// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "bootstrapper.h" #include "code-stubs.h" #include "regexp-macro-assembler.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ToNumberStub::Generate(MacroAssembler* masm) { // The ToNumber stub takes one argument in eax. Label check_heap_number, call_builtin; __ SmiTest(rax); __ j(not_zero, &check_heap_number, Label::kNear); __ Ret(); __ bind(&check_heap_number); __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &call_builtin, Label::kNear); __ Ret(); __ bind(&call_builtin); __ pop(rcx); // Pop return address. __ push(rax); __ push(rcx); // Push return address. __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); } void FastNewClosureStub::Generate(MacroAssembler* masm) { // Create a new closure from the given function info in new // space. Set the context to the current context in rsi. Label gc; __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT); // Get the function info from the stack. __ movq(rdx, Operand(rsp, 1 * kPointerSize)); int map_index = (language_mode_ == CLASSIC_MODE) ? Context::FUNCTION_MAP_INDEX : Context::STRICT_MODE_FUNCTION_MAP_INDEX; // Compute the function map in the current global context and set that // as the map of the allocated object. __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset)); __ movq(rcx, Operand(rcx, Context::SlotOffset(map_index))); __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx); // Initialize the rest of the function. We don't have to update the // write barrier because the allocated object is in new space. __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex); __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx); __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx); __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx); __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi); __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx); __ movq(FieldOperand(rax, JSFunction::kNextFunctionLinkOffset), rdi); // Initialize the code pointer in the function to be the one // found in the shared function info object. __ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset)); __ lea(rdx, FieldOperand(rdx, Code::kHeaderSize)); __ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx); // Return and remove the on-stack parameter. __ ret(1 * kPointerSize); // Create a new closure through the slower runtime call. __ bind(&gc); __ pop(rcx); // Temporarily remove return address. __ pop(rdx); __ push(rsi); __ push(rdx); __ PushRoot(Heap::kFalseValueRootIndex); __ push(rcx); // Restore return address. __ TailCallRuntime(Runtime::kNewClosure, 3, 1); } void FastNewContextStub::Generate(MacroAssembler* masm) { // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, rax, rbx, rcx, &gc, TAG_OBJECT); // Get the function from the stack. __ movq(rcx, Operand(rsp, 1 * kPointerSize)); // Set up the object header. __ LoadRoot(kScratchRegister, Heap::kFunctionContextMapRootIndex); __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister); __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length)); // Set up the fixed slots. __ Set(rbx, 0); // Set to NULL. __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx); __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rsi); __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx); // Copy the global object from the previous context. __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx); // Initialize the rest of the slots to undefined. __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { __ movq(Operand(rax, Context::SlotOffset(i)), rbx); } // Return and remove the on-stack parameter. __ movq(rsi, rax); __ ret(1 * kPointerSize); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1); } void FastNewBlockContextStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [rsp + (1 * kPointerSize)]: function // [rsp + (2 * kPointerSize)]: serialized scope info // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; __ AllocateInNewSpace(FixedArray::SizeFor(length), rax, rbx, rcx, &gc, TAG_OBJECT); // Get the function from the stack. __ movq(rcx, Operand(rsp, 1 * kPointerSize)); // Get the serialized scope info from the stack. __ movq(rbx, Operand(rsp, 2 * kPointerSize)); // Set up the object header. __ LoadRoot(kScratchRegister, Heap::kBlockContextMapRootIndex); __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister); __ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length)); // If this block context is nested in the global context we get a smi // sentinel instead of a function. The block context should get the // canonical empty function of the global context as its closure which // we still have to look up. Label after_sentinel; __ JumpIfNotSmi(rcx, &after_sentinel, Label::kNear); if (FLAG_debug_code) { const char* message = "Expected 0 as a Smi sentinel"; __ cmpq(rcx, Immediate(0)); __ Assert(equal, message); } __ movq(rcx, GlobalObjectOperand()); __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset)); __ movq(rcx, ContextOperand(rcx, Context::CLOSURE_INDEX)); __ bind(&after_sentinel); // Set up the fixed slots. __ movq(ContextOperand(rax, Context::CLOSURE_INDEX), rcx); __ movq(ContextOperand(rax, Context::PREVIOUS_INDEX), rsi); __ movq(ContextOperand(rax, Context::EXTENSION_INDEX), rbx); // Copy the global object from the previous context. __ movq(rbx, ContextOperand(rsi, Context::GLOBAL_INDEX)); __ movq(ContextOperand(rax, Context::GLOBAL_INDEX), rbx); // Initialize the rest of the slots to the hole value. __ LoadRoot(rbx, Heap::kTheHoleValueRootIndex); for (int i = 0; i < slots_; i++) { __ movq(ContextOperand(rax, i + Context::MIN_CONTEXT_SLOTS), rbx); } // Return and remove the on-stack parameter. __ movq(rsi, rax); __ ret(2 * kPointerSize); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1); } static void GenerateFastCloneShallowArrayCommon( MacroAssembler* masm, int length, FastCloneShallowArrayStub::Mode mode, Label* fail) { // Registers on entry: // // rcx: boilerplate literal array. ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS); // All sizes here are multiples of kPointerSize. int elements_size = 0; if (length > 0) { elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS ? FixedDoubleArray::SizeFor(length) : FixedArray::SizeFor(length); } int size = JSArray::kSize + elements_size; // Allocate both the JS array and the elements array in one big // allocation. This avoids multiple limit checks. __ AllocateInNewSpace(size, rax, rbx, rdx, fail, TAG_OBJECT); // Copy the JS array part. for (int i = 0; i < JSArray::kSize; i += kPointerSize) { if ((i != JSArray::kElementsOffset) || (length == 0)) { __ movq(rbx, FieldOperand(rcx, i)); __ movq(FieldOperand(rax, i), rbx); } } if (length > 0) { // Get hold of the elements array of the boilerplate and setup the // elements pointer in the resulting object. __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); __ lea(rdx, Operand(rax, JSArray::kSize)); __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx); // Copy the elements array. if (mode == FastCloneShallowArrayStub::CLONE_ELEMENTS) { for (int i = 0; i < elements_size; i += kPointerSize) { __ movq(rbx, FieldOperand(rcx, i)); __ movq(FieldOperand(rdx, i), rbx); } } else { ASSERT(mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS); int i; for (i = 0; i < FixedDoubleArray::kHeaderSize; i += kPointerSize) { __ movq(rbx, FieldOperand(rcx, i)); __ movq(FieldOperand(rdx, i), rbx); } while (i < elements_size) { __ movsd(xmm0, FieldOperand(rcx, i)); __ movsd(FieldOperand(rdx, i), xmm0); i += kDoubleSize; } ASSERT(i == elements_size); } } } void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [rsp + kPointerSize]: constant elements. // [rsp + (2 * kPointerSize)]: literal index. // [rsp + (3 * kPointerSize)]: literals array. // Load boilerplate object into rcx and check if we need to create a // boilerplate. __ movq(rcx, Operand(rsp, 3 * kPointerSize)); __ movq(rax, Operand(rsp, 2 * kPointerSize)); SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); __ movq(rcx, FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); Label slow_case; __ j(equal, &slow_case); FastCloneShallowArrayStub::Mode mode = mode_; // rcx is boilerplate object. Factory* factory = masm->isolate()->factory(); if (mode == CLONE_ANY_ELEMENTS) { Label double_elements, check_fast_elements; __ movq(rbx, FieldOperand(rcx, JSArray::kElementsOffset)); __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), factory->fixed_cow_array_map()); __ j(not_equal, &check_fast_elements); GenerateFastCloneShallowArrayCommon(masm, 0, COPY_ON_WRITE_ELEMENTS, &slow_case); __ ret(3 * kPointerSize); __ bind(&check_fast_elements); __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), factory->fixed_array_map()); __ j(not_equal, &double_elements); GenerateFastCloneShallowArrayCommon(masm, length_, CLONE_ELEMENTS, &slow_case); __ ret(3 * kPointerSize); __ bind(&double_elements); mode = CLONE_DOUBLE_ELEMENTS; // Fall through to generate the code to handle double elements. } if (FLAG_debug_code) { const char* message; Heap::RootListIndex expected_map_index; if (mode == CLONE_ELEMENTS) { message = "Expected (writable) fixed array"; expected_map_index = Heap::kFixedArrayMapRootIndex; } else if (mode == CLONE_DOUBLE_ELEMENTS) { message = "Expected (writable) fixed double array"; expected_map_index = Heap::kFixedDoubleArrayMapRootIndex; } else { ASSERT(mode == COPY_ON_WRITE_ELEMENTS); message = "Expected copy-on-write fixed array"; expected_map_index = Heap::kFixedCOWArrayMapRootIndex; } __ push(rcx); __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), expected_map_index); __ Assert(equal, message); __ pop(rcx); } GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case); __ ret(3 * kPointerSize); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); } void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [rsp + kPointerSize]: object literal flags. // [rsp + (2 * kPointerSize)]: constant properties. // [rsp + (3 * kPointerSize)]: literal index. // [rsp + (4 * kPointerSize)]: literals array. // Load boilerplate object into ecx and check if we need to create a // boilerplate. Label slow_case; __ movq(rcx, Operand(rsp, 4 * kPointerSize)); __ movq(rax, Operand(rsp, 3 * kPointerSize)); SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); __ movq(rcx, FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); __ j(equal, &slow_case); // Check that the boilerplate contains only fast properties and we can // statically determine the instance size. int size = JSObject::kHeaderSize + length_ * kPointerSize; __ movq(rax, FieldOperand(rcx, HeapObject::kMapOffset)); __ movzxbq(rax, FieldOperand(rax, Map::kInstanceSizeOffset)); __ cmpq(rax, Immediate(size >> kPointerSizeLog2)); __ j(not_equal, &slow_case); // Allocate the JS object and copy header together with all in-object // properties from the boilerplate. __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT); for (int i = 0; i < size; i += kPointerSize) { __ movq(rbx, FieldOperand(rcx, i)); __ movq(FieldOperand(rax, i), rbx); } // Return and remove the on-stack parameters. __ ret(4 * kPointerSize); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1); } // The stub expects its argument on the stack and returns its result in tos_: // zero for false, and a non-zero value for true. void ToBooleanStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. Label patch; const Register argument = rax; const Register map = rdx; if (!types_.IsEmpty()) { __ movq(argument, Operand(rsp, 1 * kPointerSize)); } // undefined -> false CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false); // Boolean -> its value CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false); CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true); // 'null' -> false. CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false); if (types_.Contains(SMI)) { // Smis: 0 -> false, all other -> true Label not_smi; __ JumpIfNotSmi(argument, ¬_smi, Label::kNear); // argument contains the correct return value already if (!tos_.is(argument)) { __ movq(tos_, argument); } __ ret(1 * kPointerSize); __ bind(¬_smi); } else if (types_.NeedsMap()) { // If we need a map later and have a Smi -> patch. __ JumpIfSmi(argument, &patch, Label::kNear); } if (types_.NeedsMap()) { __ movq(map, FieldOperand(argument, HeapObject::kMapOffset)); if (types_.CanBeUndetectable()) { __ testb(FieldOperand(map, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); // Undetectable -> false. Label not_undetectable; __ j(zero, ¬_undetectable, Label::kNear); __ Set(tos_, 0); __ ret(1 * kPointerSize); __ bind(¬_undetectable); } } if (types_.Contains(SPEC_OBJECT)) { // spec object -> true. Label not_js_object; __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE); __ j(below, ¬_js_object, Label::kNear); // argument contains the correct return value already. if (!tos_.is(argument)) { __ Set(tos_, 1); } __ ret(1 * kPointerSize); __ bind(¬_js_object); } if (types_.Contains(STRING)) { // String value -> false iff empty. Label not_string; __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); __ j(above_equal, ¬_string, Label::kNear); __ movq(tos_, FieldOperand(argument, String::kLengthOffset)); __ ret(1 * kPointerSize); // the string length is OK as the return value __ bind(¬_string); } if (types_.Contains(HEAP_NUMBER)) { // heap number -> false iff +0, -0, or NaN. Label not_heap_number, false_result; __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); __ j(not_equal, ¬_heap_number, Label::kNear); __ xorps(xmm0, xmm0); __ ucomisd(xmm0, FieldOperand(argument, HeapNumber::kValueOffset)); __ j(zero, &false_result, Label::kNear); // argument contains the correct return value already. if (!tos_.is(argument)) { __ Set(tos_, 1); } __ ret(1 * kPointerSize); __ bind(&false_result); __ Set(tos_, 0); __ ret(1 * kPointerSize); __ bind(¬_heap_number); } __ bind(&patch); GenerateTypeTransition(masm); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { __ PushCallerSaved(save_doubles_); const int argument_count = 1; __ PrepareCallCFunction(argument_count); #ifdef _WIN64 __ LoadAddress(rcx, ExternalReference::isolate_address()); #else __ LoadAddress(rdi, ExternalReference::isolate_address()); #endif AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::store_buffer_overflow_function(masm->isolate()), argument_count); __ PopCallerSaved(save_doubles_); __ ret(0); } void ToBooleanStub::CheckOddball(MacroAssembler* masm, Type type, Heap::RootListIndex value, bool result) { const Register argument = rax; if (types_.Contains(type)) { // If we see an expected oddball, return its ToBoolean value tos_. Label different_value; __ CompareRoot(argument, value); __ j(not_equal, &different_value, Label::kNear); if (!result) { // If we have to return zero, there is no way around clearing tos_. __ Set(tos_, 0); } else if (!tos_.is(argument)) { // If we have to return non-zero, we can re-use the argument if it is the // same register as the result, because we never see Smi-zero here. __ Set(tos_, 1); } __ ret(1 * kPointerSize); __ bind(&different_value); } } void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) { __ pop(rcx); // Get return address, operand is now on top of stack. __ Push(Smi::FromInt(tos_.code())); __ Push(Smi::FromInt(types_.ToByte())); __ push(rcx); // Push return address. // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()), 3, 1); } class FloatingPointHelper : public AllStatic { public: // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. // If the operands are not both numbers, jump to not_numbers. // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. // NumberOperands assumes both are smis or heap numbers. static void LoadSSE2SmiOperands(MacroAssembler* masm); static void LoadSSE2NumberOperands(MacroAssembler* masm); static void LoadSSE2UnknownOperands(MacroAssembler* masm, Label* not_numbers); // Takes the operands in rdx and rax and loads them as integers in rax // and rcx. static void LoadAsIntegers(MacroAssembler* masm, Label* operand_conversion_failure, Register heap_number_map); // As above, but we know the operands to be numbers. In that case, // conversion can't fail. static void LoadNumbersAsIntegers(MacroAssembler* masm); // Tries to convert two values to smis losslessly. // This fails if either argument is not a Smi nor a HeapNumber, // or if it's a HeapNumber with a value that can't be converted // losslessly to a Smi. In that case, control transitions to the // on_not_smis label. // On success, either control goes to the on_success label (if one is // provided), or it falls through at the end of the code (if on_success // is NULL). // On success, both first and second holds Smi tagged values. // One of first or second must be non-Smi when entering. static void NumbersToSmis(MacroAssembler* masm, Register first, Register second, Register scratch1, Register scratch2, Register scratch3, Label* on_success, Label* on_not_smis); }; // Get the integer part of a heap number. // Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx. void IntegerConvert(MacroAssembler* masm, Register result, Register source) { // Result may be rcx. If result and source are the same register, source will // be overwritten. ASSERT(!result.is(rdi) && !result.is(rbx)); // TODO(lrn): When type info reaches here, if value is a 32-bit integer, use // cvttsd2si (32-bit version) directly. Register double_exponent = rbx; Register double_value = rdi; Label done, exponent_63_plus; // Get double and extract exponent. __ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset)); // Clear result preemptively, in case we need to return zero. __ xorl(result, result); __ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there. // Double to remove sign bit, shift exponent down to least significant bits. // and subtract bias to get the unshifted, unbiased exponent. __ lea(double_exponent, Operand(double_value, double_value, times_1, 0)); __ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits)); __ subl(double_exponent, Immediate(HeapNumber::kExponentBias)); // Check whether the exponent is too big for a 63 bit unsigned integer. __ cmpl(double_exponent, Immediate(63)); __ j(above_equal, &exponent_63_plus, Label::kNear); // Handle exponent range 0..62. __ cvttsd2siq(result, xmm0); __ jmp(&done, Label::kNear); __ bind(&exponent_63_plus); // Exponent negative or 63+. __ cmpl(double_exponent, Immediate(83)); // If exponent negative or above 83, number contains no significant bits in // the range 0..2^31, so result is zero, and rcx already holds zero. __ j(above, &done, Label::kNear); // Exponent in rage 63..83. // Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely // the least significant exponent-52 bits. // Negate low bits of mantissa if value is negative. __ addq(double_value, double_value); // Move sign bit to carry. __ sbbl(result, result); // And convert carry to -1 in result register. // if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0. __ addl(double_value, result); // Do xor in opposite directions depending on where we want the result // (depending on whether result is rcx or not). if (result.is(rcx)) { __ xorl(double_value, result); // Left shift mantissa by (exponent - mantissabits - 1) to save the // bits that have positional values below 2^32 (the extra -1 comes from the // doubling done above to move the sign bit into the carry flag). __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); __ shll_cl(double_value); __ movl(result, double_value); } else { // As the then-branch, but move double-value to result before shifting. __ xorl(result, double_value); __ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1)); __ shll_cl(result); } __ bind(&done); } void UnaryOpStub::Generate(MacroAssembler* masm) { switch (operand_type_) { case UnaryOpIC::UNINITIALIZED: GenerateTypeTransition(masm); break; case UnaryOpIC::SMI: GenerateSmiStub(masm); break; case UnaryOpIC::HEAP_NUMBER: GenerateHeapNumberStub(masm); break; case UnaryOpIC::GENERIC: GenerateGenericStub(masm); break; } } void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { __ pop(rcx); // Save return address. __ push(rax); // the operand __ Push(Smi::FromInt(op_)); __ Push(Smi::FromInt(mode_)); __ Push(Smi::FromInt(operand_type_)); __ push(rcx); // Push return address. // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateSmiStubSub(masm); break; case Token::BIT_NOT: GenerateSmiStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) { Label slow; GenerateSmiCodeSub(masm, &slow, &slow, Label::kNear, Label::kNear); __ bind(&slow); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) { Label non_smi; GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear); __ bind(&non_smi); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm, Label* non_smi, Label* slow, Label::Distance non_smi_near, Label::Distance slow_near) { Label done; __ JumpIfNotSmi(rax, non_smi, non_smi_near); __ SmiNeg(rax, rax, &done, Label::kNear); __ jmp(slow, slow_near); __ bind(&done); __ ret(0); } void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm, Label* non_smi, Label::Distance non_smi_near) { __ JumpIfNotSmi(rax, non_smi, non_smi_near); __ SmiNot(rax, rax); __ ret(0); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateHeapNumberStubSub(masm); break; case Token::BIT_NOT: GenerateHeapNumberStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) { Label non_smi, slow, call_builtin; GenerateSmiCodeSub(masm, &non_smi, &call_builtin, Label::kNear); __ bind(&non_smi); GenerateHeapNumberCodeSub(masm, &slow); __ bind(&slow); GenerateTypeTransition(masm); __ bind(&call_builtin); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateHeapNumberStubBitNot( MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear); __ bind(&non_smi); GenerateHeapNumberCodeBitNot(masm, &slow); __ bind(&slow); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow) { // Check if the operand is a heap number. __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, slow); // Operand is a float, negate its value by flipping the sign bit. if (mode_ == UNARY_OVERWRITE) { __ Set(kScratchRegister, 0x01); __ shl(kScratchRegister, Immediate(63)); __ xor_(FieldOperand(rax, HeapNumber::kValueOffset), kScratchRegister); } else { // Allocate a heap number before calculating the answer, // so we don't have an untagged double around during GC. Label slow_allocate_heapnumber, heapnumber_allocated; __ AllocateHeapNumber(rcx, rbx, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(rax); __ CallRuntime(Runtime::kNumberAlloc, 0); __ movq(rcx, rax); __ pop(rax); } __ bind(&heapnumber_allocated); // rcx: allocated 'empty' number // Copy the double value to the new heap number, flipping the sign. __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset)); __ Set(kScratchRegister, 0x01); __ shl(kScratchRegister, Immediate(63)); __ xor_(rdx, kScratchRegister); // Flip sign. __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx); __ movq(rax, rcx); } __ ret(0); } void UnaryOpStub::GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow) { // Check if the operand is a heap number. __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, slow); // Convert the heap number in rax to an untagged integer in rcx. IntegerConvert(masm, rax, rax); // Do the bitwise operation and smi tag the result. __ notl(rax); __ Integer32ToSmi(rax, rax); __ ret(0); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateGenericStubSub(masm); break; case Token::BIT_NOT: GenerateGenericStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeSub(masm, &non_smi, &slow, Label::kNear); __ bind(&non_smi); GenerateHeapNumberCodeSub(masm, &slow); __ bind(&slow); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear); __ bind(&non_smi); GenerateHeapNumberCodeBitNot(masm, &slow); __ bind(&slow); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) { // Handle the slow case by jumping to the JavaScript builtin. __ pop(rcx); // pop return address __ push(rax); __ push(rcx); // push return address switch (op_) { case Token::SUB: __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); break; case Token::BIT_NOT: __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void UnaryOpStub::PrintName(StringStream* stream) { const char* op_name = Token::Name(op_); const char* overwrite_name = NULL; // Make g++ happy. switch (mode_) { case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break; case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break; } stream->Add("UnaryOpStub_%s_%s_%s", op_name, overwrite_name, UnaryOpIC::GetName(operand_type_)); } void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { __ pop(rcx); // Save return address. __ push(rdx); __ push(rax); // Left and right arguments are now on top. // Push this stub's key. Although the operation and the type info are // encoded into the key, the encoding is opaque, so push them too. __ Push(Smi::FromInt(MinorKey())); __ Push(Smi::FromInt(op_)); __ Push(Smi::FromInt(operands_type_)); __ push(rcx); // Push return address. // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kBinaryOp_Patch), masm->isolate()), 5, 1); } void BinaryOpStub::Generate(MacroAssembler* masm) { // Explicitly allow generation of nested stubs. It is safe here because // generation code does not use any raw pointers. AllowStubCallsScope allow_stub_calls(masm, true); switch (operands_type_) { case BinaryOpIC::UNINITIALIZED: GenerateTypeTransition(masm); break; case BinaryOpIC::SMI: GenerateSmiStub(masm); break; case BinaryOpIC::INT32: UNREACHABLE(); // The int32 case is identical to the Smi case. We avoid creating this // ic state on x64. break; case BinaryOpIC::HEAP_NUMBER: GenerateHeapNumberStub(masm); break; case BinaryOpIC::ODDBALL: GenerateOddballStub(masm); break; case BinaryOpIC::BOTH_STRING: GenerateBothStringStub(masm); break; case BinaryOpIC::STRING: GenerateStringStub(masm); break; case BinaryOpIC::GENERIC: GenerateGeneric(masm); break; default: UNREACHABLE(); } } void BinaryOpStub::PrintName(StringStream* stream) { const char* op_name = Token::Name(op_); const char* overwrite_name; switch (mode_) { case NO_OVERWRITE: overwrite_name = "Alloc"; break; case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; default: overwrite_name = "UnknownOverwrite"; break; } stream->Add("BinaryOpStub_%s_%s_%s", op_name, overwrite_name, BinaryOpIC::GetName(operands_type_)); } void BinaryOpStub::GenerateSmiCode( MacroAssembler* masm, Label* slow, SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { // Arguments to BinaryOpStub are in rdx and rax. Register left = rdx; Register right = rax; // We only generate heapnumber answers for overflowing calculations // for the four basic arithmetic operations and logical right shift by 0. bool generate_inline_heapnumber_results = (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) && (op_ == Token::ADD || op_ == Token::SUB || op_ == Token::MUL || op_ == Token::DIV || op_ == Token::SHR); // Smi check of both operands. If op is BIT_OR, the check is delayed // until after the OR operation. Label not_smis; Label use_fp_on_smis; Label fail; if (op_ != Token::BIT_OR) { Comment smi_check_comment(masm, "-- Smi check arguments"); __ JumpIfNotBothSmi(left, right, ¬_smis); } Label smi_values; __ bind(&smi_values); // Perform the operation. Comment perform_smi(masm, "-- Perform smi operation"); switch (op_) { case Token::ADD: ASSERT(right.is(rax)); __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative. break; case Token::SUB: __ SmiSub(left, left, right, &use_fp_on_smis); __ movq(rax, left); break; case Token::MUL: ASSERT(right.is(rax)); __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative. break; case Token::DIV: // SmiDiv will not accept left in rdx or right in rax. left = rcx; right = rbx; __ movq(rbx, rax); __ movq(rcx, rdx); __ SmiDiv(rax, left, right, &use_fp_on_smis); break; case Token::MOD: // SmiMod will not accept left in rdx or right in rax. left = rcx; right = rbx; __ movq(rbx, rax); __ movq(rcx, rdx); __ SmiMod(rax, left, right, &use_fp_on_smis); break; case Token::BIT_OR: { ASSERT(right.is(rax)); __ SmiOrIfSmis(right, right, left, ¬_smis); // BIT_OR is commutative. break; } case Token::BIT_XOR: ASSERT(right.is(rax)); __ SmiXor(right, right, left); // BIT_XOR is commutative. break; case Token::BIT_AND: ASSERT(right.is(rax)); __ SmiAnd(right, right, left); // BIT_AND is commutative. break; case Token::SHL: __ SmiShiftLeft(left, left, right); __ movq(rax, left); break; case Token::SAR: __ SmiShiftArithmeticRight(left, left, right); __ movq(rax, left); break; case Token::SHR: __ SmiShiftLogicalRight(left, left, right, &use_fp_on_smis); __ movq(rax, left); break; default: UNREACHABLE(); } // 5. Emit return of result in rax. Some operations have registers pushed. __ ret(0); if (use_fp_on_smis.is_linked()) { // 6. For some operations emit inline code to perform floating point // operations on known smis (e.g., if the result of the operation // overflowed the smi range). __ bind(&use_fp_on_smis); if (op_ == Token::DIV || op_ == Token::MOD) { // Restore left and right to rdx and rax. __ movq(rdx, rcx); __ movq(rax, rbx); } if (generate_inline_heapnumber_results) { __ AllocateHeapNumber(rcx, rbx, slow); Comment perform_float(masm, "-- Perform float operation on smis"); if (op_ == Token::SHR) { __ SmiToInteger32(left, left); __ cvtqsi2sd(xmm0, left); } else { FloatingPointHelper::LoadSSE2SmiOperands(masm); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } } __ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0); __ movq(rax, rcx); __ ret(0); } else { __ jmp(&fail); } } // 7. Non-smi operands reach the end of the code generated by // GenerateSmiCode, and fall through to subsequent code, // with the operands in rdx and rax. // But first we check if non-smi values are HeapNumbers holding // values that could be smi. __ bind(¬_smis); Comment done_comment(masm, "-- Enter non-smi code"); FloatingPointHelper::NumbersToSmis(masm, left, right, rbx, rdi, rcx, &smi_values, &fail); __ jmp(&smi_values); __ bind(&fail); } void BinaryOpStub::GenerateFloatingPointCode(MacroAssembler* masm, Label* allocation_failure, Label* non_numeric_failure) { switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { FloatingPointHelper::LoadSSE2UnknownOperands(masm, non_numeric_failure); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } GenerateHeapResultAllocation(masm, allocation_failure); __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); __ ret(0); break; } case Token::MOD: { // For MOD we jump to the allocation_failure label, to call runtime. __ jmp(allocation_failure); break; } case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: { Label non_smi_shr_result; Register heap_number_map = r9; __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); FloatingPointHelper::LoadAsIntegers(masm, non_numeric_failure, heap_number_map); switch (op_) { case Token::BIT_OR: __ orl(rax, rcx); break; case Token::BIT_AND: __ andl(rax, rcx); break; case Token::BIT_XOR: __ xorl(rax, rcx); break; case Token::SAR: __ sarl_cl(rax); break; case Token::SHL: __ shll_cl(rax); break; case Token::SHR: { __ shrl_cl(rax); // Check if result is negative. This can only happen for a shift // by zero. __ testl(rax, rax); __ j(negative, &non_smi_shr_result); break; } default: UNREACHABLE(); } STATIC_ASSERT(kSmiValueSize == 32); // Tag smi result and return. __ Integer32ToSmi(rax, rax); __ Ret(); // Logical shift right can produce an unsigned int32 that is not // an int32, and so is not in the smi range. Allocate a heap number // in that case. if (op_ == Token::SHR) { __ bind(&non_smi_shr_result); Label allocation_failed; __ movl(rbx, rax); // rbx holds result value (uint32 value as int64). // Allocate heap number in new space. // Not using AllocateHeapNumber macro in order to reuse // already loaded heap_number_map. __ AllocateInNewSpace(HeapNumber::kSize, rax, rdx, no_reg, &allocation_failed, TAG_OBJECT); // Set the map. if (FLAG_debug_code) { __ AbortIfNotRootValue(heap_number_map, Heap::kHeapNumberMapRootIndex, "HeapNumberMap register clobbered."); } __ movq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); __ cvtqsi2sd(xmm0, rbx); __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); __ Ret(); __ bind(&allocation_failed); // We need tagged values in rdx and rax for the following code, // not int32 in rax and rcx. __ Integer32ToSmi(rax, rcx); __ Integer32ToSmi(rdx, rbx); __ jmp(allocation_failure); } break; } default: UNREACHABLE(); break; } // No fall-through from this generated code. if (FLAG_debug_code) { __ Abort("Unexpected fall-through in " "BinaryStub::GenerateFloatingPointCode."); } } void BinaryOpStub::GenerateStringAddCode(MacroAssembler* masm) { ASSERT(op_ == Token::ADD); Label left_not_string, call_runtime; // Registers containing left and right operands respectively. Register left = rdx; Register right = rax; // Test if left operand is a string. __ JumpIfSmi(left, &left_not_string, Label::kNear); __ CmpObjectType(left, FIRST_NONSTRING_TYPE, rcx); __ j(above_equal, &left_not_string, Label::kNear); StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_left_stub); // Left operand is not a string, test right. __ bind(&left_not_string); __ JumpIfSmi(right, &call_runtime, Label::kNear); __ CmpObjectType(right, FIRST_NONSTRING_TYPE, rcx); __ j(above_equal, &call_runtime, Label::kNear); StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_right_stub); // Neither argument is a string. __ bind(&call_runtime); } void BinaryOpStub::GenerateCallRuntimeCode(MacroAssembler* masm) { GenerateRegisterArgsPush(masm); switch (op_) { case Token::ADD: __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); break; case Token::SUB: __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); break; case Token::MUL: __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); break; case Token::DIV: __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); break; case Token::MOD: __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); break; case Token::BIT_OR: __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); break; case Token::BIT_AND: __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); break; case Token::BIT_XOR: __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); break; case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); break; case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); break; case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { Label call_runtime; if (result_type_ == BinaryOpIC::UNINITIALIZED || result_type_ == BinaryOpIC::SMI) { // Only allow smi results. GenerateSmiCode(masm, NULL, NO_HEAPNUMBER_RESULTS); } else { // Allow heap number result and don't make a transition if a heap number // cannot be allocated. GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); } // Code falls through if the result is not returned as either a smi or heap // number. GenerateTypeTransition(masm); if (call_runtime.is_linked()) { __ bind(&call_runtime); GenerateCallRuntimeCode(masm); } } void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) { ASSERT(operands_type_ == BinaryOpIC::STRING); ASSERT(op_ == Token::ADD); GenerateStringAddCode(masm); // Try to add arguments as strings, otherwise, transition to the generic // BinaryOpIC type. GenerateTypeTransition(masm); } void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) { Label call_runtime; ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING); ASSERT(op_ == Token::ADD); // If both arguments are strings, call the string add stub. // Otherwise, do a transition. // Registers containing left and right operands respectively. Register left = rdx; Register right = rax; // Test if left operand is a string. __ JumpIfSmi(left, &call_runtime); __ CmpObjectType(left, FIRST_NONSTRING_TYPE, rcx); __ j(above_equal, &call_runtime); // Test if right operand is a string. __ JumpIfSmi(right, &call_runtime); __ CmpObjectType(right, FIRST_NONSTRING_TYPE, rcx); __ j(above_equal, &call_runtime); StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_stub); __ bind(&call_runtime); GenerateTypeTransition(masm); } void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { Label call_runtime; if (op_ == Token::ADD) { // Handle string addition here, because it is the only operation // that does not do a ToNumber conversion on the operands. GenerateStringAddCode(masm); } // Convert oddball arguments to numbers. Label check, done; __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &check, Label::kNear); if (Token::IsBitOp(op_)) { __ xor_(rdx, rdx); } else { __ LoadRoot(rdx, Heap::kNanValueRootIndex); } __ jmp(&done, Label::kNear); __ bind(&check); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(not_equal, &done, Label::kNear); if (Token::IsBitOp(op_)) { __ xor_(rax, rax); } else { __ LoadRoot(rax, Heap::kNanValueRootIndex); } __ bind(&done); GenerateHeapNumberStub(masm); } void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { Label gc_required, not_number; GenerateFloatingPointCode(masm, &gc_required, ¬_number); __ bind(¬_number); GenerateTypeTransition(masm); __ bind(&gc_required); GenerateCallRuntimeCode(masm); } void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) { Label call_runtime, call_string_add_or_runtime; GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); GenerateFloatingPointCode(masm, &call_runtime, &call_string_add_or_runtime); __ bind(&call_string_add_or_runtime); if (op_ == Token::ADD) { GenerateStringAddCode(masm); } __ bind(&call_runtime); GenerateCallRuntimeCode(masm); } void BinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm, Label* alloc_failure) { Label skip_allocation; OverwriteMode mode = mode_; switch (mode) { case OVERWRITE_LEFT: { // If the argument in rdx is already an object, we skip the // allocation of a heap number. __ JumpIfNotSmi(rdx, &skip_allocation); // Allocate a heap number for the result. Keep eax and edx intact // for the possible runtime call. __ AllocateHeapNumber(rbx, rcx, alloc_failure); // Now rdx can be overwritten losing one of the arguments as we are // now done and will not need it any more. __ movq(rdx, rbx); __ bind(&skip_allocation); // Use object in rdx as a result holder __ movq(rax, rdx); break; } case OVERWRITE_RIGHT: // If the argument in rax is already an object, we skip the // allocation of a heap number. __ JumpIfNotSmi(rax, &skip_allocation); // Fall through! case NO_OVERWRITE: // Allocate a heap number for the result. Keep rax and rdx intact // for the possible runtime call. __ AllocateHeapNumber(rbx, rcx, alloc_failure); // Now rax can be overwritten losing one of the arguments as we are // now done and will not need it any more. __ movq(rax, rbx); __ bind(&skip_allocation); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { __ pop(rcx); __ push(rdx); __ push(rax); __ push(rcx); } void TranscendentalCacheStub::Generate(MacroAssembler* masm) { // TAGGED case: // Input: // rsp[8]: argument (should be number). // rsp[0]: return address. // Output: // rax: tagged double result. // UNTAGGED case: // Input:: // rsp[0]: return address. // xmm1: untagged double input argument // Output: // xmm1: untagged double result. Label runtime_call; Label runtime_call_clear_stack; Label skip_cache; const bool tagged = (argument_type_ == TAGGED); if (tagged) { Label input_not_smi, loaded; // Test that rax is a number. __ movq(rax, Operand(rsp, kPointerSize)); __ JumpIfNotSmi(rax, &input_not_smi, Label::kNear); // Input is a smi. Untag and load it onto the FPU stack. // Then load the bits of the double into rbx. __ SmiToInteger32(rax, rax); __ subq(rsp, Immediate(kDoubleSize)); __ cvtlsi2sd(xmm1, rax); __ movsd(Operand(rsp, 0), xmm1); __ movq(rbx, xmm1); __ movq(rdx, xmm1); __ fld_d(Operand(rsp, 0)); __ addq(rsp, Immediate(kDoubleSize)); __ jmp(&loaded, Label::kNear); __ bind(&input_not_smi); // Check if input is a HeapNumber. __ LoadRoot(rbx, Heap::kHeapNumberMapRootIndex); __ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ j(not_equal, &runtime_call); // Input is a HeapNumber. Push it on the FPU stack and load its // bits into rbx. __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset)); __ movq(rdx, rbx); __ bind(&loaded); } else { // UNTAGGED. __ movq(rbx, xmm1); __ movq(rdx, xmm1); } // ST[0] == double value, if TAGGED. // rbx = bits of double value. // rdx = also bits of double value. // Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic): // h = h0 = bits ^ (bits >> 32); // h ^= h >> 16; // h ^= h >> 8; // h = h & (cacheSize - 1); // or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1) __ sar(rdx, Immediate(32)); __ xorl(rdx, rbx); __ movl(rcx, rdx); __ movl(rax, rdx); __ movl(rdi, rdx); __ sarl(rdx, Immediate(8)); __ sarl(rcx, Immediate(16)); __ sarl(rax, Immediate(24)); __ xorl(rcx, rdx); __ xorl(rax, rdi); __ xorl(rcx, rax); ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); __ andl(rcx, Immediate(TranscendentalCache::SubCache::kCacheSize - 1)); // ST[0] == double value. // rbx = bits of double value. // rcx = TranscendentalCache::hash(double value). ExternalReference cache_array = ExternalReference::transcendental_cache_array_address(masm->isolate()); __ movq(rax, cache_array); int cache_array_index = type_ * sizeof(Isolate::Current()->transcendental_cache()->caches_[0]); __ movq(rax, Operand(rax, cache_array_index)); // rax points to the cache for the type type_. // If NULL, the cache hasn't been initialized yet, so go through runtime. __ testq(rax, rax); __ j(zero, &runtime_call_clear_stack); // Only clears stack if TAGGED. #ifdef DEBUG // Check that the layout of cache elements match expectations. { // NOLINT - doesn't like a single brace on a line. TranscendentalCache::SubCache::Element test_elem[2]; char* elem_start = reinterpret_cast<char*>(&test_elem[0]); char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); // Two uint_32's and a pointer per element. CHECK_EQ(16, static_cast<int>(elem2_start - elem_start)); CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start)); CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start)); CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start)); } #endif // Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16]. __ addl(rcx, rcx); __ lea(rcx, Operand(rax, rcx, times_8, 0)); // Check if cache matches: Double value is stored in uint32_t[2] array. Label cache_miss; __ cmpq(rbx, Operand(rcx, 0)); __ j(not_equal, &cache_miss, Label::kNear); // Cache hit! Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->transcendental_cache_hit(), 1); __ movq(rax, Operand(rcx, 2 * kIntSize)); if (tagged) { __ fstp(0); // Clear FPU stack. __ ret(kPointerSize); } else { // UNTAGGED. __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); __ Ret(); } __ bind(&cache_miss); __ IncrementCounter(counters->transcendental_cache_miss(), 1); // Update cache with new value. if (tagged) { __ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack); } else { // UNTAGGED. __ AllocateHeapNumber(rax, rdi, &skip_cache); __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1); __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); } GenerateOperation(masm, type_); __ movq(Operand(rcx, 0), rbx); __ movq(Operand(rcx, 2 * kIntSize), rax); __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); if (tagged) { __ ret(kPointerSize); } else { // UNTAGGED. __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); __ Ret(); // Skip cache and return answer directly, only in untagged case. __ bind(&skip_cache); __ subq(rsp, Immediate(kDoubleSize)); __ movsd(Operand(rsp, 0), xmm1); __ fld_d(Operand(rsp, 0)); GenerateOperation(masm, type_); __ fstp_d(Operand(rsp, 0)); __ movsd(xmm1, Operand(rsp, 0)); __ addq(rsp, Immediate(kDoubleSize)); // We return the value in xmm1 without adding it to the cache, but // we cause a scavenging GC so that future allocations will succeed. { FrameScope scope(masm, StackFrame::INTERNAL); // Allocate an unused object bigger than a HeapNumber. __ Push(Smi::FromInt(2 * kDoubleSize)); __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); } __ Ret(); } // Call runtime, doing whatever allocation and cleanup is necessary. if (tagged) { __ bind(&runtime_call_clear_stack); __ fstp(0); __ bind(&runtime_call); __ TailCallExternalReference( ExternalReference(RuntimeFunction(), masm->isolate()), 1, 1); } else { // UNTAGGED. __ bind(&runtime_call_clear_stack); __ bind(&runtime_call); __ AllocateHeapNumber(rax, rdi, &skip_cache); __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm1); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(rax); __ CallRuntime(RuntimeFunction(), 1); } __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); __ Ret(); } } Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { switch (type_) { // Add more cases when necessary. case TranscendentalCache::SIN: return Runtime::kMath_sin; case TranscendentalCache::COS: return Runtime::kMath_cos; case TranscendentalCache::TAN: return Runtime::kMath_tan; case TranscendentalCache::LOG: return Runtime::kMath_log; default: UNIMPLEMENTED(); return Runtime::kAbort; } } void TranscendentalCacheStub::GenerateOperation( MacroAssembler* masm, TranscendentalCache::Type type) { // Registers: // rax: Newly allocated HeapNumber, which must be preserved. // rbx: Bits of input double. Must be preserved. // rcx: Pointer to cache entry. Must be preserved. // st(0): Input double Label done; if (type == TranscendentalCache::SIN || type == TranscendentalCache::COS || type == TranscendentalCache::TAN) { // Both fsin and fcos require arguments in the range +/-2^63 and // return NaN for infinities and NaN. They can share all code except // the actual fsin/fcos operation. Label in_range; // If argument is outside the range -2^63..2^63, fsin/cos doesn't // work. We must reduce it to the appropriate range. __ movq(rdi, rbx); // Move exponent and sign bits to low bits. __ shr(rdi, Immediate(HeapNumber::kMantissaBits)); // Remove sign bit. __ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1)); int supported_exponent_limit = (63 + HeapNumber::kExponentBias); __ cmpl(rdi, Immediate(supported_exponent_limit)); __ j(below, &in_range); // Check for infinity and NaN. Both return NaN for sin. __ cmpl(rdi, Immediate(0x7ff)); Label non_nan_result; __ j(not_equal, &non_nan_result, Label::kNear); // Input is +/-Infinity or NaN. Result is NaN. __ fstp(0); // NaN is represented by 0x7ff8000000000000. __ subq(rsp, Immediate(kPointerSize)); __ movl(Operand(rsp, 4), Immediate(0x7ff80000)); __ movl(Operand(rsp, 0), Immediate(0x00000000)); __ fld_d(Operand(rsp, 0)); __ addq(rsp, Immediate(kPointerSize)); __ jmp(&done); __ bind(&non_nan_result); // Use fpmod to restrict argument to the range +/-2*PI. __ movq(rdi, rax); // Save rax before using fnstsw_ax. __ fldpi(); __ fadd(0); __ fld(1); // FPU Stack: input, 2*pi, input. { Label no_exceptions; __ fwait(); __ fnstsw_ax(); // Clear if Illegal Operand or Zero Division exceptions are set. __ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word. __ j(zero, &no_exceptions); __ fnclex(); __ bind(&no_exceptions); } // Compute st(0) % st(1) { Label partial_remainder_loop; __ bind(&partial_remainder_loop); __ fprem1(); __ fwait(); __ fnstsw_ax(); __ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word. // If C2 is set, computation only has partial result. Loop to // continue computation. __ j(not_zero, &partial_remainder_loop); } // FPU Stack: input, 2*pi, input % 2*pi __ fstp(2); // FPU Stack: input % 2*pi, 2*pi, __ fstp(0); // FPU Stack: input % 2*pi __ movq(rax, rdi); // Restore rax, pointer to the new HeapNumber. __ bind(&in_range); switch (type) { case TranscendentalCache::SIN: __ fsin(); break; case TranscendentalCache::COS: __ fcos(); break; case TranscendentalCache::TAN: // FPTAN calculates tangent onto st(0) and pushes 1.0 onto the // FP register stack. __ fptan(); __ fstp(0); // Pop FP register stack. break; default: UNREACHABLE(); } __ bind(&done); } else { ASSERT(type == TranscendentalCache::LOG); __ fldln2(); __ fxch(); __ fyl2x(); } } // Input: rdx, rax are the left and right objects of a bit op. // Output: rax, rcx are left and right integers for a bit op. void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) { // Check float operands. Label done; Label rax_is_smi; Label rax_is_object; Label rdx_is_object; __ JumpIfNotSmi(rdx, &rdx_is_object); __ SmiToInteger32(rdx, rdx); __ JumpIfSmi(rax, &rax_is_smi); __ bind(&rax_is_object); IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx. __ jmp(&done); __ bind(&rdx_is_object); IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx. __ JumpIfNotSmi(rax, &rax_is_object); __ bind(&rax_is_smi); __ SmiToInteger32(rcx, rax); __ bind(&done); __ movl(rax, rdx); } // Input: rdx, rax are the left and right objects of a bit op. // Output: rax, rcx are left and right integers for a bit op. // Jump to conversion_failure: rdx and rax are unchanged. void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, Label* conversion_failure, Register heap_number_map) { // Check float operands. Label arg1_is_object, check_undefined_arg1; Label arg2_is_object, check_undefined_arg2; Label load_arg2, done; __ JumpIfNotSmi(rdx, &arg1_is_object); __ SmiToInteger32(r8, rdx); __ jmp(&load_arg2); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg1); __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(not_equal, conversion_failure); __ Set(r8, 0); __ jmp(&load_arg2); __ bind(&arg1_is_object); __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map); __ j(not_equal, &check_undefined_arg1); // Get the untagged integer version of the rdx heap number in rcx. IntegerConvert(masm, r8, rdx); // Here r8 has the untagged integer, rax has a Smi or a heap number. __ bind(&load_arg2); // Test if arg2 is a Smi. __ JumpIfNotSmi(rax, &arg2_is_object); __ SmiToInteger32(rcx, rax); __ jmp(&done); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg2); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(not_equal, conversion_failure); __ Set(rcx, 0); __ jmp(&done); __ bind(&arg2_is_object); __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); __ j(not_equal, &check_undefined_arg2); // Get the untagged integer version of the rax heap number in rcx. IntegerConvert(masm, rcx, rax); __ bind(&done); __ movl(rax, r8); } void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) { __ SmiToInteger32(kScratchRegister, rdx); __ cvtlsi2sd(xmm0, kScratchRegister); __ SmiToInteger32(kScratchRegister, rax); __ cvtlsi2sd(xmm1, kScratchRegister); } void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) { Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done; // Load operand in rdx into xmm0. __ JumpIfSmi(rdx, &load_smi_rdx); __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); // Load operand in rax into xmm1. __ JumpIfSmi(rax, &load_smi_rax); __ bind(&load_nonsmi_rax); __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi_rdx); __ SmiToInteger32(kScratchRegister, rdx); __ cvtlsi2sd(xmm0, kScratchRegister); __ JumpIfNotSmi(rax, &load_nonsmi_rax); __ bind(&load_smi_rax); __ SmiToInteger32(kScratchRegister, rax); __ cvtlsi2sd(xmm1, kScratchRegister); __ bind(&done); } void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, Label* not_numbers) { Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; // Load operand in rdx into xmm0, or branch to not_numbers. __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); __ JumpIfSmi(rdx, &load_smi_rdx); __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx); __ j(not_equal, not_numbers); // Argument in rdx is not a number. __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); // Load operand in rax into xmm1, or branch to not_numbers. __ JumpIfSmi(rax, &load_smi_rax); __ bind(&load_nonsmi_rax); __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx); __ j(not_equal, not_numbers); __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi_rdx); __ SmiToInteger32(kScratchRegister, rdx); __ cvtlsi2sd(xmm0, kScratchRegister); __ JumpIfNotSmi(rax, &load_nonsmi_rax); __ bind(&load_smi_rax); __ SmiToInteger32(kScratchRegister, rax); __ cvtlsi2sd(xmm1, kScratchRegister); __ bind(&done); } void FloatingPointHelper::NumbersToSmis(MacroAssembler* masm, Register first, Register second, Register scratch1, Register scratch2, Register scratch3, Label* on_success, Label* on_not_smis) { Register heap_number_map = scratch3; Register smi_result = scratch1; Label done; __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); Label first_smi; __ JumpIfSmi(first, &first_smi, Label::kNear); __ cmpq(FieldOperand(first, HeapObject::kMapOffset), heap_number_map); __ j(not_equal, on_not_smis); // Convert HeapNumber to smi if possible. __ movsd(xmm0, FieldOperand(first, HeapNumber::kValueOffset)); __ movq(scratch2, xmm0); __ cvttsd2siq(smi_result, xmm0); // Check if conversion was successful by converting back and // comparing to the original double's bits. __ cvtlsi2sd(xmm1, smi_result); __ movq(kScratchRegister, xmm1); __ cmpq(scratch2, kScratchRegister); __ j(not_equal, on_not_smis); __ Integer32ToSmi(first, smi_result); __ JumpIfSmi(second, (on_success != NULL) ? on_success : &done); __ bind(&first_smi); if (FLAG_debug_code) { // Second should be non-smi if we get here. __ AbortIfSmi(second); } __ cmpq(FieldOperand(second, HeapObject::kMapOffset), heap_number_map); __ j(not_equal, on_not_smis); // Convert second to smi, if possible. __ movsd(xmm0, FieldOperand(second, HeapNumber::kValueOffset)); __ movq(scratch2, xmm0); __ cvttsd2siq(smi_result, xmm0); __ cvtlsi2sd(xmm1, smi_result); __ movq(kScratchRegister, xmm1); __ cmpq(scratch2, kScratchRegister); __ j(not_equal, on_not_smis); __ Integer32ToSmi(second, smi_result); if (on_success != NULL) { __ jmp(on_success); } else { __ bind(&done); } } void MathPowStub::Generate(MacroAssembler* masm) { // Choose register conforming to calling convention (when bailing out). #ifdef _WIN64 const Register exponent = rdx; #else const Register exponent = rdi; #endif const Register base = rax; const Register scratch = rcx; const XMMRegister double_result = xmm3; const XMMRegister double_base = xmm2; const XMMRegister double_exponent = xmm1; const XMMRegister double_scratch = xmm4; Label call_runtime, done, exponent_not_smi, int_exponent; // Save 1 in double_result - we need this several times later on. __ movq(scratch, Immediate(1)); __ cvtlsi2sd(double_result, scratch); if (exponent_type_ == ON_STACK) { Label base_is_smi, unpack_exponent; // The exponent and base are supplied as arguments on the stack. // This can only happen if the stub is called from non-optimized code. // Load input parameters from stack. __ movq(base, Operand(rsp, 2 * kPointerSize)); __ movq(exponent, Operand(rsp, 1 * kPointerSize)); __ JumpIfSmi(base, &base_is_smi, Label::kNear); __ CompareRoot(FieldOperand(base, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &call_runtime); __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset)); __ jmp(&unpack_exponent, Label::kNear); __ bind(&base_is_smi); __ SmiToInteger32(base, base); __ cvtlsi2sd(double_base, base); __ bind(&unpack_exponent); __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); __ SmiToInteger32(exponent, exponent); __ jmp(&int_exponent); __ bind(&exponent_not_smi); __ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(not_equal, &call_runtime); __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); } else if (exponent_type_ == TAGGED) { __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); __ SmiToInteger32(exponent, exponent); __ jmp(&int_exponent); __ bind(&exponent_not_smi); __ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type_ != INTEGER) { Label fast_power; // Detect integer exponents stored as double. __ cvttsd2si(exponent, double_exponent); // Skip to runtime if possibly NaN (indicated by the indefinite integer). __ cmpl(exponent, Immediate(0x80000000u)); __ j(equal, &call_runtime); __ cvtlsi2sd(double_scratch, exponent); // Already ruled out NaNs for exponent. __ ucomisd(double_exponent, double_scratch); __ j(equal, &int_exponent); if (exponent_type_ == ON_STACK) { // Detect square root case. Crankshaft detects constant +/-0.5 at // compile time and uses DoMathPowHalf instead. We then skip this check // for non-constant cases of +/-0.5 as these hardly occur. Label continue_sqrt, continue_rsqrt, not_plus_half; // Test for 0.5. // Load double_scratch with 0.5. __ movq(scratch, V8_UINT64_C(0x3FE0000000000000), RelocInfo::NONE); __ movq(double_scratch, scratch); // Already ruled out NaNs for exponent. __ ucomisd(double_scratch, double_exponent); __ j(not_equal, ¬_plus_half, Label::kNear); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). // According to IEEE-754, double-precision -Infinity has the highest // 12 bits set and the lowest 52 bits cleared. __ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE); __ movq(double_scratch, scratch); __ ucomisd(double_scratch, double_base); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &continue_sqrt, Label::kNear); __ j(carry, &continue_sqrt, Label::kNear); // Set result to Infinity in the special case. __ xorps(double_result, double_result); __ subsd(double_result, double_scratch); __ jmp(&done); __ bind(&continue_sqrt); // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorps(double_scratch, double_scratch); __ addsd(double_scratch, double_base); // Convert -0 to 0. __ sqrtsd(double_result, double_scratch); __ jmp(&done); // Test for -0.5. __ bind(¬_plus_half); // Load double_scratch with -0.5 by substracting 1. __ subsd(double_scratch, double_result); // Already ruled out NaNs for exponent. __ ucomisd(double_scratch, double_exponent); __ j(not_equal, &fast_power, Label::kNear); // Calculates reciprocal of square root of base. Check for the special // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). // According to IEEE-754, double-precision -Infinity has the highest // 12 bits set and the lowest 52 bits cleared. __ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE); __ movq(double_scratch, scratch); __ ucomisd(double_scratch, double_base); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &continue_rsqrt, Label::kNear); __ j(carry, &continue_rsqrt, Label::kNear); // Set result to 0 in the special case. __ xorps(double_result, double_result); __ jmp(&done); __ bind(&continue_rsqrt); // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorps(double_exponent, double_exponent); __ addsd(double_exponent, double_base); // Convert -0 to +0. __ sqrtsd(double_exponent, double_exponent); __ divsd(double_result, double_exponent); __ jmp(&done); } // Using FPU instructions to calculate power. Label fast_power_failed; __ bind(&fast_power); __ fnclex(); // Clear flags to catch exceptions later. // Transfer (B)ase and (E)xponent onto the FPU register stack. __ subq(rsp, Immediate(kDoubleSize)); __ movsd(Operand(rsp, 0), double_exponent); __ fld_d(Operand(rsp, 0)); // E __ movsd(Operand(rsp, 0), double_base); __ fld_d(Operand(rsp, 0)); // B, E // Exponent is in st(1) and base is in st(0) // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) // FYL2X calculates st(1) * log2(st(0)) __ fyl2x(); // X __ fld(0); // X, X __ frndint(); // rnd(X), X __ fsub(1); // rnd(X), X-rnd(X) __ fxch(1); // X - rnd(X), rnd(X) // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) __ faddp(1); // 1, 2^(X-rnd(X)), rnd(X) // FSCALE calculates st(0) * 2^st(1) __ fscale(); // 2^X, rnd(X) __ fstp(1); // Bail out to runtime in case of exceptions in the status word. __ fnstsw_ax(); __ testb(rax, Immediate(0x5F)); // Check for all but precision exception. __ j(not_zero, &fast_power_failed, Label::kNear); __ fstp_d(Operand(rsp, 0)); __ movsd(double_result, Operand(rsp, 0)); __ addq(rsp, Immediate(kDoubleSize)); __ jmp(&done); __ bind(&fast_power_failed); __ fninit(); __ addq(rsp, Immediate(kDoubleSize)); __ jmp(&call_runtime); } // Calculate power with integer exponent. __ bind(&int_exponent); const XMMRegister double_scratch2 = double_exponent; // Back up exponent as we need to check if exponent is negative later. __ movq(scratch, exponent); // Back up exponent. __ movsd(double_scratch, double_base); // Back up base. __ movsd(double_scratch2, double_result); // Load double_exponent with 1. // Get absolute value of exponent. Label no_neg, while_true, no_multiply; __ testl(scratch, scratch); __ j(positive, &no_neg, Label::kNear); __ negl(scratch); __ bind(&no_neg); __ bind(&while_true); __ shrl(scratch, Immediate(1)); __ j(not_carry, &no_multiply, Label::kNear); __ mulsd(double_result, double_scratch); __ bind(&no_multiply); __ mulsd(double_scratch, double_scratch); __ j(not_zero, &while_true); // If the exponent is negative, return 1/result. __ testl(exponent, exponent); __ j(greater, &done); __ divsd(double_scratch2, double_result); __ movsd(double_result, double_scratch2); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ xorps(double_scratch2, double_scratch2); __ ucomisd(double_scratch2, double_result); // double_exponent aliased as double_scratch2 has already been overwritten // and may not have contained the exponent value in the first place when the // input was a smi. We reset it with exponent value before bailing out. __ j(not_equal, &done); __ cvtlsi2sd(double_exponent, exponent); // Returning or bailing out. Counters* counters = masm->isolate()->counters(); if (exponent_type_ == ON_STACK) { // The arguments are still on the stack. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); // The stub is called from non-optimized code, which expects the result // as heap number in eax. __ bind(&done); __ AllocateHeapNumber(rax, rcx, &call_runtime); __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result); __ IncrementCounter(counters->math_pow(), 1); __ ret(2 * kPointerSize); } else { __ bind(&call_runtime); // Move base to the correct argument register. Exponent is already in xmm1. __ movsd(xmm0, double_base); ASSERT(double_exponent.is(xmm1)); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(2); __ CallCFunction( ExternalReference::power_double_double_function(masm->isolate()), 2); } // Return value is in xmm0. __ movsd(double_result, xmm0); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ bind(&done); __ IncrementCounter(counters->math_pow(), 1); __ ret(0); } } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The key is in rdx and the parameter count is in rax. // The displacement is used for skipping the frame pointer on the // stack. It is the offset of the last parameter (if any) relative // to the frame pointer. static const int kDisplacement = 1 * kPointerSize; // Check that the key is a smi. Label slow; __ JumpIfNotSmi(rdx, &slow); // Check if the calling frame is an arguments adaptor frame. We look at the // context offset, and if the frame is not a regular one, then we find a // Smi instead of the context. We can't use SmiCompare here, because that // only works for comparing two smis. Label adaptor; __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor); // Check index against formal parameters count limit passed in // through register rax. Use unsigned comparison to get negative // check for free. __ cmpq(rdx, rax); __ j(above_equal, &slow); // Read the argument from the stack and return it. SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); __ lea(rbx, Operand(rbp, index.reg, index.scale, 0)); index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); __ Ret(); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmpq(rdx, rcx); __ j(above_equal, &slow); // Read the argument from the stack and return it. index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2); __ lea(rbx, Operand(rbx, index.reg, index.scale, 0)); index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); __ Ret(); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ pop(rbx); // Return address. __ push(rdx); __ push(rbx); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) { // Stack layout: // rsp[0] : return address // rsp[8] : number of parameters (tagged) // rsp[16] : receiver displacement // rsp[24] : function // Registers used over the whole function: // rbx: the mapped parameter count (untagged) // rax: the allocated object (tagged). Factory* factory = masm->isolate()->factory(); __ SmiToInteger64(rbx, Operand(rsp, 1 * kPointerSize)); // rbx = parameter count (untagged) // Check if the calling frame is an arguments adaptor frame. Label runtime; Label adaptor_frame, try_allocate; __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset)); __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor_frame); // No adaptor, parameter count = argument count. __ movq(rcx, rbx); __ jmp(&try_allocate, Label::kNear); // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ SmiToInteger64(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ lea(rdx, Operand(rdx, rcx, times_pointer_size, StandardFrameConstants::kCallerSPOffset)); __ movq(Operand(rsp, 2 * kPointerSize), rdx); // rbx = parameter count (untagged) // rcx = argument count (untagged) // Compute the mapped parameter count = min(rbx, rcx) in rbx. __ cmpq(rbx, rcx); __ j(less_equal, &try_allocate, Label::kNear); __ movq(rbx, rcx); __ bind(&try_allocate); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; Label no_parameter_map; __ xor_(r8, r8); __ testq(rbx, rbx); __ j(zero, &no_parameter_map, Label::kNear); __ lea(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize)); __ bind(&no_parameter_map); // 2. Backing store. __ lea(r8, Operand(r8, rcx, times_pointer_size, FixedArray::kHeaderSize)); // 3. Arguments object. __ addq(r8, Immediate(Heap::kArgumentsObjectSize)); // Do the allocation of all three objects in one go. __ AllocateInNewSpace(r8, rax, rdx, rdi, &runtime, TAG_OBJECT); // rax = address of new object(s) (tagged) // rcx = argument count (untagged) // Get the arguments boilerplate from the current (global) context into rdi. Label has_mapped_parameters, copy; __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); __ testq(rbx, rbx); __ j(not_zero, &has_mapped_parameters, Label::kNear); const int kIndex = Context::ARGUMENTS_BOILERPLATE_INDEX; __ movq(rdi, Operand(rdi, Context::SlotOffset(kIndex))); __ jmp(©, Label::kNear); const int kAliasedIndex = Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX; __ bind(&has_mapped_parameters); __ movq(rdi, Operand(rdi, Context::SlotOffset(kAliasedIndex))); __ bind(©); // rax = address of new object (tagged) // rbx = mapped parameter count (untagged) // rcx = argument count (untagged) // rdi = address of boilerplate object (tagged) // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ movq(rdx, FieldOperand(rdi, i)); __ movq(FieldOperand(rax, i), rdx); } // Set up the callee in-object property. STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); __ movq(rdx, Operand(rsp, 3 * kPointerSize)); __ movq(FieldOperand(rax, JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize), rdx); // Use the length (smi tagged) and set that as an in-object property too. // Note: rcx is tagged from here on. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ Integer32ToSmi(rcx, rcx); __ movq(FieldOperand(rax, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize), rcx); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, edi will point there, otherwise to the // backing store. __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize)); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); // rax = address of new object (tagged) // rbx = mapped parameter count (untagged) // rcx = argument count (tagged) // rdi = address of parameter map or backing store (tagged) // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map; __ testq(rbx, rbx); __ j(zero, &skip_parameter_map); __ LoadRoot(kScratchRegister, Heap::kNonStrictArgumentsElementsMapRootIndex); // rbx contains the untagged argument count. Add 2 and tag to write. __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); __ Integer64PlusConstantToSmi(r9, rbx, 2); __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), r9); __ movq(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi); __ lea(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize)); __ movq(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; // Load tagged parameter count into r9. __ Integer32ToSmi(r9, rbx); __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS)); __ addq(r8, Operand(rsp, 1 * kPointerSize)); __ subq(r8, r9); __ Move(r11, factory->the_hole_value()); __ movq(rdx, rdi); __ lea(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize)); // r9 = loop variable (tagged) // r8 = mapping index (tagged) // r11 = the hole value // rdx = address of parameter map (tagged) // rdi = address of backing store (tagged) __ jmp(¶meters_test, Label::kNear); __ bind(¶meters_loop); __ SmiSubConstant(r9, r9, Smi::FromInt(1)); __ SmiToInteger64(kScratchRegister, r9); __ movq(FieldOperand(rdx, kScratchRegister, times_pointer_size, kParameterMapHeaderSize), r8); __ movq(FieldOperand(rdi, kScratchRegister, times_pointer_size, FixedArray::kHeaderSize), r11); __ SmiAddConstant(r8, r8, Smi::FromInt(1)); __ bind(¶meters_test); __ SmiTest(r9); __ j(not_zero, ¶meters_loop, Label::kNear); __ bind(&skip_parameter_map); // rcx = argument count (tagged) // rdi = address of backing store (tagged) // Copy arguments header and remaining slots (if there are any). __ Move(FieldOperand(rdi, FixedArray::kMapOffset), factory->fixed_array_map()); __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); Label arguments_loop, arguments_test; __ movq(r8, rbx); __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // Untag rcx for the loop below. __ SmiToInteger64(rcx, rcx); __ lea(kScratchRegister, Operand(r8, times_pointer_size, 0)); __ subq(rdx, kScratchRegister); __ jmp(&arguments_test, Label::kNear); __ bind(&arguments_loop); __ subq(rdx, Immediate(kPointerSize)); __ movq(r9, Operand(rdx, 0)); __ movq(FieldOperand(rdi, r8, times_pointer_size, FixedArray::kHeaderSize), r9); __ addq(r8, Immediate(1)); __ bind(&arguments_test); __ cmpq(r8, rcx); __ j(less, &arguments_loop, Label::kNear); // Return and remove the on-stack parameters. __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. // rcx = argument count (untagged) __ bind(&runtime); __ Integer32ToSmi(rcx, rcx); __ movq(Operand(rsp, 1 * kPointerSize), rcx); // Patch argument count. __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) { // esp[0] : return address // esp[8] : number of parameters // esp[16] : receiver displacement // esp[24] : function // Check if the calling frame is an arguments adaptor frame. Label runtime; __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset)); __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &runtime); // Patch the arguments.length and the parameters pointer. __ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ movq(Operand(rsp, 1 * kPointerSize), rcx); __ SmiToInteger64(rcx, rcx); __ lea(rdx, Operand(rdx, rcx, times_pointer_size, StandardFrameConstants::kCallerSPOffset)); __ movq(Operand(rsp, 2 * kPointerSize), rdx); __ bind(&runtime); __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { // rsp[0] : return address // rsp[8] : number of parameters // rsp[16] : receiver displacement // rsp[24] : function // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ movq(rcx, Operand(rdx, StandardFrameConstants::kContextOffset)); __ Cmp(rcx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor_frame); // Get the length from the frame. __ movq(rcx, Operand(rsp, 1 * kPointerSize)); __ SmiToInteger64(rcx, rcx); __ jmp(&try_allocate); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ movq(Operand(rsp, 1 * kPointerSize), rcx); __ SmiToInteger64(rcx, rcx); __ lea(rdx, Operand(rdx, rcx, times_pointer_size, StandardFrameConstants::kCallerSPOffset)); __ movq(Operand(rsp, 2 * kPointerSize), rdx); // Try the new space allocation. Start out with computing the size of // the arguments object and the elements array. Label add_arguments_object; __ bind(&try_allocate); __ testq(rcx, rcx); __ j(zero, &add_arguments_object, Label::kNear); __ lea(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize)); __ bind(&add_arguments_object); __ addq(rcx, Immediate(Heap::kArgumentsObjectSizeStrict)); // Do the allocation of both objects in one go. __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); // Get the arguments boilerplate from the current (global) context. __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); const int offset = Context::SlotOffset(Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX); __ movq(rdi, Operand(rdi, offset)); // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ movq(rbx, FieldOperand(rdi, i)); __ movq(FieldOperand(rax, i), rbx); } // Get the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ movq(rcx, Operand(rsp, 1 * kPointerSize)); __ movq(FieldOperand(rax, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize), rcx); // If there are no actual arguments, we're done. Label done; __ testq(rcx, rcx); __ j(zero, &done); // Get the parameters pointer from the stack. __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // Set up the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSizeStrict)); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); // Untag the length for the loop below. __ SmiToInteger64(rcx, rcx); // Copy the fixed array slots. Label loop; __ bind(&loop); __ movq(rbx, Operand(rdx, -1 * kPointerSize)); // Skip receiver. __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), rbx); __ addq(rdi, Immediate(kPointerSize)); __ subq(rdx, Immediate(kPointerSize)); __ decq(rcx); __ j(not_zero, &loop); // Return and remove the on-stack parameters. __ bind(&done); __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // rsp[0]: return address // rsp[8]: last_match_info (expected JSArray) // rsp[16]: previous index // rsp[24]: subject string // rsp[32]: JSRegExp object static const int kLastMatchInfoOffset = 1 * kPointerSize; static const int kPreviousIndexOffset = 2 * kPointerSize; static const int kSubjectOffset = 3 * kPointerSize; static const int kJSRegExpOffset = 4 * kPointerSize; Label runtime; // Ensure that a RegExp stack is allocated. Isolate* isolate = masm->isolate(); ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate); __ Load(kScratchRegister, address_of_regexp_stack_memory_size); __ testq(kScratchRegister, kScratchRegister); __ j(zero, &runtime); // Check that the first argument is a JSRegExp object. __ movq(rax, Operand(rsp, kJSRegExpOffset)); __ JumpIfSmi(rax, &runtime); __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); __ j(not_equal, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ movq(rax, FieldOperand(rax, JSRegExp::kDataOffset)); if (FLAG_debug_code) { Condition is_smi = masm->CheckSmi(rax); __ Check(NegateCondition(is_smi), "Unexpected type for RegExp data, FixedArray expected"); __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister); __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); } // rax: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset)); __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); __ j(not_equal, &runtime); // rax: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ SmiToInteger32(rdx, FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. __ leal(rdx, Operand(rdx, rdx, times_1, 2)); // Check that the static offsets vector buffer is large enough. __ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize)); __ j(above, &runtime); // rax: RegExp data (FixedArray) // rdx: Number of capture registers // Check that the second argument is a string. __ movq(rdi, Operand(rsp, kSubjectOffset)); __ JumpIfSmi(rdi, &runtime); Condition is_string = masm->IsObjectStringType(rdi, rbx, rbx); __ j(NegateCondition(is_string), &runtime); // rdi: Subject string. // rax: RegExp data (FixedArray). // rdx: Number of capture registers. // Check that the third argument is a positive smi less than the string // length. A negative value will be greater (unsigned comparison). __ movq(rbx, Operand(rsp, kPreviousIndexOffset)); __ JumpIfNotSmi(rbx, &runtime); __ SmiCompare(rbx, FieldOperand(rdi, String::kLengthOffset)); __ j(above_equal, &runtime); // rax: RegExp data (FixedArray) // rdx: Number of capture registers // Check that the fourth object is a JSArray object. __ movq(rdi, Operand(rsp, kLastMatchInfoOffset)); __ JumpIfSmi(rdi, &runtime); __ CmpObjectType(rdi, JS_ARRAY_TYPE, kScratchRegister); __ j(not_equal, &runtime); // Check that the JSArray is in fast case. __ movq(rbx, FieldOperand(rdi, JSArray::kElementsOffset)); __ movq(rdi, FieldOperand(rbx, HeapObject::kMapOffset)); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); __ j(not_equal, &runtime); // Check that the last match info has space for the capture registers and the // additional information. Ensure no overflow in add. STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); __ SmiToInteger32(rdi, FieldOperand(rbx, FixedArray::kLengthOffset)); __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead)); __ cmpl(rdx, rdi); __ j(greater, &runtime); // Reset offset for possibly sliced string. __ Set(r14, 0); // rax: RegExp data (FixedArray) // Check the representation and encoding of the subject string. Label seq_ascii_string, seq_two_byte_string, check_code; __ movq(rdi, Operand(rsp, kSubjectOffset)); // Make a copy of the original subject string. __ movq(r15, rdi); __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); // First check for flat two byte string. __ andb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask | kShortExternalStringMask)); STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string, Label::kNear); // Any other flat string must be a flat ASCII string. None of the following // string type tests will succeed if subject is not a string or a short // external string. __ andb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); __ j(zero, &seq_ascii_string, Label::kNear); // rbx: whether subject is a string and if yes, its string representation // Check for flat cons string or sliced string. // A flat cons string is a cons string where the second part is the empty // string. In that case the subject string is just the first part of the cons // string. Also in this case the first part of the cons string is known to be // a sequential string or an external string. // In the case of a sliced string its offset has to be taken into account. Label cons_string, external_string, check_encoding; STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ cmpq(rbx, Immediate(kExternalStringTag)); __ j(less, &cons_string, Label::kNear); __ j(equal, &external_string); // Catch non-string subject or short external string. STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask)); __ j(not_zero, &runtime); // String is sliced. __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset)); __ movq(rdi, FieldOperand(rdi, SlicedString::kParentOffset)); // r14: slice offset // r15: original subject string // rdi: parent string __ jmp(&check_encoding, Label::kNear); // String is a cons string, check whether it is flat. __ bind(&cons_string); __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset), Heap::kEmptyStringRootIndex); __ j(not_equal, &runtime); __ movq(rdi, FieldOperand(rdi, ConsString::kFirstOffset)); // rdi: first part of cons string or parent of sliced string. // rbx: map of first part of cons string or map of parent of sliced string. // Is first part of cons or parent of slice a flat two byte string? __ bind(&check_encoding); __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), Immediate(kStringRepresentationMask | kStringEncodingMask)); STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string, Label::kNear); // Any other flat string must be sequential ASCII or external. __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), Immediate(kStringRepresentationMask)); __ j(not_zero, &external_string); __ bind(&seq_ascii_string); // rdi: subject string (sequential ASCII) // rax: RegExp data (FixedArray) __ movq(r11, FieldOperand(rax, JSRegExp::kDataAsciiCodeOffset)); __ Set(rcx, 1); // Type is ASCII. __ jmp(&check_code, Label::kNear); __ bind(&seq_two_byte_string); // rdi: subject string (flat two-byte) // rax: RegExp data (FixedArray) __ movq(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset)); __ Set(rcx, 0); // Type is two byte. __ bind(&check_code); // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // smi (code flushing support) __ JumpIfSmi(r11, &runtime); // rdi: subject string // rcx: encoding of subject string (1 if ASCII, 0 if two_byte); // r11: code // Load used arguments before starting to push arguments for call to native // RegExp code to avoid handling changing stack height. __ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset)); // rdi: subject string // rbx: previous index // rcx: encoding of subject string (1 if ASCII 0 if two_byte); // r11: code // All checks done. Now push arguments for native regexp code. Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->regexp_entry_native(), 1); // Isolates: note we add an additional parameter here (isolate pointer). static const int kRegExpExecuteArguments = 8; int argument_slots_on_stack = masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); __ EnterApiExitFrame(argument_slots_on_stack); // Argument 8: Pass current isolate address. // __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), // Immediate(ExternalReference::isolate_address())); __ LoadAddress(kScratchRegister, ExternalReference::isolate_address()); __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), kScratchRegister); // Argument 7: Indicate that this is a direct call from JavaScript. __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), Immediate(1)); // Argument 6: Start (high end) of backtracking stack memory area. __ movq(kScratchRegister, address_of_regexp_stack_memory_address); __ movq(r9, Operand(kScratchRegister, 0)); __ movq(kScratchRegister, address_of_regexp_stack_memory_size); __ addq(r9, Operand(kScratchRegister, 0)); // Argument 6 passed in r9 on Linux and on the stack on Windows. #ifdef _WIN64 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r9); #endif // Argument 5: static offsets vector buffer. __ LoadAddress(r8, ExternalReference::address_of_static_offsets_vector(isolate)); // Argument 5 passed in r8 on Linux and on the stack on Windows. #ifdef _WIN64 __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kPointerSize), r8); #endif // First four arguments are passed in registers on both Linux and Windows. #ifdef _WIN64 Register arg4 = r9; Register arg3 = r8; Register arg2 = rdx; Register arg1 = rcx; #else Register arg4 = rcx; Register arg3 = rdx; Register arg2 = rsi; Register arg1 = rdi; #endif // Keep track on aliasing between argX defined above and the registers used. // rdi: subject string // rbx: previous index // rcx: encoding of subject string (1 if ASCII 0 if two_byte); // r11: code // r14: slice offset // r15: original subject string // Argument 2: Previous index. __ movq(arg2, rbx); // Argument 4: End of string data // Argument 3: Start of string data Label setup_two_byte, setup_rest, got_length, length_not_from_slice; // Prepare start and end index of the input. // Load the length from the original sliced string if that is the case. __ addq(rbx, r14); __ SmiToInteger32(arg3, FieldOperand(r15, String::kLengthOffset)); __ addq(r14, arg3); // Using arg3 as scratch. // rbx: start index of the input // r14: end index of the input // r15: original subject string __ testb(rcx, rcx); // Last use of rcx as encoding of subject string. __ j(zero, &setup_two_byte, Label::kNear); __ lea(arg4, FieldOperand(rdi, r14, times_1, SeqAsciiString::kHeaderSize)); __ lea(arg3, FieldOperand(rdi, rbx, times_1, SeqAsciiString::kHeaderSize)); __ jmp(&setup_rest, Label::kNear); __ bind(&setup_two_byte); __ lea(arg4, FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize)); __ lea(arg3, FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize)); __ bind(&setup_rest); // Argument 1: Original subject string. // The original subject is in the previous stack frame. Therefore we have to // use rbp, which points exactly to one pointer size below the previous rsp. // (Because creating a new stack frame pushes the previous rbp onto the stack // and thereby moves up rsp by one kPointerSize.) __ movq(arg1, r15); // Locate the code entry and call it. __ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(r11); __ LeaveApiExitFrame(); // Check the result. Label success; Label exception; __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS)); __ j(equal, &success, Label::kNear); __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); __ j(equal, &exception); __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); // If none of the above, it can only be retry. // Handle that in the runtime system. __ j(not_equal, &runtime); // For failure return null. __ LoadRoot(rax, Heap::kNullValueRootIndex); __ ret(4 * kPointerSize); // Load RegExp data. __ bind(&success); __ movq(rax, Operand(rsp, kJSRegExpOffset)); __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); __ SmiToInteger32(rax, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. __ leal(rdx, Operand(rax, rax, times_1, 2)); // rdx: Number of capture registers // Load last_match_info which is still known to be a fast case JSArray. __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); // rbx: last_match_info backing store (FixedArray) // rdx: number of capture registers // Store the capture count. __ Integer32ToSmi(kScratchRegister, rdx); __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), kScratchRegister); // Store last subject and last input. __ movq(rax, Operand(rsp, kSubjectOffset)); __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); __ RecordWriteField(rbx, RegExpImpl::kLastSubjectOffset, rax, rdi, kDontSaveFPRegs); __ movq(rax, Operand(rsp, kSubjectOffset)); __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); __ RecordWriteField(rbx, RegExpImpl::kLastInputOffset, rax, rdi, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. __ LoadAddress(rcx, ExternalReference::address_of_static_offsets_vector(isolate)); // rbx: last_match_info backing store (FixedArray) // rcx: offsets vector // rdx: number of capture registers Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ bind(&next_capture); __ subq(rdx, Immediate(1)); __ j(negative, &done, Label::kNear); // Read the value from the static offsets vector buffer and make it a smi. __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); __ Integer32ToSmi(rdi, rdi); // Store the smi value in the last match info. __ movq(FieldOperand(rbx, rdx, times_pointer_size, RegExpImpl::kFirstCaptureOffset), rdi); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); __ ret(4 * kPointerSize); __ bind(&exception); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, isolate); Operand pending_exception_operand = masm->ExternalOperand(pending_exception_address, rbx); __ movq(rax, pending_exception_operand); __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); __ cmpq(rax, rdx); __ j(equal, &runtime); __ movq(pending_exception_operand, rdx); __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); Label termination_exception; __ j(equal, &termination_exception, Label::kNear); __ Throw(rax); __ bind(&termination_exception); __ ThrowUncatchable(rax); // External string. Short external strings have already been ruled out. // rdi: subject string (expected to be external) // rbx: scratch __ bind(&external_string); __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ testb(rbx, Immediate(kIsIndirectStringMask)); __ Assert(zero, "external string expected, but not found"); } __ movq(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); __ subq(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); STATIC_ASSERT(kTwoByteStringTag == 0); __ testb(rbx, Immediate(kStringEncodingMask)); __ j(not_zero, &seq_ascii_string); __ jmp(&seq_two_byte_string); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #endif // V8_INTERPRETED_REGEXP } void RegExpConstructResultStub::Generate(MacroAssembler* masm) { const int kMaxInlineLength = 100; Label slowcase; Label done; __ movq(r8, Operand(rsp, kPointerSize * 3)); __ JumpIfNotSmi(r8, &slowcase); __ SmiToInteger32(rbx, r8); __ cmpl(rbx, Immediate(kMaxInlineLength)); __ j(above, &slowcase); // Smi-tagging is equivalent to multiplying by 2. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); // Allocate RegExpResult followed by FixedArray with size in rbx. // JSArray: [Map][empty properties][Elements][Length-smi][index][input] // Elements: [Map][Length][..elements..] __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize, times_pointer_size, rbx, // In: Number of elements. rax, // Out: Start of allocation (tagged). rcx, // Out: End of allocation. rdx, // Scratch register &slowcase, TAG_OBJECT); // rax: Start of allocated area, object-tagged. // rbx: Number of array elements as int32. // r8: Number of array elements as smi. // Set JSArray map to global.regexp_result_map(). __ movq(rdx, ContextOperand(rsi, Context::GLOBAL_INDEX)); __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalContextOffset)); __ movq(rdx, ContextOperand(rdx, Context::REGEXP_RESULT_MAP_INDEX)); __ movq(FieldOperand(rax, HeapObject::kMapOffset), rdx); // Set empty properties FixedArray. __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex); __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister); // Set elements to point to FixedArray allocated right after the JSArray. __ lea(rcx, Operand(rax, JSRegExpResult::kSize)); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx); // Set input, index and length fields from arguments. __ movq(r8, Operand(rsp, kPointerSize * 1)); __ movq(FieldOperand(rax, JSRegExpResult::kInputOffset), r8); __ movq(r8, Operand(rsp, kPointerSize * 2)); __ movq(FieldOperand(rax, JSRegExpResult::kIndexOffset), r8); __ movq(r8, Operand(rsp, kPointerSize * 3)); __ movq(FieldOperand(rax, JSArray::kLengthOffset), r8); // Fill out the elements FixedArray. // rax: JSArray. // rcx: FixedArray. // rbx: Number of elements in array as int32. // Set map. __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); __ movq(FieldOperand(rcx, HeapObject::kMapOffset), kScratchRegister); // Set length. __ Integer32ToSmi(rdx, rbx); __ movq(FieldOperand(rcx, FixedArray::kLengthOffset), rdx); // Fill contents of fixed-array with the-hole. __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); __ lea(rcx, FieldOperand(rcx, FixedArray::kHeaderSize)); // Fill fixed array elements with hole. // rax: JSArray. // rbx: Number of elements in array that remains to be filled, as int32. // rcx: Start of elements in FixedArray. // rdx: the hole. Label loop; __ testl(rbx, rbx); __ bind(&loop); __ j(less_equal, &done); // Jump if rcx is negative or zero. __ subl(rbx, Immediate(1)); __ movq(Operand(rcx, rbx, times_pointer_size, 0), rdx); __ jmp(&loop); __ bind(&done); __ ret(3 * kPointerSize); __ bind(&slowcase); __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); } void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, Register object, Register result, Register scratch1, Register scratch2, bool object_is_smi, Label* not_found) { // Use of registers. Register result is used as a temporary. Register number_string_cache = result; Register mask = scratch1; Register scratch = scratch2; // Load the number string cache. __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. __ SmiToInteger32( mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); __ shrl(mask, Immediate(1)); __ subq(mask, Immediate(1)); // Make mask. // Calculate the entry in the number string cache. The hash value in the // number string cache for smis is just the smi value, and the hash for // doubles is the xor of the upper and lower words. See // Heap::GetNumberStringCache. Label is_smi; Label load_result_from_cache; Factory* factory = masm->isolate()->factory(); if (!object_is_smi) { __ JumpIfSmi(object, &is_smi); __ CheckMap(object, factory->heap_number_map(), not_found, DONT_DO_SMI_CHECK); STATIC_ASSERT(8 == kDoubleSize); __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset)); GenerateConvertHashCodeToIndex(masm, scratch, mask); Register index = scratch; Register probe = mask; __ movq(probe, FieldOperand(number_string_cache, index, times_1, FixedArray::kHeaderSize)); __ JumpIfSmi(probe, not_found); __ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); __ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); __ ucomisd(xmm0, xmm1); __ j(parity_even, not_found); // Bail out if NaN is involved. __ j(not_equal, not_found); // The cache did not contain this value. __ jmp(&load_result_from_cache); } __ bind(&is_smi); __ SmiToInteger32(scratch, object); GenerateConvertHashCodeToIndex(masm, scratch, mask); Register index = scratch; // Check if the entry is the smi we are looking for. __ cmpq(object, FieldOperand(number_string_cache, index, times_1, FixedArray::kHeaderSize)); __ j(not_equal, not_found); // Get the result from the cache. __ bind(&load_result_from_cache); __ movq(result, FieldOperand(number_string_cache, index, times_1, FixedArray::kHeaderSize + kPointerSize)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->number_to_string_native(), 1); } void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm, Register hash, Register mask) { __ and_(hash, mask); // Each entry in string cache consists of two pointer sized fields, // but times_twice_pointer_size (multiplication by 16) scale factor // is not supported by addrmode on x64 platform. // So we have to premultiply entry index before lookup. __ shl(hash, Immediate(kPointerSizeLog2 + 1)); } void NumberToStringStub::Generate(MacroAssembler* masm) { Label runtime; __ movq(rbx, Operand(rsp, kPointerSize)); // Generate code to lookup number in the number string cache. GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime); __ ret(1 * kPointerSize); __ bind(&runtime); // Handle number to string in the runtime system if not found in the cache. __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); } static int NegativeComparisonResult(Condition cc) { ASSERT(cc != equal); ASSERT((cc == less) || (cc == less_equal) || (cc == greater) || (cc == greater_equal)); return (cc == greater || cc == greater_equal) ? LESS : GREATER; } void CompareStub::Generate(MacroAssembler* masm) { ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); Label check_unequal_objects, done; Factory* factory = masm->isolate()->factory(); // Compare two smis if required. if (include_smi_compare_) { Label non_smi, smi_done; __ JumpIfNotBothSmi(rax, rdx, &non_smi); __ subq(rdx, rax); __ j(no_overflow, &smi_done); __ not_(rdx); // Correct sign in case of overflow. rdx cannot be 0 here. __ bind(&smi_done); __ movq(rax, rdx); __ ret(0); __ bind(&non_smi); } else if (FLAG_debug_code) { Label ok; __ JumpIfNotSmi(rdx, &ok); __ JumpIfNotSmi(rax, &ok); __ Abort("CompareStub: smi operands"); __ bind(&ok); } // The compare stub returns a positive, negative, or zero 64-bit integer // value in rax, corresponding to result of comparing the two inputs. // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Two identical objects are equal unless they are both NaN or undefined. { Label not_identical; __ cmpq(rax, rdx); __ j(not_equal, ¬_identical, Label::kNear); if (cc_ != equal) { // Check for undefined. undefined OP undefined is false even though // undefined == undefined. Label check_for_nan; __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &check_for_nan, Label::kNear); __ Set(rax, NegativeComparisonResult(cc_)); __ ret(0); __ bind(&check_for_nan); } // Test for NaN. Sadly, we can't just compare to FACTORY->nan_value(), // so we do the second best thing - test it ourselves. // Note: if cc_ != equal, never_nan_nan_ is not used. // We cannot set rax to EQUAL until just before return because // rax must be unchanged on jump to not_identical. if (never_nan_nan_ && (cc_ == equal)) { __ Set(rax, EQUAL); __ ret(0); } else { Label heap_number; // If it's not a heap number, then return equal for (in)equality operator. __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), factory->heap_number_map()); __ j(equal, &heap_number, Label::kNear); if (cc_ != equal) { // Call runtime on identical objects. Otherwise return equal. __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(above_equal, ¬_identical, Label::kNear); } __ Set(rax, EQUAL); __ ret(0); __ bind(&heap_number); // It is a heap number, so return equal if it's not NaN. // For NaN, return 1 for every condition except greater and // greater-equal. Return -1 for them, so the comparison yields // false for all conditions except not-equal. __ Set(rax, EQUAL); __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); __ ucomisd(xmm0, xmm0); __ setcc(parity_even, rax); // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. if (cc_ == greater_equal || cc_ == greater) { __ neg(rax); } __ ret(0); } __ bind(¬_identical); } if (cc_ == equal) { // Both strict and non-strict. Label slow; // Fallthrough label. // If we're doing a strict equality comparison, we don't have to do // type conversion, so we generate code to do fast comparison for objects // and oddballs. Non-smi numbers and strings still go through the usual // slow-case code. if (strict_) { // If either is a Smi (we know that not both are), then they can only // be equal if the other is a HeapNumber. If so, use the slow case. { Label not_smis; __ SelectNonSmi(rbx, rax, rdx, ¬_smis); // Check if the non-smi operand is a heap number. __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), factory->heap_number_map()); // If heap number, handle it in the slow case. __ j(equal, &slow); // Return non-equal. ebx (the lower half of rbx) is not zero. __ movq(rax, rbx); __ ret(0); __ bind(¬_smis); } // If either operand is a JSObject or an oddball value, then they are not // equal since their pointers are different // There is no test for undetectability in strict equality. // If the first object is a JS object, we have done pointer comparison. STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); Label first_non_object; __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(below, &first_non_object, Label::kNear); // Return non-zero (eax (not rax) is not zero) Label return_not_equal; STATIC_ASSERT(kHeapObjectTag != 0); __ bind(&return_not_equal); __ ret(0); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(rcx, ODDBALL_TYPE); __ j(equal, &return_not_equal); __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(above_equal, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(rcx, ODDBALL_TYPE); __ j(equal, &return_not_equal); // Fall through to the general case. } __ bind(&slow); } // Generate the number comparison code. if (include_number_compare_) { Label non_number_comparison; Label unordered; FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); __ xorl(rax, rax); __ xorl(rcx, rcx); __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); // Return a result of -1, 0, or 1, based on EFLAGS. __ setcc(above, rax); __ setcc(below, rcx); __ subq(rax, rcx); __ ret(0); // If one of the numbers was NaN, then the result is always false. // The cc is never not-equal. __ bind(&unordered); ASSERT(cc_ != not_equal); if (cc_ == less || cc_ == less_equal) { __ Set(rax, 1); } else { __ Set(rax, -1); } __ ret(0); // The number comparison code did not provide a valid result. __ bind(&non_number_comparison); } // Fast negative check for symbol-to-symbol equality. Label check_for_strings; if (cc_ == equal) { BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister); BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister); // We've already checked for object identity, so if both operands // are symbols they aren't equal. Register eax (not rax) already holds a // non-zero value, which indicates not equal, so just return. __ ret(0); } __ bind(&check_for_strings); __ JumpIfNotBothSequentialAsciiStrings( rdx, rax, rcx, rbx, &check_unequal_objects); // Inline comparison of ASCII strings. if (cc_ == equal) { StringCompareStub::GenerateFlatAsciiStringEquals(masm, rdx, rax, rcx, rbx); } else { StringCompareStub::GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); } #ifdef DEBUG __ Abort("Unexpected fall-through from string comparison"); #endif __ bind(&check_unequal_objects); if (cc_ == equal && !strict_) { // Not strict equality. Objects are unequal if // they are both JSObjects and not undetectable, // and their pointers are different. Label not_both_objects, return_unequal; // At most one is a smi, so we can test for smi by adding the two. // A smi plus a heap object has the low bit set, a heap object plus // a heap object has the low bit clear. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagMask == 1); __ lea(rcx, Operand(rax, rdx, times_1, 0)); __ testb(rcx, Immediate(kSmiTagMask)); __ j(not_zero, ¬_both_objects, Label::kNear); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx); __ j(below, ¬_both_objects, Label::kNear); __ CmpObjectType(rdx, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(below, ¬_both_objects, Label::kNear); __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(zero, &return_unequal, Label::kNear); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(zero, &return_unequal, Label::kNear); // The objects are both undetectable, so they both compare as the value // undefined, and are equal. __ Set(rax, EQUAL); __ bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in rax, // or return equal if we fell through to here. __ ret(0); __ bind(¬_both_objects); } // Push arguments below the return address to prepare jump to builtin. __ pop(rcx); __ push(rdx); __ push(rax); // Figure out which native to call and setup the arguments. Builtins::JavaScript builtin; if (cc_ == equal) { builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { builtin = Builtins::COMPARE; __ Push(Smi::FromInt(NegativeComparisonResult(cc_))); } // Restore return address on the stack. __ push(rcx); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(builtin, JUMP_FUNCTION); } void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, Label* label, Register object, Register scratch) { __ JumpIfSmi(object, label); __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset)); __ movzxbq(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); // Ensure that no non-strings have the symbol bit set. STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask); STATIC_ASSERT(kSymbolTag != 0); __ testb(scratch, Immediate(kIsSymbolMask)); __ j(zero, label); } void StackCheckStub::Generate(MacroAssembler* masm) { __ TailCallRuntime(Runtime::kStackGuard, 0, 1); } void InterruptStub::Generate(MacroAssembler* masm) { __ TailCallRuntime(Runtime::kInterrupt, 0, 1); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a global property cell. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // rbx : cache cell for call target // rdi : the function to call Isolate* isolate = masm->isolate(); Label initialize, done; // Load the cache state into rcx. __ movq(rcx, FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. __ cmpq(rcx, rdi); __ j(equal, &done, Label::kNear); __ Cmp(rcx, TypeFeedbackCells::MegamorphicSentinel(isolate)); __ j(equal, &done, Label::kNear); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ Cmp(rcx, TypeFeedbackCells::UninitializedSentinel(isolate)); __ j(equal, &initialize, Label::kNear); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ Move(FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset), TypeFeedbackCells::MegamorphicSentinel(isolate)); __ jmp(&done, Label::kNear); // An uninitialized cache is patched with the function. __ bind(&initialize); __ movq(FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset), rdi); // No need for a write barrier here - cells are rescanned. __ bind(&done); } void CallFunctionStub::Generate(MacroAssembler* masm) { // rdi : the function to call // rbx : cache cell for call target Label slow, non_function; // The receiver might implicitly be the global object. This is // indicated by passing the hole as the receiver to the call // function stub. if (ReceiverMightBeImplicit()) { Label call; // Get the receiver from the stack. // +1 ~ return address __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize)); // Call as function is indicated with the hole. __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(not_equal, &call, Label::kNear); // Patch the receiver on the stack with the global receiver object. __ movq(rbx, GlobalObjectOperand()); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rbx); __ bind(&call); } // Check that the function really is a JavaScript function. __ JumpIfSmi(rdi, &non_function); // Goto slow case if we do not have a function. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &slow); // Fast-case: Just invoke the function. ParameterCount actual(argc_); if (ReceiverMightBeImplicit()) { Label call_as_function; __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(equal, &call_as_function); __ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&call_as_function); } __ InvokeFunction(rdi, actual, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_FUNCTION); // Slow-case: Non-function called. __ bind(&slow); // Check for function proxy. __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE); __ j(not_equal, &non_function); __ pop(rcx); __ push(rdi); // put proxy as additional argument under return address __ push(rcx); __ Set(rax, argc_ + 1); __ Set(rbx, 0); __ SetCallKind(rcx, CALL_AS_METHOD); __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY); { Handle<Code> adaptor = masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); __ jmp(adaptor, RelocInfo::CODE_TARGET); } // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ bind(&non_function); __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi); __ Set(rax, argc_); __ Set(rbx, 0); __ SetCallKind(rcx, CALL_AS_METHOD); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); Handle<Code> adaptor = Isolate::Current()->builtins()->ArgumentsAdaptorTrampoline(); __ Jump(adaptor, RelocInfo::CODE_TARGET); } void CallConstructStub::Generate(MacroAssembler* masm) { // rax : number of arguments // rbx : cache cell for call target // rdi : constructor function Label slow, non_function_call; // Check that function is not a smi. __ JumpIfSmi(rdi, &non_function_call); // Check that function is a JSFunction. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); } // Jump to the function-specific construct stub. __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset)); __ lea(rbx, FieldOperand(rbx, Code::kHeaderSize)); __ jmp(rbx); // rdi: called object // rax: number of arguments // rcx: object map Label do_call; __ bind(&slow); __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE); __ j(not_equal, &non_function_call); __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); __ jmp(&do_call); __ bind(&non_function_call); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ bind(&do_call); // Set expected number of arguments to zero (not changing rax). __ Set(rbx, 0); __ SetCallKind(rcx, CALL_AS_METHOD); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } bool CEntryStub::NeedsImmovableCode() { return false; } bool CEntryStub::IsPregenerated() { #ifdef _WIN64 return result_size_ == 1; #else return true; #endif } void CodeStub::GenerateStubsAheadOfTime() { CEntryStub::GenerateAheadOfTime(); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(); // It is important that the store buffer overflow stubs are generated first. RecordWriteStub::GenerateFixedRegStubsAheadOfTime(); } void CodeStub::GenerateFPStubs() { } void CEntryStub::GenerateAheadOfTime() { CEntryStub stub(1, kDontSaveFPRegs); stub.GetCode()->set_is_pregenerated(true); CEntryStub save_doubles(1, kSaveFPRegs); save_doubles.GetCode()->set_is_pregenerated(true); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate_scope) { // rax: result parameter for PerformGC, if any. // rbx: pointer to C function (C callee-saved). // rbp: frame pointer (restored after C call). // rsp: stack pointer (restored after C call). // r14: number of arguments including receiver (C callee-saved). // r15: pointer to the first argument (C callee-saved). // This pointer is reused in LeaveExitFrame(), so it is stored in a // callee-saved register. // Simple results returned in rax (both AMD64 and Win64 calling conventions). // Complex results must be written to address passed as first argument. // AMD64 calling convention: a struct of two pointers in rax+rdx // Check stack alignment. if (FLAG_debug_code) { __ CheckStackAlignment(); } if (do_gc) { // Pass failure code returned from last attempt as first argument to // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the // stack is known to be aligned. This function takes one argument which is // passed in register. #ifdef _WIN64 __ movq(rcx, rax); #else // _WIN64 __ movq(rdi, rax); #endif __ movq(kScratchRegister, FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); __ call(kScratchRegister); } ExternalReference scope_depth = ExternalReference::heap_always_allocate_scope_depth(masm->isolate()); if (always_allocate_scope) { Operand scope_depth_operand = masm->ExternalOperand(scope_depth); __ incl(scope_depth_operand); } // Call C function. #ifdef _WIN64 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9 // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots. __ movq(StackSpaceOperand(0), r14); // argc. __ movq(StackSpaceOperand(1), r15); // argv. if (result_size_ < 2) { // Pass a pointer to the Arguments object as the first argument. // Return result in single register (rax). __ lea(rcx, StackSpaceOperand(0)); __ LoadAddress(rdx, ExternalReference::isolate_address()); } else { ASSERT_EQ(2, result_size_); // Pass a pointer to the result location as the first argument. __ lea(rcx, StackSpaceOperand(2)); // Pass a pointer to the Arguments object as the second argument. __ lea(rdx, StackSpaceOperand(0)); __ LoadAddress(r8, ExternalReference::isolate_address()); } #else // _WIN64 // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9. __ movq(rdi, r14); // argc. __ movq(rsi, r15); // argv. __ movq(rdx, ExternalReference::isolate_address()); #endif __ call(rbx); // Result is in rax - do not destroy this register! if (always_allocate_scope) { Operand scope_depth_operand = masm->ExternalOperand(scope_depth); __ decl(scope_depth_operand); } // Check for failure result. Label failure_returned; STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); #ifdef _WIN64 // If return value is on the stack, pop it to registers. if (result_size_ > 1) { ASSERT_EQ(2, result_size_); // Read result values stored on stack. Result is stored // above the four argument mirror slots and the two // Arguments object slots. __ movq(rax, Operand(rsp, 6 * kPointerSize)); __ movq(rdx, Operand(rsp, 7 * kPointerSize)); } #endif __ lea(rcx, Operand(rax, 1)); // Lower 2 bits of rcx are 0 iff rax has failure tag. __ testl(rcx, Immediate(kFailureTagMask)); __ j(zero, &failure_returned); // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(save_doubles_); __ ret(0); // Handling of failure. __ bind(&failure_returned); Label retry; // If the returned exception is RETRY_AFTER_GC continue at retry label STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ j(zero, &retry, Label::kNear); // Special handling of out of memory exceptions. __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE); __ cmpq(rax, kScratchRegister); __ j(equal, throw_out_of_memory_exception); // Retrieve the pending exception and clear the variable. ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, masm->isolate()); Operand pending_exception_operand = masm->ExternalOperand(pending_exception_address); __ movq(rax, pending_exception_operand); __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); __ movq(pending_exception_operand, rdx); // Special handling of termination exceptions which are uncatchable // by javascript code. __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); __ j(equal, throw_termination_exception); // Handle normal exception. __ jmp(throw_normal_exception); // Retry. __ bind(&retry); } void CEntryStub::Generate(MacroAssembler* masm) { // rax: number of arguments including receiver // rbx: pointer to C function (C callee-saved) // rbp: frame pointer of calling JS frame (restored after C call) // rsp: stack pointer (restored after C call) // rsi: current context (restored) // NOTE: Invocations of builtins may return failure objects // instead of a proper result. The builtin entry handles // this by performing a garbage collection and retrying the // builtin once. // Enter the exit frame that transitions from JavaScript to C++. #ifdef _WIN64 int arg_stack_space = (result_size_ < 2 ? 2 : 4); #else int arg_stack_space = 0; #endif __ EnterExitFrame(arg_stack_space, save_doubles_); // rax: Holds the context at this point, but should not be used. // On entry to code generated by GenerateCore, it must hold // a failure result if the collect_garbage argument to GenerateCore // is true. This failure result can be the result of code // generated by a previous call to GenerateCore. The value // of rax is then passed to Runtime::PerformGC. // rbx: pointer to builtin function (C callee-saved). // rbp: frame pointer of exit frame (restored after C call). // rsp: stack pointer (restored after C call). // r14: number of arguments including receiver (C callee-saved). // r15: argv pointer (C callee-saved). Label throw_normal_exception; Label throw_termination_exception; Label throw_out_of_memory_exception; // Call into the runtime system. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, false, false); // Do space-specific GC and retry runtime call. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, false); // Do full GC and retry runtime call one final time. Failure* failure = Failure::InternalError(); __ movq(rax, failure, RelocInfo::NONE); GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, true); __ bind(&throw_out_of_memory_exception); // Set external caught exception to false. Isolate* isolate = masm->isolate(); ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress, isolate); __ Set(rax, static_cast<int64_t>(false)); __ Store(external_caught, rax); // Set pending exception and rax to out of memory exception. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, isolate); __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE); __ Store(pending_exception, rax); // Fall through to the next label. __ bind(&throw_termination_exception); __ ThrowUncatchable(rax); __ bind(&throw_normal_exception); __ Throw(rax); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { Label invoke, handler_entry, exit; Label not_outermost_js, not_outermost_js_2; { // NOLINT. Scope block confuses linter. MacroAssembler::NoRootArrayScope uninitialized_root_register(masm); // Set up frame. __ push(rbp); __ movq(rbp, rsp); // Push the stack frame type marker twice. int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; // Scratch register is neither callee-save, nor an argument register on any // platform. It's free to use at this point. // Cannot use smi-register for loading yet. __ movq(kScratchRegister, reinterpret_cast<uint64_t>(Smi::FromInt(marker)), RelocInfo::NONE); __ push(kScratchRegister); // context slot __ push(kScratchRegister); // function slot // Save callee-saved registers (X64/Win64 calling conventions). __ push(r12); __ push(r13); __ push(r14); __ push(r15); #ifdef _WIN64 __ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. __ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. #endif __ push(rbx); // TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are // callee save as well. // Set up the roots and smi constant registers. // Needs to be done before any further smi loads. __ InitializeSmiConstantRegister(); __ InitializeRootRegister(); } Isolate* isolate = masm->isolate(); // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate); { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); __ push(c_entry_fp_operand); } // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); __ Load(rax, js_entry_sp); __ testq(rax, rax); __ j(not_zero, ¬_outermost_js); __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ movq(rax, rbp); __ Store(js_entry_sp, rax); Label cont; __ jmp(&cont); __ bind(¬_outermost_js); __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, isolate); __ Store(pending_exception, rax); __ movq(rax, Failure::Exception(), RelocInfo::NONE); __ jmp(&exit); // Invoke: Link this frame into the handler chain. There's only one // handler block in this code object, so its index is 0. __ bind(&invoke); __ PushTryHandler(StackHandler::JS_ENTRY, 0); // Clear any pending exceptions. __ LoadRoot(rax, Heap::kTheHoleValueRootIndex); __ Store(pending_exception, rax); // Fake a receiver (NULL). __ push(Immediate(0)); // receiver // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. We load the address from an // external reference instead of inlining the call target address directly // in the code, because the builtin stubs may not have been generated yet // at the time this code is generated. if (is_construct) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate); __ Load(rax, construct_entry); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, isolate); __ Load(rax, entry); } __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); __ call(kScratchRegister); // Unlink this frame from the handler chain. __ PopTryHandler(); __ bind(&exit); // Check if the current stack frame is marked as the outermost JS frame. __ pop(rbx); __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ j(not_equal, ¬_outermost_js_2); __ movq(kScratchRegister, js_entry_sp); __ movq(Operand(kScratchRegister, 0), Immediate(0)); __ bind(¬_outermost_js_2); // Restore the top frame descriptor from the stack. { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); __ pop(c_entry_fp_operand); } // Restore callee-saved registers (X64 conventions). __ pop(rbx); #ifdef _WIN64 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. __ pop(rsi); __ pop(rdi); #endif __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers // Restore frame pointer and return. __ pop(rbp); __ ret(0); } void InstanceofStub::Generate(MacroAssembler* masm) { // Implements "value instanceof function" operator. // Expected input state with no inline cache: // rsp[0] : return address // rsp[1] : function pointer // rsp[2] : value // Expected input state with an inline one-element cache: // rsp[0] : return address // rsp[1] : offset from return address to location of inline cache // rsp[2] : function pointer // rsp[3] : value // Returns a bitwise zero to indicate that the value // is and instance of the function and anything else to // indicate that the value is not an instance. static const int kOffsetToMapCheckValue = 2; static const int kOffsetToResultValue = 18; // The last 4 bytes of the instruction sequence // movq(rdi, FieldOperand(rax, HeapObject::kMapOffset)) // Move(kScratchRegister, FACTORY->the_hole_value()) // in front of the hole value address. static const unsigned int kWordBeforeMapCheckValue = 0xBA49FF78; // The last 4 bytes of the instruction sequence // __ j(not_equal, &cache_miss); // __ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex); // before the offset of the hole value in the root array. static const unsigned int kWordBeforeResultValue = 0x458B4909; // Only the inline check flag is supported on X64. ASSERT(flags_ == kNoFlags || HasCallSiteInlineCheck()); int extra_stack_space = HasCallSiteInlineCheck() ? kPointerSize : 0; // Get the object - go slow case if it's a smi. Label slow; __ movq(rax, Operand(rsp, 2 * kPointerSize + extra_stack_space)); __ JumpIfSmi(rax, &slow); // Check that the left hand is a JS object. Leave its map in rax. __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax); __ j(below, &slow); __ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE); __ j(above, &slow); // Get the prototype of the function. __ movq(rdx, Operand(rsp, 1 * kPointerSize + extra_stack_space)); // rdx is function, rax is map. // If there is a call site cache don't look in the global cache, but do the // real lookup and update the call site cache. if (!HasCallSiteInlineCheck()) { // Look up the function and the map in the instanceof cache. Label miss; __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); __ j(not_equal, &miss, Label::kNear); __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex); __ j(not_equal, &miss, Label::kNear); __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); __ ret(2 * kPointerSize); __ bind(&miss); } __ TryGetFunctionPrototype(rdx, rbx, &slow, true); // Check that the function prototype is a JS object. __ JumpIfSmi(rbx, &slow); __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, kScratchRegister); __ j(below, &slow); __ CmpInstanceType(kScratchRegister, LAST_SPEC_OBJECT_TYPE); __ j(above, &slow); // Register mapping: // rax is object map. // rdx is function. // rbx is function prototype. if (!HasCallSiteInlineCheck()) { __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex); } else { // Get return address and delta to inlined map check. __ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize)); __ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize)); if (FLAG_debug_code) { __ movl(rdi, Immediate(kWordBeforeMapCheckValue)); __ cmpl(Operand(kScratchRegister, kOffsetToMapCheckValue - 4), rdi); __ Assert(equal, "InstanceofStub unexpected call site cache (check)."); } __ movq(kScratchRegister, Operand(kScratchRegister, kOffsetToMapCheckValue)); __ movq(Operand(kScratchRegister, 0), rax); } __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset)); // Loop through the prototype chain looking for the function prototype. Label loop, is_instance, is_not_instance; __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); __ bind(&loop); __ cmpq(rcx, rbx); __ j(equal, &is_instance, Label::kNear); __ cmpq(rcx, kScratchRegister); // The code at is_not_instance assumes that kScratchRegister contains a // non-zero GCable value (the null object in this case). __ j(equal, &is_not_instance, Label::kNear); __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); if (!HasCallSiteInlineCheck()) { __ xorl(rax, rax); // Store bitwise zero in the cache. This is a Smi in GC terms. STATIC_ASSERT(kSmiTag == 0); __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); } else { // Store offset of true in the root array at the inline check site. int true_offset = 0x100 + (Heap::kTrueValueRootIndex << kPointerSizeLog2) - kRootRegisterBias; // Assert it is a 1-byte signed value. ASSERT(true_offset >= 0 && true_offset < 0x100); __ movl(rax, Immediate(true_offset)); __ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize)); __ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize)); __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax); if (FLAG_debug_code) { __ movl(rax, Immediate(kWordBeforeResultValue)); __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax); __ Assert(equal, "InstanceofStub unexpected call site cache (mov)."); } __ Set(rax, 0); } __ ret(2 * kPointerSize + extra_stack_space); __ bind(&is_not_instance); if (!HasCallSiteInlineCheck()) { // We have to store a non-zero value in the cache. __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex); } else { // Store offset of false in the root array at the inline check site. int false_offset = 0x100 + (Heap::kFalseValueRootIndex << kPointerSizeLog2) - kRootRegisterBias; // Assert it is a 1-byte signed value. ASSERT(false_offset >= 0 && false_offset < 0x100); __ movl(rax, Immediate(false_offset)); __ movq(kScratchRegister, Operand(rsp, 0 * kPointerSize)); __ subq(kScratchRegister, Operand(rsp, 1 * kPointerSize)); __ movb(Operand(kScratchRegister, kOffsetToResultValue), rax); if (FLAG_debug_code) { __ movl(rax, Immediate(kWordBeforeResultValue)); __ cmpl(Operand(kScratchRegister, kOffsetToResultValue - 4), rax); __ Assert(equal, "InstanceofStub unexpected call site cache (mov)"); } } __ ret(2 * kPointerSize + extra_stack_space); // Slow-case: Go through the JavaScript implementation. __ bind(&slow); if (HasCallSiteInlineCheck()) { // Remove extra value from the stack. __ pop(rcx); __ pop(rax); __ push(rcx); } __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } // Passing arguments in registers is not supported. Register InstanceofStub::left() { return no_reg; } Register InstanceofStub::right() { return no_reg; } int CompareStub::MinorKey() { // Encode the three parameters in a unique 16 bit value. To avoid duplicate // stubs the never NaN NaN condition is only taken into account if the // condition is equals. ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); return ConditionField::encode(static_cast<unsigned>(cc_)) | RegisterField::encode(false) // lhs_ and rhs_ are not used | StrictField::encode(strict_) | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) | IncludeNumberCompareField::encode(include_number_compare_) | IncludeSmiCompareField::encode(include_smi_compare_); } // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. void CompareStub::PrintName(StringStream* stream) { ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); const char* cc_name; switch (cc_) { case less: cc_name = "LT"; break; case greater: cc_name = "GT"; break; case less_equal: cc_name = "LE"; break; case greater_equal: cc_name = "GE"; break; case equal: cc_name = "EQ"; break; case not_equal: cc_name = "NE"; break; default: cc_name = "UnknownCondition"; break; } bool is_equality = cc_ == equal || cc_ == not_equal; stream->Add("CompareStub_%s", cc_name); if (strict_ && is_equality) stream->Add("_STRICT"); if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN"); if (!include_number_compare_) stream->Add("_NO_NUMBER"); if (!include_smi_compare_) stream->Add("_NO_SMI"); } // ------------------------------------------------------------------------- // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { Label flat_string; Label ascii_string; Label got_char_code; Label sliced_string; // If the receiver is a smi trigger the non-string case. __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ testb(result_, Immediate(kIsNotStringMask)); __ j(not_zero, receiver_not_string_); // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset)); __ j(above_equal, index_out_of_range_); __ SmiToInteger32(index_, index_); StringCharLoadGenerator::Generate( masm, object_, index_, result_, &call_runtime_); __ Integer32ToSmi(result_, result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharCodeAt slow case"); Factory* factory = masm->isolate()->factory(); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, factory->heap_number_map(), index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); __ push(object_); __ push(index_); // Consumed by runtime conversion function. if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); } else { ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi, 1); } if (!index_.is(rax)) { // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ movq(index_, rax); } __ pop(object_); // Reload the instance type. __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ jmp(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ push(object_); __ Integer32ToSmi(index_, index_); __ push(index_); __ CallRuntime(Runtime::kStringCharCodeAt, 2); if (!result_.is(rax)) { __ movq(result_, rax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort("Unexpected fallthrough from CharCodeAt slow case"); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. __ JumpIfNotSmi(code_, &slow_case_); __ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode)); __ j(above, &slow_case_); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2); __ movq(result_, FieldOperand(result_, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); __ j(equal, &slow_case_); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharFromCode slow case"); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kCharFromCode, 1); if (!result_.is(rax)) { __ movq(result_, rax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort("Unexpected fallthrough from CharFromCode slow case"); } // ------------------------------------------------------------------------- // StringCharAtGenerator void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { char_code_at_generator_.GenerateFast(masm); char_from_code_generator_.GenerateFast(masm); } void StringCharAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { char_code_at_generator_.GenerateSlow(masm, call_helper); char_from_code_generator_.GenerateSlow(masm, call_helper); } void StringAddStub::Generate(MacroAssembler* masm) { Label call_runtime, call_builtin; Builtins::JavaScript builtin_id = Builtins::ADD; // Load the two arguments. __ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument (left). __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument (right). // Make sure that both arguments are strings if not known in advance. if (flags_ == NO_STRING_ADD_FLAGS) { __ JumpIfSmi(rax, &call_runtime); __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8); __ j(above_equal, &call_runtime); // First argument is a a string, test second. __ JumpIfSmi(rdx, &call_runtime); __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9); __ j(above_equal, &call_runtime); } else { // Here at least one of the arguments is definitely a string. // We convert the one that is not known to be a string. if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); GenerateConvertArgument(masm, 2 * kPointerSize, rax, rbx, rcx, rdi, &call_builtin); builtin_id = Builtins::STRING_ADD_RIGHT; } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); GenerateConvertArgument(masm, 1 * kPointerSize, rdx, rbx, rcx, rdi, &call_builtin); builtin_id = Builtins::STRING_ADD_LEFT; } } // Both arguments are strings. // rax: first string // rdx: second string // Check if either of the strings are empty. In that case return the other. Label second_not_zero_length, both_not_zero_length; __ movq(rcx, FieldOperand(rdx, String::kLengthOffset)); __ SmiTest(rcx); __ j(not_zero, &second_not_zero_length, Label::kNear); // Second string is empty, result is first string which is already in rax. Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); __ bind(&second_not_zero_length); __ movq(rbx, FieldOperand(rax, String::kLengthOffset)); __ SmiTest(rbx); __ j(not_zero, &both_not_zero_length, Label::kNear); // First string is empty, result is second string which is in rdx. __ movq(rax, rdx); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); // Both strings are non-empty. // rax: first string // rbx: length of first string // rcx: length of second string // rdx: second string // r8: map of first string (if flags_ == NO_STRING_ADD_FLAGS) // r9: map of second string (if flags_ == NO_STRING_ADD_FLAGS) Label string_add_flat_result, longer_than_two; __ bind(&both_not_zero_length); // If arguments where known to be strings, maps are not loaded to r8 and r9 // by the code above. if (flags_ != NO_STRING_ADD_FLAGS) { __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset)); __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset)); } // Get the instance types of the two strings as they will be needed soon. __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset)); __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset)); // Look at the length of the result of adding the two strings. STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2); __ SmiAdd(rbx, rbx, rcx); // Use the symbol table when adding two one character strings, as it // helps later optimizations to return a symbol here. __ SmiCompare(rbx, Smi::FromInt(2)); __ j(not_equal, &longer_than_two); // Check that both strings are non-external ASCII strings. __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx, &call_runtime); // Get the two characters forming the sub string. __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize)); __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize)); // Try to lookup two character string in symbol table. If it is not found // just allocate a new one. Label make_two_character_string, make_flat_ascii_string; StringHelper::GenerateTwoCharacterSymbolTableProbe( masm, rbx, rcx, r14, r11, rdi, r15, &make_two_character_string); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); __ bind(&make_two_character_string); __ Set(rdi, 2); __ AllocateAsciiString(rax, rdi, r8, r9, r11, &call_runtime); // rbx - first byte: first character // rbx - second byte: *maybe* second character // Make sure that the second byte of rbx contains the second character. __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize)); __ shll(rcx, Immediate(kBitsPerByte)); __ orl(rbx, rcx); // Write both characters to the new string. __ movw(FieldOperand(rax, SeqAsciiString::kHeaderSize), rbx); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); __ bind(&longer_than_two); // Check if resulting string will be flat. __ SmiCompare(rbx, Smi::FromInt(ConsString::kMinLength)); __ j(below, &string_add_flat_result); // Handle exceptionally long strings in the runtime system. STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0); __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength)); __ j(above, &call_runtime); // If result is not supposed to be flat, allocate a cons string object. If // both strings are ASCII the result is an ASCII cons string. // rax: first string // rbx: length of resulting flat string // rdx: second string // r8: instance type of first string // r9: instance type of second string Label non_ascii, allocated, ascii_data; __ movl(rcx, r8); __ and_(rcx, r9); STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ testl(rcx, Immediate(kStringEncodingMask)); __ j(zero, &non_ascii); __ bind(&ascii_data); // Allocate an ASCII cons string. __ AllocateAsciiConsString(rcx, rdi, no_reg, &call_runtime); __ bind(&allocated); // Fill the fields of the cons string. __ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx); __ movq(FieldOperand(rcx, ConsString::kHashFieldOffset), Immediate(String::kEmptyHashField)); __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax); __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx); __ movq(rax, rcx); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); __ bind(&non_ascii); // At least one of the strings is two-byte. Check whether it happens // to contain only ASCII characters. // rcx: first instance type AND second instance type. // r8: first instance type. // r9: second instance type. __ testb(rcx, Immediate(kAsciiDataHintMask)); __ j(not_zero, &ascii_data); __ xor_(r8, r9); STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); __ j(equal, &ascii_data); // Allocate a two byte cons string. __ AllocateTwoByteConsString(rcx, rdi, no_reg, &call_runtime); __ jmp(&allocated); // We cannot encounter sliced strings or cons strings here since: STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength); // Handle creating a flat result from either external or sequential strings. // Locate the first characters' locations. // rax: first string // rbx: length of resulting flat string as smi // rdx: second string // r8: instance type of first string // r9: instance type of first string Label first_prepared, second_prepared; Label first_is_sequential, second_is_sequential; __ bind(&string_add_flat_result); __ SmiToInteger32(r14, FieldOperand(rax, SeqString::kLengthOffset)); // r14: length of first string STATIC_ASSERT(kSeqStringTag == 0); __ testb(r8, Immediate(kStringRepresentationMask)); __ j(zero, &first_is_sequential, Label::kNear); // Rule out short external string and load string resource. STATIC_ASSERT(kShortExternalStringTag != 0); __ testb(r8, Immediate(kShortExternalStringMask)); __ j(not_zero, &call_runtime); __ movq(rcx, FieldOperand(rax, ExternalString::kResourceDataOffset)); __ jmp(&first_prepared, Label::kNear); __ bind(&first_is_sequential); STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); __ lea(rcx, FieldOperand(rax, SeqAsciiString::kHeaderSize)); __ bind(&first_prepared); // Check whether both strings have same encoding. __ xorl(r8, r9); __ testb(r8, Immediate(kStringEncodingMask)); __ j(not_zero, &call_runtime); __ SmiToInteger32(r15, FieldOperand(rdx, SeqString::kLengthOffset)); // r15: length of second string STATIC_ASSERT(kSeqStringTag == 0); __ testb(r9, Immediate(kStringRepresentationMask)); __ j(zero, &second_is_sequential, Label::kNear); // Rule out short external string and load string resource. STATIC_ASSERT(kShortExternalStringTag != 0); __ testb(r9, Immediate(kShortExternalStringMask)); __ j(not_zero, &call_runtime); __ movq(rdx, FieldOperand(rdx, ExternalString::kResourceDataOffset)); __ jmp(&second_prepared, Label::kNear); __ bind(&second_is_sequential); STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); __ lea(rdx, FieldOperand(rdx, SeqAsciiString::kHeaderSize)); __ bind(&second_prepared); Label non_ascii_string_add_flat_result; // r9: instance type of second string // First string and second string have the same encoding. STATIC_ASSERT(kTwoByteStringTag == 0); __ SmiToInteger32(rbx, rbx); __ testb(r9, Immediate(kStringEncodingMask)); __ j(zero, &non_ascii_string_add_flat_result); __ bind(&make_flat_ascii_string); // Both strings are ASCII strings. As they are short they are both flat. __ AllocateAsciiString(rax, rbx, rdi, r8, r9, &call_runtime); // rax: result string // Locate first character of result. __ lea(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize)); // rcx: first char of first string // rbx: first character of result // r14: length of first string StringHelper::GenerateCopyCharacters(masm, rbx, rcx, r14, true); // rbx: next character of result // rdx: first char of second string // r15: length of second string StringHelper::GenerateCopyCharacters(masm, rbx, rdx, r15, true); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); __ bind(&non_ascii_string_add_flat_result); // Both strings are ASCII strings. As they are short they are both flat. __ AllocateTwoByteString(rax, rbx, rdi, r8, r9, &call_runtime); // rax: result string // Locate first character of result. __ lea(rbx, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); // rcx: first char of first string // rbx: first character of result // r14: length of first string StringHelper::GenerateCopyCharacters(masm, rbx, rcx, r14, false); // rbx: next character of result // rdx: first char of second string // r15: length of second string StringHelper::GenerateCopyCharacters(masm, rbx, rdx, r15, false); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); // Just jump to runtime to add the two strings. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kStringAdd, 2, 1); if (call_builtin.is_linked()) { __ bind(&call_builtin); __ InvokeBuiltin(builtin_id, JUMP_FUNCTION); } } void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, int stack_offset, Register arg, Register scratch1, Register scratch2, Register scratch3, Label* slow) { // First check if the argument is already a string. Label not_string, done; __ JumpIfSmi(arg, ¬_string); __ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1); __ j(below, &done); // Check the number to string cache. Label not_cached; __ bind(¬_string); // Puts the cached result into scratch1. NumberToStringStub::GenerateLookupNumberStringCache(masm, arg, scratch1, scratch2, scratch3, false, ¬_cached); __ movq(arg, scratch1); __ movq(Operand(rsp, stack_offset), arg); __ jmp(&done); // Check if the argument is a safe string wrapper. __ bind(¬_cached); __ JumpIfSmi(arg, slow); __ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1. __ j(not_equal, slow); __ testb(FieldOperand(scratch1, Map::kBitField2Offset), Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); __ j(zero, slow); __ movq(arg, FieldOperand(arg, JSValue::kValueOffset)); __ movq(Operand(rsp, stack_offset), arg); __ bind(&done); } void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, bool ascii) { Label loop; __ bind(&loop); // This loop just copies one character at a time, as it is only used for very // short strings. if (ascii) { __ movb(kScratchRegister, Operand(src, 0)); __ movb(Operand(dest, 0), kScratchRegister); __ incq(src); __ incq(dest); } else { __ movzxwl(kScratchRegister, Operand(src, 0)); __ movw(Operand(dest, 0), kScratchRegister); __ addq(src, Immediate(2)); __ addq(dest, Immediate(2)); } __ decl(count); __ j(not_zero, &loop); } void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, Register dest, Register src, Register count, bool ascii) { // Copy characters using rep movs of doublewords. Align destination on 4 byte // boundary before starting rep movs. Copy remaining characters after running // rep movs. // Count is positive int32, dest and src are character pointers. ASSERT(dest.is(rdi)); // rep movs destination ASSERT(src.is(rsi)); // rep movs source ASSERT(count.is(rcx)); // rep movs count // Nothing to do for zero characters. Label done; __ testl(count, count); __ j(zero, &done, Label::kNear); // Make count the number of bytes to copy. if (!ascii) { STATIC_ASSERT(2 == sizeof(uc16)); __ addl(count, count); } // Don't enter the rep movs if there are less than 4 bytes to copy. Label last_bytes; __ testl(count, Immediate(~7)); __ j(zero, &last_bytes, Label::kNear); // Copy from edi to esi using rep movs instruction. __ movl(kScratchRegister, count); __ shr(count, Immediate(3)); // Number of doublewords to copy. __ repmovsq(); // Find number of bytes left. __ movl(count, kScratchRegister); __ and_(count, Immediate(7)); // Check if there are more bytes to copy. __ bind(&last_bytes); __ testl(count, count); __ j(zero, &done, Label::kNear); // Copy remaining characters. Label loop; __ bind(&loop); __ movb(kScratchRegister, Operand(src, 0)); __ movb(Operand(dest, 0), kScratchRegister); __ incq(src); __ incq(dest); __ decl(count); __ j(not_zero, &loop); __ bind(&done); } void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label* not_found) { // Register scratch3 is the general scratch register in this function. Register scratch = scratch3; // Make sure that both characters are not digits as such strings has a // different hash algorithm. Don't try to look for these in the symbol table. Label not_array_index; __ leal(scratch, Operand(c1, -'0')); __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); __ j(above, ¬_array_index, Label::kNear); __ leal(scratch, Operand(c2, -'0')); __ cmpl(scratch, Immediate(static_cast<int>('9' - '0'))); __ j(below_equal, not_found); __ bind(¬_array_index); // Calculate the two character string hash. Register hash = scratch1; GenerateHashInit(masm, hash, c1, scratch); GenerateHashAddCharacter(masm, hash, c2, scratch); GenerateHashGetHash(masm, hash, scratch); // Collect the two characters in a register. Register chars = c1; __ shl(c2, Immediate(kBitsPerByte)); __ orl(chars, c2); // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string. // Load the symbol table. Register symbol_table = c2; __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); // Calculate capacity mask from the symbol table capacity. Register mask = scratch2; __ SmiToInteger32(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); __ decl(mask); Register map = scratch4; // Registers // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string (32-bit int) // symbol_table: symbol table // mask: capacity mask (32-bit int) // map: - // scratch: - // Perform a number of probes in the symbol table. static const int kProbes = 4; Label found_in_symbol_table; Label next_probe[kProbes]; Register candidate = scratch; // Scratch register contains candidate. for (int i = 0; i < kProbes; i++) { // Calculate entry in symbol table. __ movl(scratch, hash); if (i > 0) { __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i))); } __ andl(scratch, mask); // Load the entry from the symbol table. STATIC_ASSERT(SymbolTable::kEntrySize == 1); __ movq(candidate, FieldOperand(symbol_table, scratch, times_pointer_size, SymbolTable::kElementsStartOffset)); // If entry is undefined no string with this hash can be found. Label is_string; __ CmpObjectType(candidate, ODDBALL_TYPE, map); __ j(not_equal, &is_string, Label::kNear); __ CompareRoot(candidate, Heap::kUndefinedValueRootIndex); __ j(equal, not_found); // Must be the hole (deleted entry). if (FLAG_debug_code) { __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ cmpq(kScratchRegister, candidate); __ Assert(equal, "oddball in symbol table is not undefined or the hole"); } __ jmp(&next_probe[i]); __ bind(&is_string); // If length is not 2 the string is not a candidate. __ SmiCompare(FieldOperand(candidate, String::kLengthOffset), Smi::FromInt(2)); __ j(not_equal, &next_probe[i]); // We use kScratchRegister as a temporary register in assumption that // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly Register temp = kScratchRegister; // Check that the candidate is a non-external ASCII string. __ movzxbl(temp, FieldOperand(map, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialAscii( temp, temp, &next_probe[i]); // Check if the two characters match. __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); __ andl(temp, Immediate(0x0000ffff)); __ cmpl(chars, temp); __ j(equal, &found_in_symbol_table); __ bind(&next_probe[i]); } // No matching 2 character string found by probing. __ jmp(not_found); // Scratch register contains result when we fall through to here. Register result = candidate; __ bind(&found_in_symbol_table); if (!result.is(rax)) { __ movq(rax, result); } } void StringHelper::GenerateHashInit(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash = (seed + character) + ((seed + character) << 10); __ LoadRoot(scratch, Heap::kHashSeedRootIndex); __ SmiToInteger32(scratch, scratch); __ addl(scratch, character); __ movl(hash, scratch); __ shll(scratch, Immediate(10)); __ addl(hash, scratch); // hash ^= hash >> 6; __ movl(scratch, hash); __ shrl(scratch, Immediate(6)); __ xorl(hash, scratch); } void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash += character; __ addl(hash, character); // hash += hash << 10; __ movl(scratch, hash); __ shll(scratch, Immediate(10)); __ addl(hash, scratch); // hash ^= hash >> 6; __ movl(scratch, hash); __ shrl(scratch, Immediate(6)); __ xorl(hash, scratch); } void StringHelper::GenerateHashGetHash(MacroAssembler* masm, Register hash, Register scratch) { // hash += hash << 3; __ leal(hash, Operand(hash, hash, times_8, 0)); // hash ^= hash >> 11; __ movl(scratch, hash); __ shrl(scratch, Immediate(11)); __ xorl(hash, scratch); // hash += hash << 15; __ movl(scratch, hash); __ shll(scratch, Immediate(15)); __ addl(hash, scratch); __ andl(hash, Immediate(String::kHashBitMask)); // if (hash == 0) hash = 27; Label hash_not_zero; __ j(not_zero, &hash_not_zero); __ Set(hash, StringHasher::kZeroHash); __ bind(&hash_not_zero); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // rsp[0]: return address // rsp[8]: to // rsp[16]: from // rsp[24]: string const int kToOffset = 1 * kPointerSize; const int kFromOffset = kToOffset + kPointerSize; const int kStringOffset = kFromOffset + kPointerSize; const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset; // Make sure first argument is a string. __ movq(rax, Operand(rsp, kStringOffset)); STATIC_ASSERT(kSmiTag == 0); __ testl(rax, Immediate(kSmiTagMask)); __ j(zero, &runtime); Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); __ j(NegateCondition(is_string), &runtime); // rax: string // rbx: instance type // Calculate length of sub string using the smi values. Label result_longer_than_two; __ movq(rcx, Operand(rsp, kToOffset)); __ movq(rdx, Operand(rsp, kFromOffset)); __ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime); __ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen. __ cmpq(FieldOperand(rax, String::kLengthOffset), rcx); Label not_original_string; __ j(not_equal, ¬_original_string, Label::kNear); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(kArgumentsSize); __ bind(¬_original_string); // Special handling of sub-strings of length 1 and 2. One character strings // are handled in the runtime system (looked up in the single character // cache). Two character strings are looked for in the symbol cache. __ SmiToInteger32(rcx, rcx); __ cmpl(rcx, Immediate(2)); __ j(greater, &result_longer_than_two); __ j(less, &runtime); // Sub string of length 2 requested. // rax: string // rbx: instance type // rcx: sub string length (value is 2) // rdx: from index (smi) __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime); // Get the two characters forming the sub string. __ SmiToInteger32(rdx, rdx); // From index is no longer smi. __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize)); __ movzxbq(rdi, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1)); // Try to lookup two character string in symbol table. Label make_two_character_string; StringHelper::GenerateTwoCharacterSymbolTableProbe( masm, rbx, rdi, r9, r11, r14, r15, &make_two_character_string); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); __ bind(&make_two_character_string); // Set up registers for allocating the two character string. __ movzxwq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize)); __ AllocateAsciiString(rax, rcx, r11, r14, r15, &runtime); __ movw(FieldOperand(rax, SeqAsciiString::kHeaderSize), rbx); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); __ bind(&result_longer_than_two); // rax: string // rbx: instance type // rcx: sub string length // rdx: from index (smi) // Deal with different string types: update the index if necessary // and put the underlying string into edi. Label underlying_unpacked, sliced_string, seq_or_external_string; // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); __ testb(rbx, Immediate(kIsIndirectStringMask)); __ j(zero, &seq_or_external_string, Label::kNear); __ testb(rbx, Immediate(kSlicedNotConsMask)); __ j(not_zero, &sliced_string, Label::kNear); // Cons string. Check whether it is flat, then fetch first part. // Flat cons strings have an empty second part. __ CompareRoot(FieldOperand(rax, ConsString::kSecondOffset), Heap::kEmptyStringRootIndex); __ j(not_equal, &runtime); __ movq(rdi, FieldOperand(rax, ConsString::kFirstOffset)); // Update instance type. __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked, Label::kNear); __ bind(&sliced_string); // Sliced string. Fetch parent and correct start index by offset. __ addq(rdx, FieldOperand(rax, SlicedString::kOffsetOffset)); __ movq(rdi, FieldOperand(rax, SlicedString::kParentOffset)); // Update instance type. __ movq(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked, Label::kNear); __ bind(&seq_or_external_string); // Sequential or external string. Just move string to the correct register. __ movq(rdi, rax); __ bind(&underlying_unpacked); if (FLAG_string_slices) { Label copy_routine; // rdi: underlying subject string // rbx: instance type of underlying subject string // rdx: adjusted start index (smi) // rcx: length // If coming from the make_two_character_string path, the string // is too short to be sliced anyways. __ cmpq(rcx, Immediate(SlicedString::kMinLength)); // Short slice. Copy instead of slicing. __ j(less, ©_routine); // Allocate new sliced string. At this point we do not reload the instance // type including the string encoding because we simply rely on the info // provided by the original string. It does not matter if the original // string's encoding is wrong because we always have to recheck encoding of // the newly created string's parent anyways due to externalized strings. Label two_byte_slice, set_slice_header; STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ testb(rbx, Immediate(kStringEncodingMask)); __ j(zero, &two_byte_slice, Label::kNear); __ AllocateAsciiSlicedString(rax, rbx, r14, &runtime); __ jmp(&set_slice_header, Label::kNear); __ bind(&two_byte_slice); __ AllocateTwoByteSlicedString(rax, rbx, r14, &runtime); __ bind(&set_slice_header); __ Integer32ToSmi(rcx, rcx); __ movq(FieldOperand(rax, SlicedString::kLengthOffset), rcx); __ movq(FieldOperand(rax, SlicedString::kHashFieldOffset), Immediate(String::kEmptyHashField)); __ movq(FieldOperand(rax, SlicedString::kParentOffset), rdi); __ movq(FieldOperand(rax, SlicedString::kOffsetOffset), rdx); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(kArgumentsSize); __ bind(©_routine); } // rdi: underlying subject string // rbx: instance type of underlying subject string // rdx: adjusted start index (smi) // rcx: length // The subject string can only be external or sequential string of either // encoding at this point. Label two_byte_sequential, sequential_string; STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); __ testb(rbx, Immediate(kExternalStringTag)); __ j(zero, &sequential_string); // Handle external string. // Rule out short external strings. STATIC_CHECK(kShortExternalStringTag != 0); __ testb(rbx, Immediate(kShortExternalStringMask)); __ j(not_zero, &runtime); __ movq(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); __ subq(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ bind(&sequential_string); STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0); __ testb(rbx, Immediate(kStringEncodingMask)); __ j(zero, &two_byte_sequential); // Allocate the result. __ AllocateAsciiString(rax, rcx, r11, r14, r15, &runtime); // rax: result string // rcx: result string length __ movq(r14, rsi); // esi used by following code. { // Locate character of sub string start. SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_1); __ lea(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale, SeqAsciiString::kHeaderSize - kHeapObjectTag)); } // Locate first character of result. __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize)); // rax: result string // rcx: result length // rdi: first character of result // rsi: character of sub string start // r14: original value of rsi StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true); __ movq(rsi, r14); // Restore rsi. __ IncrementCounter(counters->sub_string_native(), 1); __ ret(kArgumentsSize); __ bind(&two_byte_sequential); // Allocate the result. __ AllocateTwoByteString(rax, rcx, r11, r14, r15, &runtime); // rax: result string // rcx: result string length __ movq(r14, rsi); // esi used by following code. { // Locate character of sub string start. SmiIndex smi_as_index = masm->SmiToIndex(rdx, rdx, times_2); __ lea(rsi, Operand(rdi, smi_as_index.reg, smi_as_index.scale, SeqAsciiString::kHeaderSize - kHeapObjectTag)); } // Locate first character of result. __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); // rax: result string // rcx: result length // rdi: first character of result // rsi: character of sub string start // r14: original value of rsi StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false); __ movq(rsi, r14); // Restore esi. __ IncrementCounter(counters->sub_string_native(), 1); __ ret(kArgumentsSize); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); } void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2) { Register length = scratch1; // Compare lengths. Label check_zero_length; __ movq(length, FieldOperand(left, String::kLengthOffset)); __ SmiCompare(length, FieldOperand(right, String::kLengthOffset)); __ j(equal, &check_zero_length, Label::kNear); __ Move(rax, Smi::FromInt(NOT_EQUAL)); __ ret(0); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ SmiTest(length); __ j(not_zero, &compare_chars, Label::kNear); __ Move(rax, Smi::FromInt(EQUAL)); __ ret(0); // Compare characters. __ bind(&compare_chars); Label strings_not_equal; GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2, &strings_not_equal, Label::kNear); // Characters are equal. __ Move(rax, Smi::FromInt(EQUAL)); __ ret(0); // Characters are not equal. __ bind(&strings_not_equal); __ Move(rax, Smi::FromInt(NOT_EQUAL)); __ ret(0); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { // Ensure that you can always subtract a string length from a non-negative // number (e.g. another length). STATIC_ASSERT(String::kMaxLength < 0x7fffffff); // Find minimum length and length difference. __ movq(scratch1, FieldOperand(left, String::kLengthOffset)); __ movq(scratch4, scratch1); __ SmiSub(scratch4, scratch4, FieldOperand(right, String::kLengthOffset)); // Register scratch4 now holds left.length - right.length. const Register length_difference = scratch4; Label left_shorter; __ j(less, &left_shorter, Label::kNear); // The right string isn't longer that the left one. // Get the right string's length by subtracting the (non-negative) difference // from the left string's length. __ SmiSub(scratch1, scratch1, length_difference); __ bind(&left_shorter); // Register scratch1 now holds Min(left.length, right.length). const Register min_length = scratch1; Label compare_lengths; // If min-length is zero, go directly to comparing lengths. __ SmiTest(min_length); __ j(zero, &compare_lengths, Label::kNear); // Compare loop. Label result_not_equal; GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2, &result_not_equal, Label::kNear); // Completed loop without finding different characters. // Compare lengths (precomputed). __ bind(&compare_lengths); __ SmiTest(length_difference); __ j(not_zero, &result_not_equal, Label::kNear); // Result is EQUAL. __ Move(rax, Smi::FromInt(EQUAL)); __ ret(0); Label result_greater; __ bind(&result_not_equal); // Unequal comparison of left to right, either character or length. __ j(greater, &result_greater, Label::kNear); // Result is LESS. __ Move(rax, Smi::FromInt(LESS)); __ ret(0); // Result is GREATER. __ bind(&result_greater); __ Move(rax, Smi::FromInt(GREATER)); __ ret(0); } void StringCompareStub::GenerateAsciiCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch, Label* chars_not_equal, Label::Distance near_jump) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiToInteger32(length, length); __ lea(left, FieldOperand(left, length, times_1, SeqAsciiString::kHeaderSize)); __ lea(right, FieldOperand(right, length, times_1, SeqAsciiString::kHeaderSize)); __ neg(length); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ movb(scratch, Operand(left, index, times_1, 0)); __ cmpb(scratch, Operand(right, index, times_1, 0)); __ j(not_equal, chars_not_equal, near_jump); __ incq(index); __ j(not_zero, &loop); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // rsp[0]: return address // rsp[8]: right string // rsp[16]: left string __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left __ movq(rax, Operand(rsp, 1 * kPointerSize)); // right // Check for identity. Label not_same; __ cmpq(rdx, rax); __ j(not_equal, ¬_same, Label::kNear); __ Move(rax, Smi::FromInt(EQUAL)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_compare_native(), 1); __ ret(2 * kPointerSize); __ bind(¬_same); // Check that both are sequential ASCII strings. __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime); // Inline comparison of ASCII strings. __ IncrementCounter(counters->string_compare_native(), 1); // Drop arguments from the stack __ pop(rcx); __ addq(rsp, Immediate(2 * kPointerSize)); __ push(rcx); GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } void ICCompareStub::GenerateSmis(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SMIS); Label miss; __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear); if (GetCondition() == equal) { // For equality we do not care about the sign of the result. __ subq(rax, rdx); } else { Label done; __ subq(rdx, rax); __ j(no_overflow, &done, Label::kNear); // Correct sign of result in case of overflow. __ SmiNot(rdx, rdx); __ bind(&done); __ movq(rax, rdx); } __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { ASSERT(state_ == CompareIC::HEAP_NUMBERS); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; Condition either_smi = masm->CheckEitherSmi(rax, rdx); __ j(either_smi, &generic_stub, Label::kNear); __ CmpObjectType(rax, HEAP_NUMBER_TYPE, rcx); __ j(not_equal, &maybe_undefined1, Label::kNear); __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx); __ j(not_equal, &maybe_undefined2, Label::kNear); // Load left and right operand __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); // Compare operands __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); // Return a result of -1, 0, or 1, based on EFLAGS. // Performing mov, because xor would destroy the flag register. __ movl(rax, Immediate(0)); __ movl(rcx, Immediate(0)); __ setcc(above, rax); // Add one to zero if carry clear and not equal. __ sbbq(rax, rcx); // Subtract one if below (aka. carry set). __ ret(0); __ bind(&unordered); CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS); __ bind(&generic_stub); __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op_)) { __ Cmp(rax, masm->isolate()->factory()->undefined_value()); __ j(not_equal, &miss); __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx); __ j(not_equal, &maybe_undefined2, Label::kNear); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op_)) { __ Cmp(rdx, masm->isolate()->factory()->undefined_value()); __ j(equal, &unordered); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateSymbols(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SYMBOLS); ASSERT(GetCondition() == equal); // Registers containing left and right operands respectively. Register left = rdx; Register right = rax; Register tmp1 = rcx; Register tmp2 = rbx; // Check that both operands are heap objects. Label miss; Condition cond = masm->CheckEitherSmi(left, right, tmp1); __ j(cond, &miss, Label::kNear); // Check that both operands are symbols. __ movq(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ movq(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzxbq(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzxbq(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSymbolTag != 0); __ and_(tmp1, tmp2); __ testb(tmp1, Immediate(kIsSymbolMask)); __ j(zero, &miss, Label::kNear); // Symbols are compared by identity. Label done; __ cmpq(left, right); // Make sure rax is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(rax)); __ j(not_equal, &done, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(rax, Smi::FromInt(EQUAL)); __ bind(&done); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateStrings(MacroAssembler* masm) { ASSERT(state_ == CompareIC::STRINGS); Label miss; bool equality = Token::IsEqualityOp(op_); // Registers containing left and right operands respectively. Register left = rdx; Register right = rax; Register tmp1 = rcx; Register tmp2 = rbx; Register tmp3 = rdi; // Check that both operands are heap objects. Condition cond = masm->CheckEitherSmi(left, right, tmp1); __ j(cond, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ movq(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ movq(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzxbq(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzxbq(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); __ movq(tmp3, tmp1); STATIC_ASSERT(kNotStringTag != 0); __ or_(tmp3, tmp2); __ testb(tmp3, Immediate(kIsNotStringMask)); __ j(not_zero, &miss); // Fast check for identical strings. Label not_same; __ cmpq(left, right); __ j(not_equal, ¬_same, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Move(rax, Smi::FromInt(EQUAL)); __ ret(0); // Handle not identical strings. __ bind(¬_same); // Check that both strings are symbols. If they are, we're done // because we already know they are not identical. if (equality) { Label do_compare; STATIC_ASSERT(kSymbolTag != 0); __ and_(tmp1, tmp2); __ testb(tmp1, Immediate(kIsSymbolMask)); __ j(zero, &do_compare, Label::kNear); // Make sure rax is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(rax)); __ ret(0); __ bind(&do_compare); } // Check that both strings are sequential ASCII. Label runtime; __ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime); // Compare flat ASCII strings. Returns when done. if (equality) { StringCompareStub::GenerateFlatAsciiStringEquals( masm, left, right, tmp1, tmp2); } else { StringCompareStub::GenerateCompareFlatAsciiStrings( masm, left, right, tmp1, tmp2, tmp3, kScratchRegister); } // Handle more complex cases in runtime. __ bind(&runtime); __ pop(tmp1); // Return address. __ push(left); __ push(right); __ push(tmp1); if (equality) { __ TailCallRuntime(Runtime::kStringEquals, 2, 1); } else { __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateObjects(MacroAssembler* masm) { ASSERT(state_ == CompareIC::OBJECTS); Label miss; Condition either_smi = masm->CheckEitherSmi(rdx, rax); __ j(either_smi, &miss, Label::kNear); __ CmpObjectType(rax, JS_OBJECT_TYPE, rcx); __ j(not_equal, &miss, Label::kNear); __ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx); __ j(not_equal, &miss, Label::kNear); ASSERT(GetCondition() == equal); __ subq(rax, rdx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { Label miss; Condition either_smi = masm->CheckEitherSmi(rdx, rax); __ j(either_smi, &miss, Label::kNear); __ movq(rcx, FieldOperand(rax, HeapObject::kMapOffset)); __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); __ Cmp(rcx, known_map_); __ j(not_equal, &miss, Label::kNear); __ Cmp(rbx, known_map_); __ j(not_equal, &miss, Label::kNear); __ subq(rax, rdx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); FrameScope scope(masm, StackFrame::INTERNAL); __ push(rdx); __ push(rax); __ push(rdx); __ push(rax); __ Push(Smi::FromInt(op_)); __ CallExternalReference(miss, 3); // Compute the entry point of the rewritten stub. __ lea(rdi, FieldOperand(rax, Code::kHeaderSize)); __ pop(rax); __ pop(rdx); } // Do a tail call to the rewritten stub. __ jmp(rdi); } void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register properties, Handle<String> name, Register r0) { // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // r0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = r0; // Capacity is smi 2^n. __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset)); __ decl(index); __ and_(index, Immediate(name->Hash() + StringDictionary::GetProbeOffset(i))); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ lea(index, Operand(index, index, times_2, 0)); // index *= 3. Register entity_name = r0; // Having undefined at this place means the name is not contained. ASSERT_EQ(kSmiTagSize, 1); __ movq(entity_name, Operand(properties, index, times_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ Cmp(entity_name, masm->isolate()->factory()->undefined_value()); __ j(equal, done); // Stop if found the property. __ Cmp(entity_name, Handle<String>(name)); __ j(equal, miss); Label the_hole; // Check for the hole and skip. __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex); __ j(equal, &the_hole, Label::kNear); // Check if the entry name is not a symbol. __ movq(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset)); __ testb(FieldOperand(entity_name, Map::kInstanceTypeOffset), Immediate(kIsSymbolMask)); __ j(zero, miss); __ bind(&the_hole); } StringDictionaryLookupStub stub(properties, r0, r0, StringDictionaryLookupStub::NEGATIVE_LOOKUP); __ Push(Handle<Object>(name)); __ push(Immediate(name->Hash())); __ CallStub(&stub); __ testq(r0, r0); __ j(not_zero, miss); __ jmp(done); } // Probe the string dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found leaving the // index into the dictionary in |r1|. Jump to the |miss| label // otherwise. void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register r0, Register r1) { ASSERT(!elements.is(r0)); ASSERT(!elements.is(r1)); ASSERT(!name.is(r0)); ASSERT(!name.is(r1)); // Assert that name contains a string. if (FLAG_debug_code) __ AbortIfNotString(name); __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset)); __ decl(r0); for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ movl(r1, FieldOperand(name, String::kHashFieldOffset)); __ shrl(r1, Immediate(String::kHashShift)); if (i > 0) { __ addl(r1, Immediate(StringDictionary::GetProbeOffset(i))); } __ and_(r1, r0); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ lea(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3 // Check if the key is identical to the name. __ cmpq(name, Operand(elements, r1, times_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ j(equal, done); } StringDictionaryLookupStub stub(elements, r0, r1, POSITIVE_LOOKUP); __ push(name); __ movl(r0, FieldOperand(name, String::kHashFieldOffset)); __ shrl(r0, Immediate(String::kHashShift)); __ push(r0); __ CallStub(&stub); __ testq(r0, r0); __ j(zero, miss); __ jmp(done); } void StringDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Stack frame on entry: // esp[0 * kPointerSize]: return address. // esp[1 * kPointerSize]: key's hash. // esp[2 * kPointerSize]: key. // Registers: // dictionary_: StringDictionary to probe. // result_: used as scratch. // index_: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Label in_dictionary, maybe_in_dictionary, not_in_dictionary; Register scratch = result_; __ SmiToInteger32(scratch, FieldOperand(dictionary_, kCapacityOffset)); __ decl(scratch); __ push(scratch); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the null value). for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ movq(scratch, Operand(rsp, 2 * kPointerSize)); if (i > 0) { __ addl(scratch, Immediate(StringDictionary::GetProbeOffset(i))); } __ and_(scratch, Operand(rsp, 0)); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ lea(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3. // Having undefined at this place means the name is not contained. __ movq(scratch, Operand(dictionary_, index_, times_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ Cmp(scratch, masm->isolate()->factory()->undefined_value()); __ j(equal, ¬_in_dictionary); // Stop if found the property. __ cmpq(scratch, Operand(rsp, 3 * kPointerSize)); __ j(equal, &in_dictionary); if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { // If we hit a non symbol key during negative lookup // we have to bailout as this key might be equal to the // key we are looking for. // Check if the entry name is not a symbol. __ movq(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); __ testb(FieldOperand(scratch, Map::kInstanceTypeOffset), Immediate(kIsSymbolMask)); __ j(zero, &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode_ == POSITIVE_LOOKUP) { __ movq(scratch, Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } __ bind(&in_dictionary); __ movq(scratch, Immediate(1)); __ Drop(1); __ ret(2 * kPointerSize); __ bind(¬_in_dictionary); __ movq(scratch, Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } struct AheadOfTimeWriteBarrierStubList { Register object, value, address; RememberedSetAction action; }; #define REG(Name) { kRegister_ ## Name ## _Code } struct AheadOfTimeWriteBarrierStubList kAheadOfTime[] = { // Used in RegExpExecStub. { REG(rbx), REG(rax), REG(rdi), EMIT_REMEMBERED_SET }, // Used in CompileArrayPushCall. { REG(rbx), REG(rcx), REG(rdx), EMIT_REMEMBERED_SET }, // Used in CompileStoreGlobal. { REG(rbx), REG(rcx), REG(rdx), OMIT_REMEMBERED_SET }, // Used in StoreStubCompiler::CompileStoreField and // KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField. { REG(rdx), REG(rcx), REG(rbx), EMIT_REMEMBERED_SET }, // GenerateStoreField calls the stub with two different permutations of // registers. This is the second. { REG(rbx), REG(rcx), REG(rdx), EMIT_REMEMBERED_SET }, // StoreIC::GenerateNormal via GenerateDictionaryStore. { REG(rbx), REG(r8), REG(r9), EMIT_REMEMBERED_SET }, // KeyedStoreIC::GenerateGeneric. { REG(rbx), REG(rdx), REG(rcx), EMIT_REMEMBERED_SET}, // KeyedStoreStubCompiler::GenerateStoreFastElement. { REG(rdi), REG(rbx), REG(rcx), EMIT_REMEMBERED_SET}, { REG(rdx), REG(rdi), REG(rbx), EMIT_REMEMBERED_SET}, // ElementsTransitionGenerator::GenerateSmiOnlyToObject // and ElementsTransitionGenerator::GenerateSmiOnlyToObject // and ElementsTransitionGenerator::GenerateDoubleToObject { REG(rdx), REG(rbx), REG(rdi), EMIT_REMEMBERED_SET}, { REG(rdx), REG(rbx), REG(rdi), OMIT_REMEMBERED_SET}, // ElementsTransitionGenerator::GenerateSmiOnlyToDouble // and ElementsTransitionGenerator::GenerateDoubleToObject { REG(rdx), REG(r11), REG(r15), EMIT_REMEMBERED_SET}, // ElementsTransitionGenerator::GenerateDoubleToObject { REG(r11), REG(rax), REG(r15), EMIT_REMEMBERED_SET}, // StoreArrayLiteralElementStub::Generate { REG(rbx), REG(rax), REG(rcx), EMIT_REMEMBERED_SET}, // Null termination. { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET} }; #undef REG bool RecordWriteStub::IsPregenerated() { for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; !entry->object.is(no_reg); entry++) { if (object_.is(entry->object) && value_.is(entry->value) && address_.is(entry->address) && remembered_set_action_ == entry->action && save_fp_regs_mode_ == kDontSaveFPRegs) { return true; } } return false; } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() { StoreBufferOverflowStub stub1(kDontSaveFPRegs); stub1.GetCode()->set_is_pregenerated(true); StoreBufferOverflowStub stub2(kSaveFPRegs); stub2.GetCode()->set_is_pregenerated(true); } void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() { for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; !entry->object.is(no_reg); entry++) { RecordWriteStub stub(entry->object, entry->value, entry->address, entry->action, kDontSaveFPRegs); stub.GetCode()->set_is_pregenerated(true); } } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two instructions are generated with labels so as to get the // offset fixed up correctly by the bind(Label*) call. We patch it back and // forth between a compare instructions (a nop in this position) and the // real branch when we start and stop incremental heap marking. // See RecordWriteStub::Patch for details. __ jmp(&skip_to_incremental_noncompacting, Label::kNear); __ jmp(&skip_to_incremental_compacting, Label::kFar); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. masm->set_byte_at(0, kTwoByteNopInstruction); masm->set_byte_at(2, kFiveByteNopInstruction); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ movq(regs_.scratch0(), Operand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), regs_.scratch0(), &dont_need_remembered_set); __ CheckPageFlag(regs_.object(), regs_.scratch0(), 1 << MemoryChunk::SCAN_ON_SCAVENGE, not_zero, &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm, mode); regs_.Restore(masm); __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm, mode); regs_.Restore(masm); __ ret(0); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); #ifdef _WIN64 Register arg3 = r8; Register arg2 = rdx; Register arg1 = rcx; #else Register arg3 = rdx; Register arg2 = rsi; Register arg1 = rdi; #endif Register address = arg1.is(regs_.address()) ? kScratchRegister : regs_.address(); ASSERT(!address.is(regs_.object())); ASSERT(!address.is(arg1)); __ Move(address, regs_.address()); __ Move(arg1, regs_.object()); if (mode == INCREMENTAL_COMPACTION) { // TODO(gc) Can we just set address arg2 in the beginning? __ Move(arg2, address); } else { ASSERT(mode == INCREMENTAL); __ movq(arg2, Operand(address, 0)); } __ LoadAddress(arg3, ExternalReference::isolate_address()); int argument_count = 3; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count); if (mode == INCREMENTAL_COMPACTION) { __ CallCFunction( ExternalReference::incremental_evacuation_record_write_function( masm->isolate()), argument_count); } else { ASSERT(mode == INCREMENTAL); __ CallCFunction( ExternalReference::incremental_marking_record_write_function( masm->isolate()), argument_count); } regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_object; // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black, Label::kNear); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&on_black); // Get the value from the slot. __ movq(regs_.scratch0(), Operand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, zero, &ensure_not_white, Label::kNear); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, zero, &need_incremental); __ bind(&ensure_not_white); } // We need an extra register for this, so we push the object register // temporarily. __ push(regs_.object()); __ EnsureNotWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. &need_incremental_pop_object, Label::kNear); __ pop(regs_.object()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&need_incremental_pop_object); __ pop(regs_.object()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : element value to store // -- rbx : array literal // -- rdi : map of array literal // -- rcx : element index as smi // -- rdx : array literal index in function // -- rsp[0] : return address // ----------------------------------- Label element_done; Label double_elements; Label smi_element; Label slow_elements; Label fast_elements; __ CheckFastElements(rdi, &double_elements); // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS __ JumpIfSmi(rax, &smi_element); __ CheckFastSmiOnlyElements(rdi, &fast_elements); // Store into the array literal requires a elements transition. Call into // the runtime. __ bind(&slow_elements); __ pop(rdi); // Pop return address and remember to put back later for tail // call. __ push(rbx); __ push(rcx); __ push(rax); __ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rbx, JSFunction::kLiteralsOffset)); __ push(rdx); __ push(rdi); // Return return address so that tail call returns to right // place. __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); // Array literal has ElementsKind of FAST_ELEMENTS and value is an object. __ bind(&fast_elements); __ SmiToInteger32(kScratchRegister, rcx); __ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset)); __ lea(rcx, FieldOperand(rbx, kScratchRegister, times_pointer_size, FixedArrayBase::kHeaderSize)); __ movq(Operand(rcx, 0), rax); // Update the write barrier for the array store. __ RecordWrite(rbx, rcx, rax, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ ret(0); // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or // FAST_ELEMENTS, and value is Smi. __ bind(&smi_element); __ SmiToInteger32(kScratchRegister, rcx); __ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset)); __ movq(FieldOperand(rbx, kScratchRegister, times_pointer_size, FixedArrayBase::kHeaderSize), rax); __ ret(0); // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. __ bind(&double_elements); __ movq(r9, FieldOperand(rbx, JSObject::kElementsOffset)); __ SmiToInteger32(r11, rcx); __ StoreNumberToDoubleElements(rax, r9, r11, xmm0, &slow_elements); __ ret(0); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64