); Register scratch = ToRegister(instr->TempAt(0)); Register scratch2 = ToRegister(instr->TempAt(1)); Handle<JSFunction> constructor = instr->hydrogen()->constructor(); Handle<Map> initial_map(constructor->initial_map()); int instance_size = initial_map->instance_size(); ASSERT(initial_map->pre_allocated_property_fields() + initial_map->unused_property_fields() - initial_map->inobject_properties() == 0); // Allocate memory for the object. The initial map might change when // the constructor's prototype changes, but instance size and property // counts remain unchanged (if slack tracking finished). ASSERT(!constructor->shared()->IsInobjectSlackTrackingInProgress()); __ AllocateInNewSpace(instance_size, result, scratch, scratch2, deferred->entry(), TAG_OBJECT); // Load the initial map. Register map = scratch; __ LoadHeapObject(map, constructor); __ lw(map, FieldMemOperand(map, JSFunction::kPrototypeOrInitialMapOffset)); // Initialize map and fields of the newly allocated object. ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE); __ sw(map, FieldMemOperand(result, JSObject::kMapOffset)); __ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex); __ sw(scratch, FieldMemOperand(result, JSObject::kElementsOffset)); __ sw(scratch, FieldMemOperand(result, JSObject::kPropertiesOffset)); if (initial_map->inobject_properties() != 0) { __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); for (int i = 0; i < initial_map->inobject_properties(); i++) { int property_offset = JSObject::kHeaderSize + i * kPointerSize; __ sw(scratch, FieldMemOperand(result, property_offset)); } } __ bind(deferred->exit()); } void LCodeGen::DoDeferredAllocateObject(LAllocateObject* instr) { Register result = ToRegister(instr->result()); Handle<JSFunction> constructor = instr->hydrogen()->constructor(); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ mov(result, zero_reg); PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ LoadHeapObject(a0, constructor); __ push(a0); CallRuntimeFromDeferred(Runtime::kNewObject, 1, instr); __ StoreToSafepointRegisterSlot(v0, result); } void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) { Heap* heap = isolate()->heap(); ElementsKind boilerplate_elements_kind = instr->hydrogen()->boilerplate_elements_kind(); // Deopt if the array literal boilerplate ElementsKind is of a type different // than the expected one. The check isn't necessary if the boilerplate has // already been converted to FAST_ELEMENTS. if (boilerplate_elements_kind != FAST_ELEMENTS) { __ LoadHeapObject(a1, instr->hydrogen()->boilerplate_object()); // Load map into a2. __ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset)); // Load the map's "bit field 2". __ lbu(a2, FieldMemOperand(a2, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ Ext(a2, a2, Map::kElementsKindShift, Map::kElementsKindBitCount); DeoptimizeIf(ne, instr->environment(), a2, Operand(boilerplate_elements_kind)); } __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); __ li(a2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); // Boilerplate already exists, constant elements are never accessed. // Pass an empty fixed array. __ li(a1, Operand(Handle<FixedArray>(heap->empty_fixed_array()))); __ Push(a3, a2, a1); // Pick the right runtime function or stub to call. int length = instr->hydrogen()->length(); if (instr->hydrogen()->IsCopyOnWrite()) { ASSERT(instr->hydrogen()->depth() == 1); FastCloneShallowArrayStub::Mode mode = FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateArrayLiteral, 3, instr); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr); } else { FastCloneShallowArrayStub::Mode mode = boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS : FastCloneShallowArrayStub::CLONE_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::EmitDeepCopy(Handle<JSObject> object, Register result, Register source, int* offset) { ASSERT(!source.is(a2)); ASSERT(!result.is(a2)); // Only elements backing stores for non-COW arrays need to be copied. Handle<FixedArrayBase> elements(object->elements()); bool has_elements = elements->length() > 0 && elements->map() != isolate()->heap()->fixed_cow_array_map(); // Increase the offset so that subsequent objects end up right after // this object and its backing store. int object_offset = *offset; int object_size = object->map()->instance_size(); int elements_offset = *offset + object_size; int elements_size = has_elements ? elements->Size() : 0; *offset += object_size + elements_size; // Copy object header. ASSERT(object->properties()->length() == 0); int inobject_properties = object->map()->inobject_properties(); int header_size = object_size - inobject_properties * kPointerSize; for (int i = 0; i < header_size; i += kPointerSize) { if (has_elements && i == JSObject::kElementsOffset) { __ Addu(a2, result, Operand(elements_offset)); } else { __ lw(a2, FieldMemOperand(source, i)); } __ sw(a2, FieldMemOperand(result, object_offset + i)); } // Copy in-object properties. for (int i = 0; i < inobject_properties; i++) { int total_offset = object_offset + object->GetInObjectPropertyOffset(i); Handle<Object> value = Handle<Object>(object->InObjectPropertyAt(i)); if (value->IsJSObject()) { Handle<JSObject> value_object = Handle<JSObject>::cast(value); __ Addu(a2, result, Operand(*offset)); __ sw(a2, FieldMemOperand(result, total_offset)); __ LoadHeapObject(source, value_object); EmitDeepCopy(value_object, result, source, offset); } else if (value->IsHeapObject()) { __ LoadHeapObject(a2, Handle<HeapObject>::cast(value)); __ sw(a2, FieldMemOperand(result, total_offset)); } else { __ li(a2, Operand(value)); __ sw(a2, FieldMemOperand(result, total_offset)); } } if (has_elements) { // Copy elements backing store header. __ LoadHeapObject(source, elements); for (int i = 0; i < FixedArray::kHeaderSize; i += kPointerSize) { __ lw(a2, FieldMemOperand(source, i)); __ sw(a2, FieldMemOperand(result, elements_offset + i)); } // Copy elements backing store content. int elements_length = has_elements ? elements->length() : 0; if (elements->IsFixedDoubleArray()) { Handle<FixedDoubleArray> double_array = Handle<FixedDoubleArray>::cast(elements); for (int i = 0; i < elements_length; i++) { int64_t value = double_array->get_representation(i); // We only support little endian mode... int32_t value_low = value & 0xFFFFFFFF; int32_t value_high = value >> 32; int total_offset = elements_offset + FixedDoubleArray::OffsetOfElementAt(i); __ li(a2, Operand(value_low)); __ sw(a2, FieldMemOperand(result, total_offset)); __ li(a2, Operand(value_high)); __ sw(a2, FieldMemOperand(result, total_offset + 4)); } } else if (elements->IsFixedArray()) { for (int i = 0; i < elements_length; i++) { int total_offset = elements_offset + FixedArray::OffsetOfElementAt(i); Handle<Object> value = JSObject::GetElement(object, i); if (value->IsJSObject()) { Handle<JSObject> value_object = Handle<JSObject>::cast(value); __ Addu(a2, result, Operand(*offset)); __ sw(a2, FieldMemOperand(result, total_offset)); __ LoadHeapObject(source, value_object); EmitDeepCopy(value_object, result, source, offset); } else if (value->IsHeapObject()) { __ LoadHeapObject(a2, Handle<HeapObject>::cast(value)); __ sw(a2, FieldMemOperand(result, total_offset)); } else { __ li(a2, Operand(value)); __ sw(a2, FieldMemOperand(result, total_offset)); } } } else { UNREACHABLE(); } } } void LCodeGen::DoFastLiteral(LFastLiteral* instr) { int size = instr->hydrogen()->total_size(); // Allocate all objects that are part of the literal in one big // allocation. This avoids multiple limit checks. Label allocated, runtime_allocate; __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ li(a0, Operand(Smi::FromInt(size))); __ push(a0); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ bind(&allocated); int offset = 0; __ LoadHeapObject(a1, instr->hydrogen()->boilerplate()); EmitDeepCopy(instr->hydrogen()->boilerplate(), v0, a1, &offset); ASSERT_EQ(size, offset); } void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) { ASSERT(ToRegister(instr->result()).is(v0)); Handle<FixedArray> literals(instr->environment()->closure()->literals()); Handle<FixedArray> constant_properties = instr->hydrogen()->constant_properties(); // Set up the parameters to the stub/runtime call. __ LoadHeapObject(t0, literals); __ li(a3, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); __ li(a2, Operand(constant_properties)); int flags = instr->hydrogen()->fast_elements() ? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags; __ li(a1, Operand(Smi::FromInt(flags))); __ Push(t0, a3, a2, a1); // Pick the right runtime function or stub to call. int properties_count = constant_properties->length() / 2; if (instr->hydrogen()->depth() > 1) { CallRuntime(Runtime::kCreateObjectLiteral, 4, instr); } else if (flags != ObjectLiteral::kFastElements || properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr); } else { FastCloneShallowObjectStub stub(properties_count); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::DoToFastProperties(LToFastProperties* instr) { ASSERT(ToRegister(instr->InputAt(0)).is(a0)); ASSERT(ToRegister(instr->result()).is(v0)); __ push(a0); CallRuntime(Runtime::kToFastProperties, 1, instr); } void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { Label materialized; // Registers will be used as follows: // a3 = JS function. // t3 = literals array. // a1 = regexp literal. // a0 = regexp literal clone. // a2 and t0-t2 are used as temporaries. __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ lw(t3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + instr->hydrogen()->literal_index() * kPointerSize; __ lw(a1, FieldMemOperand(t3, literal_offset)); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&materialized, ne, a1, Operand(at)); // Create regexp literal using runtime function // Result will be in v0. __ li(t2, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); __ li(t1, Operand(instr->hydrogen()->pattern())); __ li(t0, Operand(instr->hydrogen()->flags())); __ Push(t3, t2, t1, t0); CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); __ mov(a1, v0); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ li(a0, Operand(Smi::FromInt(size))); __ Push(a1, a0); CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); __ pop(a1); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ lw(a3, FieldMemOperand(a1, i)); __ lw(a2, FieldMemOperand(a1, i + kPointerSize)); __ sw(a3, FieldMemOperand(v0, i)); __ sw(a2, FieldMemOperand(v0, i + kPointerSize)); } if ((size % (2 * kPointerSize)) != 0) { __ lw(a3, FieldMemOperand(a1, size - kPointerSize)); __ sw(a3, FieldMemOperand(v0, size - kPointerSize)); } } void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. Handle<SharedFunctionInfo> shared_info = instr->shared_info(); bool pretenure = instr->hydrogen()->pretenure(); if (!pretenure && shared_info->num_literals() == 0) { FastNewClosureStub stub(shared_info->language_mode()); __ li(a1, Operand(shared_info)); __ push(a1); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else { __ li(a2, Operand(shared_info)); __ li(a1, Operand(pretenure ? factory()->true_value() : factory()->false_value())); __ Push(cp, a2, a1); CallRuntime(Runtime::kNewClosure, 3, instr); } } void LCodeGen::DoTypeof(LTypeof* instr) { ASSERT(ToRegister(instr->result()).is(v0)); Register input = ToRegister(instr->InputAt(0)); __ push(input); CallRuntime(Runtime::kTypeof, 1, instr); } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->InputAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); Label* true_label = chunk_->GetAssemblyLabel(true_block); Label* false_label = chunk_->GetAssemblyLabel(false_block); Register cmp1 = no_reg; Operand cmp2 = Operand(no_reg); Condition final_branch_condition = EmitTypeofIs(true_label, false_label, input, instr->type_literal(), cmp1, cmp2); ASSERT(cmp1.is_valid()); ASSERT(!cmp2.is_reg() || cmp2.rm().is_valid()); if (final_branch_condition != kNoCondition) { EmitBranch(true_block, false_block, final_branch_condition, cmp1, cmp2); } } Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle<String> type_name, Register& cmp1, Operand& cmp2) { // This function utilizes the delay slot heavily. This is used to load // values that are always usable without depending on the type of the input // register. Condition final_branch_condition = kNoCondition; Register scratch = scratch0(); if (type_name->Equals(heap()->number_symbol())) { __ JumpIfSmi(input, true_label); __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); cmp1 = input; cmp2 = Operand(at); final_branch_condition = eq; } else if (type_name->Equals(heap()->string_symbol())) { __ JumpIfSmi(input, false_label); __ GetObjectType(input, input, scratch); __ Branch(USE_DELAY_SLOT, false_label, ge, scratch, Operand(FIRST_NONSTRING_TYPE)); // input is an object so we can load the BitFieldOffset even if we take the // other branch. __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); __ And(at, at, 1 << Map::kIsUndetectable); cmp1 = at; cmp2 = Operand(zero_reg); final_branch_condition = eq; } else if (type_name->Equals(heap()->boolean_symbol())) { __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); __ LoadRoot(at, Heap::kFalseValueRootIndex); cmp1 = at; cmp2 = Operand(input); final_branch_condition = eq; } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) { __ LoadRoot(at, Heap::kNullValueRootIndex); cmp1 = at; cmp2 = Operand(input); final_branch_condition = eq; } else if (type_name->Equals(heap()->undefined_symbol())) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); // The first instruction of JumpIfSmi is an And - it is safe in the delay // slot. __ JumpIfSmi(input, false_label); // Check for undetectable objects => true. __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); __ And(at, at, 1 << Map::kIsUndetectable); cmp1 = at; cmp2 = Operand(zero_reg); final_branch_condition = ne; } else if (type_name->Equals(heap()->function_symbol())) { STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ JumpIfSmi(input, false_label); __ GetObjectType(input, scratch, input); __ Branch(true_label, eq, input, Operand(JS_FUNCTION_TYPE)); cmp1 = input; cmp2 = Operand(JS_FUNCTION_PROXY_TYPE); final_branch_condition = eq; } else if (type_name->Equals(heap()->object_symbol())) { __ JumpIfSmi(input, false_label); if (!FLAG_harmony_typeof) { __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input)); } // input is an object, it is safe to use GetObjectType in the delay slot. __ GetObjectType(input, input, scratch); __ Branch(USE_DELAY_SLOT, false_label, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); // Still an object, so the InstanceType can be loaded. __ lbu(scratch, FieldMemOperand(input, Map::kInstanceTypeOffset)); __ Branch(USE_DELAY_SLOT, false_label, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); // Still an object, so the BitField can be loaded. // Check for undetectable objects => false. __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset)); __ And(at, at, 1 << Map::kIsUndetectable); cmp1 = at; cmp2 = Operand(zero_reg); final_branch_condition = eq; } else { cmp1 = at; cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion. __ Branch(false_label); } return final_branch_condition; } void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { Register temp1 = ToRegister(instr->TempAt(0)); int true_block = chunk_->LookupDestination(instr->true_block_id()); int false_block = chunk_->LookupDestination(instr->false_block_id()); EmitIsConstructCall(temp1, scratch0()); EmitBranch(true_block, false_block, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); } void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { ASSERT(!temp1.is(temp2)); // Get the frame pointer for the calling frame. __ lw(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ lw(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); __ Branch(&check_frame_marker, ne, temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ lw(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); } void LCodeGen::EnsureSpaceForLazyDeopt() { // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); int patch_size = Deoptimizer::patch_size(); if (current_pc < last_lazy_deopt_pc_ + patch_size) { int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc; ASSERT_EQ(0, padding_size % Assembler::kInstrSize); while (padding_size > 0) { __ nop(); padding_size -= Assembler::kInstrSize; } } last_lazy_deopt_pc_ = masm()->pc_offset(); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { EnsureSpaceForLazyDeopt(); ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { DeoptimizeIf(al, instr->environment(), zero_reg, Operand(zero_reg)); } void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) { Register object = ToRegister(instr->object()); Register key = ToRegister(instr->key()); Register strict = scratch0(); __ li(strict, Operand(Smi::FromInt(strict_mode_flag()))); __ Push(object, key, strict); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator safepoint_generator( this, pointers, Safepoint::kLazyDeopt); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator); } void LCodeGen::DoIn(LIn* instr) { Register obj = ToRegister(instr->object()); Register key = ToRegister(instr->key()); __ Push(key, obj); ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment()); LPointerMap* pointers = instr->pointer_map(); RecordPosition(pointers->position()); SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator); } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck: public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } virtual LInstruction* instr() { return instr_; } private: LStackCheck* instr_; }; ASSERT(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(&done, hs, sp, Operand(at)); StackCheckStub stub; CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); EnsureSpaceForLazyDeopt(); __ bind(&done); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } else { ASSERT(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new DeferredStackCheck(this, instr); __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at)); EnsureSpaceForLazyDeopt(); __ bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); environment->SetSpilledRegisters(instr->SpilledRegisterArray(), instr->SpilledDoubleRegisterArray()); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. ASSERT(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); ASSERT(osr_pc_offset_ == -1); osr_pc_offset_ = masm()->pc_offset(); } void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { Register result = ToRegister(instr->result()); Register object = ToRegister(instr->object()); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); DeoptimizeIf(eq, instr->environment(), object, Operand(at)); Register null_value = t1; __ LoadRoot(null_value, Heap::kNullValueRootIndex); DeoptimizeIf(eq, instr->environment(), object, Operand(null_value)); __ And(at, object, kSmiTagMask); DeoptimizeIf(eq, instr->environment(), at, Operand(zero_reg)); STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ GetObjectType(object, a1, a1); DeoptimizeIf(le, instr->environment(), a1, Operand(LAST_JS_PROXY_TYPE)); Label use_cache, call_runtime; ASSERT(object.is(a0)); __ CheckEnumCache(null_value, &call_runtime); __ lw(result, FieldMemOperand(object, HeapObject::kMapOffset)); __ Branch(&use_cache); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(object); CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); ASSERT(result.is(v0)); __ LoadRoot(at, Heap::kMetaMapRootIndex); DeoptimizeIf(ne, instr->environment(), a1, Operand(at)); __ bind(&use_cache); } void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { Register map = ToRegister(instr->map()); Register result = ToRegister(instr->result()); __ LoadInstanceDescriptors(map, result); __ lw(result, FieldMemOperand(result, DescriptorArray::kEnumerationIndexOffset)); __ lw(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); DeoptimizeIf(eq, instr->environment(), result, Operand(zero_reg)); } void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { Register object = ToRegister(instr->value()); Register map = ToRegister(instr->map()); __ lw(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); DeoptimizeIf(ne, instr->environment(), map, Operand(scratch0())); } void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { Register object = ToRegister(instr->object()); Register index = ToRegister(instr->index()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); Label out_of_object, done; __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg)); __ sll(scratch, index, kPointerSizeLog2 - kSmiTagSize); // In delay slot. STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); __ Addu(scratch, object, scratch); __ lw(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); __ Branch(&done); __ bind(&out_of_object); __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); // Index is equal to negated out of object property index plus 1. __ Subu(scratch, result, scratch); __ lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize)); __ bind(&done); } #undef __ } } // namespace v8::internal