// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "profile-generator-inl.h" #include "global-handles.h" #include "heap-profiler.h" #include "scopeinfo.h" #include "unicode.h" #include "zone-inl.h" namespace v8 { namespace internal { TokenEnumerator::TokenEnumerator() : token_locations_(4), token_removed_(4) { } TokenEnumerator::~TokenEnumerator() { Isolate* isolate = Isolate::Current(); for (int i = 0; i < token_locations_.length(); ++i) { if (!token_removed_[i]) { isolate->global_handles()->ClearWeakness(token_locations_[i]); isolate->global_handles()->Destroy(token_locations_[i]); } } } int TokenEnumerator::GetTokenId(Object* token) { Isolate* isolate = Isolate::Current(); if (token == NULL) return TokenEnumerator::kNoSecurityToken; for (int i = 0; i < token_locations_.length(); ++i) { if (*token_locations_[i] == token && !token_removed_[i]) return i; } Handle<Object> handle = isolate->global_handles()->Create(token); // handle.location() points to a memory cell holding a pointer // to a token object in the V8's heap. isolate->global_handles()->MakeWeak(handle.location(), this, TokenRemovedCallback); token_locations_.Add(handle.location()); token_removed_.Add(false); return token_locations_.length() - 1; } void TokenEnumerator::TokenRemovedCallback(v8::Persistent<v8::Value> handle, void* parameter) { reinterpret_cast<TokenEnumerator*>(parameter)->TokenRemoved( Utils::OpenHandle(*handle).location()); handle.Dispose(); } void TokenEnumerator::TokenRemoved(Object** token_location) { for (int i = 0; i < token_locations_.length(); ++i) { if (token_locations_[i] == token_location && !token_removed_[i]) { token_removed_[i] = true; return; } } } StringsStorage::StringsStorage() : names_(StringsMatch) { } StringsStorage::~StringsStorage() { for (HashMap::Entry* p = names_.Start(); p != NULL; p = names_.Next(p)) { DeleteArray(reinterpret_cast<const char*>(p->value)); } } const char* StringsStorage::GetCopy(const char* src) { int len = static_cast<int>(strlen(src)); Vector<char> dst = Vector<char>::New(len + 1); OS::StrNCpy(dst, src, len); dst[len] = '\0'; uint32_t hash = HashSequentialString(dst.start(), len, HEAP->HashSeed()); return AddOrDisposeString(dst.start(), hash); } const char* StringsStorage::GetFormatted(const char* format, ...) { va_list args; va_start(args, format); const char* result = GetVFormatted(format, args); va_end(args); return result; } const char* StringsStorage::AddOrDisposeString(char* str, uint32_t hash) { HashMap::Entry* cache_entry = names_.Lookup(str, hash, true); if (cache_entry->value == NULL) { // New entry added. cache_entry->value = str; } else { DeleteArray(str); } return reinterpret_cast<const char*>(cache_entry->value); } const char* StringsStorage::GetVFormatted(const char* format, va_list args) { Vector<char> str = Vector<char>::New(1024); int len = OS::VSNPrintF(str, format, args); if (len == -1) { DeleteArray(str.start()); return format; } uint32_t hash = HashSequentialString( str.start(), len, HEAP->HashSeed()); return AddOrDisposeString(str.start(), hash); } const char* StringsStorage::GetName(String* name) { if (name->IsString()) { int length = Min(kMaxNameSize, name->length()); SmartArrayPointer<char> data = name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL, 0, length); uint32_t hash = HashSequentialString(*data, length, name->GetHeap()->HashSeed()); return AddOrDisposeString(data.Detach(), hash); } return ""; } const char* StringsStorage::GetName(int index) { return GetFormatted("%d", index); } const char* const CodeEntry::kEmptyNamePrefix = ""; void CodeEntry::CopyData(const CodeEntry& source) { tag_ = source.tag_; name_prefix_ = source.name_prefix_; name_ = source.name_; resource_name_ = source.resource_name_; line_number_ = source.line_number_; } uint32_t CodeEntry::GetCallUid() const { uint32_t hash = ComputeIntegerHash(tag_, v8::internal::kZeroHashSeed); if (shared_id_ != 0) { hash ^= ComputeIntegerHash(static_cast<uint32_t>(shared_id_), v8::internal::kZeroHashSeed); } else { hash ^= ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_prefix_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash(line_number_, v8::internal::kZeroHashSeed); } return hash; } bool CodeEntry::IsSameAs(CodeEntry* entry) const { return this == entry || (tag_ == entry->tag_ && shared_id_ == entry->shared_id_ && (shared_id_ != 0 || (name_prefix_ == entry->name_prefix_ && name_ == entry->name_ && resource_name_ == entry->resource_name_ && line_number_ == entry->line_number_))); } ProfileNode* ProfileNode::FindChild(CodeEntry* entry) { HashMap::Entry* map_entry = children_.Lookup(entry, CodeEntryHash(entry), false); return map_entry != NULL ? reinterpret_cast<ProfileNode*>(map_entry->value) : NULL; } ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) { HashMap::Entry* map_entry = children_.Lookup(entry, CodeEntryHash(entry), true); if (map_entry->value == NULL) { // New node added. ProfileNode* new_node = new ProfileNode(tree_, entry); map_entry->value = new_node; children_list_.Add(new_node); } return reinterpret_cast<ProfileNode*>(map_entry->value); } double ProfileNode::GetSelfMillis() const { return tree_->TicksToMillis(self_ticks_); } double ProfileNode::GetTotalMillis() const { return tree_->TicksToMillis(total_ticks_); } void ProfileNode::Print(int indent) { OS::Print("%5u %5u %*c %s%s [%d]", total_ticks_, self_ticks_, indent, ' ', entry_->name_prefix(), entry_->name(), entry_->security_token_id()); if (entry_->resource_name()[0] != '\0') OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number()); OS::Print("\n"); for (HashMap::Entry* p = children_.Start(); p != NULL; p = children_.Next(p)) { reinterpret_cast<ProfileNode*>(p->value)->Print(indent + 2); } } class DeleteNodesCallback { public: void BeforeTraversingChild(ProfileNode*, ProfileNode*) { } void AfterAllChildrenTraversed(ProfileNode* node) { delete node; } void AfterChildTraversed(ProfileNode*, ProfileNode*) { } }; ProfileTree::ProfileTree() : root_entry_(Logger::FUNCTION_TAG, "", "(root)", "", 0, TokenEnumerator::kNoSecurityToken), root_(new ProfileNode(this, &root_entry_)) { } ProfileTree::~ProfileTree() { DeleteNodesCallback cb; TraverseDepthFirst(&cb); } void ProfileTree::AddPathFromEnd(const Vector<CodeEntry*>& path) { ProfileNode* node = root_; for (CodeEntry** entry = path.start() + path.length() - 1; entry != path.start() - 1; --entry) { if (*entry != NULL) { node = node->FindOrAddChild(*entry); } } node->IncrementSelfTicks(); } void ProfileTree::AddPathFromStart(const Vector<CodeEntry*>& path) { ProfileNode* node = root_; for (CodeEntry** entry = path.start(); entry != path.start() + path.length(); ++entry) { if (*entry != NULL) { node = node->FindOrAddChild(*entry); } } node->IncrementSelfTicks(); } struct NodesPair { NodesPair(ProfileNode* src, ProfileNode* dst) : src(src), dst(dst) { } ProfileNode* src; ProfileNode* dst; }; class FilteredCloneCallback { public: FilteredCloneCallback(ProfileNode* dst_root, int security_token_id) : stack_(10), security_token_id_(security_token_id) { stack_.Add(NodesPair(NULL, dst_root)); } void BeforeTraversingChild(ProfileNode* parent, ProfileNode* child) { if (IsTokenAcceptable(child->entry()->security_token_id(), parent->entry()->security_token_id())) { ProfileNode* clone = stack_.last().dst->FindOrAddChild(child->entry()); clone->IncreaseSelfTicks(child->self_ticks()); stack_.Add(NodesPair(child, clone)); } else { // Attribute ticks to parent node. stack_.last().dst->IncreaseSelfTicks(child->self_ticks()); } } void AfterAllChildrenTraversed(ProfileNode* parent) { } void AfterChildTraversed(ProfileNode*, ProfileNode* child) { if (stack_.last().src == child) { stack_.RemoveLast(); } } private: bool IsTokenAcceptable(int token, int parent_token) { if (token == TokenEnumerator::kNoSecurityToken || token == security_token_id_) return true; if (token == TokenEnumerator::kInheritsSecurityToken) { ASSERT(parent_token != TokenEnumerator::kInheritsSecurityToken); return parent_token == TokenEnumerator::kNoSecurityToken || parent_token == security_token_id_; } return false; } List<NodesPair> stack_; int security_token_id_; }; void ProfileTree::FilteredClone(ProfileTree* src, int security_token_id) { ms_to_ticks_scale_ = src->ms_to_ticks_scale_; FilteredCloneCallback cb(root_, security_token_id); src->TraverseDepthFirst(&cb); CalculateTotalTicks(); } void ProfileTree::SetTickRatePerMs(double ticks_per_ms) { ms_to_ticks_scale_ = ticks_per_ms > 0 ? 1.0 / ticks_per_ms : 1.0; } class Position { public: explicit Position(ProfileNode* node) : node(node), child_idx_(0) { } INLINE(ProfileNode* current_child()) { return node->children()->at(child_idx_); } INLINE(bool has_current_child()) { return child_idx_ < node->children()->length(); } INLINE(void next_child()) { ++child_idx_; } ProfileNode* node; private: int child_idx_; }; // Non-recursive implementation of a depth-first post-order tree traversal. template <typename Callback> void ProfileTree::TraverseDepthFirst(Callback* callback) { List<Position> stack(10); stack.Add(Position(root_)); while (stack.length() > 0) { Position& current = stack.last(); if (current.has_current_child()) { callback->BeforeTraversingChild(current.node, current.current_child()); stack.Add(Position(current.current_child())); } else { callback->AfterAllChildrenTraversed(current.node); if (stack.length() > 1) { Position& parent = stack[stack.length() - 2]; callback->AfterChildTraversed(parent.node, current.node); parent.next_child(); } // Remove child from the stack. stack.RemoveLast(); } } } class CalculateTotalTicksCallback { public: void BeforeTraversingChild(ProfileNode*, ProfileNode*) { } void AfterAllChildrenTraversed(ProfileNode* node) { node->IncreaseTotalTicks(node->self_ticks()); } void AfterChildTraversed(ProfileNode* parent, ProfileNode* child) { parent->IncreaseTotalTicks(child->total_ticks()); } }; void ProfileTree::CalculateTotalTicks() { CalculateTotalTicksCallback cb; TraverseDepthFirst(&cb); } void ProfileTree::ShortPrint() { OS::Print("root: %u %u %.2fms %.2fms\n", root_->total_ticks(), root_->self_ticks(), root_->GetTotalMillis(), root_->GetSelfMillis()); } void CpuProfile::AddPath(const Vector<CodeEntry*>& path) { top_down_.AddPathFromEnd(path); bottom_up_.AddPathFromStart(path); } void CpuProfile::CalculateTotalTicks() { top_down_.CalculateTotalTicks(); bottom_up_.CalculateTotalTicks(); } void CpuProfile::SetActualSamplingRate(double actual_sampling_rate) { top_down_.SetTickRatePerMs(actual_sampling_rate); bottom_up_.SetTickRatePerMs(actual_sampling_rate); } CpuProfile* CpuProfile::FilteredClone(int security_token_id) { ASSERT(security_token_id != TokenEnumerator::kNoSecurityToken); CpuProfile* clone = new CpuProfile(title_, uid_); clone->top_down_.FilteredClone(&top_down_, security_token_id); clone->bottom_up_.FilteredClone(&bottom_up_, security_token_id); return clone; } void CpuProfile::ShortPrint() { OS::Print("top down "); top_down_.ShortPrint(); OS::Print("bottom up "); bottom_up_.ShortPrint(); } void CpuProfile::Print() { OS::Print("[Top down]:\n"); top_down_.Print(); OS::Print("[Bottom up]:\n"); bottom_up_.Print(); } CodeEntry* const CodeMap::kSharedFunctionCodeEntry = NULL; const CodeMap::CodeTreeConfig::Key CodeMap::CodeTreeConfig::kNoKey = NULL; void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) { DeleteAllCoveredCode(addr, addr + size); CodeTree::Locator locator; tree_.Insert(addr, &locator); locator.set_value(CodeEntryInfo(entry, size)); } void CodeMap::DeleteAllCoveredCode(Address start, Address end) { List<Address> to_delete; Address addr = end - 1; while (addr >= start) { CodeTree::Locator locator; if (!tree_.FindGreatestLessThan(addr, &locator)) break; Address start2 = locator.key(), end2 = start2 + locator.value().size; if (start2 < end && start < end2) to_delete.Add(start2); addr = start2 - 1; } for (int i = 0; i < to_delete.length(); ++i) tree_.Remove(to_delete[i]); } CodeEntry* CodeMap::FindEntry(Address addr) { CodeTree::Locator locator; if (tree_.FindGreatestLessThan(addr, &locator)) { // locator.key() <= addr. Need to check that addr is within entry. const CodeEntryInfo& entry = locator.value(); if (addr < (locator.key() + entry.size)) return entry.entry; } return NULL; } int CodeMap::GetSharedId(Address addr) { CodeTree::Locator locator; // For shared function entries, 'size' field is used to store their IDs. if (tree_.Find(addr, &locator)) { const CodeEntryInfo& entry = locator.value(); ASSERT(entry.entry == kSharedFunctionCodeEntry); return entry.size; } else { tree_.Insert(addr, &locator); int id = next_shared_id_++; locator.set_value(CodeEntryInfo(kSharedFunctionCodeEntry, id)); return id; } } void CodeMap::MoveCode(Address from, Address to) { if (from == to) return; CodeTree::Locator locator; if (!tree_.Find(from, &locator)) return; CodeEntryInfo entry = locator.value(); tree_.Remove(from); AddCode(to, entry.entry, entry.size); } void CodeMap::CodeTreePrinter::Call( const Address& key, const CodeMap::CodeEntryInfo& value) { OS::Print("%p %5d %s\n", key, value.size, value.entry->name()); } void CodeMap::Print() { CodeTreePrinter printer; tree_.ForEach(&printer); } CpuProfilesCollection::CpuProfilesCollection() : profiles_uids_(UidsMatch), current_profiles_semaphore_(OS::CreateSemaphore(1)) { // Create list of unabridged profiles. profiles_by_token_.Add(new List<CpuProfile*>()); } static void DeleteCodeEntry(CodeEntry** entry_ptr) { delete *entry_ptr; } static void DeleteCpuProfile(CpuProfile** profile_ptr) { delete *profile_ptr; } static void DeleteProfilesList(List<CpuProfile*>** list_ptr) { if (*list_ptr != NULL) { (*list_ptr)->Iterate(DeleteCpuProfile); delete *list_ptr; } } CpuProfilesCollection::~CpuProfilesCollection() { delete current_profiles_semaphore_; current_profiles_.Iterate(DeleteCpuProfile); detached_profiles_.Iterate(DeleteCpuProfile); profiles_by_token_.Iterate(DeleteProfilesList); code_entries_.Iterate(DeleteCodeEntry); } bool CpuProfilesCollection::StartProfiling(const char* title, unsigned uid) { ASSERT(uid > 0); current_profiles_semaphore_->Wait(); if (current_profiles_.length() >= kMaxSimultaneousProfiles) { current_profiles_semaphore_->Signal(); return false; } for (int i = 0; i < current_profiles_.length(); ++i) { if (strcmp(current_profiles_[i]->title(), title) == 0) { // Ignore attempts to start profile with the same title. current_profiles_semaphore_->Signal(); return false; } } current_profiles_.Add(new CpuProfile(title, uid)); current_profiles_semaphore_->Signal(); return true; } bool CpuProfilesCollection::StartProfiling(String* title, unsigned uid) { return StartProfiling(GetName(title), uid); } CpuProfile* CpuProfilesCollection::StopProfiling(int security_token_id, const char* title, double actual_sampling_rate) { const int title_len = StrLength(title); CpuProfile* profile = NULL; current_profiles_semaphore_->Wait(); for (int i = current_profiles_.length() - 1; i >= 0; --i) { if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) { profile = current_profiles_.Remove(i); break; } } current_profiles_semaphore_->Signal(); if (profile != NULL) { profile->CalculateTotalTicks(); profile->SetActualSamplingRate(actual_sampling_rate); List<CpuProfile*>* unabridged_list = profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; unabridged_list->Add(profile); HashMap::Entry* entry = profiles_uids_.Lookup(reinterpret_cast<void*>(profile->uid()), static_cast<uint32_t>(profile->uid()), true); ASSERT(entry->value == NULL); entry->value = reinterpret_cast<void*>(unabridged_list->length() - 1); return GetProfile(security_token_id, profile->uid()); } return NULL; } CpuProfile* CpuProfilesCollection::GetProfile(int security_token_id, unsigned uid) { int index = GetProfileIndex(uid); if (index < 0) return NULL; List<CpuProfile*>* unabridged_list = profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; if (security_token_id == TokenEnumerator::kNoSecurityToken) { return unabridged_list->at(index); } List<CpuProfile*>* list = GetProfilesList(security_token_id); if (list->at(index) == NULL) { (*list)[index] = unabridged_list->at(index)->FilteredClone(security_token_id); } return list->at(index); } int CpuProfilesCollection::GetProfileIndex(unsigned uid) { HashMap::Entry* entry = profiles_uids_.Lookup(reinterpret_cast<void*>(uid), static_cast<uint32_t>(uid), false); return entry != NULL ? static_cast<int>(reinterpret_cast<intptr_t>(entry->value)) : -1; } bool CpuProfilesCollection::IsLastProfile(const char* title) { // Called from VM thread, and only it can mutate the list, // so no locking is needed here. if (current_profiles_.length() != 1) return false; return StrLength(title) == 0 || strcmp(current_profiles_[0]->title(), title) == 0; } void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) { // Called from VM thread for a completed profile. unsigned uid = profile->uid(); int index = GetProfileIndex(uid); if (index < 0) { detached_profiles_.RemoveElement(profile); return; } profiles_uids_.Remove(reinterpret_cast<void*>(uid), static_cast<uint32_t>(uid)); // Decrement all indexes above the deleted one. for (HashMap::Entry* p = profiles_uids_.Start(); p != NULL; p = profiles_uids_.Next(p)) { intptr_t p_index = reinterpret_cast<intptr_t>(p->value); if (p_index > index) { p->value = reinterpret_cast<void*>(p_index - 1); } } for (int i = 0; i < profiles_by_token_.length(); ++i) { List<CpuProfile*>* list = profiles_by_token_[i]; if (list != NULL && index < list->length()) { // Move all filtered clones into detached_profiles_, // so we can know that they are still in use. CpuProfile* cloned_profile = list->Remove(index); if (cloned_profile != NULL && cloned_profile != profile) { detached_profiles_.Add(cloned_profile); } } } } int CpuProfilesCollection::TokenToIndex(int security_token_id) { ASSERT(TokenEnumerator::kNoSecurityToken == -1); return security_token_id + 1; // kNoSecurityToken -> 0, 0 -> 1, ... } List<CpuProfile*>* CpuProfilesCollection::GetProfilesList( int security_token_id) { const int index = TokenToIndex(security_token_id); const int lists_to_add = index - profiles_by_token_.length() + 1; if (lists_to_add > 0) profiles_by_token_.AddBlock(NULL, lists_to_add); List<CpuProfile*>* unabridged_list = profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; const int current_count = unabridged_list->length(); if (profiles_by_token_[index] == NULL) { profiles_by_token_[index] = new List<CpuProfile*>(current_count); } List<CpuProfile*>* list = profiles_by_token_[index]; const int profiles_to_add = current_count - list->length(); if (profiles_to_add > 0) list->AddBlock(NULL, profiles_to_add); return list; } List<CpuProfile*>* CpuProfilesCollection::Profiles(int security_token_id) { List<CpuProfile*>* unabridged_list = profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; if (security_token_id == TokenEnumerator::kNoSecurityToken) { return unabridged_list; } List<CpuProfile*>* list = GetProfilesList(security_token_id); const int current_count = unabridged_list->length(); for (int i = 0; i < current_count; ++i) { if (list->at(i) == NULL) { (*list)[i] = unabridged_list->at(i)->FilteredClone(security_token_id); } } return list; } CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag, String* name, String* resource_name, int line_number) { CodeEntry* entry = new CodeEntry(tag, CodeEntry::kEmptyNamePrefix, GetFunctionName(name), GetName(resource_name), line_number, TokenEnumerator::kNoSecurityToken); code_entries_.Add(entry); return entry; } CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag, const char* name) { CodeEntry* entry = new CodeEntry(tag, CodeEntry::kEmptyNamePrefix, GetFunctionName(name), "", v8::CpuProfileNode::kNoLineNumberInfo, TokenEnumerator::kNoSecurityToken); code_entries_.Add(entry); return entry; } CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag, const char* name_prefix, String* name) { CodeEntry* entry = new CodeEntry(tag, name_prefix, GetName(name), "", v8::CpuProfileNode::kNoLineNumberInfo, TokenEnumerator::kInheritsSecurityToken); code_entries_.Add(entry); return entry; } CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag, int args_count) { CodeEntry* entry = new CodeEntry(tag, "args_count: ", GetName(args_count), "", v8::CpuProfileNode::kNoLineNumberInfo, TokenEnumerator::kInheritsSecurityToken); code_entries_.Add(entry); return entry; } void CpuProfilesCollection::AddPathToCurrentProfiles( const Vector<CodeEntry*>& path) { // As starting / stopping profiles is rare relatively to this // method, we don't bother minimizing the duration of lock holding, // e.g. copying contents of the list to a local vector. current_profiles_semaphore_->Wait(); for (int i = 0; i < current_profiles_.length(); ++i) { current_profiles_[i]->AddPath(path); } current_profiles_semaphore_->Signal(); } void SampleRateCalculator::Tick() { if (--wall_time_query_countdown_ == 0) UpdateMeasurements(OS::TimeCurrentMillis()); } void SampleRateCalculator::UpdateMeasurements(double current_time) { if (measurements_count_++ != 0) { const double measured_ticks_per_ms = (kWallTimeQueryIntervalMs * ticks_per_ms_) / (current_time - last_wall_time_); // Update the average value. ticks_per_ms_ += (measured_ticks_per_ms - ticks_per_ms_) / measurements_count_; // Update the externally accessible result. result_ = static_cast<AtomicWord>(ticks_per_ms_ * kResultScale); } last_wall_time_ = current_time; wall_time_query_countdown_ = static_cast<unsigned>(kWallTimeQueryIntervalMs * ticks_per_ms_); } const char* const ProfileGenerator::kAnonymousFunctionName = "(anonymous function)"; const char* const ProfileGenerator::kProgramEntryName = "(program)"; const char* const ProfileGenerator::kGarbageCollectorEntryName = "(garbage collector)"; ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles) : profiles_(profiles), program_entry_( profiles->NewCodeEntry(Logger::FUNCTION_TAG, kProgramEntryName)), gc_entry_( profiles->NewCodeEntry(Logger::BUILTIN_TAG, kGarbageCollectorEntryName)) { } void ProfileGenerator::RecordTickSample(const TickSample& sample) { // Allocate space for stack frames + pc + function + vm-state. ScopedVector<CodeEntry*> entries(sample.frames_count + 3); // As actual number of decoded code entries may vary, initialize // entries vector with NULL values. CodeEntry** entry = entries.start(); memset(entry, 0, entries.length() * sizeof(*entry)); if (sample.pc != NULL) { *entry++ = code_map_.FindEntry(sample.pc); if (sample.has_external_callback) { // Don't use PC when in external callback code, as it can point // inside callback's code, and we will erroneously report // that a callback calls itself. *(entries.start()) = NULL; *entry++ = code_map_.FindEntry(sample.external_callback); } else if (sample.tos != NULL) { // Find out, if top of stack was pointing inside a JS function // meaning that we have encountered a frameless invocation. *entry = code_map_.FindEntry(sample.tos); if (*entry != NULL && !(*entry)->is_js_function()) { *entry = NULL; } entry++; } for (const Address* stack_pos = sample.stack, *stack_end = stack_pos + sample.frames_count; stack_pos != stack_end; ++stack_pos) { *entry++ = code_map_.FindEntry(*stack_pos); } } if (FLAG_prof_browser_mode) { bool no_symbolized_entries = true; for (CodeEntry** e = entries.start(); e != entry; ++e) { if (*e != NULL) { no_symbolized_entries = false; break; } } // If no frames were symbolized, put the VM state entry in. if (no_symbolized_entries) { *entry++ = EntryForVMState(sample.state); } } profiles_->AddPathToCurrentProfiles(entries); } void HeapGraphEdge::Init( int child_index, Type type, const char* name, HeapEntry* to) { ASSERT(type == kContextVariable || type == kProperty || type == kInternal || type == kShortcut); child_index_ = child_index; type_ = type; name_ = name; to_ = to; } void HeapGraphEdge::Init(int child_index, Type type, int index, HeapEntry* to) { ASSERT(type == kElement || type == kHidden || type == kWeak); child_index_ = child_index; type_ = type; index_ = index; to_ = to; } void HeapGraphEdge::Init(int child_index, int index, HeapEntry* to) { Init(child_index, kElement, index, to); } HeapEntry* HeapGraphEdge::From() { return reinterpret_cast<HeapEntry*>(this - child_index_) - 1; } void HeapEntry::Init(HeapSnapshot* snapshot, Type type, const char* name, SnapshotObjectId id, int self_size, int children_count, int retainers_count) { snapshot_ = snapshot; type_ = type; painted_ = false; name_ = name; self_size_ = self_size; retained_size_ = 0; children_count_ = children_count; retainers_count_ = retainers_count; dominator_ = NULL; id_ = id; } void HeapEntry::SetNamedReference(HeapGraphEdge::Type type, int child_index, const char* name, HeapEntry* entry, int retainer_index) { children()[child_index].Init(child_index, type, name, entry); entry->retainers()[retainer_index] = children_arr() + child_index; } void HeapEntry::SetIndexedReference(HeapGraphEdge::Type type, int child_index, int index, HeapEntry* entry, int retainer_index) { children()[child_index].Init(child_index, type, index, entry); entry->retainers()[retainer_index] = children_arr() + child_index; } void HeapEntry::SetUnidirElementReference( int child_index, int index, HeapEntry* entry) { children()[child_index].Init(child_index, index, entry); } Handle<HeapObject> HeapEntry::GetHeapObject() { return snapshot_->collection()->FindHeapObjectById(id()); } void HeapEntry::Print( const char* prefix, const char* edge_name, int max_depth, int indent) { OS::Print("%6d %7d @%6llu %*c %s%s: ", self_size(), retained_size(), id(), indent, ' ', prefix, edge_name); if (type() != kString) { OS::Print("%s %.40s\n", TypeAsString(), name_); } else { OS::Print("\""); const char* c = name_; while (*c && (c - name_) <= 40) { if (*c != '\n') OS::Print("%c", *c); else OS::Print("\\n"); ++c; } OS::Print("\"\n"); } if (--max_depth == 0) return; Vector<HeapGraphEdge> ch = children(); for (int i = 0; i < ch.length(); ++i) { HeapGraphEdge& edge = ch[i]; const char* edge_prefix = ""; EmbeddedVector<char, 64> index; const char* edge_name = index.start(); switch (edge.type()) { case HeapGraphEdge::kContextVariable: edge_prefix = "#"; edge_name = edge.name(); break; case HeapGraphEdge::kElement: OS::SNPrintF(index, "%d", edge.index()); break; case HeapGraphEdge::kInternal: edge_prefix = "$"; edge_name = edge.name(); break; case HeapGraphEdge::kProperty: edge_name = edge.name(); break; case HeapGraphEdge::kHidden: edge_prefix = "$"; OS::SNPrintF(index, "%d", edge.index()); break; case HeapGraphEdge::kShortcut: edge_prefix = "^"; edge_name = edge.name(); break; case HeapGraphEdge::kWeak: edge_prefix = "w"; OS::SNPrintF(index, "%d", edge.index()); break; default: OS::SNPrintF(index, "!!! unknown edge type: %d ", edge.type()); } edge.to()->Print(edge_prefix, edge_name, max_depth, indent + 2); } } const char* HeapEntry::TypeAsString() { switch (type()) { case kHidden: return "/hidden/"; case kObject: return "/object/"; case kClosure: return "/closure/"; case kString: return "/string/"; case kCode: return "/code/"; case kArray: return "/array/"; case kRegExp: return "/regexp/"; case kHeapNumber: return "/number/"; case kNative: return "/native/"; case kSynthetic: return "/synthetic/"; default: return "???"; } } size_t HeapEntry::EntriesSize(int entries_count, int children_count, int retainers_count) { return sizeof(HeapEntry) * entries_count // NOLINT + sizeof(HeapGraphEdge) * children_count // NOLINT + sizeof(HeapGraphEdge*) * retainers_count; // NOLINT } // It is very important to keep objects that form a heap snapshot // as small as possible. namespace { // Avoid littering the global namespace. template <size_t ptr_size> struct SnapshotSizeConstants; template <> struct SnapshotSizeConstants<4> { static const int kExpectedHeapGraphEdgeSize = 12; static const int kExpectedHeapEntrySize = 32; static const size_t kMaxSerializableSnapshotRawSize = 256 * MB; }; template <> struct SnapshotSizeConstants<8> { static const int kExpectedHeapGraphEdgeSize = 24; static const int kExpectedHeapEntrySize = 48; static const uint64_t kMaxSerializableSnapshotRawSize = static_cast<uint64_t>(6000) * MB; }; } // namespace HeapSnapshot::HeapSnapshot(HeapSnapshotsCollection* collection, HeapSnapshot::Type type, const char* title, unsigned uid) : collection_(collection), type_(type), title_(title), uid_(uid), root_entry_(NULL), gc_roots_entry_(NULL), natives_root_entry_(NULL), raw_entries_(NULL), entries_sorted_(false) { STATIC_CHECK( sizeof(HeapGraphEdge) == SnapshotSizeConstants<kPointerSize>::kExpectedHeapGraphEdgeSize); STATIC_CHECK( sizeof(HeapEntry) == SnapshotSizeConstants<kPointerSize>::kExpectedHeapEntrySize); for (int i = 0; i < VisitorSynchronization::kNumberOfSyncTags; ++i) { gc_subroot_entries_[i] = NULL; } } HeapSnapshot::~HeapSnapshot() { DeleteArray(raw_entries_); } void HeapSnapshot::Delete() { collection_->RemoveSnapshot(this); delete this; } void HeapSnapshot::AllocateEntries(int entries_count, int children_count, int retainers_count) { ASSERT(raw_entries_ == NULL); raw_entries_size_ = HeapEntry::EntriesSize(entries_count, children_count, retainers_count); raw_entries_ = NewArray<char>(raw_entries_size_); } static void HeapEntryClearPaint(HeapEntry** entry_ptr) { (*entry_ptr)->clear_paint(); } void HeapSnapshot::ClearPaint() { entries_.Iterate(HeapEntryClearPaint); } HeapEntry* HeapSnapshot::AddRootEntry(int children_count) { ASSERT(root_entry_ == NULL); return (root_entry_ = AddEntry(HeapEntry::kObject, "", HeapObjectsMap::kInternalRootObjectId, 0, children_count, 0)); } HeapEntry* HeapSnapshot::AddGcRootsEntry(int children_count, int retainers_count) { ASSERT(gc_roots_entry_ == NULL); return (gc_roots_entry_ = AddEntry(HeapEntry::kObject, "(GC roots)", HeapObjectsMap::kGcRootsObjectId, 0, children_count, retainers_count)); } HeapEntry* HeapSnapshot::AddGcSubrootEntry(int tag, int children_count, int retainers_count) { ASSERT(gc_subroot_entries_[tag] == NULL); ASSERT(0 <= tag && tag < VisitorSynchronization::kNumberOfSyncTags); return (gc_subroot_entries_[tag] = AddEntry( HeapEntry::kObject, VisitorSynchronization::kTagNames[tag], HeapObjectsMap::GetNthGcSubrootId(tag), 0, children_count, retainers_count)); } HeapEntry* HeapSnapshot::AddEntry(HeapEntry::Type type, const char* name, SnapshotObjectId id, int size, int children_count, int retainers_count) { HeapEntry* entry = GetNextEntryToInit(); entry->Init(this, type, name, id, size, children_count, retainers_count); return entry; } void HeapSnapshot::SetDominatorsToSelf() { for (int i = 0; i < entries_.length(); ++i) { HeapEntry* entry = entries_[i]; if (entry->dominator() == NULL) entry->set_dominator(entry); } } HeapEntry* HeapSnapshot::GetNextEntryToInit() { if (entries_.length() > 0) { HeapEntry* last_entry = entries_.last(); entries_.Add(reinterpret_cast<HeapEntry*>( reinterpret_cast<char*>(last_entry) + last_entry->EntrySize())); } else { entries_.Add(reinterpret_cast<HeapEntry*>(raw_entries_)); } ASSERT(reinterpret_cast<char*>(entries_.last()) < (raw_entries_ + raw_entries_size_)); return entries_.last(); } HeapEntry* HeapSnapshot::GetEntryById(SnapshotObjectId id) { List<HeapEntry*>* entries_by_id = GetSortedEntriesList(); // Perform a binary search by id. int low = 0; int high = entries_by_id->length() - 1; while (low <= high) { int mid = (static_cast<unsigned int>(low) + static_cast<unsigned int>(high)) >> 1; SnapshotObjectId mid_id = entries_by_id->at(mid)->id(); if (mid_id > id) high = mid - 1; else if (mid_id < id) low = mid + 1; else return entries_by_id->at(mid); } return NULL; } template<class T> static int SortByIds(const T* entry1_ptr, const T* entry2_ptr) { if ((*entry1_ptr)->id() == (*entry2_ptr)->id()) return 0; return (*entry1_ptr)->id() < (*entry2_ptr)->id() ? -1 : 1; } List<HeapEntry*>* HeapSnapshot::GetSortedEntriesList() { if (!entries_sorted_) { entries_.Sort(SortByIds); entries_sorted_ = true; } return &entries_; } void HeapSnapshot::Print(int max_depth) { root()->Print("", "", max_depth, 0); } // We split IDs on evens for embedder objects (see // HeapObjectsMap::GenerateId) and odds for native objects. const SnapshotObjectId HeapObjectsMap::kInternalRootObjectId = 1; const SnapshotObjectId HeapObjectsMap::kGcRootsObjectId = HeapObjectsMap::kInternalRootObjectId + HeapObjectsMap::kObjectIdStep; const SnapshotObjectId HeapObjectsMap::kGcRootsFirstSubrootId = HeapObjectsMap::kGcRootsObjectId + HeapObjectsMap::kObjectIdStep; const SnapshotObjectId HeapObjectsMap::kFirstAvailableObjectId = HeapObjectsMap::kGcRootsFirstSubrootId + VisitorSynchronization::kNumberOfSyncTags * HeapObjectsMap::kObjectIdStep; HeapObjectsMap::HeapObjectsMap() : initial_fill_mode_(true), next_id_(kFirstAvailableObjectId), entries_map_(AddressesMatch), entries_(new List<EntryInfo>()) { } HeapObjectsMap::~HeapObjectsMap() { delete entries_; } void HeapObjectsMap::SnapshotGenerationFinished() { initial_fill_mode_ = false; RemoveDeadEntries(); } SnapshotObjectId HeapObjectsMap::FindObject(Address addr) { if (!initial_fill_mode_) { SnapshotObjectId existing = FindEntry(addr); if (existing != 0) return existing; } SnapshotObjectId id = next_id_; next_id_ += kObjectIdStep; AddEntry(addr, id); return id; } void HeapObjectsMap::MoveObject(Address from, Address to) { if (from == to) return; HashMap::Entry* entry = entries_map_.Lookup(from, AddressHash(from), false); if (entry != NULL) { void* value = entry->value; entries_map_.Remove(from, AddressHash(from)); if (to != NULL) { entry = entries_map_.Lookup(to, AddressHash(to), true); // We can have an entry at the new location, it is OK, as GC can overwrite // dead objects with alive objects being moved. entry->value = value; } } } void HeapObjectsMap::AddEntry(Address addr, SnapshotObjectId id) { HashMap::Entry* entry = entries_map_.Lookup(addr, AddressHash(addr), true); ASSERT(entry->value == NULL); entry->value = reinterpret_cast<void*>(entries_->length()); entries_->Add(EntryInfo(id)); } SnapshotObjectId HeapObjectsMap::FindEntry(Address addr) { HashMap::Entry* entry = entries_map_.Lookup(addr, AddressHash(addr), false); if (entry != NULL) { int entry_index = static_cast<int>(reinterpret_cast<intptr_t>(entry->value)); EntryInfo& entry_info = entries_->at(entry_index); entry_info.accessed = true; return entry_info.id; } else { return 0; } } void HeapObjectsMap::RemoveDeadEntries() { List<EntryInfo>* new_entries = new List<EntryInfo>(); List<void*> dead_entries; for (HashMap::Entry* entry = entries_map_.Start(); entry != NULL; entry = entries_map_.Next(entry)) { int entry_index = static_cast<int>(reinterpret_cast<intptr_t>(entry->value)); EntryInfo& entry_info = entries_->at(entry_index); if (entry_info.accessed) { entry->value = reinterpret_cast<void*>(new_entries->length()); new_entries->Add(EntryInfo(entry_info.id, false)); } else { dead_entries.Add(entry->key); } } for (int i = 0; i < dead_entries.length(); ++i) { void* raw_entry = dead_entries[i]; entries_map_.Remove( raw_entry, AddressHash(reinterpret_cast<Address>(raw_entry))); } delete entries_; entries_ = new_entries; } SnapshotObjectId HeapObjectsMap::GenerateId(v8::RetainedObjectInfo* info) { SnapshotObjectId id = static_cast<SnapshotObjectId>(info->GetHash()); const char* label = info->GetLabel(); id ^= HashSequentialString(label, static_cast<int>(strlen(label)), HEAP->HashSeed()); intptr_t element_count = info->GetElementCount(); if (element_count != -1) id ^= ComputeIntegerHash(static_cast<uint32_t>(element_count), v8::internal::kZeroHashSeed); return id << 1; } HeapSnapshotsCollection::HeapSnapshotsCollection() : is_tracking_objects_(false), snapshots_uids_(HeapSnapshotsMatch), token_enumerator_(new TokenEnumerator()) { } static void DeleteHeapSnapshot(HeapSnapshot** snapshot_ptr) { delete *snapshot_ptr; } HeapSnapshotsCollection::~HeapSnapshotsCollection() { delete token_enumerator_; snapshots_.Iterate(DeleteHeapSnapshot); } HeapSnapshot* HeapSnapshotsCollection::NewSnapshot(HeapSnapshot::Type type, const char* name, unsigned uid) { is_tracking_objects_ = true; // Start watching for heap objects moves. return new HeapSnapshot(this, type, name, uid); } void HeapSnapshotsCollection::SnapshotGenerationFinished( HeapSnapshot* snapshot) { ids_.SnapshotGenerationFinished(); if (snapshot != NULL) { snapshots_.Add(snapshot); HashMap::Entry* entry = snapshots_uids_.Lookup(reinterpret_cast<void*>(snapshot->uid()), static_cast<uint32_t>(snapshot->uid()), true); ASSERT(entry->value == NULL); entry->value = snapshot; } } HeapSnapshot* HeapSnapshotsCollection::GetSnapshot(unsigned uid) { HashMap::Entry* entry = snapshots_uids_.Lookup(reinterpret_cast<void*>(uid), static_cast<uint32_t>(uid), false); return entry != NULL ? reinterpret_cast<HeapSnapshot*>(entry->value) : NULL; } void HeapSnapshotsCollection::RemoveSnapshot(HeapSnapshot* snapshot) { snapshots_.RemoveElement(snapshot); unsigned uid = snapshot->uid(); snapshots_uids_.Remove(reinterpret_cast<void*>(uid), static_cast<uint32_t>(uid)); } Handle<HeapObject> HeapSnapshotsCollection::FindHeapObjectById( SnapshotObjectId id) { // First perform a full GC in order to avoid dead objects. HEAP->CollectAllGarbage(Heap::kMakeHeapIterableMask, "HeapSnapshotsCollection::FindHeapObjectById"); AssertNoAllocation no_allocation; HeapObject* object = NULL; HeapIterator iterator(HeapIterator::kFilterUnreachable); // Make sure that object with the given id is still reachable. for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (ids_.FindObject(obj->address()) == id) { ASSERT(object == NULL); object = obj; // Can't break -- kFilterUnreachable requires full heap traversal. } } return object != NULL ? Handle<HeapObject>(object) : Handle<HeapObject>(); } HeapEntry* const HeapEntriesMap::kHeapEntryPlaceholder = reinterpret_cast<HeapEntry*>(1); HeapEntriesMap::HeapEntriesMap() : entries_(HeapThingsMatch), entries_count_(0), total_children_count_(0), total_retainers_count_(0) { } HeapEntriesMap::~HeapEntriesMap() { for (HashMap::Entry* p = entries_.Start(); p != NULL; p = entries_.Next(p)) { delete reinterpret_cast<EntryInfo*>(p->value); } } void HeapEntriesMap::AllocateEntries() { for (HashMap::Entry* p = entries_.Start(); p != NULL; p = entries_.Next(p)) { EntryInfo* entry_info = reinterpret_cast<EntryInfo*>(p->value); entry_info->entry = entry_info->allocator->AllocateEntry( p->key, entry_info->children_count, entry_info->retainers_count); ASSERT(entry_info->entry != NULL); ASSERT(entry_info->entry != kHeapEntryPlaceholder); entry_info->children_count = 0; entry_info->retainers_count = 0; } } HeapEntry* HeapEntriesMap::Map(HeapThing thing) { HashMap::Entry* cache_entry = entries_.Lookup(thing, Hash(thing), false); if (cache_entry != NULL) { EntryInfo* entry_info = reinterpret_cast<EntryInfo*>(cache_entry->value); return entry_info->entry; } else { return NULL; } } void HeapEntriesMap::Pair( HeapThing thing, HeapEntriesAllocator* allocator, HeapEntry* entry) { HashMap::Entry* cache_entry = entries_.Lookup(thing, Hash(thing), true); ASSERT(cache_entry->value == NULL); cache_entry->value = new EntryInfo(entry, allocator); ++entries_count_; } void HeapEntriesMap::CountReference(HeapThing from, HeapThing to, int* prev_children_count, int* prev_retainers_count) { HashMap::Entry* from_cache_entry = entries_.Lookup(from, Hash(from), false); HashMap::Entry* to_cache_entry = entries_.Lookup(to, Hash(to), false); ASSERT(from_cache_entry != NULL); ASSERT(to_cache_entry != NULL); EntryInfo* from_entry_info = reinterpret_cast<EntryInfo*>(from_cache_entry->value); EntryInfo* to_entry_info = reinterpret_cast<EntryInfo*>(to_cache_entry->value); if (prev_children_count) *prev_children_count = from_entry_info->children_count; if (prev_retainers_count) *prev_retainers_count = to_entry_info->retainers_count; ++from_entry_info->children_count; ++to_entry_info->retainers_count; ++total_children_count_; ++total_retainers_count_; } HeapObjectsSet::HeapObjectsSet() : entries_(HeapEntriesMap::HeapThingsMatch) { } void HeapObjectsSet::Clear() { entries_.Clear(); } bool HeapObjectsSet::Contains(Object* obj) { if (!obj->IsHeapObject()) return false; HeapObject* object = HeapObject::cast(obj); HashMap::Entry* cache_entry = entries_.Lookup(object, HeapEntriesMap::Hash(object), false); return cache_entry != NULL; } void HeapObjectsSet::Insert(Object* obj) { if (!obj->IsHeapObject()) return; HeapObject* object = HeapObject::cast(obj); HashMap::Entry* cache_entry = entries_.Lookup(object, HeapEntriesMap::Hash(object), true); if (cache_entry->value == NULL) { cache_entry->value = HeapEntriesMap::kHeapEntryPlaceholder; } } const char* HeapObjectsSet::GetTag(Object* obj) { HeapObject* object = HeapObject::cast(obj); HashMap::Entry* cache_entry = entries_.Lookup(object, HeapEntriesMap::Hash(object), false); if (cache_entry != NULL && cache_entry->value != HeapEntriesMap::kHeapEntryPlaceholder) { return reinterpret_cast<const char*>(cache_entry->value); } else { return NULL; } } void HeapObjectsSet::SetTag(Object* obj, const char* tag) { if (!obj->IsHeapObject()) return; HeapObject* object = HeapObject::cast(obj); HashMap::Entry* cache_entry = entries_.Lookup(object, HeapEntriesMap::Hash(object), true); cache_entry->value = const_cast<char*>(tag); } HeapObject* const V8HeapExplorer::kInternalRootObject = reinterpret_cast<HeapObject*>( static_cast<intptr_t>(HeapObjectsMap::kInternalRootObjectId)); HeapObject* const V8HeapExplorer::kGcRootsObject = reinterpret_cast<HeapObject*>( static_cast<intptr_t>(HeapObjectsMap::kGcRootsObjectId)); HeapObject* const V8HeapExplorer::kFirstGcSubrootObject = reinterpret_cast<HeapObject*>( static_cast<intptr_t>(HeapObjectsMap::kGcRootsFirstSubrootId)); HeapObject* const V8HeapExplorer::kLastGcSubrootObject = reinterpret_cast<HeapObject*>( static_cast<intptr_t>(HeapObjectsMap::kFirstAvailableObjectId)); V8HeapExplorer::V8HeapExplorer( HeapSnapshot* snapshot, SnapshottingProgressReportingInterface* progress) : heap_(Isolate::Current()->heap()), snapshot_(snapshot), collection_(snapshot_->collection()), progress_(progress), filler_(NULL) { } V8HeapExplorer::~V8HeapExplorer() { } HeapEntry* V8HeapExplorer::AllocateEntry( HeapThing ptr, int children_count, int retainers_count) { return AddEntry( reinterpret_cast<HeapObject*>(ptr), children_count, retainers_count); } HeapEntry* V8HeapExplorer::AddEntry(HeapObject* object, int children_count, int retainers_count) { if (object == kInternalRootObject) { ASSERT(retainers_count == 0); return snapshot_->AddRootEntry(children_count); } else if (object == kGcRootsObject) { return snapshot_->AddGcRootsEntry(children_count, retainers_count); } else if (object >= kFirstGcSubrootObject && object < kLastGcSubrootObject) { return snapshot_->AddGcSubrootEntry( GetGcSubrootOrder(object), children_count, retainers_count); } else if (object->IsJSFunction()) { JSFunction* func = JSFunction::cast(object); SharedFunctionInfo* shared = func->shared(); const char* name = shared->bound() ? "native_bind" : collection_->names()->GetName(String::cast(shared->name())); return AddEntry(object, HeapEntry::kClosure, name, children_count, retainers_count); } else if (object->IsJSRegExp()) { JSRegExp* re = JSRegExp::cast(object); return AddEntry(object, HeapEntry::kRegExp, collection_->names()->GetName(re->Pattern()), children_count, retainers_count); } else if (object->IsJSObject()) { return AddEntry(object, HeapEntry::kObject, "", children_count, retainers_count); } else if (object->IsString()) { return AddEntry(object, HeapEntry::kString, collection_->names()->GetName(String::cast(object)), children_count, retainers_count); } else if (object->IsCode()) { return AddEntry(object, HeapEntry::kCode, "", children_count, retainers_count); } else if (object->IsSharedFunctionInfo()) { SharedFunctionInfo* shared = SharedFunctionInfo::cast(object); return AddEntry(object, HeapEntry::kCode, collection_->names()->GetName(String::cast(shared->name())), children_count, retainers_count); } else if (object->IsScript()) { Script* script = Script::cast(object); return AddEntry(object, HeapEntry::kCode, script->name()->IsString() ? collection_->names()->GetName( String::cast(script->name())) : "", children_count, retainers_count); } else if (object->IsGlobalContext()) { return AddEntry(object, HeapEntry::kHidden, "system / GlobalContext", children_count, retainers_count); } else if (object->IsContext()) { return AddEntry(object, HeapEntry::kHidden, "system / Context", children_count, retainers_count); } else if (object->IsFixedArray() || object->IsFixedDoubleArray() || object->IsByteArray() || object->IsExternalArray()) { const char* tag = objects_tags_.GetTag(object); return AddEntry(object, HeapEntry::kArray, tag != NULL ? tag : "", children_count, retainers_count); } else if (object->IsHeapNumber()) { return AddEntry(object, HeapEntry::kHeapNumber, "number", children_count, retainers_count); } return AddEntry(object, HeapEntry::kHidden, GetSystemEntryName(object), children_count, retainers_count); } HeapEntry* V8HeapExplorer::AddEntry(HeapObject* object, HeapEntry::Type type, const char* name, int children_count, int retainers_count) { return snapshot_->AddEntry(type, name, collection_->GetObjectId(object->address()), object->Size(), children_count, retainers_count); } class GcSubrootsEnumerator : public ObjectVisitor { public: GcSubrootsEnumerator( SnapshotFillerInterface* filler, V8HeapExplorer* explorer) : filler_(filler), explorer_(explorer), previous_object_count_(0), object_count_(0) { } void VisitPointers(Object** start, Object** end) { object_count_ += end - start; } void Synchronize(VisitorSynchronization::SyncTag tag) { // Skip empty subroots. if (previous_object_count_ != object_count_) { previous_object_count_ = object_count_; filler_->AddEntry(V8HeapExplorer::GetNthGcSubrootObject(tag), explorer_); } } private: SnapshotFillerInterface* filler_; V8HeapExplorer* explorer_; intptr_t previous_object_count_; intptr_t object_count_; }; void V8HeapExplorer::AddRootEntries(SnapshotFillerInterface* filler) { filler->AddEntry(kInternalRootObject, this); filler->AddEntry(kGcRootsObject, this); GcSubrootsEnumerator enumerator(filler, this); heap_->IterateRoots(&enumerator, VISIT_ALL); } const char* V8HeapExplorer::GetSystemEntryName(HeapObject* object) { switch (object->map()->instance_type()) { case MAP_TYPE: return "system / Map"; case JS_GLOBAL_PROPERTY_CELL_TYPE: return "system / JSGlobalPropertyCell"; case FOREIGN_TYPE: return "system / Foreign"; case ODDBALL_TYPE: return "system / Oddball"; #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: return "system / "#Name; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE default: return "system"; } } int V8HeapExplorer::EstimateObjectsCount(HeapIterator* iterator) { int objects_count = 0; for (HeapObject* obj = iterator->next(); obj != NULL; obj = iterator->next()) { objects_count++; } return objects_count; } class IndexedReferencesExtractor : public ObjectVisitor { public: IndexedReferencesExtractor(V8HeapExplorer* generator, HeapObject* parent_obj, HeapEntry* parent_entry) : generator_(generator), parent_obj_(parent_obj), parent_(parent_entry), next_index_(1) { } void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { if (CheckVisitedAndUnmark(p)) continue; generator_->SetHiddenReference(parent_obj_, parent_, next_index_++, *p); } } static void MarkVisitedField(HeapObject* obj, int offset) { if (offset < 0) return; Address field = obj->address() + offset; ASSERT(!Memory::Object_at(field)->IsFailure()); ASSERT(Memory::Object_at(field)->IsHeapObject()); *field |= kFailureTag; } private: bool CheckVisitedAndUnmark(Object** field) { if ((*field)->IsFailure()) { intptr_t untagged = reinterpret_cast<intptr_t>(*field) & ~kFailureTagMask; *field = reinterpret_cast<Object*>(untagged | kHeapObjectTag); ASSERT((*field)->IsHeapObject()); return true; } return false; } V8HeapExplorer* generator_; HeapObject* parent_obj_; HeapEntry* parent_; int next_index_; }; void V8HeapExplorer::ExtractReferences(HeapObject* obj) { HeapEntry* entry = GetEntry(obj); if (entry == NULL) return; // No interest in this object. bool extract_indexed_refs = true; if (obj->IsJSGlobalProxy()) { // We need to reference JS global objects from snapshot's root. // We use JSGlobalProxy because this is what embedder (e.g. browser) // uses for the global object. JSGlobalProxy* proxy = JSGlobalProxy::cast(obj); SetRootShortcutReference(proxy->map()->prototype()); } else if (obj->IsJSObject()) { JSObject* js_obj = JSObject::cast(obj); ExtractClosureReferences(js_obj, entry); ExtractPropertyReferences(js_obj, entry); ExtractElementReferences(js_obj, entry); ExtractInternalReferences(js_obj, entry); SetPropertyReference( obj, entry, heap_->Proto_symbol(), js_obj->GetPrototype()); if (obj->IsJSFunction()) { JSFunction* js_fun = JSFunction::cast(js_obj); Object* proto_or_map = js_fun->prototype_or_initial_map(); if (!proto_or_map->IsTheHole()) { if (!proto_or_map->IsMap()) { SetPropertyReference( obj, entry, heap_->prototype_symbol(), proto_or_map, NULL, JSFunction::kPrototypeOrInitialMapOffset); } else { SetPropertyReference( obj, entry, heap_->prototype_symbol(), js_fun->prototype()); } } SharedFunctionInfo* shared_info = js_fun->shared(); // JSFunction has either bindings or literals and never both. bool bound = shared_info->bound(); TagObject(js_fun->literals_or_bindings(), bound ? "(function bindings)" : "(function literals)"); SetInternalReference(js_fun, entry, bound ? "bindings" : "literals", js_fun->literals_or_bindings(), JSFunction::kLiteralsOffset); SetInternalReference(js_fun, entry, "shared", shared_info, JSFunction::kSharedFunctionInfoOffset); TagObject(js_fun->unchecked_context(), "(context)"); SetInternalReference(js_fun, entry, "context", js_fun->unchecked_context(), JSFunction::kContextOffset); for (int i = JSFunction::kNonWeakFieldsEndOffset; i < JSFunction::kSize; i += kPointerSize) { SetWeakReference(js_fun, entry, i, *HeapObject::RawField(js_fun, i), i); } } TagObject(js_obj->properties(), "(object properties)"); SetInternalReference(obj, entry, "properties", js_obj->properties(), JSObject::kPropertiesOffset); TagObject(js_obj->elements(), "(object elements)"); SetInternalReference(obj, entry, "elements", js_obj->elements(), JSObject::kElementsOffset); } else if (obj->IsString()) { if (obj->IsConsString()) { ConsString* cs = ConsString::cast(obj); SetInternalReference(obj, entry, 1, cs->first()); SetInternalReference(obj, entry, 2, cs->second()); } if (obj->IsSlicedString()) { SlicedString* ss = SlicedString::cast(obj); SetInternalReference(obj, entry, "parent", ss->parent()); } extract_indexed_refs = false; } else if (obj->IsGlobalContext()) { Context* context = Context::cast(obj); TagObject(context->jsfunction_result_caches(), "(context func. result caches)"); TagObject(context->normalized_map_cache(), "(context norm. map cache)"); TagObject(context->runtime_context(), "(runtime context)"); TagObject(context->data(), "(context data)"); for (int i = Context::FIRST_WEAK_SLOT; i < Context::GLOBAL_CONTEXT_SLOTS; ++i) { SetWeakReference(obj, entry, i, context->get(i), FixedArray::OffsetOfElementAt(i)); } } else if (obj->IsMap()) { Map* map = Map::cast(obj); SetInternalReference(obj, entry, "prototype", map->prototype(), Map::kPrototypeOffset); SetInternalReference(obj, entry, "constructor", map->constructor(), Map::kConstructorOffset); if (!map->instance_descriptors()->IsEmpty()) { TagObject(map->instance_descriptors(), "(map descriptors)"); SetInternalReference(obj, entry, "descriptors", map->instance_descriptors(), Map::kInstanceDescriptorsOrBitField3Offset); } if (map->prototype_transitions() != heap_->empty_fixed_array()) { TagObject(map->prototype_transitions(), "(prototype transitions)"); SetInternalReference(obj, entry, "prototype_transitions", map->prototype_transitions(), Map::kPrototypeTransitionsOffset); } SetInternalReference(obj, entry, "code_cache", map->code_cache(), Map::kCodeCacheOffset); } else if (obj->IsSharedFunctionInfo()) { SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj); SetInternalReference(obj, entry, "name", shared->name(), SharedFunctionInfo::kNameOffset); SetInternalReference(obj, entry, "code", shared->unchecked_code(), SharedFunctionInfo::kCodeOffset); TagObject(shared->scope_info(), "(function scope info)"); SetInternalReference(obj, entry, "scope_info", shared->scope_info(), SharedFunctionInfo::kScopeInfoOffset); SetInternalReference(obj, entry, "instance_class_name", shared->instance_class_name(), SharedFunctionInfo::kInstanceClassNameOffset); SetInternalReference(obj, entry, "script", shared->script(), SharedFunctionInfo::kScriptOffset); SetWeakReference(obj, entry, 1, shared->initial_map(), SharedFunctionInfo::kInitialMapOffset); } else if (obj->IsScript()) { Script* script = Script::cast(obj); SetInternalReference(obj, entry, "source", script->source(), Script::kSourceOffset); SetInternalReference(obj, entry, "name", script->name(), Script::kNameOffset); SetInternalReference(obj, entry, "data", script->data(), Script::kDataOffset); SetInternalReference(obj, entry, "context_data", script->context_data(), Script::kContextOffset); TagObject(script->line_ends(), "(script line ends)"); SetInternalReference(obj, entry, "line_ends", script->line_ends(), Script::kLineEndsOffset); } else if (obj->IsCodeCache()) { CodeCache* code_cache = CodeCache::cast(obj); TagObject(code_cache->default_cache(), "(default code cache)"); SetInternalReference(obj, entry, "default_cache", code_cache->default_cache(), CodeCache::kDefaultCacheOffset); TagObject(code_cache->normal_type_cache(), "(code type cache)"); SetInternalReference(obj, entry, "type_cache", code_cache->normal_type_cache(), CodeCache::kNormalTypeCacheOffset); } else if (obj->IsCode()) { Code* code = Code::cast(obj); TagObject(code->unchecked_relocation_info(), "(code relocation info)"); TagObject(code->unchecked_deoptimization_data(), "(code deopt data)"); } if (extract_indexed_refs) { SetInternalReference(obj, entry, "map", obj->map(), HeapObject::kMapOffset); IndexedReferencesExtractor refs_extractor(this, obj, entry); obj->Iterate(&refs_extractor); } } void V8HeapExplorer::ExtractClosureReferences(JSObject* js_obj, HeapEntry* entry) { if (!js_obj->IsJSFunction()) return; JSFunction* func = JSFunction::cast(js_obj); Context* context = func->context(); ScopeInfo* scope_info = context->closure()->shared()->scope_info(); if (func->shared()->bound()) { FixedArray* bindings = func->function_bindings(); SetNativeBindReference(js_obj, entry, "bound_this", bindings->get(JSFunction::kBoundThisIndex)); SetNativeBindReference(js_obj, entry, "bound_function", bindings->get(JSFunction::kBoundFunctionIndex)); for (int i = JSFunction::kBoundArgumentsStartIndex; i < bindings->length(); i++) { const char* reference_name = collection_->names()->GetFormatted( "bound_argument_%d", i - JSFunction::kBoundArgumentsStartIndex); SetNativeBindReference(js_obj, entry, reference_name, bindings->get(i)); } } else { // Add context allocated locals. int context_locals = scope_info->ContextLocalCount(); for (int i = 0; i < context_locals; ++i) { String* local_name = scope_info->ContextLocalName(i); int idx = Context::MIN_CONTEXT_SLOTS + i; SetClosureReference(js_obj, entry, local_name, context->get(idx)); } // Add function variable. if (scope_info->HasFunctionName()) { String* name = scope_info->FunctionName(); int idx = Context::MIN_CONTEXT_SLOTS + context_locals; #ifdef DEBUG VariableMode mode; ASSERT(idx == scope_info->FunctionContextSlotIndex(name, &mode)); #endif SetClosureReference(js_obj, entry, name, context->get(idx)); } } } void V8HeapExplorer::ExtractPropertyReferences(JSObject* js_obj, HeapEntry* entry) { if (js_obj->HasFastProperties()) { DescriptorArray* descs = js_obj->map()->instance_descriptors(); for (int i = 0; i < descs->number_of_descriptors(); i++) { switch (descs->GetType(i)) { case FIELD: { int index = descs->GetFieldIndex(i); if (index < js_obj->map()->inobject_properties()) { SetPropertyReference( js_obj, entry, descs->GetKey(i), js_obj->InObjectPropertyAt(index), NULL, js_obj->GetInObjectPropertyOffset(index)); } else { SetPropertyReference( js_obj, entry, descs->GetKey(i), js_obj->FastPropertyAt(index)); } break; } case CONSTANT_FUNCTION: SetPropertyReference( js_obj, entry, descs->GetKey(i), descs->GetConstantFunction(i)); break; case CALLBACKS: { Object* callback_obj = descs->GetValue(i); if (callback_obj->IsAccessorPair()) { AccessorPair* accessors = AccessorPair::cast(callback_obj); if (Object* getter = accessors->getter()) { SetPropertyReference(js_obj, entry, descs->GetKey(i), getter, "get-%s"); } if (Object* setter = accessors->setter()) { SetPropertyReference(js_obj, entry, descs->GetKey(i), setter, "set-%s"); } } break; } case NORMAL: // only in slow mode case HANDLER: // only in lookup results, not in descriptors case INTERCEPTOR: // only in lookup results, not in descriptors case MAP_TRANSITION: // we do not care about transitions here... case ELEMENTS_TRANSITION: case CONSTANT_TRANSITION: case NULL_DESCRIPTOR: // ... and not about "holes" break; } } } else { StringDictionary* dictionary = js_obj->property_dictionary(); int length = dictionary->Capacity(); for (int i = 0; i < length; ++i) { Object* k = dictionary->KeyAt(i); if (dictionary->IsKey(k)) { Object* target = dictionary->ValueAt(i); SetPropertyReference( js_obj, entry, String::cast(k), target); // We assume that global objects can only have slow properties. if (target->IsJSGlobalPropertyCell()) { SetPropertyShortcutReference(js_obj, entry, String::cast(k), JSGlobalPropertyCell::cast( target)->value()); } } } } } void V8HeapExplorer::ExtractElementReferences(JSObject* js_obj, HeapEntry* entry) { if (js_obj->HasFastElements()) { FixedArray* elements = FixedArray::cast(js_obj->elements()); int length = js_obj->IsJSArray() ? Smi::cast(JSArray::cast(js_obj)->length())->value() : elements->length(); for (int i = 0; i < length; ++i) { if (!elements->get(i)->IsTheHole()) { SetElementReference(js_obj, entry, i, elements->get(i)); } } } else if (js_obj->HasDictionaryElements()) { SeededNumberDictionary* dictionary = js_obj->element_dictionary(); int length = dictionary->Capacity(); for (int i = 0; i < length; ++i) { Object* k = dictionary->KeyAt(i); if (dictionary->IsKey(k)) { ASSERT(k->IsNumber()); uint32_t index = static_cast<uint32_t>(k->Number()); SetElementReference(js_obj, entry, index, dictionary->ValueAt(i)); } } } } void V8HeapExplorer::ExtractInternalReferences(JSObject* js_obj, HeapEntry* entry) { int length = js_obj->GetInternalFieldCount(); for (int i = 0; i < length; ++i) { Object* o = js_obj->GetInternalField(i); SetInternalReference( js_obj, entry, i, o, js_obj->GetInternalFieldOffset(i)); } } String* V8HeapExplorer::GetConstructorName(JSObject* object) { Heap* heap = object->GetHeap(); if (object->IsJSFunction()) return heap->closure_symbol(); String* constructor_name = object->constructor_name(); if (constructor_name == heap->Object_symbol()) { // Look up an immediate "constructor" property, if it is a function, // return its name. This is for instances of binding objects, which // have prototype constructor type "Object". Object* constructor_prop = NULL; LookupResult result(heap->isolate()); object->LocalLookupRealNamedProperty(heap->constructor_symbol(), &result); if (result.IsProperty()) { constructor_prop = result.GetLazyValue(); } if (constructor_prop->IsJSFunction()) { Object* maybe_name = JSFunction::cast(constructor_prop)->shared()->name(); if (maybe_name->IsString()) { String* name = String::cast(maybe_name); if (name->length() > 0) return name; } } } return object->constructor_name(); } HeapEntry* V8HeapExplorer::GetEntry(Object* obj) { if (!obj->IsHeapObject()) return NULL; return filler_->FindOrAddEntry(obj, this); } class RootsReferencesExtractor : public ObjectVisitor { private: struct IndexTag { IndexTag(int index, VisitorSynchronization::SyncTag tag) : index(index), tag(tag) { } int index; VisitorSynchronization::SyncTag tag; }; public: RootsReferencesExtractor() : collecting_all_references_(false), previous_reference_count_(0) { } void VisitPointers(Object** start, Object** end) { if (collecting_all_references_) { for (Object** p = start; p < end; p++) all_references_.Add(*p); } else { for (Object** p = start; p < end; p++) strong_references_.Add(*p); } } void SetCollectingAllReferences() { collecting_all_references_ = true; } void FillReferences(V8HeapExplorer* explorer) { ASSERT(strong_references_.length() <= all_references_.length()); for (int i = 0; i < reference_tags_.length(); ++i) { explorer->SetGcRootsReference(reference_tags_[i].tag); } int strong_index = 0, all_index = 0, tags_index = 0; while (all_index < all_references_.length()) { if (strong_index < strong_references_.length() && strong_references_[strong_index] == all_references_[all_index]) { explorer->SetGcSubrootReference(reference_tags_[tags_index].tag, false, all_references_[all_index++]); ++strong_index; } else { explorer->SetGcSubrootReference(reference_tags_[tags_index].tag, true, all_references_[all_index++]); } if (reference_tags_[tags_index].index == all_index) ++tags_index; } } void Synchronize(VisitorSynchronization::SyncTag tag) { if (collecting_all_references_ && previous_reference_count_ != all_references_.length()) { previous_reference_count_ = all_references_.length(); reference_tags_.Add(IndexTag(previous_reference_count_, tag)); } } private: bool collecting_all_references_; List<Object*> strong_references_; List<Object*> all_references_; int previous_reference_count_; List<IndexTag> reference_tags_; }; bool V8HeapExplorer::IterateAndExtractReferences( SnapshotFillerInterface* filler) { HeapIterator iterator(HeapIterator::kFilterUnreachable); filler_ = filler; bool interrupted = false; // Heap iteration with filtering must be finished in any case. for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next(), progress_->ProgressStep()) { if (!interrupted) { ExtractReferences(obj); if (!progress_->ProgressReport(false)) interrupted = true; } } if (interrupted) { filler_ = NULL; return false; } SetRootGcRootsReference(); RootsReferencesExtractor extractor; heap_->IterateRoots(&extractor, VISIT_ONLY_STRONG); extractor.SetCollectingAllReferences(); heap_->IterateRoots(&extractor, VISIT_ALL); extractor.FillReferences(this); filler_ = NULL; return progress_->ProgressReport(false); } bool V8HeapExplorer::IterateAndSetObjectNames(SnapshotFillerInterface* filler) { HeapIterator iterator(HeapIterator::kFilterUnreachable); filler_ = filler; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { SetObjectName(obj); } return true; } void V8HeapExplorer::SetObjectName(HeapObject* object) { if (!object->IsJSObject() || object->IsJSRegExp() || object->IsJSFunction()) { return; } const char* name = collection_->names()->GetName( GetConstructorName(JSObject::cast(object))); if (object->IsJSGlobalObject()) { const char* tag = objects_tags_.GetTag(object); if (tag != NULL) { name = collection_->names()->GetFormatted("%s / %s", name, tag); } } GetEntry(object)->set_name(name); } void V8HeapExplorer::SetClosureReference(HeapObject* parent_obj, HeapEntry* parent_entry, String* reference_name, Object* child_obj) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { filler_->SetNamedReference(HeapGraphEdge::kContextVariable, parent_obj, parent_entry, collection_->names()->GetName(reference_name), child_obj, child_entry); } } void V8HeapExplorer::SetNativeBindReference(HeapObject* parent_obj, HeapEntry* parent_entry, const char* reference_name, Object* child_obj) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { filler_->SetNamedReference(HeapGraphEdge::kShortcut, parent_obj, parent_entry, reference_name, child_obj, child_entry); } } void V8HeapExplorer::SetElementReference(HeapObject* parent_obj, HeapEntry* parent_entry, int index, Object* child_obj) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { filler_->SetIndexedReference(HeapGraphEdge::kElement, parent_obj, parent_entry, index, child_obj, child_entry); } } void V8HeapExplorer::SetInternalReference(HeapObject* parent_obj, HeapEntry* parent_entry, const char* reference_name, Object* child_obj, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { filler_->SetNamedReference(HeapGraphEdge::kInternal, parent_obj, parent_entry, reference_name, child_obj, child_entry); IndexedReferencesExtractor::MarkVisitedField(parent_obj, field_offset); } } void V8HeapExplorer::SetInternalReference(HeapObject* parent_obj, HeapEntry* parent_entry, int index, Object* child_obj, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { filler_->SetNamedReference(HeapGraphEdge::kInternal, parent_obj, parent_entry, collection_->names()->GetName(index), child_obj, child_entry); IndexedReferencesExtractor::MarkVisitedField(parent_obj, field_offset); } } void V8HeapExplorer::SetHiddenReference(HeapObject* parent_obj, HeapEntry* parent_entry, int index, Object* child_obj) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { filler_->SetIndexedReference(HeapGraphEdge::kHidden, parent_obj, parent_entry, index, child_obj, child_entry); } } void V8HeapExplorer::SetWeakReference(HeapObject* parent_obj, HeapEntry* parent_entry, int index, Object* child_obj, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { filler_->SetIndexedReference(HeapGraphEdge::kWeak, parent_obj, parent_entry, index, child_obj, child_entry); IndexedReferencesExtractor::MarkVisitedField(parent_obj, field_offset); } } void V8HeapExplorer::SetPropertyReference(HeapObject* parent_obj, HeapEntry* parent_entry, String* reference_name, Object* child_obj, const char* name_format_string, int field_offset) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { HeapGraphEdge::Type type = reference_name->length() > 0 ? HeapGraphEdge::kProperty : HeapGraphEdge::kInternal; const char* name = name_format_string != NULL ? collection_->names()->GetFormatted( name_format_string, *reference_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL)) : collection_->names()->GetName(reference_name); filler_->SetNamedReference(type, parent_obj, parent_entry, name, child_obj, child_entry); IndexedReferencesExtractor::MarkVisitedField(parent_obj, field_offset); } } void V8HeapExplorer::SetPropertyShortcutReference(HeapObject* parent_obj, HeapEntry* parent_entry, String* reference_name, Object* child_obj) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { filler_->SetNamedReference(HeapGraphEdge::kShortcut, parent_obj, parent_entry, collection_->names()->GetName(reference_name), child_obj, child_entry); } } void V8HeapExplorer::SetRootGcRootsReference() { filler_->SetIndexedAutoIndexReference( HeapGraphEdge::kElement, kInternalRootObject, snapshot_->root(), kGcRootsObject, snapshot_->gc_roots()); } void V8HeapExplorer::SetRootShortcutReference(Object* child_obj) { HeapEntry* child_entry = GetEntry(child_obj); ASSERT(child_entry != NULL); filler_->SetNamedAutoIndexReference( HeapGraphEdge::kShortcut, kInternalRootObject, snapshot_->root(), child_obj, child_entry); } void V8HeapExplorer::SetGcRootsReference(VisitorSynchronization::SyncTag tag) { filler_->SetIndexedAutoIndexReference( HeapGraphEdge::kElement, kGcRootsObject, snapshot_->gc_roots(), GetNthGcSubrootObject(tag), snapshot_->gc_subroot(tag)); } void V8HeapExplorer::SetGcSubrootReference( VisitorSynchronization::SyncTag tag, bool is_weak, Object* child_obj) { HeapEntry* child_entry = GetEntry(child_obj); if (child_entry != NULL) { filler_->SetIndexedAutoIndexReference( is_weak ? HeapGraphEdge::kWeak : HeapGraphEdge::kElement, GetNthGcSubrootObject(tag), snapshot_->gc_subroot(tag), child_obj, child_entry); } } void V8HeapExplorer::TagObject(Object* obj, const char* tag) { if (obj->IsHeapObject() && !obj->IsOddball() && obj != heap_->raw_unchecked_empty_byte_array() && obj != heap_->raw_unchecked_empty_fixed_array() && obj != heap_->raw_unchecked_empty_descriptor_array()) { objects_tags_.SetTag(obj, tag); } } class GlobalObjectsEnumerator : public ObjectVisitor { public: virtual void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { if ((*p)->IsGlobalContext()) { Context* context = Context::cast(*p); JSObject* proxy = context->global_proxy(); if (proxy->IsJSGlobalProxy()) { Object* global = proxy->map()->prototype(); if (global->IsJSGlobalObject()) { objects_.Add(Handle<JSGlobalObject>(JSGlobalObject::cast(global))); } } } } } int count() { return objects_.length(); } Handle<JSGlobalObject>& at(int i) { return objects_[i]; } private: List<Handle<JSGlobalObject> > objects_; }; // Modifies heap. Must not be run during heap traversal. void V8HeapExplorer::TagGlobalObjects() { HandleScope scope; Isolate* isolate = Isolate::Current(); GlobalObjectsEnumerator enumerator; isolate->global_handles()->IterateAllRoots(&enumerator); Handle<String> document_string = isolate->factory()->NewStringFromAscii(CStrVector("document")); Handle<String> url_string = isolate->factory()->NewStringFromAscii(CStrVector("URL")); const char** urls = NewArray<const char*>(enumerator.count()); for (int i = 0, l = enumerator.count(); i < l; ++i) { urls[i] = NULL; HandleScope scope; Handle<JSGlobalObject> global_obj = enumerator.at(i); Object* obj_document; if (global_obj->GetProperty(*document_string)->ToObject(&obj_document) && obj_document->IsJSObject()) { JSObject* document = JSObject::cast(obj_document); Object* obj_url; if (document->GetProperty(*url_string)->ToObject(&obj_url) && obj_url->IsString()) { urls[i] = collection_->names()->GetName(String::cast(obj_url)); } } } AssertNoAllocation no_allocation; for (int i = 0, l = enumerator.count(); i < l; ++i) { objects_tags_.SetTag(*enumerator.at(i), urls[i]); } DeleteArray(urls); } class GlobalHandlesExtractor : public ObjectVisitor { public: explicit GlobalHandlesExtractor(NativeObjectsExplorer* explorer) : explorer_(explorer) {} virtual ~GlobalHandlesExtractor() {} virtual void VisitPointers(Object** start, Object** end) { UNREACHABLE(); } virtual void VisitEmbedderReference(Object** p, uint16_t class_id) { explorer_->VisitSubtreeWrapper(p, class_id); } private: NativeObjectsExplorer* explorer_; }; class BasicHeapEntriesAllocator : public HeapEntriesAllocator { public: BasicHeapEntriesAllocator( HeapSnapshot* snapshot, HeapEntry::Type entries_type) : snapshot_(snapshot), collection_(snapshot_->collection()), entries_type_(entries_type) { } virtual HeapEntry* AllocateEntry( HeapThing ptr, int children_count, int retainers_count); private: HeapSnapshot* snapshot_; HeapSnapshotsCollection* collection_; HeapEntry::Type entries_type_; }; HeapEntry* BasicHeapEntriesAllocator::AllocateEntry( HeapThing ptr, int children_count, int retainers_count) { v8::RetainedObjectInfo* info = reinterpret_cast<v8::RetainedObjectInfo*>(ptr); intptr_t elements = info->GetElementCount(); intptr_t size = info->GetSizeInBytes(); return snapshot_->AddEntry( entries_type_, elements != -1 ? collection_->names()->GetFormatted( "%s / %" V8_PTR_PREFIX "d entries", info->GetLabel(), info->GetElementCount()) : collection_->names()->GetCopy(info->GetLabel()), HeapObjectsMap::GenerateId(info), size != -1 ? static_cast<int>(size) : 0, children_count, retainers_count); } NativeObjectsExplorer::NativeObjectsExplorer( HeapSnapshot* snapshot, SnapshottingProgressReportingInterface* progress) : snapshot_(snapshot), collection_(snapshot_->collection()), progress_(progress), embedder_queried_(false), objects_by_info_(RetainedInfosMatch), native_groups_(StringsMatch), filler_(NULL) { synthetic_entries_allocator_ = new BasicHeapEntriesAllocator(snapshot, HeapEntry::kSynthetic); native_entries_allocator_ = new BasicHeapEntriesAllocator(snapshot, HeapEntry::kNative); } NativeObjectsExplorer::~NativeObjectsExplorer() { for (HashMap::Entry* p = objects_by_info_.Start(); p != NULL; p = objects_by_info_.Next(p)) { v8::RetainedObjectInfo* info = reinterpret_cast<v8::RetainedObjectInfo*>(p->key); info->Dispose(); List<HeapObject*>* objects = reinterpret_cast<List<HeapObject*>* >(p->value); delete objects; } for (HashMap::Entry* p = native_groups_.Start(); p != NULL; p = native_groups_.Next(p)) { v8::RetainedObjectInfo* info = reinterpret_cast<v8::RetainedObjectInfo*>(p->value); info->Dispose(); } delete synthetic_entries_allocator_; delete native_entries_allocator_; } int NativeObjectsExplorer::EstimateObjectsCount() { FillRetainedObjects(); return objects_by_info_.occupancy(); } void NativeObjectsExplorer::FillRetainedObjects() { if (embedder_queried_) return; Isolate* isolate = Isolate::Current(); // Record objects that are joined into ObjectGroups. isolate->heap()->CallGlobalGCPrologueCallback(); List<ObjectGroup*>* groups = isolate->global_handles()->object_groups(); for (int i = 0; i < groups->length(); ++i) { ObjectGroup* group = groups->at(i); if (group->info_ == NULL) continue; List<HeapObject*>* list = GetListMaybeDisposeInfo(group->info_); for (size_t j = 0; j < group->length_; ++j) { HeapObject* obj = HeapObject::cast(*group->objects_[j]); list->Add(obj); in_groups_.Insert(obj); } group->info_ = NULL; // Acquire info object ownership. } isolate->global_handles()->RemoveObjectGroups(); isolate->heap()->CallGlobalGCEpilogueCallback(); // Record objects that are not in ObjectGroups, but have class ID. GlobalHandlesExtractor extractor(this); isolate->global_handles()->IterateAllRootsWithClassIds(&extractor); embedder_queried_ = true; } void NativeObjectsExplorer::FillImplicitReferences() { Isolate* isolate = Isolate::Current(); List<ImplicitRefGroup*>* groups = isolate->global_handles()->implicit_ref_groups(); for (int i = 0; i < groups->length(); ++i) { ImplicitRefGroup* group = groups->at(i); HeapObject* parent = *group->parent_; HeapEntry* parent_entry = filler_->FindOrAddEntry(parent, native_entries_allocator_); ASSERT(parent_entry != NULL); Object*** children = group->children_; for (size_t j = 0; j < group->length_; ++j) { Object* child = *children[j]; HeapEntry* child_entry = filler_->FindOrAddEntry(child, native_entries_allocator_); filler_->SetNamedReference( HeapGraphEdge::kInternal, parent, parent_entry, "native", child, child_entry); } } } List<HeapObject*>* NativeObjectsExplorer::GetListMaybeDisposeInfo( v8::RetainedObjectInfo* info) { HashMap::Entry* entry = objects_by_info_.Lookup(info, InfoHash(info), true); if (entry->value != NULL) { info->Dispose(); } else { entry->value = new List<HeapObject*>(4); } return reinterpret_cast<List<HeapObject*>* >(entry->value); } bool NativeObjectsExplorer::IterateAndExtractReferences( SnapshotFillerInterface* filler) { filler_ = filler; FillRetainedObjects(); FillImplicitReferences(); if (EstimateObjectsCount() > 0) { for (HashMap::Entry* p = objects_by_info_.Start(); p != NULL; p = objects_by_info_.Next(p)) { v8::RetainedObjectInfo* info = reinterpret_cast<v8::RetainedObjectInfo*>(p->key); SetNativeRootReference(info); List<HeapObject*>* objects = reinterpret_cast<List<HeapObject*>* >(p->value); for (int i = 0; i < objects->length(); ++i) { SetWrapperNativeReferences(objects->at(i), info); } } SetRootNativeRootsReference(); } filler_ = NULL; return true; } class NativeGroupRetainedObjectInfo : public v8::RetainedObjectInfo { public: explicit NativeGroupRetainedObjectInfo(const char* label) : disposed_(false), hash_(reinterpret_cast<intptr_t>(label)), label_(label) { } virtual ~NativeGroupRetainedObjectInfo() {} virtual void Dispose() { CHECK(!disposed_); disposed_ = true; delete this; } virtual bool IsEquivalent(RetainedObjectInfo* other) { return hash_ == other->GetHash() && !strcmp(label_, other->GetLabel()); } virtual intptr_t GetHash() { return hash_; } virtual const char* GetLabel() { return label_; } private: bool disposed_; intptr_t hash_; const char* label_; }; NativeGroupRetainedObjectInfo* NativeObjectsExplorer::FindOrAddGroupInfo( const char* label) { const char* label_copy = collection_->names()->GetCopy(label); uint32_t hash = HashSequentialString(label_copy, static_cast<int>(strlen(label_copy)), HEAP->HashSeed()); HashMap::Entry* entry = native_groups_.Lookup(const_cast<char*>(label_copy), hash, true); if (entry->value == NULL) entry->value = new NativeGroupRetainedObjectInfo(label); return static_cast<NativeGroupRetainedObjectInfo*>(entry->value); } void NativeObjectsExplorer::SetNativeRootReference( v8::RetainedObjectInfo* info) { HeapEntry* child_entry = filler_->FindOrAddEntry(info, native_entries_allocator_); ASSERT(child_entry != NULL); NativeGroupRetainedObjectInfo* group_info = FindOrAddGroupInfo(info->GetGroupLabel()); HeapEntry* group_entry = filler_->FindOrAddEntry(group_info, synthetic_entries_allocator_); filler_->SetNamedAutoIndexReference( HeapGraphEdge::kInternal, group_info, group_entry, info, child_entry); } void NativeObjectsExplorer::SetWrapperNativeReferences( HeapObject* wrapper, v8::RetainedObjectInfo* info) { HeapEntry* wrapper_entry = filler_->FindEntry(wrapper); ASSERT(wrapper_entry != NULL); HeapEntry* info_entry = filler_->FindOrAddEntry(info, native_entries_allocator_); ASSERT(info_entry != NULL); filler_->SetNamedReference(HeapGraphEdge::kInternal, wrapper, wrapper_entry, "native", info, info_entry); filler_->SetIndexedAutoIndexReference(HeapGraphEdge::kElement, info, info_entry, wrapper, wrapper_entry); } void NativeObjectsExplorer::SetRootNativeRootsReference() { for (HashMap::Entry* entry = native_groups_.Start(); entry; entry = native_groups_.Next(entry)) { NativeGroupRetainedObjectInfo* group_info = static_cast<NativeGroupRetainedObjectInfo*>(entry->value); HeapEntry* group_entry = filler_->FindOrAddEntry(group_info, native_entries_allocator_); ASSERT(group_entry != NULL); filler_->SetIndexedAutoIndexReference( HeapGraphEdge::kElement, V8HeapExplorer::kInternalRootObject, snapshot_->root(), group_info, group_entry); } } void NativeObjectsExplorer::VisitSubtreeWrapper(Object** p, uint16_t class_id) { if (in_groups_.Contains(*p)) return; Isolate* isolate = Isolate::Current(); v8::RetainedObjectInfo* info = isolate->heap_profiler()->ExecuteWrapperClassCallback(class_id, p); if (info == NULL) return; GetListMaybeDisposeInfo(info)->Add(HeapObject::cast(*p)); } class SnapshotCounter : public SnapshotFillerInterface { public: explicit SnapshotCounter(HeapEntriesMap* entries) : entries_(entries) { } HeapEntry* AddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) { entries_->Pair(ptr, allocator, HeapEntriesMap::kHeapEntryPlaceholder); return HeapEntriesMap::kHeapEntryPlaceholder; } HeapEntry* FindEntry(HeapThing ptr) { return entries_->Map(ptr); } HeapEntry* FindOrAddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) { HeapEntry* entry = FindEntry(ptr); return entry != NULL ? entry : AddEntry(ptr, allocator); } void SetIndexedReference(HeapGraphEdge::Type, HeapThing parent_ptr, HeapEntry*, int, HeapThing child_ptr, HeapEntry*) { entries_->CountReference(parent_ptr, child_ptr); } void SetIndexedAutoIndexReference(HeapGraphEdge::Type, HeapThing parent_ptr, HeapEntry*, HeapThing child_ptr, HeapEntry*) { entries_->CountReference(parent_ptr, child_ptr); } void SetNamedReference(HeapGraphEdge::Type, HeapThing parent_ptr, HeapEntry*, const char*, HeapThing child_ptr, HeapEntry*) { entries_->CountReference(parent_ptr, child_ptr); } void SetNamedAutoIndexReference(HeapGraphEdge::Type, HeapThing parent_ptr, HeapEntry*, HeapThing child_ptr, HeapEntry*) { entries_->CountReference(parent_ptr, child_ptr); } private: HeapEntriesMap* entries_; }; class SnapshotFiller : public SnapshotFillerInterface { public: explicit SnapshotFiller(HeapSnapshot* snapshot, HeapEntriesMap* entries) : snapshot_(snapshot), collection_(snapshot->collection()), entries_(entries) { } HeapEntry* AddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) { UNREACHABLE(); return NULL; } HeapEntry* FindEntry(HeapThing ptr) { return entries_->Map(ptr); } HeapEntry* FindOrAddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) { HeapEntry* entry = FindEntry(ptr); return entry != NULL ? entry : AddEntry(ptr, allocator); } void SetIndexedReference(HeapGraphEdge::Type type, HeapThing parent_ptr, HeapEntry* parent_entry, int index, HeapThing child_ptr, HeapEntry* child_entry) { int child_index, retainer_index; entries_->CountReference( parent_ptr, child_ptr, &child_index, &retainer_index); parent_entry->SetIndexedReference( type, child_index, index, child_entry, retainer_index); } void SetIndexedAutoIndexReference(HeapGraphEdge::Type type, HeapThing parent_ptr, HeapEntry* parent_entry, HeapThing child_ptr, HeapEntry* child_entry) { int child_index, retainer_index; entries_->CountReference( parent_ptr, child_ptr, &child_index, &retainer_index); parent_entry->SetIndexedReference( type, child_index, child_index + 1, child_entry, retainer_index); } void SetNamedReference(HeapGraphEdge::Type type, HeapThing parent_ptr, HeapEntry* parent_entry, const char* reference_name, HeapThing child_ptr, HeapEntry* child_entry) { int child_index, retainer_index; entries_->CountReference( parent_ptr, child_ptr, &child_index, &retainer_index); parent_entry->SetNamedReference( type, child_index, reference_name, child_entry, retainer_index); } void SetNamedAutoIndexReference(HeapGraphEdge::Type type, HeapThing parent_ptr, HeapEntry* parent_entry, HeapThing child_ptr, HeapEntry* child_entry) { int child_index, retainer_index; entries_->CountReference( parent_ptr, child_ptr, &child_index, &retainer_index); parent_entry->SetNamedReference(type, child_index, collection_->names()->GetName(child_index + 1), child_entry, retainer_index); } private: HeapSnapshot* snapshot_; HeapSnapshotsCollection* collection_; HeapEntriesMap* entries_; }; HeapSnapshotGenerator::HeapSnapshotGenerator(HeapSnapshot* snapshot, v8::ActivityControl* control) : snapshot_(snapshot), control_(control), v8_heap_explorer_(snapshot_, this), dom_explorer_(snapshot_, this) { } bool HeapSnapshotGenerator::GenerateSnapshot() { v8_heap_explorer_.TagGlobalObjects(); // TODO(1562) Profiler assumes that any object that is in the heap after // full GC is reachable from the root when computing dominators. // This is not true for weakly reachable objects. // As a temporary solution we call GC twice. Isolate::Current()->heap()->CollectAllGarbage( Heap::kMakeHeapIterableMask, "HeapSnapshotGenerator::GenerateSnapshot"); Isolate::Current()->heap()->CollectAllGarbage( Heap::kMakeHeapIterableMask, "HeapSnapshotGenerator::GenerateSnapshot"); #ifdef DEBUG Heap* debug_heap = Isolate::Current()->heap(); ASSERT(!debug_heap->old_data_space()->was_swept_conservatively()); ASSERT(!debug_heap->old_pointer_space()->was_swept_conservatively()); ASSERT(!debug_heap->code_space()->was_swept_conservatively()); ASSERT(!debug_heap->cell_space()->was_swept_conservatively()); ASSERT(!debug_heap->map_space()->was_swept_conservatively()); #endif // The following code uses heap iterators, so we want the heap to be // stable. It should follow TagGlobalObjects as that can allocate. AssertNoAllocation no_alloc; #ifdef DEBUG debug_heap->Verify(); #endif SetProgressTotal(2); // 2 passes. #ifdef DEBUG debug_heap->Verify(); #endif // Pass 1. Iterate heap contents to count entries and references. if (!CountEntriesAndReferences()) return false; #ifdef DEBUG debug_heap->Verify(); #endif // Allocate memory for entries and references. snapshot_->AllocateEntries(entries_.entries_count(), entries_.total_children_count(), entries_.total_retainers_count()); // Allocate heap objects to entries hash map. entries_.AllocateEntries(); // Pass 2. Fill references. if (!FillReferences()) return false; if (!SetEntriesDominators()) return false; if (!CalculateRetainedSizes()) return false; progress_counter_ = progress_total_; if (!ProgressReport(true)) return false; return true; } void HeapSnapshotGenerator::ProgressStep() { ++progress_counter_; } bool HeapSnapshotGenerator::ProgressReport(bool force) { const int kProgressReportGranularity = 10000; if (control_ != NULL && (force || progress_counter_ % kProgressReportGranularity == 0)) { return control_->ReportProgressValue(progress_counter_, progress_total_) == v8::ActivityControl::kContinue; } return true; } void HeapSnapshotGenerator::SetProgressTotal(int iterations_count) { if (control_ == NULL) return; HeapIterator iterator(HeapIterator::kFilterUnreachable); progress_total_ = ( v8_heap_explorer_.EstimateObjectsCount(&iterator) + dom_explorer_.EstimateObjectsCount()) * iterations_count; progress_counter_ = 0; } bool HeapSnapshotGenerator::CountEntriesAndReferences() { SnapshotCounter counter(&entries_); v8_heap_explorer_.AddRootEntries(&counter); return v8_heap_explorer_.IterateAndExtractReferences(&counter) && dom_explorer_.IterateAndExtractReferences(&counter); } bool HeapSnapshotGenerator::FillReferences() { SnapshotFiller filler(snapshot_, &entries_); // IterateAndExtractReferences cannot set object names because // it makes call to JSObject::LocalLookupRealNamedProperty which // in turn may relocate objects in property maps thus changing the heap // layout and affecting retainer counts. This is not acceptable because // number of retainers must not change between count and fill passes. // To avoid this there's a separate postpass that set object names. return v8_heap_explorer_.IterateAndExtractReferences(&filler) && dom_explorer_.IterateAndExtractReferences(&filler) && v8_heap_explorer_.IterateAndSetObjectNames(&filler); } void HeapSnapshotGenerator::FillReversePostorderIndexes( Vector<HeapEntry*>* entries) { snapshot_->ClearPaint(); int current_entry = 0; List<HeapEntry*> nodes_to_visit; nodes_to_visit.Add(snapshot_->root()); snapshot_->root()->paint(); while (!nodes_to_visit.is_empty()) { HeapEntry* entry = nodes_to_visit.last(); Vector<HeapGraphEdge> children = entry->children(); bool has_new_edges = false; for (int i = 0; i < children.length(); ++i) { if (children[i].type() == HeapGraphEdge::kShortcut) continue; HeapEntry* child = children[i].to(); if (!child->painted()) { nodes_to_visit.Add(child); child->paint(); has_new_edges = true; } } if (!has_new_edges) { entry->set_ordered_index(current_entry); (*entries)[current_entry++] = entry; nodes_to_visit.RemoveLast(); } } ASSERT_EQ(current_entry, entries->length()); } static int Intersect(int i1, int i2, const Vector<int>& dominators) { int finger1 = i1, finger2 = i2; while (finger1 != finger2) { while (finger1 < finger2) finger1 = dominators[finger1]; while (finger2 < finger1) finger2 = dominators[finger2]; } return finger1; } // The algorithm is based on the article: // K. Cooper, T. Harvey and K. Kennedy "A Simple, Fast Dominance Algorithm" // Softw. Pract. Exper. 4 (2001), pp. 1-10. bool HeapSnapshotGenerator::BuildDominatorTree( const Vector<HeapEntry*>& entries, Vector<int>* dominators) { if (entries.length() == 0) return true; const int entries_length = entries.length(), root_index = entries_length - 1; static const int kNoDominator = -1; for (int i = 0; i < root_index; ++i) (*dominators)[i] = kNoDominator; (*dominators)[root_index] = root_index; // The affected array is used to mark entries which dominators // have to be racalculated because of changes in their retainers. ScopedVector<bool> affected(entries_length); for (int i = 0; i < affected.length(); ++i) affected[i] = false; // Mark the root direct children as affected. Vector<HeapGraphEdge> children = entries[root_index]->children(); for (int i = 0; i < children.length(); ++i) { affected[children[i].to()->ordered_index()] = true; } bool changed = true; while (changed) { changed = false; if (!ProgressReport(true)) return false; for (int i = root_index - 1; i >= 0; --i) { if (!affected[i]) continue; affected[i] = false; // If dominator of the entry has already been set to root, // then it can't propagate any further. if ((*dominators)[i] == root_index) continue; int new_idom_index = kNoDominator; Vector<HeapGraphEdge*> rets = entries[i]->retainers(); for (int j = 0; j < rets.length(); ++j) { if (rets[j]->type() == HeapGraphEdge::kShortcut) continue; int ret_index = rets[j]->From()->ordered_index(); if (dominators->at(ret_index) != kNoDominator) { new_idom_index = new_idom_index == kNoDominator ? ret_index : Intersect(ret_index, new_idom_index, *dominators); // If idom has already reached the root, it doesn't make sense // to check other retainers. if (new_idom_index == root_index) break; } } if (new_idom_index != kNoDominator && dominators->at(i) != new_idom_index) { (*dominators)[i] = new_idom_index; changed = true; Vector<HeapGraphEdge> children = entries[i]->children(); for (int j = 0; j < children.length(); ++j) { affected[children[j].to()->ordered_index()] = true; } } } } return true; } bool HeapSnapshotGenerator::SetEntriesDominators() { // This array is used for maintaining reverse postorder of nodes. ScopedVector<HeapEntry*> ordered_entries(snapshot_->entries()->length()); FillReversePostorderIndexes(&ordered_entries); ScopedVector<int> dominators(ordered_entries.length()); if (!BuildDominatorTree(ordered_entries, &dominators)) return false; for (int i = 0; i < ordered_entries.length(); ++i) { ASSERT(dominators[i] >= 0); ordered_entries[i]->set_dominator(ordered_entries[dominators[i]]); } return true; } bool HeapSnapshotGenerator::CalculateRetainedSizes() { // As for the dominators tree we only know parent nodes, not // children, to sum up total sizes we "bubble" node's self size // adding it to all of its parents. List<HeapEntry*>& entries = *snapshot_->entries(); for (int i = 0; i < entries.length(); ++i) { HeapEntry* entry = entries[i]; entry->set_retained_size(entry->self_size()); } for (int i = 0; i < entries.length(); ++i) { HeapEntry* entry = entries[i]; int entry_size = entry->self_size(); for (HeapEntry* dominator = entry->dominator(); dominator != entry; entry = dominator, dominator = entry->dominator()) { dominator->add_retained_size(entry_size); } } return true; } template<int bytes> struct MaxDecimalDigitsIn; template<> struct MaxDecimalDigitsIn<4> { static const int kSigned = 11; static const int kUnsigned = 10; }; template<> struct MaxDecimalDigitsIn<8> { static const int kSigned = 20; static const int kUnsigned = 20; }; class OutputStreamWriter { public: explicit OutputStreamWriter(v8::OutputStream* stream) : stream_(stream), chunk_size_(stream->GetChunkSize()), chunk_(chunk_size_), chunk_pos_(0), aborted_(false) { ASSERT(chunk_size_ > 0); } bool aborted() { return aborted_; } void AddCharacter(char c) { ASSERT(c != '\0'); ASSERT(chunk_pos_ < chunk_size_); chunk_[chunk_pos_++] = c; MaybeWriteChunk(); } void AddString(const char* s) { AddSubstring(s, StrLength(s)); } void AddSubstring(const char* s, int n) { if (n <= 0) return; ASSERT(static_cast<size_t>(n) <= strlen(s)); const char* s_end = s + n; while (s < s_end) { int s_chunk_size = Min( chunk_size_ - chunk_pos_, static_cast<int>(s_end - s)); ASSERT(s_chunk_size > 0); memcpy(chunk_.start() + chunk_pos_, s, s_chunk_size); s += s_chunk_size; chunk_pos_ += s_chunk_size; MaybeWriteChunk(); } } void AddNumber(int n) { AddNumberImpl<int>(n, "%d"); } void AddNumber(unsigned n) { AddNumberImpl<unsigned>(n, "%u"); } void AddNumber(uint64_t n) { AddNumberImpl<uint64_t>(n, "%llu"); } void Finalize() { if (aborted_) return; ASSERT(chunk_pos_ < chunk_size_); if (chunk_pos_ != 0) { WriteChunk(); } stream_->EndOfStream(); } private: template<typename T> void AddNumberImpl(T n, const char* format) { // Buffer for the longest value plus trailing \0 static const int kMaxNumberSize = MaxDecimalDigitsIn<sizeof(T)>::kUnsigned + 1; if (chunk_size_ - chunk_pos_ >= kMaxNumberSize) { int result = OS::SNPrintF( chunk_.SubVector(chunk_pos_, chunk_size_), format, n); ASSERT(result != -1); chunk_pos_ += result; MaybeWriteChunk(); } else { EmbeddedVector<char, kMaxNumberSize> buffer; int result = OS::SNPrintF(buffer, format, n); USE(result); ASSERT(result != -1); AddString(buffer.start()); } } void MaybeWriteChunk() { ASSERT(chunk_pos_ <= chunk_size_); if (chunk_pos_ == chunk_size_) { WriteChunk(); } } void WriteChunk() { if (aborted_) return; if (stream_->WriteAsciiChunk(chunk_.start(), chunk_pos_) == v8::OutputStream::kAbort) aborted_ = true; chunk_pos_ = 0; } v8::OutputStream* stream_; int chunk_size_; ScopedVector<char> chunk_; int chunk_pos_; bool aborted_; }; void HeapSnapshotJSONSerializer::Serialize(v8::OutputStream* stream) { ASSERT(writer_ == NULL); writer_ = new OutputStreamWriter(stream); HeapSnapshot* original_snapshot = NULL; if (snapshot_->raw_entries_size() >= SnapshotSizeConstants<kPointerSize>::kMaxSerializableSnapshotRawSize) { // The snapshot is too big. Serialize a fake snapshot. original_snapshot = snapshot_; snapshot_ = CreateFakeSnapshot(); } // Since nodes graph is cyclic, we need the first pass to enumerate // them. Strings can be serialized in one pass. EnumerateNodes(); SerializeImpl(); delete writer_; writer_ = NULL; if (original_snapshot != NULL) { delete snapshot_; snapshot_ = original_snapshot; } } HeapSnapshot* HeapSnapshotJSONSerializer::CreateFakeSnapshot() { HeapSnapshot* result = new HeapSnapshot(snapshot_->collection(), HeapSnapshot::kFull, snapshot_->title(), snapshot_->uid()); result->AllocateEntries(2, 1, 0); HeapEntry* root = result->AddRootEntry(1); const char* text = snapshot_->collection()->names()->GetFormatted( "The snapshot is too big. " "Maximum snapshot size is %" V8_PTR_PREFIX "u MB. " "Actual snapshot size is %" V8_PTR_PREFIX "u MB.", SnapshotSizeConstants<kPointerSize>::kMaxSerializableSnapshotRawSize / MB, (snapshot_->raw_entries_size() + MB - 1) / MB); HeapEntry* message = result->AddEntry( HeapEntry::kString, text, 0, 4, 0, 0); root->SetUnidirElementReference(0, 1, message); result->SetDominatorsToSelf(); return result; } void HeapSnapshotJSONSerializer::SerializeImpl() { writer_->AddCharacter('{'); writer_->AddString("\"snapshot\":{"); SerializeSnapshot(); if (writer_->aborted()) return; writer_->AddString("},\n"); writer_->AddString("\"nodes\":["); SerializeNodes(); if (writer_->aborted()) return; writer_->AddString("],\n"); writer_->AddString("\"strings\":["); SerializeStrings(); if (writer_->aborted()) return; writer_->AddCharacter(']'); writer_->AddCharacter('}'); writer_->Finalize(); } class HeapSnapshotJSONSerializerEnumerator { public: explicit HeapSnapshotJSONSerializerEnumerator(HeapSnapshotJSONSerializer* s) : s_(s) { } void Apply(HeapEntry** entry) { s_->GetNodeId(*entry); } private: HeapSnapshotJSONSerializer* s_; }; void HeapSnapshotJSONSerializer::EnumerateNodes() { GetNodeId(snapshot_->root()); // Make sure root gets the first id. HeapSnapshotJSONSerializerEnumerator iter(this); snapshot_->IterateEntries(&iter); } int HeapSnapshotJSONSerializer::GetNodeId(HeapEntry* entry) { HashMap::Entry* cache_entry = nodes_.Lookup(entry, ObjectHash(entry), true); if (cache_entry->value == NULL) { cache_entry->value = reinterpret_cast<void*>(next_node_id_++); } return static_cast<int>(reinterpret_cast<intptr_t>(cache_entry->value)); } int HeapSnapshotJSONSerializer::GetStringId(const char* s) { HashMap::Entry* cache_entry = strings_.Lookup( const_cast<char*>(s), ObjectHash(s), true); if (cache_entry->value == NULL) { cache_entry->value = reinterpret_cast<void*>(next_string_id_++); } return static_cast<int>(reinterpret_cast<intptr_t>(cache_entry->value)); } void HeapSnapshotJSONSerializer::SerializeEdge(HeapGraphEdge* edge) { // The buffer needs space for 3 ints, 3 commas and \0 static const int kBufferSize = MaxDecimalDigitsIn<sizeof(int)>::kSigned * 3 + 3 + 1; // NOLINT EmbeddedVector<char, kBufferSize> buffer; int edge_name_or_index = edge->type() == HeapGraphEdge::kElement || edge->type() == HeapGraphEdge::kHidden || edge->type() == HeapGraphEdge::kWeak ? edge->index() : GetStringId(edge->name()); STATIC_CHECK(sizeof(int) == sizeof(edge->type())); // NOLINT STATIC_CHECK(sizeof(int) == sizeof(edge_name_or_index)); // NOLINT STATIC_CHECK(sizeof(int) == sizeof(GetNodeId(edge->to()))); // NOLINT int result = OS::SNPrintF(buffer, ",%d,%d,%d", edge->type(), edge_name_or_index, GetNodeId(edge->to())); USE(result); ASSERT(result != -1); writer_->AddString(buffer.start()); } void HeapSnapshotJSONSerializer::SerializeNode(HeapEntry* entry) { // The buffer needs space for 6 ints, 1 uint32_t, 7 commas, \n and \0 static const int kBufferSize = 6 * MaxDecimalDigitsIn<sizeof(int)>::kSigned // NOLINT + MaxDecimalDigitsIn<sizeof(uint32_t)>::kUnsigned // NOLINT + 7 + 1 + 1; EmbeddedVector<char, kBufferSize> buffer; Vector<HeapGraphEdge> children = entry->children(); STATIC_CHECK(sizeof(int) == sizeof(entry->type())); // NOLINT STATIC_CHECK(sizeof(int) == sizeof(GetStringId(entry->name()))); // NOLINT STATIC_CHECK(sizeof(unsigned) == sizeof(entry->id())); // NOLINT STATIC_CHECK(sizeof(int) == sizeof(entry->self_size())); // NOLINT STATIC_CHECK(sizeof(int) == sizeof(entry->retained_size())); // NOLINT STATIC_CHECK(sizeof(int) == sizeof(GetNodeId(entry->dominator()))); // NOLINT STATIC_CHECK(sizeof(int) == sizeof(children.length())); // NOLINT int result = OS::SNPrintF(buffer, "\n,%d,%d,%u,%d,%d,%d,%d", entry->type(), GetStringId(entry->name()), entry->id(), entry->self_size(), entry->retained_size(), GetNodeId(entry->dominator()), children.length()); USE(result); ASSERT(result != -1); writer_->AddString(buffer.start()); for (int i = 0; i < children.length(); ++i) { SerializeEdge(&children[i]); if (writer_->aborted()) return; } } void HeapSnapshotJSONSerializer::SerializeNodes() { // The first (zero) item of nodes array is an object describing node // serialization layout. We use a set of macros to improve // readability. #define JSON_A(s) "["s"]" #define JSON_O(s) "{"s"}" #define JSON_S(s) "\""s"\"" writer_->AddString(JSON_O( JSON_S("fields") ":" JSON_A( JSON_S("type") "," JSON_S("name") "," JSON_S("id") "," JSON_S("self_size") "," JSON_S("retained_size") "," JSON_S("dominator") "," JSON_S("children_count") "," JSON_S("children")) "," JSON_S("types") ":" JSON_A( JSON_A( JSON_S("hidden") "," JSON_S("array") "," JSON_S("string") "," JSON_S("object") "," JSON_S("code") "," JSON_S("closure") "," JSON_S("regexp") "," JSON_S("number") "," JSON_S("native") "," JSON_S("synthetic")) "," JSON_S("string") "," JSON_S("number") "," JSON_S("number") "," JSON_S("number") "," JSON_S("number") "," JSON_S("number") "," JSON_O( JSON_S("fields") ":" JSON_A( JSON_S("type") "," JSON_S("name_or_index") "," JSON_S("to_node")) "," JSON_S("types") ":" JSON_A( JSON_A( JSON_S("context") "," JSON_S("element") "," JSON_S("property") "," JSON_S("internal") "," JSON_S("hidden") "," JSON_S("shortcut") "," JSON_S("weak")) "," JSON_S("string_or_number") "," JSON_S("node")))))); #undef JSON_S #undef JSON_O #undef JSON_A const int node_fields_count = 7; // type,name,id,self_size,retained_size,dominator,children_count. const int edge_fields_count = 3; // type,name|index,to_node. List<HashMap::Entry*> sorted_nodes; SortHashMap(&nodes_, &sorted_nodes); // Rewrite node ids, so they refer to actual array positions. if (sorted_nodes.length() > 1) { // Nodes start from array index 1. int prev_value = 1; sorted_nodes[0]->value = reinterpret_cast<void*>(prev_value); for (int i = 1; i < sorted_nodes.length(); ++i) { HeapEntry* prev_heap_entry = reinterpret_cast<HeapEntry*>(sorted_nodes[i-1]->key); prev_value += node_fields_count + prev_heap_entry->children().length() * edge_fields_count; sorted_nodes[i]->value = reinterpret_cast<void*>(prev_value); } } for (int i = 0; i < sorted_nodes.length(); ++i) { SerializeNode(reinterpret_cast<HeapEntry*>(sorted_nodes[i]->key)); if (writer_->aborted()) return; } } void HeapSnapshotJSONSerializer::SerializeSnapshot() { writer_->AddString("\"title\":\""); writer_->AddString(snapshot_->title()); writer_->AddString("\""); writer_->AddString(",\"uid\":"); writer_->AddNumber(snapshot_->uid()); } static void WriteUChar(OutputStreamWriter* w, unibrow::uchar u) { static const char hex_chars[] = "0123456789ABCDEF"; w->AddString("\\u"); w->AddCharacter(hex_chars[(u >> 12) & 0xf]); w->AddCharacter(hex_chars[(u >> 8) & 0xf]); w->AddCharacter(hex_chars[(u >> 4) & 0xf]); w->AddCharacter(hex_chars[u & 0xf]); } void HeapSnapshotJSONSerializer::SerializeString(const unsigned char* s) { writer_->AddCharacter('\n'); writer_->AddCharacter('\"'); for ( ; *s != '\0'; ++s) { switch (*s) { case '\b': writer_->AddString("\\b"); continue; case '\f': writer_->AddString("\\f"); continue; case '\n': writer_->AddString("\\n"); continue; case '\r': writer_->AddString("\\r"); continue; case '\t': writer_->AddString("\\t"); continue; case '\"': case '\\': writer_->AddCharacter('\\'); writer_->AddCharacter(*s); continue; default: if (*s > 31 && *s < 128) { writer_->AddCharacter(*s); } else if (*s <= 31) { // Special character with no dedicated literal. WriteUChar(writer_, *s); } else { // Convert UTF-8 into \u UTF-16 literal. unsigned length = 1, cursor = 0; for ( ; length <= 4 && *(s + length) != '\0'; ++length) { } unibrow::uchar c = unibrow::Utf8::CalculateValue(s, length, &cursor); if (c != unibrow::Utf8::kBadChar) { WriteUChar(writer_, c); ASSERT(cursor != 0); s += cursor - 1; } else { writer_->AddCharacter('?'); } } } } writer_->AddCharacter('\"'); } void HeapSnapshotJSONSerializer::SerializeStrings() { List<HashMap::Entry*> sorted_strings; SortHashMap(&strings_, &sorted_strings); writer_->AddString("\"<dummy>\""); for (int i = 0; i < sorted_strings.length(); ++i) { writer_->AddCharacter(','); SerializeString( reinterpret_cast<const unsigned char*>(sorted_strings[i]->key)); if (writer_->aborted()) return; } } template<typename T> inline static int SortUsingEntryValue(const T* x, const T* y) { uintptr_t x_uint = reinterpret_cast<uintptr_t>((*x)->value); uintptr_t y_uint = reinterpret_cast<uintptr_t>((*y)->value); if (x_uint > y_uint) { return 1; } else if (x_uint == y_uint) { return 0; } else { return -1; } } void HeapSnapshotJSONSerializer::SortHashMap( HashMap* map, List<HashMap::Entry*>* sorted_entries) { for (HashMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) sorted_entries->Add(p); sorted_entries->Sort(SortUsingEntryValue); } } } // namespace v8::internal