// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #include <math.h> #include <limits.h> #include <cstdarg> #include "v8.h" #if defined(V8_TARGET_ARCH_MIPS) #include "cpu.h" #include "disasm.h" #include "assembler.h" #include "globals.h" // Need the BitCast. #include "mips/constants-mips.h" #include "mips/simulator-mips.h" // Only build the simulator if not compiling for real MIPS hardware. #if defined(USE_SIMULATOR) namespace v8 { namespace internal { // Utils functions. bool HaveSameSign(int32_t a, int32_t b) { return ((a ^ b) >= 0); } uint32_t get_fcsr_condition_bit(uint32_t cc) { if (cc == 0) { return 23; } else { return 24 + cc; } } // This macro provides a platform independent use of sscanf. The reason for // SScanF not being implemented in a platform independent was through // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time // Library does not provide vsscanf. #define SScanF sscanf // NOLINT // The MipsDebugger class is used by the simulator while debugging simulated // code. class MipsDebugger { public: explicit MipsDebugger(Simulator* sim) : sim_(sim) { } ~MipsDebugger(); void Stop(Instruction* instr); void Debug(); // Print all registers with a nice formatting. void PrintAllRegs(); void PrintAllRegsIncludingFPU(); private: // We set the breakpoint code to 0xfffff to easily recognize it. static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6; static const Instr kNopInstr = 0x0; Simulator* sim_; int32_t GetRegisterValue(int regnum); int32_t GetFPURegisterValueInt(int regnum); int64_t GetFPURegisterValueLong(int regnum); float GetFPURegisterValueFloat(int regnum); double GetFPURegisterValueDouble(int regnum); bool GetValue(const char* desc, int32_t* value); // Set or delete a breakpoint. Returns true if successful. bool SetBreakpoint(Instruction* breakpc); bool DeleteBreakpoint(Instruction* breakpc); // Undo and redo all breakpoints. This is needed to bracket disassembly and // execution to skip past breakpoints when run from the debugger. void UndoBreakpoints(); void RedoBreakpoints(); }; MipsDebugger::~MipsDebugger() { } #ifdef GENERATED_CODE_COVERAGE static FILE* coverage_log = NULL; static void InitializeCoverage() { char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); if (file_name != NULL) { coverage_log = fopen(file_name, "aw+"); } } void MipsDebugger::Stop(Instruction* instr) { // Get the stop code. uint32_t code = instr->Bits(25, 6); // Retrieve the encoded address, which comes just after this stop. char** msg_address = reinterpret_cast<char**>(sim_->get_pc() + Instr::kInstrSize); char* msg = *msg_address; ASSERT(msg != NULL); // Update this stop description. if (!watched_stops[code].desc) { watched_stops[code].desc = msg; } if (strlen(msg) > 0) { if (coverage_log != NULL) { fprintf(coverage_log, "%s\n", str); fflush(coverage_log); } // Overwrite the instruction and address with nops. instr->SetInstructionBits(kNopInstr); reinterpret_cast<Instr*>(msg_address)->SetInstructionBits(kNopInstr); } sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstructionSize); } #else // GENERATED_CODE_COVERAGE #define UNSUPPORTED() printf("Unsupported instruction.\n"); static void InitializeCoverage() {} void MipsDebugger::Stop(Instruction* instr) { // Get the stop code. uint32_t code = instr->Bits(25, 6); // Retrieve the encoded address, which comes just after this stop. char* msg = *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); // Update this stop description. if (!sim_->watched_stops[code].desc) { sim_->watched_stops[code].desc = msg; } PrintF("Simulator hit %s (%u)\n", msg, code); sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize); Debug(); } #endif // GENERATED_CODE_COVERAGE int32_t MipsDebugger::GetRegisterValue(int regnum) { if (regnum == kNumSimuRegisters) { return sim_->get_pc(); } else { return sim_->get_register(regnum); } } int32_t MipsDebugger::GetFPURegisterValueInt(int regnum) { if (regnum == kNumFPURegisters) { return sim_->get_pc(); } else { return sim_->get_fpu_register(regnum); } } int64_t MipsDebugger::GetFPURegisterValueLong(int regnum) { if (regnum == kNumFPURegisters) { return sim_->get_pc(); } else { return sim_->get_fpu_register_long(regnum); } } float MipsDebugger::GetFPURegisterValueFloat(int regnum) { if (regnum == kNumFPURegisters) { return sim_->get_pc(); } else { return sim_->get_fpu_register_float(regnum); } } double MipsDebugger::GetFPURegisterValueDouble(int regnum) { if (regnum == kNumFPURegisters) { return sim_->get_pc(); } else { return sim_->get_fpu_register_double(regnum); } } bool MipsDebugger::GetValue(const char* desc, int32_t* value) { int regnum = Registers::Number(desc); int fpuregnum = FPURegisters::Number(desc); if (regnum != kInvalidRegister) { *value = GetRegisterValue(regnum); return true; } else if (fpuregnum != kInvalidFPURegister) { *value = GetFPURegisterValueInt(fpuregnum); return true; } else if (strncmp(desc, "0x", 2) == 0) { return SScanF(desc, "%x", reinterpret_cast<uint32_t*>(value)) == 1; } else { return SScanF(desc, "%i", value) == 1; } return false; } bool MipsDebugger::SetBreakpoint(Instruction* breakpc) { // Check if a breakpoint can be set. If not return without any side-effects. if (sim_->break_pc_ != NULL) { return false; } // Set the breakpoint. sim_->break_pc_ = breakpc; sim_->break_instr_ = breakpc->InstructionBits(); // Not setting the breakpoint instruction in the code itself. It will be set // when the debugger shell continues. return true; } bool MipsDebugger::DeleteBreakpoint(Instruction* breakpc) { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(sim_->break_instr_); } sim_->break_pc_ = NULL; sim_->break_instr_ = 0; return true; } void MipsDebugger::UndoBreakpoints() { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(sim_->break_instr_); } } void MipsDebugger::RedoBreakpoints() { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(kBreakpointInstr); } } void MipsDebugger::PrintAllRegs() { #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) PrintF("\n"); // at, v0, a0. PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(1), REG_INFO(2), REG_INFO(4)); // v1, a1. PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", "", REG_INFO(3), REG_INFO(5)); // a2. PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6)); // a3. PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7)); PrintF("\n"); // t0-t7, s0-s7 for (int i = 0; i < 8; i++) { PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(8+i), REG_INFO(16+i)); } PrintF("\n"); // t8, k0, LO. PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(24), REG_INFO(26), REG_INFO(32)); // t9, k1, HI. PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(25), REG_INFO(27), REG_INFO(33)); // sp, fp, gp. PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(29), REG_INFO(30), REG_INFO(28)); // pc. PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", REG_INFO(31), REG_INFO(34)); #undef REG_INFO #undef FPU_REG_INFO } void MipsDebugger::PrintAllRegsIncludingFPU() { #define FPU_REG_INFO(n) FPURegisters::Name(n), FPURegisters::Name(n+1), \ GetFPURegisterValueInt(n+1), \ GetFPURegisterValueInt(n), \ GetFPURegisterValueDouble(n) PrintAllRegs(); PrintF("\n\n"); // f0, f1, f2, ... f31. PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(0) ); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(2) ); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(4) ); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(6) ); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(8) ); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(10)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(12)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(14)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(16)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(18)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(20)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(22)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(24)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(26)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(28)); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPU_REG_INFO(30)); #undef REG_INFO #undef FPU_REG_INFO } void MipsDebugger::Debug() { intptr_t last_pc = -1; bool done = false; #define COMMAND_SIZE 63 #define ARG_SIZE 255 #define STR(a) #a #define XSTR(a) STR(a) char cmd[COMMAND_SIZE + 1]; char arg1[ARG_SIZE + 1]; char arg2[ARG_SIZE + 1]; char* argv[3] = { cmd, arg1, arg2 }; // Make sure to have a proper terminating character if reaching the limit. cmd[COMMAND_SIZE] = 0; arg1[ARG_SIZE] = 0; arg2[ARG_SIZE] = 0; // Undo all set breakpoints while running in the debugger shell. This will // make them invisible to all commands. UndoBreakpoints(); while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { if (last_pc != sim_->get_pc()) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // Use a reasonably large buffer. v8::internal::EmbeddedVector<char, 256> buffer; dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); last_pc = sim_->get_pc(); } char* line = ReadLine("sim> "); if (line == NULL) { break; } else { char* last_input = sim_->last_debugger_input(); if (strcmp(line, "\n") == 0 && last_input != NULL) { line = last_input; } else { // Ownership is transferred to sim_; sim_->set_last_debugger_input(line); } // Use sscanf to parse the individual parts of the command line. At the // moment no command expects more than two parameters. int argc = SScanF(line, "%" XSTR(COMMAND_SIZE) "s " "%" XSTR(ARG_SIZE) "s " "%" XSTR(ARG_SIZE) "s", cmd, arg1, arg2); if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { Instruction* instr = reinterpret_cast<Instruction*>(sim_->get_pc()); if (!(instr->IsTrap()) || instr->InstructionBits() == rtCallRedirInstr) { sim_->InstructionDecode( reinterpret_cast<Instruction*>(sim_->get_pc())); } else { // Allow si to jump over generated breakpoints. PrintF("/!\\ Jumping over generated breakpoint.\n"); sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); } } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { // Execute the one instruction we broke at with breakpoints disabled. sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); // Leave the debugger shell. done = true; } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { if (argc == 2) { int32_t value; float fvalue; if (strcmp(arg1, "all") == 0) { PrintAllRegs(); } else if (strcmp(arg1, "allf") == 0) { PrintAllRegsIncludingFPU(); } else { int regnum = Registers::Number(arg1); int fpuregnum = FPURegisters::Number(arg1); if (regnum != kInvalidRegister) { value = GetRegisterValue(regnum); PrintF("%s: 0x%08x %d \n", arg1, value, value); } else if (fpuregnum != kInvalidFPURegister) { if (fpuregnum % 2 == 1) { value = GetFPURegisterValueInt(fpuregnum); fvalue = GetFPURegisterValueFloat(fpuregnum); PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); } else { double dfvalue; int32_t lvalue1 = GetFPURegisterValueInt(fpuregnum); int32_t lvalue2 = GetFPURegisterValueInt(fpuregnum + 1); dfvalue = GetFPURegisterValueDouble(fpuregnum); PrintF("%3s,%3s: 0x%08x%08x %16.4e\n", FPURegisters::Name(fpuregnum+1), FPURegisters::Name(fpuregnum), lvalue1, lvalue2, dfvalue); } } else { PrintF("%s unrecognized\n", arg1); } } } else { if (argc == 3) { if (strcmp(arg2, "single") == 0) { int32_t value; float fvalue; int fpuregnum = FPURegisters::Number(arg1); if (fpuregnum != kInvalidFPURegister) { value = GetFPURegisterValueInt(fpuregnum); fvalue = GetFPURegisterValueFloat(fpuregnum); PrintF("%s: 0x%08x %11.4e\n", arg1, value, fvalue); } else { PrintF("%s unrecognized\n", arg1); } } else { PrintF("print <fpu register> single\n"); } } else { PrintF("print <register> or print <fpu register> single\n"); } } } else if ((strcmp(cmd, "po") == 0) || (strcmp(cmd, "printobject") == 0)) { if (argc == 2) { int32_t value; if (GetValue(arg1, &value)) { Object* obj = reinterpret_cast<Object*>(value); PrintF("%s: \n", arg1); #ifdef DEBUG obj->PrintLn(); #else obj->ShortPrint(); PrintF("\n"); #endif } else { PrintF("%s unrecognized\n", arg1); } } else { PrintF("printobject <value>\n"); } } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { int32_t* cur = NULL; int32_t* end = NULL; int next_arg = 1; if (strcmp(cmd, "stack") == 0) { cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); } else { // Command "mem". int32_t value; if (!GetValue(arg1, &value)) { PrintF("%s unrecognized\n", arg1); continue; } cur = reinterpret_cast<int32_t*>(value); next_arg++; } int32_t words; if (argc == next_arg) { words = 10; } else if (argc == next_arg + 1) { if (!GetValue(argv[next_arg], &words)) { words = 10; } } end = cur + words; while (cur < end) { PrintF(" 0x%08x: 0x%08x %10d", reinterpret_cast<intptr_t>(cur), *cur, *cur); HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); int value = *cur; Heap* current_heap = v8::internal::Isolate::Current()->heap(); if (current_heap->Contains(obj) || ((value & 1) == 0)) { PrintF(" ("); if ((value & 1) == 0) { PrintF("smi %d", value / 2); } else { obj->ShortPrint(); } PrintF(")"); } PrintF("\n"); cur++; } } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) || (strcmp(cmd, "di") == 0)) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // Use a reasonably large buffer. v8::internal::EmbeddedVector<char, 256> buffer; byte* cur = NULL; byte* end = NULL; if (argc == 1) { cur = reinterpret_cast<byte*>(sim_->get_pc()); end = cur + (10 * Instruction::kInstrSize); } else if (argc == 2) { int regnum = Registers::Number(arg1); if (regnum != kInvalidRegister || strncmp(arg1, "0x", 2) == 0) { // The argument is an address or a register name. int32_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast<byte*>(value); // Disassemble 10 instructions at <arg1>. end = cur + (10 * Instruction::kInstrSize); } } else { // The argument is the number of instructions. int32_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast<byte*>(sim_->get_pc()); // Disassemble <arg1> instructions. end = cur + (value * Instruction::kInstrSize); } } } else { int32_t value1; int32_t value2; if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { cur = reinterpret_cast<byte*>(value1); end = cur + (value2 * Instruction::kInstrSize); } } while (cur < end) { dasm.InstructionDecode(buffer, cur); PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(cur), buffer.start()); cur += Instruction::kInstrSize; } } else if (strcmp(cmd, "gdb") == 0) { PrintF("relinquishing control to gdb\n"); v8::internal::OS::DebugBreak(); PrintF("regaining control from gdb\n"); } else if (strcmp(cmd, "break") == 0) { if (argc == 2) { int32_t value; if (GetValue(arg1, &value)) { if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { PrintF("setting breakpoint failed\n"); } } else { PrintF("%s unrecognized\n", arg1); } } else { PrintF("break <address>\n"); } } else if (strcmp(cmd, "del") == 0) { if (!DeleteBreakpoint(NULL)) { PrintF("deleting breakpoint failed\n"); } } else if (strcmp(cmd, "flags") == 0) { PrintF("No flags on MIPS !\n"); } else if (strcmp(cmd, "stop") == 0) { int32_t value; intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize; Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); Instruction* msg_address = reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { // Remove the current stop. if (sim_->IsStopInstruction(stop_instr)) { stop_instr->SetInstructionBits(kNopInstr); msg_address->SetInstructionBits(kNopInstr); } else { PrintF("Not at debugger stop.\n"); } } else if (argc == 3) { // Print information about all/the specified breakpoint(s). if (strcmp(arg1, "info") == 0) { if (strcmp(arg2, "all") == 0) { PrintF("Stop information:\n"); for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; i++) { sim_->PrintStopInfo(i); } } else if (GetValue(arg2, &value)) { sim_->PrintStopInfo(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "enable") == 0) { // Enable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; i++) { sim_->EnableStop(i); } } else if (GetValue(arg2, &value)) { sim_->EnableStop(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "disable") == 0) { // Disable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; i++) { sim_->DisableStop(i); } } else if (GetValue(arg2, &value)) { sim_->DisableStop(value); } else { PrintF("Unrecognized argument.\n"); } } } else { PrintF("Wrong usage. Use help command for more information.\n"); } } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { // Print registers and disassemble. PrintAllRegs(); PrintF("\n"); disasm::NameConverter converter; disasm::Disassembler dasm(converter); // Use a reasonably large buffer. v8::internal::EmbeddedVector<char, 256> buffer; byte* cur = NULL; byte* end = NULL; if (argc == 1) { cur = reinterpret_cast<byte*>(sim_->get_pc()); end = cur + (10 * Instruction::kInstrSize); } else if (argc == 2) { int32_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast<byte*>(value); // no length parameter passed, assume 10 instructions end = cur + (10 * Instruction::kInstrSize); } } else { int32_t value1; int32_t value2; if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { cur = reinterpret_cast<byte*>(value1); end = cur + (value2 * Instruction::kInstrSize); } } while (cur < end) { dasm.InstructionDecode(buffer, cur); PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(cur), buffer.start()); cur += Instruction::kInstrSize; } } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { PrintF("cont\n"); PrintF(" continue execution (alias 'c')\n"); PrintF("stepi\n"); PrintF(" step one instruction (alias 'si')\n"); PrintF("print <register>\n"); PrintF(" print register content (alias 'p')\n"); PrintF(" use register name 'all' to print all registers\n"); PrintF("printobject <register>\n"); PrintF(" print an object from a register (alias 'po')\n"); PrintF("stack [<words>]\n"); PrintF(" dump stack content, default dump 10 words)\n"); PrintF("mem <address> [<words>]\n"); PrintF(" dump memory content, default dump 10 words)\n"); PrintF("flags\n"); PrintF(" print flags\n"); PrintF("disasm [<instructions>]\n"); PrintF("disasm [<address/register>]\n"); PrintF("disasm [[<address/register>] <instructions>]\n"); PrintF(" disassemble code, default is 10 instructions\n"); PrintF(" from pc (alias 'di')\n"); PrintF("gdb\n"); PrintF(" enter gdb\n"); PrintF("break <address>\n"); PrintF(" set a break point on the address\n"); PrintF("del\n"); PrintF(" delete the breakpoint\n"); PrintF("stop feature:\n"); PrintF(" Description:\n"); PrintF(" Stops are debug instructions inserted by\n"); PrintF(" the Assembler::stop() function.\n"); PrintF(" When hitting a stop, the Simulator will\n"); PrintF(" stop and and give control to the Debugger.\n"); PrintF(" All stop codes are watched:\n"); PrintF(" - They can be enabled / disabled: the Simulator\n"); PrintF(" will / won't stop when hitting them.\n"); PrintF(" - The Simulator keeps track of how many times they \n"); PrintF(" are met. (See the info command.) Going over a\n"); PrintF(" disabled stop still increases its counter. \n"); PrintF(" Commands:\n"); PrintF(" stop info all/<code> : print infos about number <code>\n"); PrintF(" or all stop(s).\n"); PrintF(" stop enable/disable all/<code> : enables / disables\n"); PrintF(" all or number <code> stop(s)\n"); PrintF(" stop unstop\n"); PrintF(" ignore the stop instruction at the current location\n"); PrintF(" from now on\n"); } else { PrintF("Unknown command: %s\n", cmd); } } } // Add all the breakpoints back to stop execution and enter the debugger // shell when hit. RedoBreakpoints(); #undef COMMAND_SIZE #undef ARG_SIZE #undef STR #undef XSTR } static bool ICacheMatch(void* one, void* two) { ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); return one == two; } static uint32_t ICacheHash(void* key) { return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; } static bool AllOnOnePage(uintptr_t start, int size) { intptr_t start_page = (start & ~CachePage::kPageMask); intptr_t end_page = ((start + size) & ~CachePage::kPageMask); return start_page == end_page; } void Simulator::set_last_debugger_input(char* input) { DeleteArray(last_debugger_input_); last_debugger_input_ = input; } void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr, size_t size) { intptr_t start = reinterpret_cast<intptr_t>(start_addr); int intra_line = (start & CachePage::kLineMask); start -= intra_line; size += intra_line; size = ((size - 1) | CachePage::kLineMask) + 1; int offset = (start & CachePage::kPageMask); while (!AllOnOnePage(start, size - 1)) { int bytes_to_flush = CachePage::kPageSize - offset; FlushOnePage(i_cache, start, bytes_to_flush); start += bytes_to_flush; size -= bytes_to_flush; ASSERT_EQ(0, start & CachePage::kPageMask); offset = 0; } if (size != 0) { FlushOnePage(i_cache, start, size); } } CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { v8::internal::HashMap::Entry* entry = i_cache->Lookup(page, ICacheHash(page), true); if (entry->value == NULL) { CachePage* new_page = new CachePage(); entry->value = new_page; } return reinterpret_cast<CachePage*>(entry->value); } // Flush from start up to and not including start + size. void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, int size) { ASSERT(size <= CachePage::kPageSize); ASSERT(AllOnOnePage(start, size - 1)); ASSERT((start & CachePage::kLineMask) == 0); ASSERT((size & CachePage::kLineMask) == 0); void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); int offset = (start & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* valid_bytemap = cache_page->ValidityByte(offset); memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); } void Simulator::CheckICache(v8::internal::HashMap* i_cache, Instruction* instr) { intptr_t address = reinterpret_cast<intptr_t>(instr); void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); int offset = (address & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* cache_valid_byte = cache_page->ValidityByte(offset); bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); if (cache_hit) { // Check that the data in memory matches the contents of the I-cache. CHECK(memcmp(reinterpret_cast<void*>(instr), cache_page->CachedData(offset), Instruction::kInstrSize) == 0); } else { // Cache miss. Load memory into the cache. memcpy(cached_line, line, CachePage::kLineLength); *cache_valid_byte = CachePage::LINE_VALID; } } void Simulator::Initialize(Isolate* isolate) { if (isolate->simulator_initialized()) return; isolate->set_simulator_initialized(true); ::v8::internal::ExternalReference::set_redirector(isolate, &RedirectExternalReference); } Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { i_cache_ = isolate_->simulator_i_cache(); if (i_cache_ == NULL) { i_cache_ = new v8::internal::HashMap(&ICacheMatch); isolate_->set_simulator_i_cache(i_cache_); } Initialize(isolate); // Set up simulator support first. Some of this information is needed to // setup the architecture state. stack_ = reinterpret_cast<char*>(malloc(stack_size_)); pc_modified_ = false; icount_ = 0; break_count_ = 0; break_pc_ = NULL; break_instr_ = 0; // Set up architecture state. // All registers are initialized to zero to start with. for (int i = 0; i < kNumSimuRegisters; i++) { registers_[i] = 0; } for (int i = 0; i < kNumFPURegisters; i++) { FPUregisters_[i] = 0; } FCSR_ = 0; // The sp is initialized to point to the bottom (high address) of the // allocated stack area. To be safe in potential stack underflows we leave // some buffer below. registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64; // The ra and pc are initialized to a known bad value that will cause an // access violation if the simulator ever tries to execute it. registers_[pc] = bad_ra; registers_[ra] = bad_ra; InitializeCoverage(); for (int i = 0; i < kNumExceptions; i++) { exceptions[i] = 0; } last_debugger_input_ = NULL; } // When the generated code calls an external reference we need to catch that in // the simulator. The external reference will be a function compiled for the // host architecture. We need to call that function instead of trying to // execute it with the simulator. We do that by redirecting the external // reference to a swi (software-interrupt) instruction that is handled by // the simulator. We write the original destination of the jump just at a known // offset from the swi instruction so the simulator knows what to call. class Redirection { public: Redirection(void* external_function, ExternalReference::Type type) : external_function_(external_function), swi_instruction_(rtCallRedirInstr), type_(type), next_(NULL) { Isolate* isolate = Isolate::Current(); next_ = isolate->simulator_redirection(); Simulator::current(isolate)-> FlushICache(isolate->simulator_i_cache(), reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize); isolate->set_simulator_redirection(this); } void* address_of_swi_instruction() { return reinterpret_cast<void*>(&swi_instruction_); } void* external_function() { return external_function_; } ExternalReference::Type type() { return type_; } static Redirection* Get(void* external_function, ExternalReference::Type type) { Isolate* isolate = Isolate::Current(); Redirection* current = isolate->simulator_redirection(); for (; current != NULL; current = current->next_) { if (current->external_function_ == external_function) return current; } return new Redirection(external_function, type); } static Redirection* FromSwiInstruction(Instruction* swi_instruction) { char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); char* addr_of_redirection = addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); return reinterpret_cast<Redirection*>(addr_of_redirection); } private: void* external_function_; uint32_t swi_instruction_; ExternalReference::Type type_; Redirection* next_; }; void* Simulator::RedirectExternalReference(void* external_function, ExternalReference::Type type) { Redirection* redirection = Redirection::Get(external_function, type); return redirection->address_of_swi_instruction(); } // Get the active Simulator for the current thread. Simulator* Simulator::current(Isolate* isolate) { v8::internal::Isolate::PerIsolateThreadData* isolate_data = isolate->FindOrAllocatePerThreadDataForThisThread(); ASSERT(isolate_data != NULL); ASSERT(isolate_data != NULL); Simulator* sim = isolate_data->simulator(); if (sim == NULL) { // TODO(146): delete the simulator object when a thread/isolate goes away. sim = new Simulator(isolate); isolate_data->set_simulator(sim); } return sim; } // Sets the register in the architecture state. It will also deal with updating // Simulator internal state for special registers such as PC. void Simulator::set_register(int reg, int32_t value) { ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); if (reg == pc) { pc_modified_ = true; } // Zero register always holds 0. registers_[reg] = (reg == 0) ? 0 : value; } void Simulator::set_fpu_register(int fpureg, int32_t value) { ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); FPUregisters_[fpureg] = value; } void Simulator::set_fpu_register_float(int fpureg, float value) { ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); *BitCast<float*>(&FPUregisters_[fpureg]) = value; } void Simulator::set_fpu_register_double(int fpureg, double value) { ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); *BitCast<double*>(&FPUregisters_[fpureg]) = value; } // Get the register from the architecture state. This function does handle // the special case of accessing the PC register. int32_t Simulator::get_register(int reg) const { ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); if (reg == 0) return 0; else return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); } int32_t Simulator::get_fpu_register(int fpureg) const { ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); return FPUregisters_[fpureg]; } int64_t Simulator::get_fpu_register_long(int fpureg) const { ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); return *BitCast<int64_t*>( const_cast<int32_t*>(&FPUregisters_[fpureg])); } float Simulator::get_fpu_register_float(int fpureg) const { ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); return *BitCast<float*>( const_cast<int32_t*>(&FPUregisters_[fpureg])); } double Simulator::get_fpu_register_double(int fpureg) const { ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); return *BitCast<double*>(const_cast<int32_t*>(&FPUregisters_[fpureg])); } // For use in calls that take two double values, constructed either // from a0-a3 or f12 and f14. void Simulator::GetFpArgs(double* x, double* y) { if (!IsMipsSoftFloatABI) { *x = get_fpu_register_double(12); *y = get_fpu_register_double(14); } else { // We use a char buffer to get around the strict-aliasing rules which // otherwise allow the compiler to optimize away the copy. char buffer[sizeof(*x)]; int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); // Registers a0 and a1 -> x. reg_buffer[0] = get_register(a0); reg_buffer[1] = get_register(a1); memcpy(x, buffer, sizeof(buffer)); // Registers a2 and a3 -> y. reg_buffer[0] = get_register(a2); reg_buffer[1] = get_register(a3); memcpy(y, buffer, sizeof(buffer)); } } // For use in calls that take one double value, constructed either // from a0 and a1 or f12. void Simulator::GetFpArgs(double* x) { if (!IsMipsSoftFloatABI) { *x = get_fpu_register_double(12); } else { // We use a char buffer to get around the strict-aliasing rules which // otherwise allow the compiler to optimize away the copy. char buffer[sizeof(*x)]; int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); // Registers a0 and a1 -> x. reg_buffer[0] = get_register(a0); reg_buffer[1] = get_register(a1); memcpy(x, buffer, sizeof(buffer)); } } // For use in calls that take one double value constructed either // from a0 and a1 or f12 and one integer value. void Simulator::GetFpArgs(double* x, int32_t* y) { if (!IsMipsSoftFloatABI) { *x = get_fpu_register_double(12); *y = get_register(a2); } else { // We use a char buffer to get around the strict-aliasing rules which // otherwise allow the compiler to optimize away the copy. char buffer[sizeof(*x)]; int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); // Registers 0 and 1 -> x. reg_buffer[0] = get_register(a0); reg_buffer[1] = get_register(a1); memcpy(x, buffer, sizeof(buffer)); // Register 2 -> y. reg_buffer[0] = get_register(a2); memcpy(y, buffer, sizeof(*y)); } } // The return value is either in v0/v1 or f0. void Simulator::SetFpResult(const double& result) { if (!IsMipsSoftFloatABI) { set_fpu_register_double(0, result); } else { char buffer[2 * sizeof(registers_[0])]; int32_t* reg_buffer = reinterpret_cast<int32_t*>(buffer); memcpy(buffer, &result, sizeof(buffer)); // Copy result to v0 and v1. set_register(v0, reg_buffer[0]); set_register(v1, reg_buffer[1]); } } // Helper functions for setting and testing the FCSR register's bits. void Simulator::set_fcsr_bit(uint32_t cc, bool value) { if (value) { FCSR_ |= (1 << cc); } else { FCSR_ &= ~(1 << cc); } } bool Simulator::test_fcsr_bit(uint32_t cc) { return FCSR_ & (1 << cc); } // Sets the rounding error codes in FCSR based on the result of the rounding. // Returns true if the operation was invalid. bool Simulator::set_fcsr_round_error(double original, double rounded) { bool ret = false; if (!isfinite(original) || !isfinite(rounded)) { set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } if (original != rounded) { set_fcsr_bit(kFCSRInexactFlagBit, true); } if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { set_fcsr_bit(kFCSRUnderflowFlagBit, true); ret = true; } if (rounded > INT_MAX || rounded < INT_MIN) { set_fcsr_bit(kFCSROverflowFlagBit, true); // The reference is not really clear but it seems this is required: set_fcsr_bit(kFCSRInvalidOpFlagBit, true); ret = true; } return ret; } // Raw access to the PC register. void Simulator::set_pc(int32_t value) { pc_modified_ = true; registers_[pc] = value; } bool Simulator::has_bad_pc() const { return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); } // Raw access to the PC register without the special adjustment when reading. int32_t Simulator::get_pc() const { return registers_[pc]; } // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an // interrupt is caused. On others it does a funky rotation thing. For now we // simply disallow unaligned reads, but at some point we may want to move to // emulating the rotate behaviour. Note that simulator runs have the runtime // system running directly on the host system and only generated code is // executed in the simulator. Since the host is typically IA32 we will not // get the correct MIPS-like behaviour on unaligned accesses. int Simulator::ReadW(int32_t addr, Instruction* instr) { if (addr >=0 && addr < 0x400) { // This has to be a NULL-dereference, drop into debugger. PrintF("Memory read from bad address: 0x%08x, pc=0x%08x\n", addr, reinterpret_cast<intptr_t>(instr)); MipsDebugger dbg(this); dbg.Debug(); } if ((addr & kPointerAlignmentMask) == 0) { intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); return *ptr; } PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); MipsDebugger dbg(this); dbg.Debug(); return 0; } void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { if (addr >= 0 && addr < 0x400) { // This has to be a NULL-dereference, drop into debugger. PrintF("Memory write to bad address: 0x%08x, pc=0x%08x\n", addr, reinterpret_cast<intptr_t>(instr)); MipsDebugger dbg(this); dbg.Debug(); } if ((addr & kPointerAlignmentMask) == 0) { intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); *ptr = value; return; } PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); MipsDebugger dbg(this); dbg.Debug(); } double Simulator::ReadD(int32_t addr, Instruction* instr) { if ((addr & kDoubleAlignmentMask) == 0) { double* ptr = reinterpret_cast<double*>(addr); return *ptr; } PrintF("Unaligned (double) read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); OS::Abort(); return 0; } void Simulator::WriteD(int32_t addr, double value, Instruction* instr) { if ((addr & kDoubleAlignmentMask) == 0) { double* ptr = reinterpret_cast<double*>(addr); *ptr = value; return; } PrintF("Unaligned (double) write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); OS::Abort(); } uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { if ((addr & 1) == 0) { uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); return *ptr; } PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); OS::Abort(); return 0; } int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { if ((addr & 1) == 0) { int16_t* ptr = reinterpret_cast<int16_t*>(addr); return *ptr; } PrintF("Unaligned signed halfword read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); OS::Abort(); return 0; } void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { if ((addr & 1) == 0) { uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); *ptr = value; return; } PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); OS::Abort(); } void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { if ((addr & 1) == 0) { int16_t* ptr = reinterpret_cast<int16_t*>(addr); *ptr = value; return; } PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", addr, reinterpret_cast<intptr_t>(instr)); OS::Abort(); } uint32_t Simulator::ReadBU(int32_t addr) { uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); return *ptr & 0xff; } int32_t Simulator::ReadB(int32_t addr) { int8_t* ptr = reinterpret_cast<int8_t*>(addr); return *ptr; } void Simulator::WriteB(int32_t addr, uint8_t value) { uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); *ptr = value; } void Simulator::WriteB(int32_t addr, int8_t value) { int8_t* ptr = reinterpret_cast<int8_t*>(addr); *ptr = value; } // Returns the limit of the stack area to enable checking for stack overflows. uintptr_t Simulator::StackLimit() const { // Leave a safety margin of 1024 bytes to prevent overrunning the stack when // pushing values. return reinterpret_cast<uintptr_t>(stack_) + 1024; } // Unsupported instructions use Format to print an error and stop execution. void Simulator::Format(Instruction* instr, const char* format) { PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", reinterpret_cast<intptr_t>(instr), format); UNIMPLEMENTED_MIPS(); } // Calls into the V8 runtime are based on this very simple interface. // Note: To be able to return two values from some calls the code in runtime.cc // uses the ObjectPair which is essentially two 32-bit values stuffed into a // 64-bit value. With the code below we assume that all runtime calls return // 64 bits of result. If they don't, the v1 result register contains a bogus // value, which is fine because it is caller-saved. typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3, int32_t arg4, int32_t arg5); typedef double (*SimulatorRuntimeFPCall)(int32_t arg0, int32_t arg1, int32_t arg2, int32_t arg3); // This signature supports direct call in to API function native callback // (refer to InvocationCallback in v8.h). typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectApiCall)(int32_t arg0); // This signature supports direct call to accessor getter callback. typedef v8::Handle<v8::Value> (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1); // Software interrupt instructions are used by the simulator to call into the // C-based V8 runtime. They are also used for debugging with simulator. void Simulator::SoftwareInterrupt(Instruction* instr) { // There are several instructions that could get us here, // the break_ instruction, or several variants of traps. All // Are "SPECIAL" class opcode, and are distinuished by function. int32_t func = instr->FunctionFieldRaw(); uint32_t code = (func == BREAK) ? instr->Bits(25, 6) : -1; // We first check if we met a call_rt_redirected. if (instr->InstructionBits() == rtCallRedirInstr) { Redirection* redirection = Redirection::FromSwiInstruction(instr); int32_t arg0 = get_register(a0); int32_t arg1 = get_register(a1); int32_t arg2 = get_register(a2); int32_t arg3 = get_register(a3); int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); // Args 4 and 5 are on the stack after the reserved space for args 0..3. int32_t arg4 = stack_pointer[4]; int32_t arg5 = stack_pointer[5]; bool fp_call = (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); if (!IsMipsSoftFloatABI) { // With the hard floating point calling convention, double // arguments are passed in FPU registers. Fetch the arguments // from there and call the builtin using soft floating point // convention. switch (redirection->type()) { case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_COMPARE_CALL: arg0 = get_fpu_register(f12); arg1 = get_fpu_register(f13); arg2 = get_fpu_register(f14); arg3 = get_fpu_register(f15); break; case ExternalReference::BUILTIN_FP_CALL: arg0 = get_fpu_register(f12); arg1 = get_fpu_register(f13); break; case ExternalReference::BUILTIN_FP_INT_CALL: arg0 = get_fpu_register(f12); arg1 = get_fpu_register(f13); arg2 = get_register(a2); break; default: break; } } // This is dodgy but it works because the C entry stubs are never moved. // See comment in codegen-arm.cc and bug 1242173. int32_t saved_ra = get_register(ra); intptr_t external = reinterpret_cast<intptr_t>(redirection->external_function()); // Based on CpuFeatures::IsSupported(FPU), Mips will use either hardware // FPU, or gcc soft-float routines. Hardware FPU is simulated in this // simulator. Soft-float has additional abstraction of ExternalReference, // to support serialization. if (fp_call) { SimulatorRuntimeFPCall target = reinterpret_cast<SimulatorRuntimeFPCall>(external); if (::v8::internal::FLAG_trace_sim) { double dval0, dval1; int32_t ival; switch (redirection->type()) { case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_COMPARE_CALL: GetFpArgs(&dval0, &dval1); PrintF("Call to host function at %p with args %f, %f", FUNCTION_ADDR(target), dval0, dval1); break; case ExternalReference::BUILTIN_FP_CALL: GetFpArgs(&dval0); PrintF("Call to host function at %p with arg %f", FUNCTION_ADDR(target), dval0); break; case ExternalReference::BUILTIN_FP_INT_CALL: GetFpArgs(&dval0, &ival); PrintF("Call to host function at %p with args %f, %d", FUNCTION_ADDR(target), dval0, ival); break; default: UNREACHABLE(); break; } } double result = target(arg0, arg1, arg2, arg3); if (redirection->type() != ExternalReference::BUILTIN_COMPARE_CALL) { SetFpResult(result); } else { int32_t gpreg_pair[2]; memcpy(&gpreg_pair[0], &result, 2 * sizeof(int32_t)); set_register(v0, gpreg_pair[0]); set_register(v1, gpreg_pair[1]); } } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { // See DirectCEntryStub::GenerateCall for explanation of register usage. SimulatorRuntimeDirectApiCall target = reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); if (::v8::internal::FLAG_trace_sim) { PrintF("Call to host function at %p args %08x\n", FUNCTION_ADDR(target), arg1); } v8::Handle<v8::Value> result = target(arg1); *(reinterpret_cast<int*>(arg0)) = (int32_t) *result; set_register(v0, arg0); } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { // See DirectCEntryStub::GenerateCall for explanation of register usage. SimulatorRuntimeDirectGetterCall target = reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); if (::v8::internal::FLAG_trace_sim) { PrintF("Call to host function at %p args %08x %08x\n", FUNCTION_ADDR(target), arg1, arg2); } v8::Handle<v8::Value> result = target(arg1, arg2); *(reinterpret_cast<int*>(arg0)) = (int32_t) *result; set_register(v0, arg0); } else { SimulatorRuntimeCall target = reinterpret_cast<SimulatorRuntimeCall>(external); if (::v8::internal::FLAG_trace_sim) { PrintF( "Call to host function at %p " "args %08x, %08x, %08x, %08x, %08x, %08x\n", FUNCTION_ADDR(target), arg0, arg1, arg2, arg3, arg4, arg5); } int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); set_register(v0, static_cast<int32_t>(result)); set_register(v1, static_cast<int32_t>(result >> 32)); } if (::v8::internal::FLAG_trace_sim) { PrintF("Returned %08x : %08x\n", get_register(v1), get_register(v0)); } set_register(ra, saved_ra); set_pc(get_register(ra)); } else if (func == BREAK && code <= kMaxStopCode) { if (IsWatchpoint(code)) { PrintWatchpoint(code); } else { IncreaseStopCounter(code); HandleStop(code, instr); } } else { // All remaining break_ codes, and all traps are handled here. MipsDebugger dbg(this); dbg.Debug(); } } // Stop helper functions. bool Simulator::IsWatchpoint(uint32_t code) { return (code <= kMaxWatchpointCode); } void Simulator::PrintWatchpoint(uint32_t code) { MipsDebugger dbg(this); ++break_count_; PrintF("\n---- break %d marker: %3d (instr count: %8d) ----------" "----------------------------------", code, break_count_, icount_); dbg.PrintAllRegs(); // Print registers and continue running. } void Simulator::HandleStop(uint32_t code, Instruction* instr) { // Stop if it is enabled, otherwise go on jumping over the stop // and the message address. if (IsEnabledStop(code)) { MipsDebugger dbg(this); dbg.Stop(instr); } else { set_pc(get_pc() + 2 * Instruction::kInstrSize); } } bool Simulator::IsStopInstruction(Instruction* instr) { int32_t func = instr->FunctionFieldRaw(); uint32_t code = static_cast<uint32_t>(instr->Bits(25, 6)); return (func == BREAK) && code > kMaxWatchpointCode && code <= kMaxStopCode; } bool Simulator::IsEnabledStop(uint32_t code) { ASSERT(code <= kMaxStopCode); ASSERT(code > kMaxWatchpointCode); return !(watched_stops[code].count & kStopDisabledBit); } void Simulator::EnableStop(uint32_t code) { if (!IsEnabledStop(code)) { watched_stops[code].count &= ~kStopDisabledBit; } } void Simulator::DisableStop(uint32_t code) { if (IsEnabledStop(code)) { watched_stops[code].count |= kStopDisabledBit; } } void Simulator::IncreaseStopCounter(uint32_t code) { ASSERT(code <= kMaxStopCode); if ((watched_stops[code].count & ~(1 << 31)) == 0x7fffffff) { PrintF("Stop counter for code %i has overflowed.\n" "Enabling this code and reseting the counter to 0.\n", code); watched_stops[code].count = 0; EnableStop(code); } else { watched_stops[code].count++; } } // Print a stop status. void Simulator::PrintStopInfo(uint32_t code) { if (code <= kMaxWatchpointCode) { PrintF("That is a watchpoint, not a stop.\n"); return; } else if (code > kMaxStopCode) { PrintF("Code too large, only %u stops can be used\n", kMaxStopCode + 1); return; } const char* state = IsEnabledStop(code) ? "Enabled" : "Disabled"; int32_t count = watched_stops[code].count & ~kStopDisabledBit; // Don't print the state of unused breakpoints. if (count != 0) { if (watched_stops[code].desc) { PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state, count, watched_stops[code].desc); } else { PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, count); } } } void Simulator::SignalExceptions() { for (int i = 1; i < kNumExceptions; i++) { if (exceptions[i] != 0) { V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i); } } } // Handle execution based on instruction types. void Simulator::ConfigureTypeRegister(Instruction* instr, int32_t& alu_out, int64_t& i64hilo, uint64_t& u64hilo, int32_t& next_pc, bool& do_interrupt) { // Every local variable declared here needs to be const. // This is to make sure that changed values are sent back to // DecodeTypeRegister correctly. // Instruction fields. const Opcode op = instr->OpcodeFieldRaw(); const int32_t rs_reg = instr->RsValue(); const int32_t rs = get_register(rs_reg); const uint32_t rs_u = static_cast<uint32_t>(rs); const int32_t rt_reg = instr->RtValue(); const int32_t rt = get_register(rt_reg); const uint32_t rt_u = static_cast<uint32_t>(rt); const int32_t rd_reg = instr->RdValue(); const uint32_t sa = instr->SaValue(); const int32_t fs_reg = instr->FsValue(); // ---------- Configuration. switch (op) { case COP1: // Coprocessor instructions. switch (instr->RsFieldRaw()) { case BC1: // Handled in DecodeTypeImmed, should never come here. UNREACHABLE(); break; case CFC1: // At the moment only FCSR is supported. ASSERT(fs_reg == kFCSRRegister); alu_out = FCSR_; break; case MFC1: alu_out = get_fpu_register(fs_reg); break; case MFHC1: UNIMPLEMENTED_MIPS(); break; case CTC1: case MTC1: case MTHC1: // Do the store in the execution step. break; case S: case D: case W: case L: case PS: // Do everything in the execution step. break; default: UNIMPLEMENTED_MIPS(); }; break; case SPECIAL: switch (instr->FunctionFieldRaw()) { case JR: case JALR: next_pc = get_register(instr->RsValue()); break; case SLL: alu_out = rt << sa; break; case SRL: if (rs_reg == 0) { // Regular logical right shift of a word by a fixed number of // bits instruction. RS field is always equal to 0. alu_out = rt_u >> sa; } else { // Logical right-rotate of a word by a fixed number of bits. This // is special case of SRL instruction, added in MIPS32 Release 2. // RS field is equal to 00001. alu_out = (rt_u >> sa) | (rt_u << (32 - sa)); } break; case SRA: alu_out = rt >> sa; break; case SLLV: alu_out = rt << rs; break; case SRLV: if (sa == 0) { // Regular logical right-shift of a word by a variable number of // bits instruction. SA field is always equal to 0. alu_out = rt_u >> rs; } else { // Logical right-rotate of a word by a variable number of bits. // This is special case od SRLV instruction, added in MIPS32 // Release 2. SA field is equal to 00001. alu_out = (rt_u >> rs_u) | (rt_u << (32 - rs_u)); } break; case SRAV: alu_out = rt >> rs; break; case MFHI: alu_out = get_register(HI); break; case MFLO: alu_out = get_register(LO); break; case MULT: i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt); break; case MULTU: u64hilo = static_cast<uint64_t>(rs_u) * static_cast<uint64_t>(rt_u); break; case ADD: if (HaveSameSign(rs, rt)) { if (rs > 0) { exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt); } else if (rs < 0) { exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt); } } alu_out = rs + rt; break; case ADDU: alu_out = rs + rt; break; case SUB: if (!HaveSameSign(rs, rt)) { if (rs > 0) { exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt); } else if (rs < 0) { exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt); } } alu_out = rs - rt; break; case SUBU: alu_out = rs - rt; break; case AND: alu_out = rs & rt; break; case OR: alu_out = rs | rt; break; case XOR: alu_out = rs ^ rt; break; case NOR: alu_out = ~(rs | rt); break; case SLT: alu_out = rs < rt ? 1 : 0; break; case SLTU: alu_out = rs_u < rt_u ? 1 : 0; break; // Break and trap instructions. case BREAK: do_interrupt = true; break; case TGE: do_interrupt = rs >= rt; break; case TGEU: do_interrupt = rs_u >= rt_u; break; case TLT: do_interrupt = rs < rt; break; case TLTU: do_interrupt = rs_u < rt_u; break; case TEQ: do_interrupt = rs == rt; break; case TNE: do_interrupt = rs != rt; break; case MOVN: case MOVZ: case MOVCI: // No action taken on decode. break; case DIV: case DIVU: // div and divu never raise exceptions. break; default: UNREACHABLE(); }; break; case SPECIAL2: switch (instr->FunctionFieldRaw()) { case MUL: alu_out = rs_u * rt_u; // Only the lower 32 bits are kept. break; case CLZ: alu_out = __builtin_clz(rs_u); break; default: UNREACHABLE(); }; break; case SPECIAL3: switch (instr->FunctionFieldRaw()) { case INS: { // Mips32r2 instruction. // Interpret rd field as 5-bit msb of insert. uint16_t msb = rd_reg; // Interpret sa field as 5-bit lsb of insert. uint16_t lsb = sa; uint16_t size = msb - lsb + 1; uint32_t mask = (1 << size) - 1; alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb); break; } case EXT: { // Mips32r2 instruction. // Interpret rd field as 5-bit msb of extract. uint16_t msb = rd_reg; // Interpret sa field as 5-bit lsb of extract. uint16_t lsb = sa; uint16_t size = msb + 1; uint32_t mask = (1 << size) - 1; alu_out = (rs_u & (mask << lsb)) >> lsb; break; } default: UNREACHABLE(); }; break; default: UNREACHABLE(); }; } void Simulator::DecodeTypeRegister(Instruction* instr) { // Instruction fields. const Opcode op = instr->OpcodeFieldRaw(); const int32_t rs_reg = instr->RsValue(); const int32_t rs = get_register(rs_reg); const uint32_t rs_u = static_cast<uint32_t>(rs); const int32_t rt_reg = instr->RtValue(); const int32_t rt = get_register(rt_reg); const uint32_t rt_u = static_cast<uint32_t>(rt); const int32_t rd_reg = instr->RdValue(); const int32_t fs_reg = instr->FsValue(); const int32_t ft_reg = instr->FtValue(); const int32_t fd_reg = instr->FdValue(); int64_t i64hilo = 0; uint64_t u64hilo = 0; // ALU output. // It should not be used as is. Instructions using it should always // initialize it first. int32_t alu_out = 0x12345678; // For break and trap instructions. bool do_interrupt = false; // For jr and jalr. // Get current pc. int32_t current_pc = get_pc(); // Next pc int32_t next_pc = 0; // Set up the variables if needed before executing the instruction. ConfigureTypeRegister(instr, alu_out, i64hilo, u64hilo, next_pc, do_interrupt); // ---------- Raise exceptions triggered. SignalExceptions(); // ---------- Execution. switch (op) { case COP1: switch (instr->RsFieldRaw()) { case BC1: // Branch on coprocessor condition. UNREACHABLE(); break; case CFC1: set_register(rt_reg, alu_out); case MFC1: set_register(rt_reg, alu_out); break; case MFHC1: UNIMPLEMENTED_MIPS(); break; case CTC1: // At the moment only FCSR is supported. ASSERT(fs_reg == kFCSRRegister); FCSR_ = registers_[rt_reg]; break; case MTC1: FPUregisters_[fs_reg] = registers_[rt_reg]; break; case MTHC1: UNIMPLEMENTED_MIPS(); break; case S: float f; switch (instr->FunctionFieldRaw()) { case CVT_D_S: f = get_fpu_register_float(fs_reg); set_fpu_register_double(fd_reg, static_cast<double>(f)); break; case CVT_W_S: case CVT_L_S: case TRUNC_W_S: case TRUNC_L_S: case ROUND_W_S: case ROUND_L_S: case FLOOR_W_S: case FLOOR_L_S: case CEIL_W_S: case CEIL_L_S: case CVT_PS_S: UNIMPLEMENTED_MIPS(); break; default: UNREACHABLE(); } break; case D: double ft, fs; uint32_t cc, fcsr_cc; int64_t i64; fs = get_fpu_register_double(fs_reg); ft = get_fpu_register_double(ft_reg); cc = instr->FCccValue(); fcsr_cc = get_fcsr_condition_bit(cc); switch (instr->FunctionFieldRaw()) { case ADD_D: set_fpu_register_double(fd_reg, fs + ft); break; case SUB_D: set_fpu_register_double(fd_reg, fs - ft); break; case MUL_D: set_fpu_register_double(fd_reg, fs * ft); break; case DIV_D: set_fpu_register_double(fd_reg, fs / ft); break; case ABS_D: set_fpu_register_double(fd_reg, fs < 0 ? -fs : fs); break; case MOV_D: set_fpu_register_double(fd_reg, fs); break; case NEG_D: set_fpu_register_double(fd_reg, -fs); break; case SQRT_D: set_fpu_register_double(fd_reg, sqrt(fs)); break; case C_UN_D: set_fcsr_bit(fcsr_cc, isnan(fs) || isnan(ft)); break; case C_EQ_D: set_fcsr_bit(fcsr_cc, (fs == ft)); break; case C_UEQ_D: set_fcsr_bit(fcsr_cc, (fs == ft) || (isnan(fs) || isnan(ft))); break; case C_OLT_D: set_fcsr_bit(fcsr_cc, (fs < ft)); break; case C_ULT_D: set_fcsr_bit(fcsr_cc, (fs < ft) || (isnan(fs) || isnan(ft))); break; case C_OLE_D: set_fcsr_bit(fcsr_cc, (fs <= ft)); break; case C_ULE_D: set_fcsr_bit(fcsr_cc, (fs <= ft) || (isnan(fs) || isnan(ft))); break; case CVT_W_D: // Convert double to word. // Rounding modes are not yet supported. ASSERT((FCSR_ & 3) == 0); // In rounding mode 0 it should behave like ROUND. case ROUND_W_D: // Round double to word. { double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5); int32_t result = static_cast<int32_t>(rounded); set_fpu_register(fd_reg, result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register(fd_reg, kFPUInvalidResult); } } break; case TRUNC_W_D: // Truncate double to word (round towards 0). { double rounded = trunc(fs); int32_t result = static_cast<int32_t>(rounded); set_fpu_register(fd_reg, result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register(fd_reg, kFPUInvalidResult); } } break; case FLOOR_W_D: // Round double to word towards negative infinity. { double rounded = floor(fs); int32_t result = static_cast<int32_t>(rounded); set_fpu_register(fd_reg, result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register(fd_reg, kFPUInvalidResult); } } break; case CEIL_W_D: // Round double to word towards positive infinity. { double rounded = ceil(fs); int32_t result = static_cast<int32_t>(rounded); set_fpu_register(fd_reg, result); if (set_fcsr_round_error(fs, rounded)) { set_fpu_register(fd_reg, kFPUInvalidResult); } } break; case CVT_S_D: // Convert double to float (single). set_fpu_register_float(fd_reg, static_cast<float>(fs)); break; case CVT_L_D: { // Mips32r2: Truncate double to 64-bit long-word. double rounded = trunc(fs); i64 = static_cast<int64_t>(rounded); set_fpu_register(fd_reg, i64 & 0xffffffff); set_fpu_register(fd_reg + 1, i64 >> 32); break; } case TRUNC_L_D: { // Mips32r2 instruction. double rounded = trunc(fs); i64 = static_cast<int64_t>(rounded); set_fpu_register(fd_reg, i64 & 0xffffffff); set_fpu_register(fd_reg + 1, i64 >> 32); break; } case ROUND_L_D: { // Mips32r2 instruction. double rounded = fs > 0 ? floor(fs + 0.5) : ceil(fs - 0.5); i64 = static_cast<int64_t>(rounded); set_fpu_register(fd_reg, i64 & 0xffffffff); set_fpu_register(fd_reg + 1, i64 >> 32); break; } case FLOOR_L_D: // Mips32r2 instruction. i64 = static_cast<int64_t>(floor(fs)); set_fpu_register(fd_reg, i64 & 0xffffffff); set_fpu_register(fd_reg + 1, i64 >> 32); break; case CEIL_L_D: // Mips32r2 instruction. i64 = static_cast<int64_t>(ceil(fs)); set_fpu_register(fd_reg, i64 & 0xffffffff); set_fpu_register(fd_reg + 1, i64 >> 32); break; case C_F_D: UNIMPLEMENTED_MIPS(); break; default: UNREACHABLE(); } break; case W: switch (instr->FunctionFieldRaw()) { case CVT_S_W: // Convert word to float (single). alu_out = get_fpu_register(fs_reg); set_fpu_register_float(fd_reg, static_cast<float>(alu_out)); break; case CVT_D_W: // Convert word to double. alu_out = get_fpu_register(fs_reg); set_fpu_register_double(fd_reg, static_cast<double>(alu_out)); break; default: UNREACHABLE(); }; break; case L: switch (instr->FunctionFieldRaw()) { case CVT_D_L: // Mips32r2 instruction. // Watch the signs here, we want 2 32-bit vals // to make a sign-64. i64 = (uint32_t) get_fpu_register(fs_reg); i64 |= ((int64_t) get_fpu_register(fs_reg + 1) << 32); set_fpu_register_double(fd_reg, static_cast<double>(i64)); break; case CVT_S_L: UNIMPLEMENTED_MIPS(); break; default: UNREACHABLE(); } break; case PS: break; default: UNREACHABLE(); }; break; case SPECIAL: switch (instr->FunctionFieldRaw()) { case JR: { Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( current_pc+Instruction::kInstrSize); BranchDelayInstructionDecode(branch_delay_instr); set_pc(next_pc); pc_modified_ = true; break; } case JALR: { Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( current_pc+Instruction::kInstrSize); BranchDelayInstructionDecode(branch_delay_instr); set_register(31, current_pc + 2 * Instruction::kInstrSize); set_pc(next_pc); pc_modified_ = true; break; } // Instructions using HI and LO registers. case MULT: set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff)); set_register(HI, static_cast<int32_t>(i64hilo >> 32)); break; case MULTU: set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff)); set_register(HI, static_cast<int32_t>(u64hilo >> 32)); break; case DIV: // Divide by zero was not checked in the configuration step - div and // divu do not raise exceptions. On division by 0, the result will // be UNPREDICTABLE. if (rt != 0) { set_register(LO, rs / rt); set_register(HI, rs % rt); } break; case DIVU: if (rt_u != 0) { set_register(LO, rs_u / rt_u); set_register(HI, rs_u % rt_u); } break; // Break and trap instructions. case BREAK: case TGE: case TGEU: case TLT: case TLTU: case TEQ: case TNE: if (do_interrupt) { SoftwareInterrupt(instr); } break; // Conditional moves. case MOVN: if (rt) set_register(rd_reg, rs); break; case MOVCI: { uint32_t cc = instr->FBccValue(); uint32_t fcsr_cc = get_fcsr_condition_bit(cc); if (instr->Bit(16)) { // Read Tf bit. if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); } else { if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); } break; } case MOVZ: if (!rt) set_register(rd_reg, rs); break; default: // For other special opcodes we do the default operation. set_register(rd_reg, alu_out); }; break; case SPECIAL2: switch (instr->FunctionFieldRaw()) { case MUL: set_register(rd_reg, alu_out); // HI and LO are UNPREDICTABLE after the operation. set_register(LO, Unpredictable); set_register(HI, Unpredictable); break; default: // For other special2 opcodes we do the default operation. set_register(rd_reg, alu_out); } break; case SPECIAL3: switch (instr->FunctionFieldRaw()) { case INS: // Ins instr leaves result in Rt, rather than Rd. set_register(rt_reg, alu_out); break; case EXT: // Ext instr leaves result in Rt, rather than Rd. set_register(rt_reg, alu_out); break; default: UNREACHABLE(); }; break; // Unimplemented opcodes raised an error in the configuration step before, // so we can use the default here to set the destination register in common // cases. default: set_register(rd_reg, alu_out); }; } // Type 2: instructions using a 16 bytes immediate. (e.g. addi, beq). void Simulator::DecodeTypeImmediate(Instruction* instr) { // Instruction fields. Opcode op = instr->OpcodeFieldRaw(); int32_t rs = get_register(instr->RsValue()); uint32_t rs_u = static_cast<uint32_t>(rs); int32_t rt_reg = instr->RtValue(); // Destination register. int32_t rt = get_register(rt_reg); int16_t imm16 = instr->Imm16Value(); int32_t ft_reg = instr->FtValue(); // Destination register. // Zero extended immediate. uint32_t oe_imm16 = 0xffff & imm16; // Sign extended immediate. int32_t se_imm16 = imm16; // Get current pc. int32_t current_pc = get_pc(); // Next pc. int32_t next_pc = bad_ra; // Used for conditional branch instructions. bool do_branch = false; bool execute_branch_delay_instruction = false; // Used for arithmetic instructions. int32_t alu_out = 0; // Floating point. double fp_out = 0.0; uint32_t cc, cc_value, fcsr_cc; // Used for memory instructions. int32_t addr = 0x0; // Value to be written in memory. uint32_t mem_value = 0x0; // ---------- Configuration (and execution for REGIMM). switch (op) { // ------------- COP1. Coprocessor instructions. case COP1: switch (instr->RsFieldRaw()) { case BC1: // Branch on coprocessor condition. cc = instr->FBccValue(); fcsr_cc = get_fcsr_condition_bit(cc); cc_value = test_fcsr_bit(fcsr_cc); do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value; execute_branch_delay_instruction = true; // Set next_pc. if (do_branch) { next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; } else { next_pc = current_pc + kBranchReturnOffset; } break; default: UNREACHABLE(); }; break; // ------------- REGIMM class. case REGIMM: switch (instr->RtFieldRaw()) { case BLTZ: do_branch = (rs < 0); break; case BLTZAL: do_branch = rs < 0; break; case BGEZ: do_branch = rs >= 0; break; case BGEZAL: do_branch = rs >= 0; break; default: UNREACHABLE(); }; switch (instr->RtFieldRaw()) { case BLTZ: case BLTZAL: case BGEZ: case BGEZAL: // Branch instructions common part. execute_branch_delay_instruction = true; // Set next_pc. if (do_branch) { next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; if (instr->IsLinkingInstruction()) { set_register(31, current_pc + kBranchReturnOffset); } } else { next_pc = current_pc + kBranchReturnOffset; } default: break; }; break; // case REGIMM. // ------------- Branch instructions. // When comparing to zero, the encoding of rt field is always 0, so we don't // need to replace rt with zero. case BEQ: do_branch = (rs == rt); break; case BNE: do_branch = rs != rt; break; case BLEZ: do_branch = rs <= 0; break; case BGTZ: do_branch = rs > 0; break; // ------------- Arithmetic instructions. case ADDI: if (HaveSameSign(rs, se_imm16)) { if (rs > 0) { exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16); } else if (rs < 0) { exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - se_imm16); } } alu_out = rs + se_imm16; break; case ADDIU: alu_out = rs + se_imm16; break; case SLTI: alu_out = (rs < se_imm16) ? 1 : 0; break; case SLTIU: alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0; break; case ANDI: alu_out = rs & oe_imm16; break; case ORI: alu_out = rs | oe_imm16; break; case XORI: alu_out = rs ^ oe_imm16; break; case LUI: alu_out = (oe_imm16 << 16); break; // ------------- Memory instructions. case LB: addr = rs + se_imm16; alu_out = ReadB(addr); break; case LH: addr = rs + se_imm16; alu_out = ReadH(addr, instr); break; case LWL: { // al_offset is offset of the effective address within an aligned word. uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; uint8_t byte_shift = kPointerAlignmentMask - al_offset; uint32_t mask = (1 << byte_shift * 8) - 1; addr = rs + se_imm16 - al_offset; alu_out = ReadW(addr, instr); alu_out <<= byte_shift * 8; alu_out |= rt & mask; break; } case LW: addr = rs + se_imm16; alu_out = ReadW(addr, instr); break; case LBU: addr = rs + se_imm16; alu_out = ReadBU(addr); break; case LHU: addr = rs + se_imm16; alu_out = ReadHU(addr, instr); break; case LWR: { // al_offset is offset of the effective address within an aligned word. uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; uint8_t byte_shift = kPointerAlignmentMask - al_offset; uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; addr = rs + se_imm16 - al_offset; alu_out = ReadW(addr, instr); alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8; alu_out |= rt & mask; break; } case SB: addr = rs + se_imm16; break; case SH: addr = rs + se_imm16; break; case SWL: { uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; uint8_t byte_shift = kPointerAlignmentMask - al_offset; uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; addr = rs + se_imm16 - al_offset; mem_value = ReadW(addr, instr) & mask; mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; break; } case SW: addr = rs + se_imm16; break; case SWR: { uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; uint32_t mask = (1 << al_offset * 8) - 1; addr = rs + se_imm16 - al_offset; mem_value = ReadW(addr, instr); mem_value = (rt << al_offset * 8) | (mem_value & mask); break; } case LWC1: addr = rs + se_imm16; alu_out = ReadW(addr, instr); break; case LDC1: addr = rs + se_imm16; fp_out = ReadD(addr, instr); break; case SWC1: case SDC1: addr = rs + se_imm16; break; default: UNREACHABLE(); }; // ---------- Raise exceptions triggered. SignalExceptions(); // ---------- Execution. switch (op) { // ------------- Branch instructions. case BEQ: case BNE: case BLEZ: case BGTZ: // Branch instructions common part. execute_branch_delay_instruction = true; // Set next_pc. if (do_branch) { next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; if (instr->IsLinkingInstruction()) { set_register(31, current_pc + 2* Instruction::kInstrSize); } } else { next_pc = current_pc + 2 * Instruction::kInstrSize; } break; // ------------- Arithmetic instructions. case ADDI: case ADDIU: case SLTI: case SLTIU: case ANDI: case ORI: case XORI: case LUI: set_register(rt_reg, alu_out); break; // ------------- Memory instructions. case LB: case LH: case LWL: case LW: case LBU: case LHU: case LWR: set_register(rt_reg, alu_out); break; case SB: WriteB(addr, static_cast<int8_t>(rt)); break; case SH: WriteH(addr, static_cast<uint16_t>(rt), instr); break; case SWL: WriteW(addr, mem_value, instr); break; case SW: WriteW(addr, rt, instr); break; case SWR: WriteW(addr, mem_value, instr); break; case LWC1: set_fpu_register(ft_reg, alu_out); break; case LDC1: set_fpu_register_double(ft_reg, fp_out); break; case SWC1: addr = rs + se_imm16; WriteW(addr, get_fpu_register(ft_reg), instr); break; case SDC1: addr = rs + se_imm16; WriteD(addr, get_fpu_register_double(ft_reg), instr); break; default: break; }; if (execute_branch_delay_instruction) { // Execute branch delay slot // We don't check for end_sim_pc. First it should not be met as the current // pc is valid. Secondly a jump should always execute its branch delay slot. Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize); BranchDelayInstructionDecode(branch_delay_instr); } // If needed update pc after the branch delay execution. if (next_pc != bad_ra) { set_pc(next_pc); } } // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). void Simulator::DecodeTypeJump(Instruction* instr) { // Get current pc. int32_t current_pc = get_pc(); // Get unchanged bits of pc. int32_t pc_high_bits = current_pc & 0xf0000000; // Next pc. int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2); // Execute branch delay slot. // We don't check for end_sim_pc. First it should not be met as the current pc // is valid. Secondly a jump should always execute its branch delay slot. Instruction* branch_delay_instr = reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize); BranchDelayInstructionDecode(branch_delay_instr); // Update pc and ra if necessary. // Do this after the branch delay execution. if (instr->IsLinkingInstruction()) { set_register(31, current_pc + 2 * Instruction::kInstrSize); } set_pc(next_pc); pc_modified_ = true; } // Executes the current instruction. void Simulator::InstructionDecode(Instruction* instr) { if (v8::internal::FLAG_check_icache) { CheckICache(isolate_->simulator_i_cache(), instr); } pc_modified_ = false; if (::v8::internal::FLAG_trace_sim) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // Use a reasonably large buffer. v8::internal::EmbeddedVector<char, 256> buffer; dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(instr), buffer.start()); } switch (instr->InstructionType()) { case Instruction::kRegisterType: DecodeTypeRegister(instr); break; case Instruction::kImmediateType: DecodeTypeImmediate(instr); break; case Instruction::kJumpType: DecodeTypeJump(instr); break; default: UNSUPPORTED(); } if (!pc_modified_) { set_register(pc, reinterpret_cast<int32_t>(instr) + Instruction::kInstrSize); } } void Simulator::Execute() { // Get the PC to simulate. Cannot use the accessor here as we need the // raw PC value and not the one used as input to arithmetic instructions. int program_counter = get_pc(); if (::v8::internal::FLAG_stop_sim_at == 0) { // Fast version of the dispatch loop without checking whether the simulator // should be stopping at a particular executed instruction. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast<Instruction*>(program_counter); icount_++; InstructionDecode(instr); program_counter = get_pc(); } } else { // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when // we reach the particular instuction count. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast<Instruction*>(program_counter); icount_++; if (icount_ == ::v8::internal::FLAG_stop_sim_at) { MipsDebugger dbg(this); dbg.Debug(); } else { InstructionDecode(instr); } program_counter = get_pc(); } } } int32_t Simulator::Call(byte* entry, int argument_count, ...) { va_list parameters; va_start(parameters, argument_count); // Set up arguments. // First four arguments passed in registers. ASSERT(argument_count >= 4); set_register(a0, va_arg(parameters, int32_t)); set_register(a1, va_arg(parameters, int32_t)); set_register(a2, va_arg(parameters, int32_t)); set_register(a3, va_arg(parameters, int32_t)); // Remaining arguments passed on stack. int original_stack = get_register(sp); // Compute position of stack on entry to generated code. int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) - kCArgsSlotsSize); if (OS::ActivationFrameAlignment() != 0) { entry_stack &= -OS::ActivationFrameAlignment(); } // Store remaining arguments on stack, from low to high memory. intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); for (int i = 4; i < argument_count; i++) { stack_argument[i - 4 + kCArgSlotCount] = va_arg(parameters, int32_t); } va_end(parameters); set_register(sp, entry_stack); // Prepare to execute the code at entry. set_register(pc, reinterpret_cast<int32_t>(entry)); // Put down marker for end of simulation. The simulator will stop simulation // when the PC reaches this value. By saving the "end simulation" value into // the LR the simulation stops when returning to this call point. set_register(ra, end_sim_pc); // Remember the values of callee-saved registers. // The code below assumes that r9 is not used as sb (static base) in // simulator code and therefore is regarded as a callee-saved register. int32_t s0_val = get_register(s0); int32_t s1_val = get_register(s1); int32_t s2_val = get_register(s2); int32_t s3_val = get_register(s3); int32_t s4_val = get_register(s4); int32_t s5_val = get_register(s5); int32_t s6_val = get_register(s6); int32_t s7_val = get_register(s7); int32_t gp_val = get_register(gp); int32_t sp_val = get_register(sp); int32_t fp_val = get_register(fp); // Set up the callee-saved registers with a known value. To be able to check // that they are preserved properly across JS execution. int32_t callee_saved_value = icount_; set_register(s0, callee_saved_value); set_register(s1, callee_saved_value); set_register(s2, callee_saved_value); set_register(s3, callee_saved_value); set_register(s4, callee_saved_value); set_register(s5, callee_saved_value); set_register(s6, callee_saved_value); set_register(s7, callee_saved_value); set_register(gp, callee_saved_value); set_register(fp, callee_saved_value); // Start the simulation. Execute(); // Check that the callee-saved registers have been preserved. CHECK_EQ(callee_saved_value, get_register(s0)); CHECK_EQ(callee_saved_value, get_register(s1)); CHECK_EQ(callee_saved_value, get_register(s2)); CHECK_EQ(callee_saved_value, get_register(s3)); CHECK_EQ(callee_saved_value, get_register(s4)); CHECK_EQ(callee_saved_value, get_register(s5)); CHECK_EQ(callee_saved_value, get_register(s6)); CHECK_EQ(callee_saved_value, get_register(s7)); CHECK_EQ(callee_saved_value, get_register(gp)); CHECK_EQ(callee_saved_value, get_register(fp)); // Restore callee-saved registers with the original value. set_register(s0, s0_val); set_register(s1, s1_val); set_register(s2, s2_val); set_register(s3, s3_val); set_register(s4, s4_val); set_register(s5, s5_val); set_register(s6, s6_val); set_register(s7, s7_val); set_register(gp, gp_val); set_register(sp, sp_val); set_register(fp, fp_val); // Pop stack passed arguments. CHECK_EQ(entry_stack, get_register(sp)); set_register(sp, original_stack); int32_t result = get_register(v0); return result; } uintptr_t Simulator::PushAddress(uintptr_t address) { int new_sp = get_register(sp) - sizeof(uintptr_t); uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); *stack_slot = address; set_register(sp, new_sp); return new_sp; } uintptr_t Simulator::PopAddress() { int current_sp = get_register(sp); uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); uintptr_t address = *stack_slot; set_register(sp, current_sp + sizeof(uintptr_t)); return address; } #undef UNSUPPORTED } } // namespace v8::internal #endif // USE_SIMULATOR #endif // V8_TARGET_ARCH_MIPS