// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_PARSER_H_ #define V8_PARSER_H_ #include "allocation.h" #include "ast.h" #include "preparse-data-format.h" #include "preparse-data.h" #include "scopes.h" #include "preparser.h" namespace v8 { namespace internal { class CompilationInfo; class FuncNameInferrer; class ParserLog; class PositionStack; class Target; template <typename T> class ZoneListWrapper; class ParserMessage : public Malloced { public: ParserMessage(Scanner::Location loc, const char* message, Vector<const char*> args) : loc_(loc), message_(message), args_(args) { } ~ParserMessage(); Scanner::Location location() { return loc_; } const char* message() { return message_; } Vector<const char*> args() { return args_; } private: Scanner::Location loc_; const char* message_; Vector<const char*> args_; }; class FunctionEntry BASE_EMBEDDED { public: enum { kStartPositionIndex, kEndPositionIndex, kLiteralCountIndex, kPropertyCountIndex, kLanguageModeIndex, kSize }; explicit FunctionEntry(Vector<unsigned> backing) : backing_(backing) { } FunctionEntry() : backing_() { } int start_pos() { return backing_[kStartPositionIndex]; } int end_pos() { return backing_[kEndPositionIndex]; } int literal_count() { return backing_[kLiteralCountIndex]; } int property_count() { return backing_[kPropertyCountIndex]; } LanguageMode language_mode() { ASSERT(backing_[kLanguageModeIndex] == CLASSIC_MODE || backing_[kLanguageModeIndex] == STRICT_MODE || backing_[kLanguageModeIndex] == EXTENDED_MODE); return static_cast<LanguageMode>(backing_[kLanguageModeIndex]); } bool is_valid() { return !backing_.is_empty(); } private: Vector<unsigned> backing_; bool owns_data_; }; class ScriptDataImpl : public ScriptData { public: explicit ScriptDataImpl(Vector<unsigned> store) : store_(store), owns_store_(true) { } // Create an empty ScriptDataImpl that is guaranteed to not satisfy // a SanityCheck. ScriptDataImpl() : owns_store_(false) { } virtual ~ScriptDataImpl(); virtual int Length(); virtual const char* Data(); virtual bool HasError(); void Initialize(); void ReadNextSymbolPosition(); FunctionEntry GetFunctionEntry(int start); int GetSymbolIdentifier(); bool SanityCheck(); Scanner::Location MessageLocation(); const char* BuildMessage(); Vector<const char*> BuildArgs(); int symbol_count() { return (store_.length() > PreparseDataConstants::kHeaderSize) ? store_[PreparseDataConstants::kSymbolCountOffset] : 0; } // The following functions should only be called if SanityCheck has // returned true. bool has_error() { return store_[PreparseDataConstants::kHasErrorOffset]; } unsigned magic() { return store_[PreparseDataConstants::kMagicOffset]; } unsigned version() { return store_[PreparseDataConstants::kVersionOffset]; } private: Vector<unsigned> store_; unsigned char* symbol_data_; unsigned char* symbol_data_end_; int function_index_; bool owns_store_; unsigned Read(int position); unsigned* ReadAddress(int position); // Reads a number from the current symbols int ReadNumber(byte** source); ScriptDataImpl(const char* backing_store, int length) : store_(reinterpret_cast<unsigned*>(const_cast<char*>(backing_store)), length / static_cast<int>(sizeof(unsigned))), owns_store_(false) { ASSERT_EQ(0, static_cast<int>( reinterpret_cast<intptr_t>(backing_store) % sizeof(unsigned))); } // Read strings written by ParserRecorder::WriteString. static const char* ReadString(unsigned* start, int* chars); friend class ScriptData; }; class ParserApi { public: // Parses the source code represented by the compilation info and sets its // function literal. Returns false (and deallocates any allocated AST // nodes) if parsing failed. static bool Parse(CompilationInfo* info, int flags); // Generic preparser generating full preparse data. static ScriptDataImpl* PreParse(Utf16CharacterStream* source, v8::Extension* extension, int flags); // Preparser that only does preprocessing that makes sense if only used // immediately after. static ScriptDataImpl* PartialPreParse(Handle<String> source, v8::Extension* extension, int flags); }; // ---------------------------------------------------------------------------- // REGEXP PARSING // A BufferedZoneList is an automatically growing list, just like (and backed // by) a ZoneList, that is optimized for the case of adding and removing // a single element. The last element added is stored outside the backing list, // and if no more than one element is ever added, the ZoneList isn't even // allocated. // Elements must not be NULL pointers. template <typename T, int initial_size> class BufferedZoneList { public: BufferedZoneList() : list_(NULL), last_(NULL) {} // Adds element at end of list. This element is buffered and can // be read using last() or removed using RemoveLast until a new Add or until // RemoveLast or GetList has been called. void Add(T* value) { if (last_ != NULL) { if (list_ == NULL) { list_ = new ZoneList<T*>(initial_size); } list_->Add(last_); } last_ = value; } T* last() { ASSERT(last_ != NULL); return last_; } T* RemoveLast() { ASSERT(last_ != NULL); T* result = last_; if ((list_ != NULL) && (list_->length() > 0)) last_ = list_->RemoveLast(); else last_ = NULL; return result; } T* Get(int i) { ASSERT((0 <= i) && (i < length())); if (list_ == NULL) { ASSERT_EQ(0, i); return last_; } else { if (i == list_->length()) { ASSERT(last_ != NULL); return last_; } else { return list_->at(i); } } } void Clear() { list_ = NULL; last_ = NULL; } int length() { int length = (list_ == NULL) ? 0 : list_->length(); return length + ((last_ == NULL) ? 0 : 1); } ZoneList<T*>* GetList() { if (list_ == NULL) { list_ = new ZoneList<T*>(initial_size); } if (last_ != NULL) { list_->Add(last_); last_ = NULL; } return list_; } private: ZoneList<T*>* list_; T* last_; }; // Accumulates RegExp atoms and assertions into lists of terms and alternatives. class RegExpBuilder: public ZoneObject { public: RegExpBuilder(); void AddCharacter(uc16 character); // "Adds" an empty expression. Does nothing except consume a // following quantifier void AddEmpty(); void AddAtom(RegExpTree* tree); void AddAssertion(RegExpTree* tree); void NewAlternative(); // '|' void AddQuantifierToAtom(int min, int max, RegExpQuantifier::Type type); RegExpTree* ToRegExp(); private: void FlushCharacters(); void FlushText(); void FlushTerms(); Zone* zone() { return zone_; } Zone* zone_; bool pending_empty_; ZoneList<uc16>* characters_; BufferedZoneList<RegExpTree, 2> terms_; BufferedZoneList<RegExpTree, 2> text_; BufferedZoneList<RegExpTree, 2> alternatives_; #ifdef DEBUG enum {ADD_NONE, ADD_CHAR, ADD_TERM, ADD_ASSERT, ADD_ATOM} last_added_; #define LAST(x) last_added_ = x; #else #define LAST(x) #endif }; class RegExpParser { public: RegExpParser(FlatStringReader* in, Handle<String>* error, bool multiline_mode); static bool ParseRegExp(FlatStringReader* input, bool multiline, RegExpCompileData* result); RegExpTree* ParsePattern(); RegExpTree* ParseDisjunction(); RegExpTree* ParseGroup(); RegExpTree* ParseCharacterClass(); // Parses a {...,...} quantifier and stores the range in the given // out parameters. bool ParseIntervalQuantifier(int* min_out, int* max_out); // Parses and returns a single escaped character. The character // must not be 'b' or 'B' since they are usually handle specially. uc32 ParseClassCharacterEscape(); // Checks whether the following is a length-digit hexadecimal number, // and sets the value if it is. bool ParseHexEscape(int length, uc32* value); uc32 ParseOctalLiteral(); // Tries to parse the input as a back reference. If successful it // stores the result in the output parameter and returns true. If // it fails it will push back the characters read so the same characters // can be reparsed. bool ParseBackReferenceIndex(int* index_out); CharacterRange ParseClassAtom(uc16* char_class); RegExpTree* ReportError(Vector<const char> message); void Advance(); void Advance(int dist); void Reset(int pos); // Reports whether the pattern might be used as a literal search string. // Only use if the result of the parse is a single atom node. bool simple(); bool contains_anchor() { return contains_anchor_; } void set_contains_anchor() { contains_anchor_ = true; } int captures_started() { return captures_ == NULL ? 0 : captures_->length(); } int position() { return next_pos_ - 1; } bool failed() { return failed_; } static const int kMaxCaptures = 1 << 16; static const uc32 kEndMarker = (1 << 21); private: enum SubexpressionType { INITIAL, CAPTURE, // All positive values represent captures. POSITIVE_LOOKAHEAD, NEGATIVE_LOOKAHEAD, GROUPING }; class RegExpParserState : public ZoneObject { public: RegExpParserState(RegExpParserState* previous_state, SubexpressionType group_type, int disjunction_capture_index) : previous_state_(previous_state), builder_(new RegExpBuilder()), group_type_(group_type), disjunction_capture_index_(disjunction_capture_index) {} // Parser state of containing expression, if any. RegExpParserState* previous_state() { return previous_state_; } bool IsSubexpression() { return previous_state_ != NULL; } // RegExpBuilder building this regexp's AST. RegExpBuilder* builder() { return builder_; } // Type of regexp being parsed (parenthesized group or entire regexp). SubexpressionType group_type() { return group_type_; } // Index in captures array of first capture in this sub-expression, if any. // Also the capture index of this sub-expression itself, if group_type // is CAPTURE. int capture_index() { return disjunction_capture_index_; } private: // Linked list implementation of stack of states. RegExpParserState* previous_state_; // Builder for the stored disjunction. RegExpBuilder* builder_; // Stored disjunction type (capture, look-ahead or grouping), if any. SubexpressionType group_type_; // Stored disjunction's capture index (if any). int disjunction_capture_index_; }; Isolate* isolate() { return isolate_; } Zone* zone() { return isolate_->zone(); } uc32 current() { return current_; } bool has_more() { return has_more_; } bool has_next() { return next_pos_ < in()->length(); } uc32 Next(); FlatStringReader* in() { return in_; } void ScanForCaptures(); Isolate* isolate_; Handle<String>* error_; ZoneList<RegExpCapture*>* captures_; FlatStringReader* in_; uc32 current_; int next_pos_; // The capture count is only valid after we have scanned for captures. int capture_count_; bool has_more_; bool multiline_; bool simple_; bool contains_anchor_; bool is_scanned_for_captures_; bool failed_; }; // ---------------------------------------------------------------------------- // JAVASCRIPT PARSING // Forward declaration. class SingletonLogger; class Parser { public: Parser(Handle<Script> script, int parsing_flags, // Combination of ParsingFlags v8::Extension* extension, ScriptDataImpl* pre_data); virtual ~Parser() { delete reusable_preparser_; reusable_preparser_ = NULL; } // Returns NULL if parsing failed. FunctionLiteral* ParseProgram(CompilationInfo* info); FunctionLiteral* ParseLazy(CompilationInfo* info); void ReportMessageAt(Scanner::Location loc, const char* message, Vector<const char*> args); void ReportMessageAt(Scanner::Location loc, const char* message, Vector<Handle<String> > args); private: // Limit on number of function parameters is chosen arbitrarily. // Code::Flags uses only the low 17 bits of num-parameters to // construct a hashable id, so if more than 2^17 are allowed, this // should be checked. static const int kMaxNumFunctionParameters = 32766; static const int kMaxNumFunctionLocals = 32767; enum Mode { PARSE_LAZILY, PARSE_EAGERLY }; enum VariableDeclarationContext { kModuleElement, kBlockElement, kStatement, kForStatement }; // If a list of variable declarations includes any initializers. enum VariableDeclarationProperties { kHasInitializers, kHasNoInitializers }; class BlockState; class FunctionState BASE_EMBEDDED { public: FunctionState(Parser* parser, Scope* scope, Isolate* isolate); ~FunctionState(); int NextMaterializedLiteralIndex() { return next_materialized_literal_index_++; } int materialized_literal_count() { return next_materialized_literal_index_ - JSFunction::kLiteralsPrefixSize; } int NextHandlerIndex() { return next_handler_index_++; } int handler_count() { return next_handler_index_; } void SetThisPropertyAssignmentInfo( bool only_simple_this_property_assignments, Handle<FixedArray> this_property_assignments) { only_simple_this_property_assignments_ = only_simple_this_property_assignments; this_property_assignments_ = this_property_assignments; } bool only_simple_this_property_assignments() { return only_simple_this_property_assignments_; } Handle<FixedArray> this_property_assignments() { return this_property_assignments_; } void AddProperty() { expected_property_count_++; } int expected_property_count() { return expected_property_count_; } AstNodeFactory<AstConstructionVisitor>* factory() { return &factory_; } private: // Used to assign an index to each literal that needs materialization in // the function. Includes regexp literals, and boilerplate for object and // array literals. int next_materialized_literal_index_; // Used to assign a per-function index to try and catch handlers. int next_handler_index_; // Properties count estimation. int expected_property_count_; // Keeps track of assignments to properties of this. Used for // optimizing constructors. bool only_simple_this_property_assignments_; Handle<FixedArray> this_property_assignments_; Parser* parser_; FunctionState* outer_function_state_; Scope* outer_scope_; int saved_ast_node_id_; AstNodeFactory<AstConstructionVisitor> factory_; }; FunctionLiteral* ParseLazy(CompilationInfo* info, Utf16CharacterStream* source, ZoneScope* zone_scope); Isolate* isolate() { return isolate_; } Zone* zone() { return isolate_->zone(); } // Called by ParseProgram after setting up the scanner. FunctionLiteral* DoParseProgram(CompilationInfo* info, Handle<String> source, ZoneScope* zone_scope); // Report syntax error void ReportUnexpectedToken(Token::Value token); void ReportInvalidPreparseData(Handle<String> name, bool* ok); void ReportMessage(const char* message, Vector<const char*> args); void ReportMessage(const char* message, Vector<Handle<String> > args); bool inside_with() const { return top_scope_->inside_with(); } Scanner& scanner() { return scanner_; } Mode mode() const { return mode_; } ScriptDataImpl* pre_data() const { return pre_data_; } bool is_extended_mode() { ASSERT(top_scope_ != NULL); return top_scope_->is_extended_mode(); } Scope* DeclarationScope(VariableMode mode) { return (mode == LET || mode == CONST_HARMONY) ? top_scope_ : top_scope_->DeclarationScope(); } // Check if the given string is 'eval' or 'arguments'. bool IsEvalOrArguments(Handle<String> string); // All ParseXXX functions take as the last argument an *ok parameter // which is set to false if parsing failed; it is unchanged otherwise. // By making the 'exception handling' explicit, we are forced to check // for failure at the call sites. void* ParseSourceElements(ZoneList<Statement*>* processor, int end_token, bool is_eval, bool* ok); Statement* ParseModuleElement(ZoneStringList* labels, bool* ok); Block* ParseModuleDeclaration(ZoneStringList* names, bool* ok); Module* ParseModule(bool* ok); Module* ParseModuleLiteral(bool* ok); Module* ParseModulePath(bool* ok); Module* ParseModuleVariable(bool* ok); Module* ParseModuleUrl(bool* ok); Module* ParseModuleSpecifier(bool* ok); Block* ParseImportDeclaration(bool* ok); Statement* ParseExportDeclaration(bool* ok); Statement* ParseBlockElement(ZoneStringList* labels, bool* ok); Statement* ParseStatement(ZoneStringList* labels, bool* ok); Statement* ParseFunctionDeclaration(ZoneStringList* names, bool* ok); Statement* ParseNativeDeclaration(bool* ok); Block* ParseBlock(ZoneStringList* labels, bool* ok); Block* ParseVariableStatement(VariableDeclarationContext var_context, ZoneStringList* names, bool* ok); Block* ParseVariableDeclarations(VariableDeclarationContext var_context, VariableDeclarationProperties* decl_props, ZoneStringList* names, Handle<String>* out, bool* ok); Statement* ParseExpressionOrLabelledStatement(ZoneStringList* labels, bool* ok); IfStatement* ParseIfStatement(ZoneStringList* labels, bool* ok); Statement* ParseContinueStatement(bool* ok); Statement* ParseBreakStatement(ZoneStringList* labels, bool* ok); Statement* ParseReturnStatement(bool* ok); Statement* ParseWithStatement(ZoneStringList* labels, bool* ok); CaseClause* ParseCaseClause(bool* default_seen_ptr, bool* ok); SwitchStatement* ParseSwitchStatement(ZoneStringList* labels, bool* ok); DoWhileStatement* ParseDoWhileStatement(ZoneStringList* labels, bool* ok); WhileStatement* ParseWhileStatement(ZoneStringList* labels, bool* ok); Statement* ParseForStatement(ZoneStringList* labels, bool* ok); Statement* ParseThrowStatement(bool* ok); Expression* MakeCatchContext(Handle<String> id, VariableProxy* value); TryStatement* ParseTryStatement(bool* ok); DebuggerStatement* ParseDebuggerStatement(bool* ok); // Support for hamony block scoped bindings. Block* ParseScopedBlock(ZoneStringList* labels, bool* ok); Expression* ParseExpression(bool accept_IN, bool* ok); Expression* ParseAssignmentExpression(bool accept_IN, bool* ok); Expression* ParseConditionalExpression(bool accept_IN, bool* ok); Expression* ParseBinaryExpression(int prec, bool accept_IN, bool* ok); Expression* ParseUnaryExpression(bool* ok); Expression* ParsePostfixExpression(bool* ok); Expression* ParseLeftHandSideExpression(bool* ok); Expression* ParseNewExpression(bool* ok); Expression* ParseMemberExpression(bool* ok); Expression* ParseNewPrefix(PositionStack* stack, bool* ok); Expression* ParseMemberWithNewPrefixesExpression(PositionStack* stack, bool* ok); Expression* ParsePrimaryExpression(bool* ok); Expression* ParseArrayLiteral(bool* ok); Expression* ParseObjectLiteral(bool* ok); ObjectLiteral::Property* ParseObjectLiteralGetSet(bool is_getter, bool* ok); Expression* ParseRegExpLiteral(bool seen_equal, bool* ok); // Populate the constant properties fixed array for a materialized object // literal. void BuildObjectLiteralConstantProperties( ZoneList<ObjectLiteral::Property*>* properties, Handle<FixedArray> constants, bool* is_simple, bool* fast_elements, int* depth); // Populate the literals fixed array for a materialized array literal. void BuildArrayLiteralBoilerplateLiterals(ZoneList<Expression*>* properties, Handle<FixedArray> constants, bool* is_simple, int* depth); // Decide if a property should be in the object boilerplate. bool IsBoilerplateProperty(ObjectLiteral::Property* property); // If the expression is a literal, return the literal value; // if the expression is a materialized literal and is simple return a // compile time value as encoded by CompileTimeValue::GetValue(). // Otherwise, return undefined literal as the placeholder // in the object literal boilerplate. Handle<Object> GetBoilerplateValue(Expression* expression); ZoneList<Expression*>* ParseArguments(bool* ok); FunctionLiteral* ParseFunctionLiteral(Handle<String> var_name, bool name_is_reserved, int function_token_position, FunctionLiteral::Type type, bool* ok); // Magical syntax support. Expression* ParseV8Intrinsic(bool* ok); INLINE(Token::Value peek()) { if (stack_overflow_) return Token::ILLEGAL; return scanner().peek(); } INLINE(Token::Value Next()) { // BUG 1215673: Find a thread safe way to set a stack limit in // pre-parse mode. Otherwise, we cannot safely pre-parse from other // threads. if (stack_overflow_) { return Token::ILLEGAL; } if (StackLimitCheck(isolate()).HasOverflowed()) { // Any further calls to Next or peek will return the illegal token. // The current call must return the next token, which might already // have been peek'ed. stack_overflow_ = true; } return scanner().Next(); } bool peek_any_identifier(); INLINE(void Consume(Token::Value token)); void Expect(Token::Value token, bool* ok); bool Check(Token::Value token); void ExpectSemicolon(bool* ok); void ExpectContextualKeyword(const char* keyword, bool* ok); Handle<String> LiteralString(PretenureFlag tenured) { if (scanner().is_literal_ascii()) { return isolate_->factory()->NewStringFromAscii( scanner().literal_ascii_string(), tenured); } else { return isolate_->factory()->NewStringFromTwoByte( scanner().literal_utf16_string(), tenured); } } Handle<String> NextLiteralString(PretenureFlag tenured) { if (scanner().is_next_literal_ascii()) { return isolate_->factory()->NewStringFromAscii( scanner().next_literal_ascii_string(), tenured); } else { return isolate_->factory()->NewStringFromTwoByte( scanner().next_literal_utf16_string(), tenured); } } Handle<String> GetSymbol(bool* ok); // Get odd-ball literals. Literal* GetLiteralUndefined(); Literal* GetLiteralTheHole(); Handle<String> ParseIdentifier(bool* ok); Handle<String> ParseIdentifierOrStrictReservedWord( bool* is_strict_reserved, bool* ok); Handle<String> ParseIdentifierName(bool* ok); Handle<String> ParseIdentifierNameOrGetOrSet(bool* is_get, bool* is_set, bool* ok); // Determine if the expression is a variable proxy and mark it as being used // in an assignment or with a increment/decrement operator. This is currently // used on for the statically checking assignments to harmony const bindings. void MarkAsLValue(Expression* expression); // Strict mode validation of LValue expressions void CheckStrictModeLValue(Expression* expression, const char* error, bool* ok); // Strict mode octal literal validation. void CheckOctalLiteral(int beg_pos, int end_pos, bool* ok); // For harmony block scoping mode: Check if the scope has conflicting var/let // declarations from different scopes. It covers for example // // function f() { { { var x; } let x; } } // function g() { { var x; let x; } } // // The var declarations are hoisted to the function scope, but originate from // a scope where the name has also been let bound or the var declaration is // hoisted over such a scope. void CheckConflictingVarDeclarations(Scope* scope, bool* ok); // Parser support VariableProxy* NewUnresolved(Handle<String> name, VariableMode mode, Interface* interface = Interface::NewValue()); void Declare(Declaration* declaration, bool resolve, bool* ok); bool TargetStackContainsLabel(Handle<String> label); BreakableStatement* LookupBreakTarget(Handle<String> label, bool* ok); IterationStatement* LookupContinueTarget(Handle<String> label, bool* ok); void RegisterTargetUse(Label* target, Target* stop); // Factory methods. Scope* NewScope(Scope* parent, ScopeType type); Handle<String> LookupSymbol(int symbol_id); Handle<String> LookupCachedSymbol(int symbol_id); // Generate AST node that throw a ReferenceError with the given type. Expression* NewThrowReferenceError(Handle<String> type); // Generate AST node that throw a SyntaxError with the given // type. The first argument may be null (in the handle sense) in // which case no arguments are passed to the constructor. Expression* NewThrowSyntaxError(Handle<String> type, Handle<Object> first); // Generate AST node that throw a TypeError with the given // type. Both arguments must be non-null (in the handle sense). Expression* NewThrowTypeError(Handle<String> type, Handle<Object> first, Handle<Object> second); // Generic AST generator for throwing errors from compiled code. Expression* NewThrowError(Handle<String> constructor, Handle<String> type, Vector< Handle<Object> > arguments); preparser::PreParser::PreParseResult LazyParseFunctionLiteral( SingletonLogger* logger); AstNodeFactory<AstConstructionVisitor>* factory() { return current_function_state_->factory(); } Isolate* isolate_; ZoneList<Handle<String> > symbol_cache_; Handle<Script> script_; Scanner scanner_; preparser::PreParser* reusable_preparser_; Scope* top_scope_; FunctionState* current_function_state_; Target* target_stack_; // for break, continue statements v8::Extension* extension_; ScriptDataImpl* pre_data_; FuncNameInferrer* fni_; Mode mode_; bool allow_natives_syntax_; bool allow_lazy_; bool allow_modules_; bool stack_overflow_; // If true, the next (and immediately following) function literal is // preceded by a parenthesis. // Heuristically that means that the function will be called immediately, // so never lazily compile it. bool parenthesized_function_; friend class BlockState; friend class FunctionState; }; // Support for handling complex values (array and object literals) that // can be fully handled at compile time. class CompileTimeValue: public AllStatic { public: enum Type { OBJECT_LITERAL_FAST_ELEMENTS, OBJECT_LITERAL_SLOW_ELEMENTS, ARRAY_LITERAL }; static bool IsCompileTimeValue(Expression* expression); static bool ArrayLiteralElementNeedsInitialization(Expression* value); // Get the value as a compile time value. static Handle<FixedArray> GetValue(Expression* expression); // Get the type of a compile time value returned by GetValue(). static Type GetType(Handle<FixedArray> value); // Get the elements array of a compile time value returned by GetValue(). static Handle<FixedArray> GetElements(Handle<FixedArray> value); private: static const int kTypeSlot = 0; static const int kElementsSlot = 1; DISALLOW_IMPLICIT_CONSTRUCTORS(CompileTimeValue); }; } } // namespace v8::internal #endif // V8_PARSER_H_