// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ #include "assembler.h" #include "mips/assembler-mips.h" #include "v8globals.h" namespace v8 { namespace internal { // Forward declaration. class JumpTarget; // Reserved Register Usage Summary. // // Registers t8, t9, and at are reserved for use by the MacroAssembler. // // The programmer should know that the MacroAssembler may clobber these three, // but won't touch other registers except in special cases. // // Per the MIPS ABI, register t9 must be used for indirect function call // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when // trying to update gp register for position-independent-code. Whenever // MIPS generated code calls C code, it must be via t9 register. // Flags used for the AllocateInNewSpace functions. enum AllocationFlags { // No special flags. NO_ALLOCATION_FLAGS = 0, // Return the pointer to the allocated already tagged as a heap object. TAG_OBJECT = 1 << 0, // The content of the result register already contains the allocation top in // new space. RESULT_CONTAINS_TOP = 1 << 1, // Specify that the requested size of the space to allocate is specified in // words instead of bytes. SIZE_IN_WORDS = 1 << 2 }; // Flags used for the ObjectToDoubleFPURegister function. enum ObjectToDoubleFlags { // No special flags. NO_OBJECT_TO_DOUBLE_FLAGS = 0, // Object is known to be a non smi. OBJECT_NOT_SMI = 1 << 0, // Don't load NaNs or infinities, branch to the non number case instead. AVOID_NANS_AND_INFINITIES = 1 << 1 }; // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls. enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT }; // Flags used for the li macro-assembler function. enum LiFlags { // If the constant value can be represented in just 16 bits, then // optimize the li to use a single instruction, rather than lui/ori pair. OPTIMIZE_SIZE = 0, // Always use 2 instructions (lui/ori pair), even if the constant could // be loaded with just one, so that this value is patchable later. CONSTANT_SIZE = 1 }; enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved }; bool AreAliased(Register r1, Register r2, Register r3, Register r4); // ----------------------------------------------------------------------------- // Static helper functions. inline MemOperand ContextOperand(Register context, int index) { return MemOperand(context, Context::SlotOffset(index)); } inline MemOperand GlobalObjectOperand() { return ContextOperand(cp, Context::GLOBAL_INDEX); } // Generate a MemOperand for loading a field from an object. inline MemOperand FieldMemOperand(Register object, int offset) { return MemOperand(object, offset - kHeapObjectTag); } // Generate a MemOperand for storing arguments 5..N on the stack // when calling CallCFunction(). inline MemOperand CFunctionArgumentOperand(int index) { ASSERT(index > kCArgSlotCount); // Argument 5 takes the slot just past the four Arg-slots. int offset = (index - 5) * kPointerSize + kCArgsSlotsSize; return MemOperand(sp, offset); } // MacroAssembler implements a collection of frequently used macros. class MacroAssembler: public Assembler { public: // The isolate parameter can be NULL if the macro assembler should // not use isolate-dependent functionality. In this case, it's the // responsibility of the caller to never invoke such function on the // macro assembler. MacroAssembler(Isolate* isolate, void* buffer, int size); // Arguments macros. #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2 #define COND_ARGS cond, r1, r2 // Cases when relocation is not needed. #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \ void Name(target_type target, BranchDelaySlot bd = PROTECT); \ inline void Name(BranchDelaySlot bd, target_type target) { \ Name(target, bd); \ } \ void Name(target_type target, \ COND_TYPED_ARGS, \ BranchDelaySlot bd = PROTECT); \ inline void Name(BranchDelaySlot bd, \ target_type target, \ COND_TYPED_ARGS) { \ Name(target, COND_ARGS, bd); \ } #define DECLARE_BRANCH_PROTOTYPES(Name) \ DECLARE_NORELOC_PROTOTYPE(Name, Label*) \ DECLARE_NORELOC_PROTOTYPE(Name, int16_t) DECLARE_BRANCH_PROTOTYPES(Branch) DECLARE_BRANCH_PROTOTYPES(BranchAndLink) #undef DECLARE_BRANCH_PROTOTYPES #undef COND_TYPED_ARGS #undef COND_ARGS // Jump, Call, and Ret pseudo instructions implementing inter-working. #define COND_ARGS Condition cond = al, Register rs = zero_reg, \ const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT void Jump(Register target, COND_ARGS); void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS); void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS); void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS); static int CallSize(Register target, COND_ARGS); void Call(Register target, COND_ARGS); static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS); void Call(Address target, RelocInfo::Mode rmode, COND_ARGS); static int CallSize(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, unsigned ast_id = kNoASTId, COND_ARGS); void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, unsigned ast_id = kNoASTId, COND_ARGS); void Ret(COND_ARGS); inline void Ret(BranchDelaySlot bd, Condition cond = al, Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) { Ret(cond, rs, rt, bd); } void Branch(Label* L, Condition cond, Register rs, Heap::RootListIndex index, BranchDelaySlot bdslot = PROTECT); #undef COND_ARGS // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the sp register. void Drop(int count, Condition cond = cc_always, Register reg = no_reg, const Operand& op = Operand(no_reg)); // Trivial case of DropAndRet that utilizes the delay slot and only emits // 2 instructions. void DropAndRet(int drop); void DropAndRet(int drop, Condition cond, Register reg, const Operand& op); // Swap two registers. If the scratch register is omitted then a slightly // less efficient form using xor instead of mov is emitted. void Swap(Register reg1, Register reg2, Register scratch = no_reg); void Call(Label* target); inline void Move(Register dst, Register src) { if (!dst.is(src)) { mov(dst, src); } } inline void Move(FPURegister dst, FPURegister src) { if (!dst.is(src)) { mov_d(dst, src); } } inline void Move(Register dst_low, Register dst_high, FPURegister src) { mfc1(dst_low, src); mfc1(dst_high, FPURegister::from_code(src.code() + 1)); } inline void Move(FPURegister dst, Register src_low, Register src_high) { mtc1(src_low, dst); mtc1(src_high, FPURegister::from_code(dst.code() + 1)); } // Conditional move. void Move(FPURegister dst, double imm); void Movz(Register rd, Register rs, Register rt); void Movn(Register rd, Register rs, Register rt); void Movt(Register rd, Register rs, uint16_t cc = 0); void Movf(Register rd, Register rs, uint16_t cc = 0); void Clz(Register rd, Register rs); // Jump unconditionally to given label. // We NEED a nop in the branch delay slot, as it used by v8, for example in // CodeGenerator::ProcessDeferred(). // Currently the branch delay slot is filled by the MacroAssembler. // Use rather b(Label) for code generation. void jmp(Label* L) { Branch(L); } // Load an object from the root table. void LoadRoot(Register destination, Heap::RootListIndex index); void LoadRoot(Register destination, Heap::RootListIndex index, Condition cond, Register src1, const Operand& src2); // Store an object to the root table. void StoreRoot(Register source, Heap::RootListIndex index); void StoreRoot(Register source, Heap::RootListIndex index, Condition cond, Register src1, const Operand& src2); void LoadHeapObject(Register dst, Handle<HeapObject> object); void LoadObject(Register result, Handle<Object> object) { if (object->IsHeapObject()) { LoadHeapObject(result, Handle<HeapObject>::cast(object)); } else { li(result, object); } } // --------------------------------------------------------------------------- // GC Support void IncrementalMarkingRecordWriteHelper(Register object, Register value, Register address); enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd }; // Record in the remembered set the fact that we have a pointer to new space // at the address pointed to by the addr register. Only works if addr is not // in new space. void RememberedSetHelper(Register object, // Used for debug code. Register addr, Register scratch, SaveFPRegsMode save_fp, RememberedSetFinalAction and_then); void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met); // Check if object is in new space. Jumps if the object is not in new space. // The register scratch can be object itself, but it will be clobbered. void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) { InNewSpace(object, scratch, ne, branch); } // Check if object is in new space. Jumps if the object is in new space. // The register scratch can be object itself, but scratch will be clobbered. void JumpIfInNewSpace(Register object, Register scratch, Label* branch) { InNewSpace(object, scratch, eq, branch); } // Check if an object has a given incremental marking color. void HasColor(Register object, Register scratch0, Register scratch1, Label* has_color, int first_bit, int second_bit); void JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black); // Checks the color of an object. If the object is already grey or black // then we just fall through, since it is already live. If it is white and // we can determine that it doesn't need to be scanned, then we just mark it // black and fall through. For the rest we jump to the label so the // incremental marker can fix its assumptions. void EnsureNotWhite(Register object, Register scratch1, Register scratch2, Register scratch3, Label* object_is_white_and_not_data); // Detects conservatively whether an object is data-only, i.e. it does need to // be scanned by the garbage collector. void JumpIfDataObject(Register value, Register scratch, Label* not_data_object); // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // As above, but the offset has the tag presubtracted. For use with // MemOperand(reg, off). inline void RecordWriteContextSlot( Register context, int offset, Register value, Register scratch, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK) { RecordWriteField(context, offset + kHeapObjectTag, value, scratch, ra_status, save_fp, remembered_set_action, smi_check); } // For a given |object| notify the garbage collector that the slot |address| // has been written. |value| is the object being stored. The value and // address registers are clobbered by the operation. void RecordWrite( Register object, Register address, Register value, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK); // --------------------------------------------------------------------------- // Inline caching support. // Generate code for checking access rights - used for security checks // on access to global objects across environments. The holder register // is left untouched, whereas both scratch registers are clobbered. void CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss); void GetNumberHash(Register reg0, Register scratch); void LoadFromNumberDictionary(Label* miss, Register elements, Register key, Register result, Register reg0, Register reg1, Register reg2); inline void MarkCode(NopMarkerTypes type) { nop(type); } // Check if the given instruction is a 'type' marker. // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as // nop(type)). These instructions are generated to mark special location in // the code, like some special IC code. static inline bool IsMarkedCode(Instr instr, int type) { ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)); return IsNop(instr, type); } static inline int GetCodeMarker(Instr instr) { uint32_t opcode = ((instr & kOpcodeMask)); uint32_t rt = ((instr & kRtFieldMask) >> kRtShift); uint32_t rs = ((instr & kRsFieldMask) >> kRsShift); uint32_t sa = ((instr & kSaFieldMask) >> kSaShift); // Return <n> if we have a sll zero_reg, zero_reg, n // else return -1. bool sllzz = (opcode == SLL && rt == static_cast<uint32_t>(ToNumber(zero_reg)) && rs == static_cast<uint32_t>(ToNumber(zero_reg))); int type = (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1; ASSERT((type == -1) || ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER))); return type; } // --------------------------------------------------------------------------- // Allocation support. // Allocate an object in new space. The object_size is specified // either in bytes or in words if the allocation flag SIZE_IN_WORDS // is passed. If the new space is exhausted control continues at the // gc_required label. The allocated object is returned in result. If // the flag tag_allocated_object is true the result is tagged as as // a heap object. All registers are clobbered also when control // continues at the gc_required label. void AllocateInNewSpace(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags); void AllocateInNewSpace(Register object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags); // Undo allocation in new space. The object passed and objects allocated after // it will no longer be allocated. The caller must make sure that no pointers // are left to the object(s) no longer allocated as they would be invalid when // allocation is undone. void UndoAllocationInNewSpace(Register object, Register scratch); void AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); void AllocateAsciiConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); void AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); void AllocateAsciiSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required); // Allocates a heap number or jumps to the gc_required label if the young // space is full and a scavenge is needed. All registers are clobbered also // when control continues at the gc_required label. void AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required); void AllocateHeapNumberWithValue(Register result, FPURegister value, Register scratch1, Register scratch2, Label* gc_required); // --------------------------------------------------------------------------- // Instruction macros. #define DEFINE_INSTRUCTION(instr) \ void instr(Register rd, Register rs, const Operand& rt); \ void instr(Register rd, Register rs, Register rt) { \ instr(rd, rs, Operand(rt)); \ } \ void instr(Register rs, Register rt, int32_t j) { \ instr(rs, rt, Operand(j)); \ } #define DEFINE_INSTRUCTION2(instr) \ void instr(Register rs, const Operand& rt); \ void instr(Register rs, Register rt) { \ instr(rs, Operand(rt)); \ } \ void instr(Register rs, int32_t j) { \ instr(rs, Operand(j)); \ } DEFINE_INSTRUCTION(Addu); DEFINE_INSTRUCTION(Subu); DEFINE_INSTRUCTION(Mul); DEFINE_INSTRUCTION2(Mult); DEFINE_INSTRUCTION2(Multu); DEFINE_INSTRUCTION2(Div); DEFINE_INSTRUCTION2(Divu); DEFINE_INSTRUCTION(And); DEFINE_INSTRUCTION(Or); DEFINE_INSTRUCTION(Xor); DEFINE_INSTRUCTION(Nor); DEFINE_INSTRUCTION2(Neg); DEFINE_INSTRUCTION(Slt); DEFINE_INSTRUCTION(Sltu); // MIPS32 R2 instruction macro. DEFINE_INSTRUCTION(Ror); #undef DEFINE_INSTRUCTION #undef DEFINE_INSTRUCTION2 // --------------------------------------------------------------------------- // Pseudo-instructions. void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); } // Load int32 in the rd register. void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) { li(rd, Operand(j), mode); } inline void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE) { li(dst, Operand(value), mode); } // Push multiple registers on the stack. // Registers are saved in numerical order, with higher numbered registers // saved in higher memory addresses. void MultiPush(RegList regs); void MultiPushReversed(RegList regs); void MultiPushFPU(RegList regs); void MultiPushReversedFPU(RegList regs); // Lower case push() for compatibility with arch-independent code. void push(Register src) { Addu(sp, sp, Operand(-kPointerSize)); sw(src, MemOperand(sp, 0)); } // Push a handle. void Push(Handle<Object> handle); // Push two registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2) { Subu(sp, sp, Operand(2 * kPointerSize)); sw(src1, MemOperand(sp, 1 * kPointerSize)); sw(src2, MemOperand(sp, 0 * kPointerSize)); } // Push three registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3) { Subu(sp, sp, Operand(3 * kPointerSize)); sw(src1, MemOperand(sp, 2 * kPointerSize)); sw(src2, MemOperand(sp, 1 * kPointerSize)); sw(src3, MemOperand(sp, 0 * kPointerSize)); } // Push four registers. Pushes leftmost register first (to highest address). void Push(Register src1, Register src2, Register src3, Register src4) { Subu(sp, sp, Operand(4 * kPointerSize)); sw(src1, MemOperand(sp, 3 * kPointerSize)); sw(src2, MemOperand(sp, 2 * kPointerSize)); sw(src3, MemOperand(sp, 1 * kPointerSize)); sw(src4, MemOperand(sp, 0 * kPointerSize)); } void Push(Register src, Condition cond, Register tst1, Register tst2) { // Since we don't have conditional execution we use a Branch. Branch(3, cond, tst1, Operand(tst2)); Subu(sp, sp, Operand(kPointerSize)); sw(src, MemOperand(sp, 0)); } // Pops multiple values from the stack and load them in the // registers specified in regs. Pop order is the opposite as in MultiPush. void MultiPop(RegList regs); void MultiPopReversed(RegList regs); void MultiPopFPU(RegList regs); void MultiPopReversedFPU(RegList regs); // Lower case pop() for compatibility with arch-independent code. void pop(Register dst) { lw(dst, MemOperand(sp, 0)); Addu(sp, sp, Operand(kPointerSize)); } // Pop two registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2) { ASSERT(!src1.is(src2)); lw(src2, MemOperand(sp, 0 * kPointerSize)); lw(src1, MemOperand(sp, 1 * kPointerSize)); Addu(sp, sp, 2 * kPointerSize); } // Pop three registers. Pops rightmost register first (from lower address). void Pop(Register src1, Register src2, Register src3) { lw(src3, MemOperand(sp, 0 * kPointerSize)); lw(src2, MemOperand(sp, 1 * kPointerSize)); lw(src1, MemOperand(sp, 2 * kPointerSize)); Addu(sp, sp, 3 * kPointerSize); } void Pop(uint32_t count = 1) { Addu(sp, sp, Operand(count * kPointerSize)); } // Push and pop the registers that can hold pointers, as defined by the // RegList constant kSafepointSavedRegisters. void PushSafepointRegisters(); void PopSafepointRegisters(); void PushSafepointRegistersAndDoubles(); void PopSafepointRegistersAndDoubles(); // Store value in register src in the safepoint stack slot for // register dst. void StoreToSafepointRegisterSlot(Register src, Register dst); void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst); // Load the value of the src register from its safepoint stack slot // into register dst. void LoadFromSafepointRegisterSlot(Register dst, Register src); // Flush the I-cache from asm code. You should use CPU::FlushICache from C. // Does not handle errors. void FlushICache(Register address, unsigned instructions); // MIPS32 R2 instruction macro. void Ins(Register rt, Register rs, uint16_t pos, uint16_t size); void Ext(Register rt, Register rs, uint16_t pos, uint16_t size); // --------------------------------------------------------------------------- // FPU macros. These do not handle special cases like NaN or +- inf. // Convert unsigned word to double. void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch); void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch); // Convert double to unsigned word. void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch); void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch); void Trunc_w_d(FPURegister fd, FPURegister fs); void Round_w_d(FPURegister fd, FPURegister fs); void Floor_w_d(FPURegister fd, FPURegister fs); void Ceil_w_d(FPURegister fd, FPURegister fs); // Wrapper function for the different cmp/branch types. void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd = PROTECT); // Alternate (inline) version for better readability with USE_DELAY_SLOT. inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2) { BranchF(target, nan, cc, cmp1, cmp2, bd); }; // Convert the HeapNumber pointed to by source to a 32bits signed integer // dest. If the HeapNumber does not fit into a 32bits signed integer branch // to not_int32 label. If FPU is available double_scratch is used but not // scratch2. void ConvertToInt32(Register source, Register dest, Register scratch, Register scratch2, FPURegister double_scratch, Label *not_int32); // Truncates a double using a specific rounding mode. // The except_flag will contain any exceptions caused by the instruction. // If check_inexact is kDontCheckForInexactConversion, then the inexacat // exception is masked. void EmitFPUTruncate(FPURoundingMode rounding_mode, FPURegister result, DoubleRegister double_input, Register scratch1, Register except_flag, CheckForInexactConversion check_inexact = kDontCheckForInexactConversion); // Helper for EmitECMATruncate. // This will truncate a floating-point value outside of the singed 32bit // integer range to a 32bit signed integer. // Expects the double value loaded in input_high and input_low. // Exits with the answer in 'result'. // Note that this code does not work for values in the 32bit range! void EmitOutOfInt32RangeTruncate(Register result, Register input_high, Register input_low, Register scratch); // Performs a truncating conversion of a floating point number as used by // the JS bitwise operations. See ECMA-262 9.5: ToInt32. // Exits with 'result' holding the answer and all other registers clobbered. void EmitECMATruncate(Register result, FPURegister double_input, FPURegister single_scratch, Register scratch, Register scratch2, Register scratch3); // Enter exit frame. // argc - argument count to be dropped by LeaveExitFrame. // save_doubles - saves FPU registers on stack, currently disabled. // stack_space - extra stack space. void EnterExitFrame(bool save_doubles, int stack_space = 0); // Leave the current exit frame. void LeaveExitFrame(bool save_doubles, Register arg_count, bool do_return = false); // Get the actual activation frame alignment for target environment. static int ActivationFrameAlignment(); // Make sure the stack is aligned. Only emits code in debug mode. void AssertStackIsAligned(); void LoadContext(Register dst, int context_chain_length); // Conditionally load the cached Array transitioned map of type // transitioned_kind from the global context if the map in register // map_in_out is the cached Array map in the global context of // expected_kind. void LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match); // Load the initial map for new Arrays from a JSFunction. void LoadInitialArrayMap(Register function_in, Register scratch, Register map_out); void LoadGlobalFunction(int index, Register function); // Load the initial map from the global function. The registers // function and map can be the same, function is then overwritten. void LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch); void InitializeRootRegister() { ExternalReference roots_array_start = ExternalReference::roots_array_start(isolate()); li(kRootRegister, Operand(roots_array_start)); } // ------------------------------------------------------------------------- // JavaScript invokes. // Set up call kind marking in t1. The method takes t1 as an // explicit first parameter to make the code more readable at the // call sites. void SetCallKind(Register dst, CallKind kind); // Invoke the JavaScript function code by either calling or jumping. void InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind); void InvokeCode(Handle<Code> code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag, CallKind call_kind); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind); void InvokeFunction(Handle<JSFunction> function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind); void IsObjectJSObjectType(Register heap_object, Register map, Register scratch, Label* fail); void IsInstanceJSObjectType(Register map, Register scratch, Label* fail); void IsObjectJSStringType(Register object, Register scratch, Label* fail); #ifdef ENABLE_DEBUGGER_SUPPORT // ------------------------------------------------------------------------- // Debugger Support. void DebugBreak(); #endif // ------------------------------------------------------------------------- // Exception handling. // Push a new try handler and link into try handler chain. void PushTryHandler(StackHandler::Kind kind, int handler_index); // Unlink the stack handler on top of the stack from the try handler chain. // Must preserve the result register. void PopTryHandler(); // Passes thrown value to the handler of top of the try handler chain. void Throw(Register value); // Propagates an uncatchable exception to the top of the current JS stack's // handler chain. void ThrowUncatchable(Register value); // Copies a fixed number of fields of heap objects from src to dst. void CopyFields(Register dst, Register src, RegList temps, int field_count); // Copies a number of bytes from src to dst. All registers are clobbered. On // exit src and dst will point to the place just after where the last byte was // read or written and length will be zero. void CopyBytes(Register src, Register dst, Register length, Register scratch); // Initialize fields with filler values. Fields starting at |start_offset| // not including end_offset are overwritten with the value in |filler|. At // the end the loop, |start_offset| takes the value of |end_offset|. void InitializeFieldsWithFiller(Register start_offset, Register end_offset, Register filler); // ------------------------------------------------------------------------- // Support functions. // Try to get function prototype of a function and puts the value in // the result register. Checks that the function really is a // function and jumps to the miss label if the fast checks fail. The // function register will be untouched; the other registers may be // clobbered. void TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss, bool miss_on_bound_function = false); void GetObjectType(Register function, Register map, Register type_reg); // Check if a map for a JSObject indicates that the object has fast elements. // Jump to the specified label if it does not. void CheckFastElements(Register map, Register scratch, Label* fail); // Check if a map for a JSObject indicates that the object can have both smi // and HeapObject elements. Jump to the specified label if it does not. void CheckFastObjectElements(Register map, Register scratch, Label* fail); // Check if a map for a JSObject indicates that the object has fast smi only // elements. Jump to the specified label if it does not. void CheckFastSmiOnlyElements(Register map, Register scratch, Label* fail); // Check to see if maybe_number can be stored as a double in // FastDoubleElements. If it can, store it at the index specified by key in // the FastDoubleElements array elements. Otherwise jump to fail, in which // case scratch2, scratch3 and scratch4 are unmodified. void StoreNumberToDoubleElements(Register value_reg, Register key_reg, Register receiver_reg, Register elements_reg, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label* fail); // Compare an object's map with the specified map and its transitioned // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to // "branch_to" if the result of the comparison is "cond". If multiple map // compares are required, the compare sequences branches to early_success. void CompareMapAndBranch(Register obj, Register scratch, Handle<Map> map, Label* early_success, Condition cond, Label* branch_to, CompareMapMode mode = REQUIRE_EXACT_MAP); // Check if the map of an object is equal to a specified map and branch to // label if not. Skip the smi check if not required (object is known to be a // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match // against maps that are ElementsKind transition maps of the specificed map. void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, SmiCheckType smi_check_type, CompareMapMode mode = REQUIRE_EXACT_MAP); void CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type); // Check if the map of an object is equal to a specified map and branch to a // specified target if equal. Skip the smi check if not required (object is // known to be a heap object) void DispatchMap(Register obj, Register scratch, Handle<Map> map, Handle<Code> success, SmiCheckType smi_check_type); // Generates code for reporting that an illegal operation has // occurred. void IllegalOperation(int num_arguments); // Load and check the instance type of an object for being a string. // Loads the type into the second argument register. // Returns a condition that will be enabled if the object was a string. Condition IsObjectStringType(Register obj, Register type, Register result) { lw(type, FieldMemOperand(obj, HeapObject::kMapOffset)); lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset)); And(type, type, Operand(kIsNotStringMask)); ASSERT_EQ(0, kStringTag); return eq; } // Picks out an array index from the hash field. // Register use: // hash - holds the index's hash. Clobbered. // index - holds the overwritten index on exit. void IndexFromHash(Register hash, Register index); // Get the number of least significant bits from a register. void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits); void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits); // Load the value of a number object into a FPU double register. If the // object is not a number a jump to the label not_number is performed // and the FPU double register is unchanged. void ObjectToDoubleFPURegister( Register object, FPURegister value, Register scratch1, Register scratch2, Register heap_number_map, Label* not_number, ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS); // Load the value of a smi object into a FPU double register. The register // scratch1 can be the same register as smi in which case smi will hold the // untagged value afterwards. void SmiToDoubleFPURegister(Register smi, FPURegister value, Register scratch1); // ------------------------------------------------------------------------- // Overflow handling functions. // Usage: first call the appropriate arithmetic function, then call one of the // jump functions with the overflow_dst register as the second parameter. void AdduAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch = at); void SubuAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch = at); void BranchOnOverflow(Label* label, Register overflow_check, BranchDelaySlot bd = PROTECT) { Branch(label, lt, overflow_check, Operand(zero_reg), bd); } void BranchOnNoOverflow(Label* label, Register overflow_check, BranchDelaySlot bd = PROTECT) { Branch(label, ge, overflow_check, Operand(zero_reg), bd); } void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) { Ret(lt, overflow_check, Operand(zero_reg), bd); } void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) { Ret(ge, overflow_check, Operand(zero_reg), bd); } // ------------------------------------------------------------------------- // Runtime calls. // See comments at the beginning of CEntryStub::Generate. inline void PrepareCEntryArgs(int num_args) { li(s0, num_args); li(s1, (num_args - 1) * kPointerSize); } inline void PrepareCEntryFunction(const ExternalReference& ref) { li(s2, Operand(ref)); } // Call a code stub. void CallStub(CodeStub* stub, Condition cond = cc_always, Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg), BranchDelaySlot bd = PROTECT); // Tail call a code stub (jump). void TailCallStub(CodeStub* stub); void CallJSExitStub(CodeStub* stub); // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments); void CallRuntimeSaveDoubles(Runtime::FunctionId id); // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments); // Convenience function: call an external reference. void CallExternalReference(const ExternalReference& ext, int num_arguments, BranchDelaySlot bd = PROTECT); // Tail call of a runtime routine (jump). // Like JumpToExternalReference, but also takes care of passing the number // of parameters. void TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size); // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size); int CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments); // Before calling a C-function from generated code, align arguments on stack // and add space for the four mips argument slots. // After aligning the frame, non-register arguments must be stored on the // stack, after the argument-slots using helper: CFunctionArgumentOperand(). // The argument count assumes all arguments are word sized. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, Register scratch); void PrepareCallCFunction(int num_reg_arguments, Register scratch); // Arguments 1-4 are placed in registers a0 thru a3 respectively. // Arguments 5..n are stored to stack using following: // sw(t0, CFunctionArgumentOperand(5)); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); void CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments); void CallCFunction(Register function, int num_reg_arguments, int num_double_arguments); void GetCFunctionDoubleResult(const DoubleRegister dst); // There are two ways of passing double arguments on MIPS, depending on // whether soft or hard floating point ABI is used. These functions // abstract parameter passing for the three different ways we call // C functions from generated code. void SetCallCDoubleArguments(DoubleRegister dreg); void SetCallCDoubleArguments(DoubleRegister dreg1, DoubleRegister dreg2); void SetCallCDoubleArguments(DoubleRegister dreg, Register reg); // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Restores context. stack_space // - space to be unwound on exit (includes the call JS arguments space and // the additional space allocated for the fast call). void CallApiFunctionAndReturn(ExternalReference function, int stack_space); // Jump to the builtin routine. void JumpToExternalReference(const ExternalReference& builtin, BranchDelaySlot bd = PROTECT); // Invoke specified builtin JavaScript function. Adds an entry to // the unresolved list if the name does not resolve. void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper& call_wrapper = NullCallWrapper()); // Store the code object for the given builtin in the target register and // setup the function in a1. void GetBuiltinEntry(Register target, Builtins::JavaScript id); // Store the function for the given builtin in the target register. void GetBuiltinFunction(Register target, Builtins::JavaScript id); struct Unresolved { int pc; uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders. const char* name; }; Handle<Object> CodeObject() { ASSERT(!code_object_.is_null()); return code_object_; } // ------------------------------------------------------------------------- // StatsCounter support. void SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); void IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); void DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2); // ------------------------------------------------------------------------- // Debugging. // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, const char* msg, Register rs, Operand rt); void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index); void AssertFastElements(Register elements); // Like Assert(), but always enabled. void Check(Condition cc, const char* msg, Register rs, Operand rt); // Print a message to stdout and abort execution. void Abort(const char* msg); // Verify restrictions about code generated in stubs. void set_generating_stub(bool value) { generating_stub_ = value; } bool generating_stub() { return generating_stub_; } void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } bool allow_stub_calls() { return allow_stub_calls_; } void set_has_frame(bool value) { has_frame_ = value; } bool has_frame() { return has_frame_; } inline bool AllowThisStubCall(CodeStub* stub); // --------------------------------------------------------------------------- // Number utilities. // Check whether the value of reg is a power of two and not zero. If not // control continues at the label not_power_of_two. If reg is a power of two // the register scratch contains the value of (reg - 1) when control falls // through. void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch, Label* not_power_of_two_or_zero); // ------------------------------------------------------------------------- // Smi utilities. void SmiTag(Register reg) { Addu(reg, reg, reg); } // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow(). void SmiTagCheckOverflow(Register reg, Register overflow); void SmiTagCheckOverflow(Register dst, Register src, Register overflow); void SmiTag(Register dst, Register src) { Addu(dst, src, src); } void SmiUntag(Register reg) { sra(reg, reg, kSmiTagSize); } void SmiUntag(Register dst, Register src) { sra(dst, src, kSmiTagSize); } // Untag the source value into destination and jump if source is a smi. // Souce and destination can be the same register. void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case); // Untag the source value into destination and jump if source is not a smi. // Souce and destination can be the same register. void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case); // Jump the register contains a smi. void JumpIfSmi(Register value, Label* smi_label, Register scratch = at, BranchDelaySlot bd = PROTECT); // Jump if the register contains a non-smi. void JumpIfNotSmi(Register value, Label* not_smi_label, Register scratch = at, BranchDelaySlot bd = PROTECT); // Jump if either of the registers contain a non-smi. void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi); // Jump if either of the registers contain a smi. void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); // Abort execution if argument is a smi. Used in debug code. void AbortIfSmi(Register object); void AbortIfNotSmi(Register object); // Abort execution if argument is a string. Used in debug code. void AbortIfNotString(Register object); // Abort execution if argument is not the root value with the given index. void AbortIfNotRootValue(Register src, Heap::RootListIndex root_value_index, const char* message); // --------------------------------------------------------------------------- // HeapNumber utilities. void JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number); // ------------------------------------------------------------------------- // String utilities. // Checks if both instance types are sequential ASCII strings and jumps to // label if either is not. void JumpIfBothInstanceTypesAreNotSequentialAscii( Register first_object_instance_type, Register second_object_instance_type, Register scratch1, Register scratch2, Label* failure); // Check if instance type is sequential ASCII string and jump to label if // it is not. void JumpIfInstanceTypeIsNotSequentialAscii(Register type, Register scratch, Label* failure); // Test that both first and second are sequential ASCII strings. // Assume that they are non-smis. void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure); // Test that both first and second are sequential ASCII strings. // Check that they are non-smis. void JumpIfNotBothSequentialAsciiStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure); void ClampUint8(Register output_reg, Register input_reg); void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, DoubleRegister temp_double_reg); void LoadInstanceDescriptors(Register map, Register descriptors); // Activation support. void EnterFrame(StackFrame::Type type); void LeaveFrame(StackFrame::Type type); // Patch the relocated value (lui/ori pair). void PatchRelocatedValue(Register li_location, Register scratch, Register new_value); // Get the relocatad value (loaded data) from the lui/ori pair. void GetRelocatedValue(Register li_location, Register value, Register scratch); // Expects object in a0 and returns map with validated enum cache // in a0. Assumes that any other register can be used as a scratch. void CheckEnumCache(Register null_value, Label* call_runtime); private: void CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments); void BranchShort(int16_t offset, BranchDelaySlot bdslot = PROTECT); void BranchShort(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot = PROTECT); void BranchShort(Label* L, BranchDelaySlot bdslot = PROTECT); void BranchShort(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot = PROTECT); void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT); void BranchAndLinkShort(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot = PROTECT); void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT); void BranchAndLinkShort(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot = PROTECT); void J(Label* L, BranchDelaySlot bdslot); void Jr(Label* L, BranchDelaySlot bdslot); void Jalr(Label* L, BranchDelaySlot bdslot); // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle<Code> code_constant, Register code_reg, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind); // Get the code for the given builtin. Returns if able to resolve // the function in the 'resolved' flag. Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved); void InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2); // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. void InNewSpace(Register object, Register scratch, Condition cond, // eq for new space, ne otherwise. Label* branch); // Helper for finding the mark bits for an address. Afterwards, the // bitmap register points at the word with the mark bits and the mask // the position of the first bit. Leaves addr_reg unchanged. inline void GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg); // Helper for throwing exceptions. Compute a handler address and jump to // it. See the implementation for register usage. void JumpToHandlerEntry(); // Compute memory operands for safepoint stack slots. static int SafepointRegisterStackIndex(int reg_code); MemOperand SafepointRegisterSlot(Register reg); MemOperand SafepointRegistersAndDoublesSlot(Register reg); bool generating_stub_; bool allow_stub_calls_; bool has_frame_; // This handle will be patched with the code object on installation. Handle<Object> code_object_; // Needs access to SafepointRegisterStackIndex for optimized frame // traversal. friend class OptimizedFrame; }; // The code patcher is used to patch (typically) small parts of code e.g. for // debugging and other types of instrumentation. When using the code patcher // the exact number of bytes specified must be emitted. It is not legal to emit // relocation information. If any of these constraints are violated it causes // an assertion to fail. class CodePatcher { public: CodePatcher(byte* address, int instructions); virtual ~CodePatcher(); // Macro assembler to emit code. MacroAssembler* masm() { return &masm_; } // Emit an instruction directly. void Emit(Instr instr); // Emit an address directly. void Emit(Address addr); // Change the condition part of an instruction leaving the rest of the current // instruction unchanged. void ChangeBranchCondition(Condition cond); private: byte* address_; // The address of the code being patched. int instructions_; // Number of instructions of the expected patch size. int size_; // Number of bytes of the expected patch size. MacroAssembler masm_; // Macro assembler used to generate the code. }; #ifdef GENERATED_CODE_COVERAGE #define CODE_COVERAGE_STRINGIFY(x) #x #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> #else #define ACCESS_MASM(masm) masm-> #endif } } // namespace v8::internal #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_