// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "bootstrapper.h" #include "codegen.h" #include "assembler-x64.h" #include "macro-assembler-x64.h" #include "serialize.h" #include "debug.h" #include "heap.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) : Assembler(arg_isolate, buffer, size), generating_stub_(false), allow_stub_calls_(true), has_frame_(false), root_array_available_(true) { if (isolate() != NULL) { code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), isolate()); } } static intptr_t RootRegisterDelta(ExternalReference other, Isolate* isolate) { Address roots_register_value = kRootRegisterBias + reinterpret_cast<Address>(isolate->heap()->roots_array_start()); intptr_t delta = other.address() - roots_register_value; return delta; } Operand MacroAssembler::ExternalOperand(ExternalReference target, Register scratch) { if (root_array_available_ && !Serializer::enabled()) { intptr_t delta = RootRegisterDelta(target, isolate()); if (is_int32(delta)) { Serializer::TooLateToEnableNow(); return Operand(kRootRegister, static_cast<int32_t>(delta)); } } movq(scratch, target); return Operand(scratch, 0); } void MacroAssembler::Load(Register destination, ExternalReference source) { if (root_array_available_ && !Serializer::enabled()) { intptr_t delta = RootRegisterDelta(source, isolate()); if (is_int32(delta)) { Serializer::TooLateToEnableNow(); movq(destination, Operand(kRootRegister, static_cast<int32_t>(delta))); return; } } // Safe code. if (destination.is(rax)) { load_rax(source); } else { movq(kScratchRegister, source); movq(destination, Operand(kScratchRegister, 0)); } } void MacroAssembler::Store(ExternalReference destination, Register source) { if (root_array_available_ && !Serializer::enabled()) { intptr_t delta = RootRegisterDelta(destination, isolate()); if (is_int32(delta)) { Serializer::TooLateToEnableNow(); movq(Operand(kRootRegister, static_cast<int32_t>(delta)), source); return; } } // Safe code. if (source.is(rax)) { store_rax(destination); } else { movq(kScratchRegister, destination); movq(Operand(kScratchRegister, 0), source); } } void MacroAssembler::LoadAddress(Register destination, ExternalReference source) { if (root_array_available_ && !Serializer::enabled()) { intptr_t delta = RootRegisterDelta(source, isolate()); if (is_int32(delta)) { Serializer::TooLateToEnableNow(); lea(destination, Operand(kRootRegister, static_cast<int32_t>(delta))); return; } } // Safe code. movq(destination, source); } int MacroAssembler::LoadAddressSize(ExternalReference source) { if (root_array_available_ && !Serializer::enabled()) { // This calculation depends on the internals of LoadAddress. // It's correctness is ensured by the asserts in the Call // instruction below. intptr_t delta = RootRegisterDelta(source, isolate()); if (is_int32(delta)) { Serializer::TooLateToEnableNow(); // Operand is lea(scratch, Operand(kRootRegister, delta)); // Opcodes : REX.W 8D ModRM Disp8/Disp32 - 4 or 7. int size = 4; if (!is_int8(static_cast<int32_t>(delta))) { size += 3; // Need full four-byte displacement in lea. } return size; } } // Size of movq(destination, src); return 10; } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { ASSERT(root_array_available_); movq(destination, Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias)); } void MacroAssembler::LoadRootIndexed(Register destination, Register variable_offset, int fixed_offset) { ASSERT(root_array_available_); movq(destination, Operand(kRootRegister, variable_offset, times_pointer_size, (fixed_offset << kPointerSizeLog2) - kRootRegisterBias)); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) { ASSERT(root_array_available_); movq(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias), source); } void MacroAssembler::PushRoot(Heap::RootListIndex index) { ASSERT(root_array_available_); push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias)); } void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { ASSERT(root_array_available_); cmpq(with, Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias)); } void MacroAssembler::CompareRoot(const Operand& with, Heap::RootListIndex index) { ASSERT(root_array_available_); ASSERT(!with.AddressUsesRegister(kScratchRegister)); LoadRoot(kScratchRegister, index); cmpq(with, kScratchRegister); } void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. Register addr, Register scratch, SaveFPRegsMode save_fp, RememberedSetFinalAction and_then) { if (FLAG_debug_code) { Label ok; JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear); int3(); bind(&ok); } // Load store buffer top. LoadRoot(scratch, Heap::kStoreBufferTopRootIndex); // Store pointer to buffer. movq(Operand(scratch, 0), addr); // Increment buffer top. addq(scratch, Immediate(kPointerSize)); // Write back new top of buffer. StoreRoot(scratch, Heap::kStoreBufferTopRootIndex); // Call stub on end of buffer. Label done; // Check for end of buffer. testq(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit)); if (and_then == kReturnAtEnd) { Label buffer_overflowed; j(not_equal, &buffer_overflowed, Label::kNear); ret(0); bind(&buffer_overflowed); } else { ASSERT(and_then == kFallThroughAtEnd); j(equal, &done, Label::kNear); } StoreBufferOverflowStub store_buffer_overflow = StoreBufferOverflowStub(save_fp); CallStub(&store_buffer_overflow); if (and_then == kReturnAtEnd) { ret(0); } else { ASSERT(and_then == kFallThroughAtEnd); bind(&done); } } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc, Label* branch, Label::Distance distance) { if (Serializer::enabled()) { // Can't do arithmetic on external references if it might get serialized. // The mask isn't really an address. We load it as an external reference in // case the size of the new space is different between the snapshot maker // and the running system. if (scratch.is(object)) { movq(kScratchRegister, ExternalReference::new_space_mask(isolate())); and_(scratch, kScratchRegister); } else { movq(scratch, ExternalReference::new_space_mask(isolate())); and_(scratch, object); } movq(kScratchRegister, ExternalReference::new_space_start(isolate())); cmpq(scratch, kScratchRegister); j(cc, branch, distance); } else { ASSERT(is_int32(static_cast<int64_t>(HEAP->NewSpaceMask()))); intptr_t new_space_start = reinterpret_cast<intptr_t>(HEAP->NewSpaceStart()); movq(kScratchRegister, -new_space_start, RelocInfo::NONE); if (scratch.is(object)) { addq(scratch, kScratchRegister); } else { lea(scratch, Operand(object, kScratchRegister, times_1, 0)); } and_(scratch, Immediate(static_cast<int32_t>(HEAP->NewSpaceMask()))); j(cc, branch, distance); } } void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register dst, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { // The compiled code assumes that record write doesn't change the // context register, so we check that none of the clobbered // registers are rsi. ASSERT(!value.is(rsi) && !dst.is(rsi)); // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. ASSERT(IsAligned(offset, kPointerSize)); lea(dst, FieldOperand(object, offset)); if (emit_debug_code()) { Label ok; testb(dst, Immediate((1 << kPointerSizeLog2) - 1)); j(zero, &ok, Label::kNear); int3(); bind(&ok); } RecordWrite( object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE); movq(dst, BitCast<int64_t>(kZapValue), RelocInfo::NONE); } } void MacroAssembler::RecordWriteArray(Register object, Register value, Register index, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Array access: calculate the destination address. Index is not a smi. Register dst = index; lea(dst, Operand(object, index, times_pointer_size, FixedArray::kHeaderSize - kHeapObjectTag)); RecordWrite( object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE); movq(index, BitCast<int64_t>(kZapValue), RelocInfo::NONE); } } void MacroAssembler::RecordWrite(Register object, Register address, Register value, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check) { // The compiled code assumes that record write doesn't change the // context register, so we check that none of the clobbered // registers are rsi. ASSERT(!value.is(rsi) && !address.is(rsi)); ASSERT(!object.is(value)); ASSERT(!object.is(address)); ASSERT(!value.is(address)); if (emit_debug_code()) { AbortIfSmi(object); } if (remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) { return; } if (FLAG_debug_code) { Label ok; cmpq(value, Operand(address, 0)); j(equal, &ok, Label::kNear); int3(); bind(&ok); } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == INLINE_SMI_CHECK) { // Skip barrier if writing a smi. JumpIfSmi(value, &done); } CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, Label::kNear); CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done, Label::kNear); RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode); CallStub(&stub); bind(&done); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { movq(address, BitCast<int64_t>(kZapValue), RelocInfo::NONE); movq(value, BitCast<int64_t>(kZapValue), RelocInfo::NONE); } } void MacroAssembler::Assert(Condition cc, const char* msg) { if (emit_debug_code()) Check(cc, msg); } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { Label ok; CompareRoot(FieldOperand(elements, HeapObject::kMapOffset), Heap::kFixedArrayMapRootIndex); j(equal, &ok, Label::kNear); CompareRoot(FieldOperand(elements, HeapObject::kMapOffset), Heap::kFixedDoubleArrayMapRootIndex); j(equal, &ok, Label::kNear); CompareRoot(FieldOperand(elements, HeapObject::kMapOffset), Heap::kFixedCOWArrayMapRootIndex); j(equal, &ok, Label::kNear); Abort("JSObject with fast elements map has slow elements"); bind(&ok); } } void MacroAssembler::Check(Condition cc, const char* msg) { Label L; j(cc, &L, Label::kNear); Abort(msg); // Control will not return here. bind(&L); } void MacroAssembler::CheckStackAlignment() { int frame_alignment = OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { ASSERT(IsPowerOf2(frame_alignment)); Label alignment_as_expected; testq(rsp, Immediate(frame_alignment_mask)); j(zero, &alignment_as_expected, Label::kNear); // Abort if stack is not aligned. int3(); bind(&alignment_as_expected); } } void MacroAssembler::NegativeZeroTest(Register result, Register op, Label* then_label) { Label ok; testl(result, result); j(not_zero, &ok, Label::kNear); testl(op, op); j(sign, then_label); bind(&ok); } void MacroAssembler::Abort(const char* msg) { // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the alignment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast<intptr_t>(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; // Note: p0 might not be a valid Smi _value_, but it has a valid Smi tag. ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif push(rax); movq(kScratchRegister, p0, RelocInfo::NONE); push(kScratchRegister); movq(kScratchRegister, reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(p1 - p0))), RelocInfo::NONE); push(kScratchRegister); if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); CallRuntime(Runtime::kAbort, 2); } else { CallRuntime(Runtime::kAbort, 2); } // Control will not return here. int3(); } void MacroAssembler::CallStub(CodeStub* stub, unsigned ast_id) { ASSERT(AllowThisStubCall(stub)); // Calls are not allowed in some stubs Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id); } void MacroAssembler::TailCallStub(CodeStub* stub) { ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe()); Jump(stub->GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::StubReturn(int argc) { ASSERT(argc >= 1 && generating_stub()); ret((argc - 1) * kPointerSize); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false; return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe(); } void MacroAssembler::IllegalOperation(int num_arguments) { if (num_arguments > 0) { addq(rsp, Immediate(num_arguments * kPointerSize)); } LoadRoot(rax, Heap::kUndefinedValueRootIndex); } void MacroAssembler::IndexFromHash(Register hash, Register index) { // The assert checks that the constants for the maximum number of digits // for an array index cached in the hash field and the number of bits // reserved for it does not conflict. ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); // We want the smi-tagged index in key. Even if we subsequently go to // the slow case, converting the key to a smi is always valid. // key: string key // hash: key's hash field, including its array index value. and_(hash, Immediate(String::kArrayIndexValueMask)); shr(hash, Immediate(String::kHashShift)); // Here we actually clobber the key which will be used if calling into // runtime later. However as the new key is the numeric value of a string key // there is no difference in using either key. Integer32ToSmi(index, hash); } void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { CallRuntime(Runtime::FunctionForId(id), num_arguments); } void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { const Runtime::Function* function = Runtime::FunctionForId(id); Set(rax, function->nargs); LoadAddress(rbx, ExternalReference(function, isolate())); CEntryStub ces(1, kSaveFPRegs); CallStub(&ces); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); return; } // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Set(rax, num_arguments); LoadAddress(rbx, ExternalReference(f, isolate())); CEntryStub ces(f->result_size); CallStub(&ces); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments) { Set(rax, num_arguments); LoadAddress(rbx, ext); CEntryStub stub(1); CallStub(&stub); } void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : argument num_arguments - 1 // ... // -- rsp[8 * num_arguments] : argument 0 (receiver) // ----------------------------------- // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Set(rax, num_arguments); JumpToExternalReference(ext, result_size); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments, result_size); } static int Offset(ExternalReference ref0, ExternalReference ref1) { int64_t offset = (ref0.address() - ref1.address()); // Check that fits into int. ASSERT(static_cast<int>(offset) == offset); return static_cast<int>(offset); } void MacroAssembler::PrepareCallApiFunction(int arg_stack_space) { #ifdef _WIN64 // We need to prepare a slot for result handle on stack and put // a pointer to it into 1st arg register. EnterApiExitFrame(arg_stack_space + 1); // rcx must be used to pass the pointer to the return value slot. lea(rcx, StackSpaceOperand(arg_stack_space)); #else EnterApiExitFrame(arg_stack_space); #endif } void MacroAssembler::CallApiFunctionAndReturn(Address function_address, int stack_space) { Label empty_result; Label prologue; Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label write_back; Factory* factory = isolate()->factory(); ExternalReference next_address = ExternalReference::handle_scope_next_address(); const int kNextOffset = 0; const int kLimitOffset = Offset( ExternalReference::handle_scope_limit_address(), next_address); const int kLevelOffset = Offset( ExternalReference::handle_scope_level_address(), next_address); ExternalReference scheduled_exception_address = ExternalReference::scheduled_exception_address(isolate()); // Allocate HandleScope in callee-save registers. Register prev_next_address_reg = r14; Register prev_limit_reg = rbx; Register base_reg = r15; movq(base_reg, next_address); movq(prev_next_address_reg, Operand(base_reg, kNextOffset)); movq(prev_limit_reg, Operand(base_reg, kLimitOffset)); addl(Operand(base_reg, kLevelOffset), Immediate(1)); // Call the api function! movq(rax, reinterpret_cast<int64_t>(function_address), RelocInfo::RUNTIME_ENTRY); call(rax); #ifdef _WIN64 // rax keeps a pointer to v8::Handle, unpack it. movq(rax, Operand(rax, 0)); #endif // Check if the result handle holds 0. testq(rax, rax); j(zero, &empty_result); // It was non-zero. Dereference to get the result value. movq(rax, Operand(rax, 0)); bind(&prologue); // No more valid handles (the result handle was the last one). Restore // previous handle scope. subl(Operand(base_reg, kLevelOffset), Immediate(1)); movq(Operand(base_reg, kNextOffset), prev_next_address_reg); cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset)); j(not_equal, &delete_allocated_handles); bind(&leave_exit_frame); // Check if the function scheduled an exception. movq(rsi, scheduled_exception_address); Cmp(Operand(rsi, 0), factory->the_hole_value()); j(not_equal, &promote_scheduled_exception); LeaveApiExitFrame(); ret(stack_space * kPointerSize); bind(&promote_scheduled_exception); TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); bind(&empty_result); // It was zero; the result is undefined. Move(rax, factory->undefined_value()); jmp(&prologue); // HandleScope limit has changed. Delete allocated extensions. bind(&delete_allocated_handles); movq(Operand(base_reg, kLimitOffset), prev_limit_reg); movq(prev_limit_reg, rax); #ifdef _WIN64 LoadAddress(rcx, ExternalReference::isolate_address()); #else LoadAddress(rdi, ExternalReference::isolate_address()); #endif LoadAddress(rax, ExternalReference::delete_handle_scope_extensions(isolate())); call(rax); movq(rax, prev_limit_reg); jmp(&leave_exit_frame); } void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, int result_size) { // Set the entry point and jump to the C entry runtime stub. LoadAddress(rbx, ext); CEntryStub ces(result_size); jmp(ces.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a builtin without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); // Rely on the assertion to check that the number of provided // arguments match the expected number of arguments. Fake a // parameter count to avoid emitting code to do the check. ParameterCount expected(0); GetBuiltinEntry(rdx, id); InvokeCode(rdx, expected, expected, flag, call_wrapper, CALL_AS_METHOD); } void MacroAssembler::GetBuiltinFunction(Register target, Builtins::JavaScript id) { // Load the builtins object into target register. movq(target, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); movq(target, FieldOperand(target, GlobalObject::kBuiltinsOffset)); movq(target, FieldOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id))); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { ASSERT(!target.is(rdi)); // Load the JavaScript builtin function from the builtins object. GetBuiltinFunction(rdi, id); movq(target, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); } #define REG(Name) { kRegister_ ## Name ## _Code } static const Register saved_regs[] = { REG(rax), REG(rcx), REG(rdx), REG(rbx), REG(rbp), REG(rsi), REG(rdi), REG(r8), REG(r9), REG(r10), REG(r11) }; #undef REG static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register); void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. for (int i = 0; i < kNumberOfSavedRegs; i++) { Register reg = saved_regs[i]; if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) { push(reg); } } // R12 to r15 are callee save on all platforms. if (fp_mode == kSaveFPRegs) { CpuFeatures::Scope scope(SSE2); subq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movsd(Operand(rsp, i * kDoubleSize), reg); } } } void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { if (fp_mode == kSaveFPRegs) { CpuFeatures::Scope scope(SSE2); for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movsd(reg, Operand(rsp, i * kDoubleSize)); } addq(rsp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); } for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) { Register reg = saved_regs[i]; if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) { pop(reg); } } } void MacroAssembler::Set(Register dst, int64_t x) { if (x == 0) { xorl(dst, dst); } else if (is_uint32(x)) { movl(dst, Immediate(static_cast<uint32_t>(x))); } else if (is_int32(x)) { movq(dst, Immediate(static_cast<int32_t>(x))); } else { movq(dst, x, RelocInfo::NONE); } } void MacroAssembler::Set(const Operand& dst, int64_t x) { if (is_int32(x)) { movq(dst, Immediate(static_cast<int32_t>(x))); } else { Set(kScratchRegister, x); movq(dst, kScratchRegister); } } // ---------------------------------------------------------------------------- // Smi tagging, untagging and tag detection. Register MacroAssembler::GetSmiConstant(Smi* source) { int value = source->value(); if (value == 0) { xorl(kScratchRegister, kScratchRegister); return kScratchRegister; } if (value == 1) { return kSmiConstantRegister; } LoadSmiConstant(kScratchRegister, source); return kScratchRegister; } void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) { if (emit_debug_code()) { movq(dst, reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)), RelocInfo::NONE); cmpq(dst, kSmiConstantRegister); if (allow_stub_calls()) { Assert(equal, "Uninitialized kSmiConstantRegister"); } else { Label ok; j(equal, &ok, Label::kNear); int3(); bind(&ok); } } int value = source->value(); if (value == 0) { xorl(dst, dst); return; } bool negative = value < 0; unsigned int uvalue = negative ? -value : value; switch (uvalue) { case 9: lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_8, 0)); break; case 8: xorl(dst, dst); lea(dst, Operand(dst, kSmiConstantRegister, times_8, 0)); break; case 4: xorl(dst, dst); lea(dst, Operand(dst, kSmiConstantRegister, times_4, 0)); break; case 5: lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_4, 0)); break; case 3: lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_2, 0)); break; case 2: lea(dst, Operand(kSmiConstantRegister, kSmiConstantRegister, times_1, 0)); break; case 1: movq(dst, kSmiConstantRegister); break; case 0: UNREACHABLE(); return; default: movq(dst, reinterpret_cast<uint64_t>(source), RelocInfo::NONE); return; } if (negative) { neg(dst); } } void MacroAssembler::Integer32ToSmi(Register dst, Register src) { STATIC_ASSERT(kSmiTag == 0); if (!dst.is(src)) { movl(dst, src); } shl(dst, Immediate(kSmiShift)); } void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) { if (emit_debug_code()) { testb(dst, Immediate(0x01)); Label ok; j(zero, &ok, Label::kNear); if (allow_stub_calls()) { Abort("Integer32ToSmiField writing to non-smi location"); } else { int3(); } bind(&ok); } ASSERT(kSmiShift % kBitsPerByte == 0); movl(Operand(dst, kSmiShift / kBitsPerByte), src); } void MacroAssembler::Integer64PlusConstantToSmi(Register dst, Register src, int constant) { if (dst.is(src)) { addl(dst, Immediate(constant)); } else { leal(dst, Operand(src, constant)); } shl(dst, Immediate(kSmiShift)); } void MacroAssembler::SmiToInteger32(Register dst, Register src) { STATIC_ASSERT(kSmiTag == 0); if (!dst.is(src)) { movq(dst, src); } shr(dst, Immediate(kSmiShift)); } void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) { movl(dst, Operand(src, kSmiShift / kBitsPerByte)); } void MacroAssembler::SmiToInteger64(Register dst, Register src) { STATIC_ASSERT(kSmiTag == 0); if (!dst.is(src)) { movq(dst, src); } sar(dst, Immediate(kSmiShift)); } void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) { movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte)); } void MacroAssembler::SmiTest(Register src) { testq(src, src); } void MacroAssembler::SmiCompare(Register smi1, Register smi2) { if (emit_debug_code()) { AbortIfNotSmi(smi1); AbortIfNotSmi(smi2); } cmpq(smi1, smi2); } void MacroAssembler::SmiCompare(Register dst, Smi* src) { if (emit_debug_code()) { AbortIfNotSmi(dst); } Cmp(dst, src); } void MacroAssembler::Cmp(Register dst, Smi* src) { ASSERT(!dst.is(kScratchRegister)); if (src->value() == 0) { testq(dst, dst); } else { Register constant_reg = GetSmiConstant(src); cmpq(dst, constant_reg); } } void MacroAssembler::SmiCompare(Register dst, const Operand& src) { if (emit_debug_code()) { AbortIfNotSmi(dst); AbortIfNotSmi(src); } cmpq(dst, src); } void MacroAssembler::SmiCompare(const Operand& dst, Register src) { if (emit_debug_code()) { AbortIfNotSmi(dst); AbortIfNotSmi(src); } cmpq(dst, src); } void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) { if (emit_debug_code()) { AbortIfNotSmi(dst); } cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value())); } void MacroAssembler::Cmp(const Operand& dst, Smi* src) { // The Operand cannot use the smi register. Register smi_reg = GetSmiConstant(src); ASSERT(!dst.AddressUsesRegister(smi_reg)); cmpq(dst, smi_reg); } void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) { cmpl(Operand(dst, kSmiShift / kBitsPerByte), src); } void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst, Register src, int power) { ASSERT(power >= 0); ASSERT(power < 64); if (power == 0) { SmiToInteger64(dst, src); return; } if (!dst.is(src)) { movq(dst, src); } if (power < kSmiShift) { sar(dst, Immediate(kSmiShift - power)); } else if (power > kSmiShift) { shl(dst, Immediate(power - kSmiShift)); } } void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst, Register src, int power) { ASSERT((0 <= power) && (power < 32)); if (dst.is(src)) { shr(dst, Immediate(power + kSmiShift)); } else { UNIMPLEMENTED(); // Not used. } } void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2, Label* on_not_smis, Label::Distance near_jump) { if (dst.is(src1) || dst.is(src2)) { ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); movq(kScratchRegister, src1); or_(kScratchRegister, src2); JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump); movq(dst, kScratchRegister); } else { movq(dst, src1); or_(dst, src2); JumpIfNotSmi(dst, on_not_smis, near_jump); } } Condition MacroAssembler::CheckSmi(Register src) { STATIC_ASSERT(kSmiTag == 0); testb(src, Immediate(kSmiTagMask)); return zero; } Condition MacroAssembler::CheckSmi(const Operand& src) { STATIC_ASSERT(kSmiTag == 0); testb(src, Immediate(kSmiTagMask)); return zero; } Condition MacroAssembler::CheckNonNegativeSmi(Register src) { STATIC_ASSERT(kSmiTag == 0); // Test that both bits of the mask 0x8000000000000001 are zero. movq(kScratchRegister, src); rol(kScratchRegister, Immediate(1)); testb(kScratchRegister, Immediate(3)); return zero; } Condition MacroAssembler::CheckBothSmi(Register first, Register second) { if (first.is(second)) { return CheckSmi(first); } STATIC_ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3); leal(kScratchRegister, Operand(first, second, times_1, 0)); testb(kScratchRegister, Immediate(0x03)); return zero; } Condition MacroAssembler::CheckBothNonNegativeSmi(Register first, Register second) { if (first.is(second)) { return CheckNonNegativeSmi(first); } movq(kScratchRegister, first); or_(kScratchRegister, second); rol(kScratchRegister, Immediate(1)); testl(kScratchRegister, Immediate(3)); return zero; } Condition MacroAssembler::CheckEitherSmi(Register first, Register second, Register scratch) { if (first.is(second)) { return CheckSmi(first); } if (scratch.is(second)) { andl(scratch, first); } else { if (!scratch.is(first)) { movl(scratch, first); } andl(scratch, second); } testb(scratch, Immediate(kSmiTagMask)); return zero; } Condition MacroAssembler::CheckIsMinSmi(Register src) { ASSERT(!src.is(kScratchRegister)); // If we overflow by subtracting one, it's the minimal smi value. cmpq(src, kSmiConstantRegister); return overflow; } Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) { // A 32-bit integer value can always be converted to a smi. return always; } Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) { // An unsigned 32-bit integer value is valid as long as the high bit // is not set. testl(src, src); return positive; } void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) { if (dst.is(src)) { andl(dst, Immediate(kSmiTagMask)); } else { movl(dst, Immediate(kSmiTagMask)); andl(dst, src); } } void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) { if (!(src.AddressUsesRegister(dst))) { movl(dst, Immediate(kSmiTagMask)); andl(dst, src); } else { movl(dst, src); andl(dst, Immediate(kSmiTagMask)); } } void MacroAssembler::JumpIfNotValidSmiValue(Register src, Label* on_invalid, Label::Distance near_jump) { Condition is_valid = CheckInteger32ValidSmiValue(src); j(NegateCondition(is_valid), on_invalid, near_jump); } void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid, Label::Distance near_jump) { Condition is_valid = CheckUInteger32ValidSmiValue(src); j(NegateCondition(is_valid), on_invalid, near_jump); } void MacroAssembler::JumpIfSmi(Register src, Label* on_smi, Label::Distance near_jump) { Condition smi = CheckSmi(src); j(smi, on_smi, near_jump); } void MacroAssembler::JumpIfNotSmi(Register src, Label* on_not_smi, Label::Distance near_jump) { Condition smi = CheckSmi(src); j(NegateCondition(smi), on_not_smi, near_jump); } void MacroAssembler::JumpUnlessNonNegativeSmi( Register src, Label* on_not_smi_or_negative, Label::Distance near_jump) { Condition non_negative_smi = CheckNonNegativeSmi(src); j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump); } void MacroAssembler::JumpIfSmiEqualsConstant(Register src, Smi* constant, Label* on_equals, Label::Distance near_jump) { SmiCompare(src, constant); j(equal, on_equals, near_jump); } void MacroAssembler::JumpIfNotBothSmi(Register src1, Register src2, Label* on_not_both_smi, Label::Distance near_jump) { Condition both_smi = CheckBothSmi(src1, src2); j(NegateCondition(both_smi), on_not_both_smi, near_jump); } void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1, Register src2, Label* on_not_both_smi, Label::Distance near_jump) { Condition both_smi = CheckBothNonNegativeSmi(src1, src2); j(NegateCondition(both_smi), on_not_both_smi, near_jump); } void MacroAssembler::SmiTryAddConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result, Label::Distance near_jump) { // Does not assume that src is a smi. ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask)); STATIC_ASSERT(kSmiTag == 0); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src.is(kScratchRegister)); JumpIfNotSmi(src, on_not_smi_result, near_jump); Register tmp = (dst.is(src) ? kScratchRegister : dst); LoadSmiConstant(tmp, constant); addq(tmp, src); j(overflow, on_not_smi_result, near_jump); if (dst.is(src)) { movq(dst, tmp); } } void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } return; } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); switch (constant->value()) { case 1: addq(dst, kSmiConstantRegister); return; case 2: lea(dst, Operand(src, kSmiConstantRegister, times_2, 0)); return; case 4: lea(dst, Operand(src, kSmiConstantRegister, times_4, 0)); return; case 8: lea(dst, Operand(src, kSmiConstantRegister, times_8, 0)); return; default: Register constant_reg = GetSmiConstant(constant); addq(dst, constant_reg); return; } } else { switch (constant->value()) { case 1: lea(dst, Operand(src, kSmiConstantRegister, times_1, 0)); return; case 2: lea(dst, Operand(src, kSmiConstantRegister, times_2, 0)); return; case 4: lea(dst, Operand(src, kSmiConstantRegister, times_4, 0)); return; case 8: lea(dst, Operand(src, kSmiConstantRegister, times_8, 0)); return; default: LoadSmiConstant(dst, constant); addq(dst, src); return; } } } void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) { if (constant->value() != 0) { addl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(constant->value())); } } void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result, Label::Distance near_jump) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); LoadSmiConstant(kScratchRegister, constant); addq(kScratchRegister, src); j(overflow, on_not_smi_result, near_jump); movq(dst, kScratchRegister); } else { LoadSmiConstant(dst, constant); addq(dst, src); j(overflow, on_not_smi_result, near_jump); } } void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Register constant_reg = GetSmiConstant(constant); subq(dst, constant_reg); } else { if (constant->value() == Smi::kMinValue) { LoadSmiConstant(dst, constant); // Adding and subtracting the min-value gives the same result, it only // differs on the overflow bit, which we don't check here. addq(dst, src); } else { // Subtract by adding the negation. LoadSmiConstant(dst, Smi::FromInt(-constant->value())); addq(dst, src); } } } void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result, Label::Distance near_jump) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); if (constant->value() == Smi::kMinValue) { // Subtracting min-value from any non-negative value will overflow. // We test the non-negativeness before doing the subtraction. testq(src, src); j(not_sign, on_not_smi_result, near_jump); LoadSmiConstant(kScratchRegister, constant); subq(dst, kScratchRegister); } else { // Subtract by adding the negation. LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value())); addq(kScratchRegister, dst); j(overflow, on_not_smi_result, near_jump); movq(dst, kScratchRegister); } } else { if (constant->value() == Smi::kMinValue) { // Subtracting min-value from any non-negative value will overflow. // We test the non-negativeness before doing the subtraction. testq(src, src); j(not_sign, on_not_smi_result, near_jump); LoadSmiConstant(dst, constant); // Adding and subtracting the min-value gives the same result, it only // differs on the overflow bit, which we don't check here. addq(dst, src); } else { // Subtract by adding the negation. LoadSmiConstant(dst, Smi::FromInt(-(constant->value()))); addq(dst, src); j(overflow, on_not_smi_result, near_jump); } } } void MacroAssembler::SmiNeg(Register dst, Register src, Label* on_smi_result, Label::Distance near_jump) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); movq(kScratchRegister, src); neg(dst); // Low 32 bits are retained as zero by negation. // Test if result is zero or Smi::kMinValue. cmpq(dst, kScratchRegister); j(not_equal, on_smi_result, near_jump); movq(src, kScratchRegister); } else { movq(dst, src); neg(dst); cmpq(dst, src); // If the result is zero or Smi::kMinValue, negation failed to create a smi. j(not_equal, on_smi_result, near_jump); } } void MacroAssembler::SmiAdd(Register dst, Register src1, Register src2, Label* on_not_smi_result, Label::Distance near_jump) { ASSERT_NOT_NULL(on_not_smi_result); ASSERT(!dst.is(src2)); if (dst.is(src1)) { movq(kScratchRegister, src1); addq(kScratchRegister, src2); j(overflow, on_not_smi_result, near_jump); movq(dst, kScratchRegister); } else { movq(dst, src1); addq(dst, src2); j(overflow, on_not_smi_result, near_jump); } } void MacroAssembler::SmiAdd(Register dst, Register src1, const Operand& src2, Label* on_not_smi_result, Label::Distance near_jump) { ASSERT_NOT_NULL(on_not_smi_result); if (dst.is(src1)) { movq(kScratchRegister, src1); addq(kScratchRegister, src2); j(overflow, on_not_smi_result, near_jump); movq(dst, kScratchRegister); } else { ASSERT(!src2.AddressUsesRegister(dst)); movq(dst, src1); addq(dst, src2); j(overflow, on_not_smi_result, near_jump); } } void MacroAssembler::SmiAdd(Register dst, Register src1, Register src2) { // No overflow checking. Use only when it's known that // overflowing is impossible. if (!dst.is(src1)) { if (emit_debug_code()) { movq(kScratchRegister, src1); addq(kScratchRegister, src2); Check(no_overflow, "Smi addition overflow"); } lea(dst, Operand(src1, src2, times_1, 0)); } else { addq(dst, src2); Assert(no_overflow, "Smi addition overflow"); } } void MacroAssembler::SmiSub(Register dst, Register src1, Register src2, Label* on_not_smi_result, Label::Distance near_jump) { ASSERT_NOT_NULL(on_not_smi_result); ASSERT(!dst.is(src2)); if (dst.is(src1)) { cmpq(dst, src2); j(overflow, on_not_smi_result, near_jump); subq(dst, src2); } else { movq(dst, src1); subq(dst, src2); j(overflow, on_not_smi_result, near_jump); } } void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) { // No overflow checking. Use only when it's known that // overflowing is impossible (e.g., subtracting two positive smis). ASSERT(!dst.is(src2)); if (!dst.is(src1)) { movq(dst, src1); } subq(dst, src2); Assert(no_overflow, "Smi subtraction overflow"); } void MacroAssembler::SmiSub(Register dst, Register src1, const Operand& src2, Label* on_not_smi_result, Label::Distance near_jump) { ASSERT_NOT_NULL(on_not_smi_result); if (dst.is(src1)) { movq(kScratchRegister, src2); cmpq(src1, kScratchRegister); j(overflow, on_not_smi_result, near_jump); subq(src1, kScratchRegister); } else { movq(dst, src1); subq(dst, src2); j(overflow, on_not_smi_result, near_jump); } } void MacroAssembler::SmiSub(Register dst, Register src1, const Operand& src2) { // No overflow checking. Use only when it's known that // overflowing is impossible (e.g., subtracting two positive smis). if (!dst.is(src1)) { movq(dst, src1); } subq(dst, src2); Assert(no_overflow, "Smi subtraction overflow"); } void MacroAssembler::SmiMul(Register dst, Register src1, Register src2, Label* on_not_smi_result, Label::Distance near_jump) { ASSERT(!dst.is(src2)); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); if (dst.is(src1)) { Label failure, zero_correct_result; movq(kScratchRegister, src1); // Create backup for later testing. SmiToInteger64(dst, src1); imul(dst, src2); j(overflow, &failure, Label::kNear); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. Label correct_result; testq(dst, dst); j(not_zero, &correct_result, Label::kNear); movq(dst, kScratchRegister); xor_(dst, src2); // Result was positive zero. j(positive, &zero_correct_result, Label::kNear); bind(&failure); // Reused failure exit, restores src1. movq(src1, kScratchRegister); jmp(on_not_smi_result, near_jump); bind(&zero_correct_result); Set(dst, 0); bind(&correct_result); } else { SmiToInteger64(dst, src1); imul(dst, src2); j(overflow, on_not_smi_result, near_jump); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. Label correct_result; testq(dst, dst); j(not_zero, &correct_result, Label::kNear); // One of src1 and src2 is zero, the check whether the other is // negative. movq(kScratchRegister, src1); xor_(kScratchRegister, src2); j(negative, on_not_smi_result, near_jump); bind(&correct_result); } } void MacroAssembler::SmiDiv(Register dst, Register src1, Register src2, Label* on_not_smi_result, Label::Distance near_jump) { ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src2.is(rax)); ASSERT(!src2.is(rdx)); ASSERT(!src1.is(rdx)); // Check for 0 divisor (result is +/-Infinity). testq(src2, src2); j(zero, on_not_smi_result, near_jump); if (src1.is(rax)) { movq(kScratchRegister, src1); } SmiToInteger32(rax, src1); // We need to rule out dividing Smi::kMinValue by -1, since that would // overflow in idiv and raise an exception. // We combine this with negative zero test (negative zero only happens // when dividing zero by a negative number). // We overshoot a little and go to slow case if we divide min-value // by any negative value, not just -1. Label safe_div; testl(rax, Immediate(0x7fffffff)); j(not_zero, &safe_div, Label::kNear); testq(src2, src2); if (src1.is(rax)) { j(positive, &safe_div, Label::kNear); movq(src1, kScratchRegister); jmp(on_not_smi_result, near_jump); } else { j(negative, on_not_smi_result, near_jump); } bind(&safe_div); SmiToInteger32(src2, src2); // Sign extend src1 into edx:eax. cdq(); idivl(src2); Integer32ToSmi(src2, src2); // Check that the remainder is zero. testl(rdx, rdx); if (src1.is(rax)) { Label smi_result; j(zero, &smi_result, Label::kNear); movq(src1, kScratchRegister); jmp(on_not_smi_result, near_jump); bind(&smi_result); } else { j(not_zero, on_not_smi_result, near_jump); } if (!dst.is(src1) && src1.is(rax)) { movq(src1, kScratchRegister); } Integer32ToSmi(dst, rax); } void MacroAssembler::SmiMod(Register dst, Register src1, Register src2, Label* on_not_smi_result, Label::Distance near_jump) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!src2.is(rax)); ASSERT(!src2.is(rdx)); ASSERT(!src1.is(rdx)); ASSERT(!src1.is(src2)); testq(src2, src2); j(zero, on_not_smi_result, near_jump); if (src1.is(rax)) { movq(kScratchRegister, src1); } SmiToInteger32(rax, src1); SmiToInteger32(src2, src2); // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow). Label safe_div; cmpl(rax, Immediate(Smi::kMinValue)); j(not_equal, &safe_div, Label::kNear); cmpl(src2, Immediate(-1)); j(not_equal, &safe_div, Label::kNear); // Retag inputs and go slow case. Integer32ToSmi(src2, src2); if (src1.is(rax)) { movq(src1, kScratchRegister); } jmp(on_not_smi_result, near_jump); bind(&safe_div); // Sign extend eax into edx:eax. cdq(); idivl(src2); // Restore smi tags on inputs. Integer32ToSmi(src2, src2); if (src1.is(rax)) { movq(src1, kScratchRegister); } // Check for a negative zero result. If the result is zero, and the // dividend is negative, go slow to return a floating point negative zero. Label smi_result; testl(rdx, rdx); j(not_zero, &smi_result, Label::kNear); testq(src1, src1); j(negative, on_not_smi_result, near_jump); bind(&smi_result); Integer32ToSmi(dst, rdx); } void MacroAssembler::SmiNot(Register dst, Register src) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src.is(kScratchRegister)); // Set tag and padding bits before negating, so that they are zero afterwards. movl(kScratchRegister, Immediate(~0)); if (dst.is(src)) { xor_(dst, kScratchRegister); } else { lea(dst, Operand(src, kScratchRegister, times_1, 0)); } not_(dst); } void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) { ASSERT(!dst.is(src2)); if (!dst.is(src1)) { movq(dst, src1); } and_(dst, src2); } void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) { if (constant->value() == 0) { Set(dst, 0); } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Register constant_reg = GetSmiConstant(constant); and_(dst, constant_reg); } else { LoadSmiConstant(dst, constant); and_(dst, src); } } void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) { if (!dst.is(src1)) { ASSERT(!src1.is(src2)); movq(dst, src1); } or_(dst, src2); } void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Register constant_reg = GetSmiConstant(constant); or_(dst, constant_reg); } else { LoadSmiConstant(dst, constant); or_(dst, src); } } void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) { if (!dst.is(src1)) { ASSERT(!src1.is(src2)); movq(dst, src1); } xor_(dst, src2); } void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); Register constant_reg = GetSmiConstant(constant); xor_(dst, constant_reg); } else { LoadSmiConstant(dst, constant); xor_(dst, src); } } void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst, Register src, int shift_value) { ASSERT(is_uint5(shift_value)); if (shift_value > 0) { if (dst.is(src)) { sar(dst, Immediate(shift_value + kSmiShift)); shl(dst, Immediate(kSmiShift)); } else { UNIMPLEMENTED(); // Not used. } } } void MacroAssembler::SmiShiftLeftConstant(Register dst, Register src, int shift_value) { if (!dst.is(src)) { movq(dst, src); } if (shift_value > 0) { shl(dst, Immediate(shift_value)); } } void MacroAssembler::SmiShiftLogicalRightConstant( Register dst, Register src, int shift_value, Label* on_not_smi_result, Label::Distance near_jump) { // Logic right shift interprets its result as an *unsigned* number. if (dst.is(src)) { UNIMPLEMENTED(); // Not used. } else { movq(dst, src); if (shift_value == 0) { testq(dst, dst); j(negative, on_not_smi_result, near_jump); } shr(dst, Immediate(shift_value + kSmiShift)); shl(dst, Immediate(kSmiShift)); } } void MacroAssembler::SmiShiftLeft(Register dst, Register src1, Register src2) { ASSERT(!dst.is(rcx)); // Untag shift amount. if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); // Shift amount specified by lower 5 bits, not six as the shl opcode. and_(rcx, Immediate(0x1f)); shl_cl(dst); } void MacroAssembler::SmiShiftLogicalRight(Register dst, Register src1, Register src2, Label* on_not_smi_result, Label::Distance near_jump) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(rcx)); // dst and src1 can be the same, because the one case that bails out // is a shift by 0, which leaves dst, and therefore src1, unchanged. if (src1.is(rcx) || src2.is(rcx)) { movq(kScratchRegister, rcx); } if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); orl(rcx, Immediate(kSmiShift)); shr_cl(dst); // Shift is rcx modulo 0x1f + 32. shl(dst, Immediate(kSmiShift)); testq(dst, dst); if (src1.is(rcx) || src2.is(rcx)) { Label positive_result; j(positive, &positive_result, Label::kNear); if (src1.is(rcx)) { movq(src1, kScratchRegister); } else { movq(src2, kScratchRegister); } jmp(on_not_smi_result, near_jump); bind(&positive_result); } else { // src2 was zero and src1 negative. j(negative, on_not_smi_result, near_jump); } } void MacroAssembler::SmiShiftArithmeticRight(Register dst, Register src1, Register src2) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(rcx)); if (src1.is(rcx)) { movq(kScratchRegister, src1); } else if (src2.is(rcx)) { movq(kScratchRegister, src2); } if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); orl(rcx, Immediate(kSmiShift)); sar_cl(dst); // Shift 32 + original rcx & 0x1f. shl(dst, Immediate(kSmiShift)); if (src1.is(rcx)) { movq(src1, kScratchRegister); } else if (src2.is(rcx)) { movq(src2, kScratchRegister); } } void MacroAssembler::SelectNonSmi(Register dst, Register src1, Register src2, Label* on_not_smis, Label::Distance near_jump) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(src1)); ASSERT(!dst.is(src2)); // Both operands must not be smis. #ifdef DEBUG if (allow_stub_calls()) { // Check contains a stub call. Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2)); Check(not_both_smis, "Both registers were smis in SelectNonSmi."); } #endif STATIC_ASSERT(kSmiTag == 0); ASSERT_EQ(0, Smi::FromInt(0)); movl(kScratchRegister, Immediate(kSmiTagMask)); and_(kScratchRegister, src1); testl(kScratchRegister, src2); // If non-zero then both are smis. j(not_zero, on_not_smis, near_jump); // Exactly one operand is a smi. ASSERT_EQ(1, static_cast<int>(kSmiTagMask)); // kScratchRegister still holds src1 & kSmiTag, which is either zero or one. subq(kScratchRegister, Immediate(1)); // If src1 is a smi, then scratch register all 1s, else it is all 0s. movq(dst, src1); xor_(dst, src2); and_(dst, kScratchRegister); // If src1 is a smi, dst holds src1 ^ src2, else it is zero. xor_(dst, src1); // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi. } SmiIndex MacroAssembler::SmiToIndex(Register dst, Register src, int shift) { ASSERT(is_uint6(shift)); // There is a possible optimization if shift is in the range 60-63, but that // will (and must) never happen. if (!dst.is(src)) { movq(dst, src); } if (shift < kSmiShift) { sar(dst, Immediate(kSmiShift - shift)); } else { shl(dst, Immediate(shift - kSmiShift)); } return SmiIndex(dst, times_1); } SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst, Register src, int shift) { // Register src holds a positive smi. ASSERT(is_uint6(shift)); if (!dst.is(src)) { movq(dst, src); } neg(dst); if (shift < kSmiShift) { sar(dst, Immediate(kSmiShift - shift)); } else { shl(dst, Immediate(shift - kSmiShift)); } return SmiIndex(dst, times_1); } void MacroAssembler::AddSmiField(Register dst, const Operand& src) { ASSERT_EQ(0, kSmiShift % kBitsPerByte); addl(dst, Operand(src, kSmiShift / kBitsPerByte)); } void MacroAssembler::JumpIfNotString(Register object, Register object_map, Label* not_string, Label::Distance near_jump) { Condition is_smi = CheckSmi(object); j(is_smi, not_string, near_jump); CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map); j(above_equal, not_string, near_jump); } void MacroAssembler::JumpIfNotBothSequentialAsciiStrings( Register first_object, Register second_object, Register scratch1, Register scratch2, Label* on_fail, Label::Distance near_jump) { // Check that both objects are not smis. Condition either_smi = CheckEitherSmi(first_object, second_object); j(either_smi, on_fail, near_jump); // Load instance type for both strings. movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset)); movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset)); movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); // Check that both are flat ASCII strings. ASSERT(kNotStringTag != 0); const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatAsciiStringTag = ASCII_STRING_TYPE; andl(scratch1, Immediate(kFlatAsciiStringMask)); andl(scratch2, Immediate(kFlatAsciiStringMask)); // Interleave the bits to check both scratch1 and scratch2 in one test. ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); cmpl(scratch1, Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); j(not_equal, on_fail, near_jump); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( Register instance_type, Register scratch, Label* failure, Label::Distance near_jump) { if (!scratch.is(instance_type)) { movl(scratch, instance_type); } const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; andl(scratch, Immediate(kFlatAsciiStringMask)); cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); j(not_equal, failure, near_jump); } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( Register first_object_instance_type, Register second_object_instance_type, Register scratch1, Register scratch2, Label* on_fail, Label::Distance near_jump) { // Load instance type for both strings. movq(scratch1, first_object_instance_type); movq(scratch2, second_object_instance_type); // Check that both are flat ASCII strings. ASSERT(kNotStringTag != 0); const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatAsciiStringTag = ASCII_STRING_TYPE; andl(scratch1, Immediate(kFlatAsciiStringMask)); andl(scratch2, Immediate(kFlatAsciiStringMask)); // Interleave the bits to check both scratch1 and scratch2 in one test. ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); cmpl(scratch1, Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); j(not_equal, on_fail, near_jump); } void MacroAssembler::Move(Register dst, Register src) { if (!dst.is(src)) { movq(dst, src); } } void MacroAssembler::Move(Register dst, Handle<Object> source) { ASSERT(!source->IsFailure()); if (source->IsSmi()) { Move(dst, Smi::cast(*source)); } else { movq(dst, source, RelocInfo::EMBEDDED_OBJECT); } } void MacroAssembler::Move(const Operand& dst, Handle<Object> source) { ASSERT(!source->IsFailure()); if (source->IsSmi()) { Move(dst, Smi::cast(*source)); } else { movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); movq(dst, kScratchRegister); } } void MacroAssembler::Cmp(Register dst, Handle<Object> source) { if (source->IsSmi()) { Cmp(dst, Smi::cast(*source)); } else { Move(kScratchRegister, source); cmpq(dst, kScratchRegister); } } void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) { if (source->IsSmi()) { Cmp(dst, Smi::cast(*source)); } else { ASSERT(source->IsHeapObject()); movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); cmpq(dst, kScratchRegister); } } void MacroAssembler::Push(Handle<Object> source) { if (source->IsSmi()) { Push(Smi::cast(*source)); } else { ASSERT(source->IsHeapObject()); movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); } } void MacroAssembler::LoadHeapObject(Register result, Handle<HeapObject> object) { if (isolate()->heap()->InNewSpace(*object)) { Handle<JSGlobalPropertyCell> cell = isolate()->factory()->NewJSGlobalPropertyCell(object); movq(result, cell, RelocInfo::GLOBAL_PROPERTY_CELL); movq(result, Operand(result, 0)); } else { Move(result, object); } } void MacroAssembler::PushHeapObject(Handle<HeapObject> object) { if (isolate()->heap()->InNewSpace(*object)) { Handle<JSGlobalPropertyCell> cell = isolate()->factory()->NewJSGlobalPropertyCell(object); movq(kScratchRegister, cell, RelocInfo::GLOBAL_PROPERTY_CELL); movq(kScratchRegister, Operand(kScratchRegister, 0)); push(kScratchRegister); } else { Push(object); } } void MacroAssembler::LoadGlobalCell(Register dst, Handle<JSGlobalPropertyCell> cell) { if (dst.is(rax)) { load_rax(cell.location(), RelocInfo::GLOBAL_PROPERTY_CELL); } else { movq(dst, cell, RelocInfo::GLOBAL_PROPERTY_CELL); movq(dst, Operand(dst, 0)); } } void MacroAssembler::Push(Smi* source) { intptr_t smi = reinterpret_cast<intptr_t>(source); if (is_int32(smi)) { push(Immediate(static_cast<int32_t>(smi))); } else { Register constant = GetSmiConstant(source); push(constant); } } void MacroAssembler::Drop(int stack_elements) { if (stack_elements > 0) { addq(rsp, Immediate(stack_elements * kPointerSize)); } } void MacroAssembler::Test(const Operand& src, Smi* source) { testl(Operand(src, kIntSize), Immediate(source->value())); } void MacroAssembler::TestBit(const Operand& src, int bits) { int byte_offset = bits / kBitsPerByte; int bit_in_byte = bits & (kBitsPerByte - 1); testb(Operand(src, byte_offset), Immediate(1 << bit_in_byte)); } void MacroAssembler::Jump(ExternalReference ext) { LoadAddress(kScratchRegister, ext); jmp(kScratchRegister); } void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) { movq(kScratchRegister, destination, rmode); jmp(kScratchRegister); } void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) { // TODO(X64): Inline this jmp(code_object, rmode); } int MacroAssembler::CallSize(ExternalReference ext) { // Opcode for call kScratchRegister is: Rex.B FF D4 (three bytes). const int kCallInstructionSize = 3; return LoadAddressSize(ext) + kCallInstructionSize; } void MacroAssembler::Call(ExternalReference ext) { #ifdef DEBUG int end_position = pc_offset() + CallSize(ext); #endif LoadAddress(kScratchRegister, ext); call(kScratchRegister); #ifdef DEBUG CHECK_EQ(end_position, pc_offset()); #endif } void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) { #ifdef DEBUG int end_position = pc_offset() + CallSize(destination, rmode); #endif movq(kScratchRegister, destination, rmode); call(kScratchRegister); #ifdef DEBUG CHECK_EQ(pc_offset(), end_position); #endif } void MacroAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode, unsigned ast_id) { #ifdef DEBUG int end_position = pc_offset() + CallSize(code_object); #endif ASSERT(RelocInfo::IsCodeTarget(rmode)); call(code_object, rmode, ast_id); #ifdef DEBUG CHECK_EQ(end_position, pc_offset()); #endif } void MacroAssembler::Pushad() { push(rax); push(rcx); push(rdx); push(rbx); // Not pushing rsp or rbp. push(rsi); push(rdi); push(r8); push(r9); // r10 is kScratchRegister. push(r11); // r12 is kSmiConstantRegister. // r13 is kRootRegister. push(r14); push(r15); STATIC_ASSERT(11 == kNumSafepointSavedRegisters); // Use lea for symmetry with Popad. int sp_delta = (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize; lea(rsp, Operand(rsp, -sp_delta)); } void MacroAssembler::Popad() { // Popad must not change the flags, so use lea instead of addq. int sp_delta = (kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize; lea(rsp, Operand(rsp, sp_delta)); pop(r15); pop(r14); pop(r11); pop(r9); pop(r8); pop(rdi); pop(rsi); pop(rbx); pop(rdx); pop(rcx); pop(rax); } void MacroAssembler::Dropad() { addq(rsp, Immediate(kNumSafepointRegisters * kPointerSize)); } // Order general registers are pushed by Pushad: // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15. const int MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = { 0, 1, 2, 3, -1, -1, 4, 5, 6, 7, -1, 8, -1, -1, 9, 10 }; void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) { movq(SafepointRegisterSlot(dst), src); } void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { movq(dst, SafepointRegisterSlot(src)); } Operand MacroAssembler::SafepointRegisterSlot(Register reg) { return Operand(rsp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); } void MacroAssembler::PushTryHandler(StackHandler::Kind kind, int handler_index) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // We will build up the handler from the bottom by pushing on the stack. // First push the frame pointer and context. if (kind == StackHandler::JS_ENTRY) { // The frame pointer does not point to a JS frame so we save NULL for // rbp. We expect the code throwing an exception to check rbp before // dereferencing it to restore the context. push(Immediate(0)); // NULL frame pointer. Push(Smi::FromInt(0)); // No context. } else { push(rbp); push(rsi); } // Push the state and the code object. unsigned state = StackHandler::IndexField::encode(handler_index) | StackHandler::KindField::encode(kind); push(Immediate(state)); Push(CodeObject()); // Link the current handler as the next handler. ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); push(ExternalOperand(handler_address)); // Set this new handler as the current one. movq(ExternalOperand(handler_address), rsp); } void MacroAssembler::PopTryHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); pop(ExternalOperand(handler_address)); addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); } void MacroAssembler::JumpToHandlerEntry() { // Compute the handler entry address and jump to it. The handler table is // a fixed array of (smi-tagged) code offsets. // rax = exception, rdi = code object, rdx = state. movq(rbx, FieldOperand(rdi, Code::kHandlerTableOffset)); shr(rdx, Immediate(StackHandler::kKindWidth)); movq(rdx, FieldOperand(rbx, rdx, times_8, FixedArray::kHeaderSize)); SmiToInteger64(rdx, rdx); lea(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize)); jmp(rdi); } void MacroAssembler::Throw(Register value) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // The exception is expected in rax. if (!value.is(rax)) { movq(rax, value); } // Drop the stack pointer to the top of the top handler. ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); movq(rsp, ExternalOperand(handler_address)); // Restore the next handler. pop(ExternalOperand(handler_address)); // Remove the code object and state, compute the handler address in rdi. pop(rdi); // Code object. pop(rdx); // Offset and state. // Restore the context and frame pointer. pop(rsi); // Context. pop(rbp); // Frame pointer. // If the handler is a JS frame, restore the context to the frame. // (kind == ENTRY) == (rbp == 0) == (rsi == 0), so we could test either // rbp or rsi. Label skip; testq(rsi, rsi); j(zero, &skip, Label::kNear); movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); bind(&skip); JumpToHandlerEntry(); } void MacroAssembler::ThrowUncatchable(Register value) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // The exception is expected in rax. if (!value.is(rax)) { movq(rax, value); } // Drop the stack pointer to the top of the top stack handler. ExternalReference handler_address(Isolate::kHandlerAddress, isolate()); Load(rsp, handler_address); // Unwind the handlers until the top ENTRY handler is found. Label fetch_next, check_kind; jmp(&check_kind, Label::kNear); bind(&fetch_next); movq(rsp, Operand(rsp, StackHandlerConstants::kNextOffset)); bind(&check_kind); STATIC_ASSERT(StackHandler::JS_ENTRY == 0); testl(Operand(rsp, StackHandlerConstants::kStateOffset), Immediate(StackHandler::KindField::kMask)); j(not_zero, &fetch_next); // Set the top handler address to next handler past the top ENTRY handler. pop(ExternalOperand(handler_address)); // Remove the code object and state, compute the handler address in rdi. pop(rdi); // Code object. pop(rdx); // Offset and state. // Clear the context pointer and frame pointer (0 was saved in the handler). pop(rsi); pop(rbp); JumpToHandlerEntry(); } void MacroAssembler::Ret() { ret(0); } void MacroAssembler::Ret(int bytes_dropped, Register scratch) { if (is_uint16(bytes_dropped)) { ret(bytes_dropped); } else { pop(scratch); addq(rsp, Immediate(bytes_dropped)); push(scratch); ret(0); } } void MacroAssembler::FCmp() { fucomip(); fstp(0); } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(static_cast<int8_t>(type))); } void MacroAssembler::CheckFastElements(Register map, Label* fail, Label::Distance distance) { STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); STATIC_ASSERT(FAST_ELEMENTS == 1); cmpb(FieldOperand(map, Map::kBitField2Offset), Immediate(Map::kMaximumBitField2FastElementValue)); j(above, fail, distance); } void MacroAssembler::CheckFastObjectElements(Register map, Label* fail, Label::Distance distance) { STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); STATIC_ASSERT(FAST_ELEMENTS == 1); cmpb(FieldOperand(map, Map::kBitField2Offset), Immediate(Map::kMaximumBitField2FastSmiOnlyElementValue)); j(below_equal, fail, distance); cmpb(FieldOperand(map, Map::kBitField2Offset), Immediate(Map::kMaximumBitField2FastElementValue)); j(above, fail, distance); } void MacroAssembler::CheckFastSmiOnlyElements(Register map, Label* fail, Label::Distance distance) { STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); cmpb(FieldOperand(map, Map::kBitField2Offset), Immediate(Map::kMaximumBitField2FastSmiOnlyElementValue)); j(above, fail, distance); } void MacroAssembler::StoreNumberToDoubleElements( Register maybe_number, Register elements, Register index, XMMRegister xmm_scratch, Label* fail) { Label smi_value, is_nan, maybe_nan, not_nan, have_double_value, done; JumpIfSmi(maybe_number, &smi_value, Label::kNear); CheckMap(maybe_number, isolate()->factory()->heap_number_map(), fail, DONT_DO_SMI_CHECK); // Double value, canonicalize NaN. uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32); cmpl(FieldOperand(maybe_number, offset), Immediate(kNaNOrInfinityLowerBoundUpper32)); j(greater_equal, &maybe_nan, Label::kNear); bind(¬_nan); movsd(xmm_scratch, FieldOperand(maybe_number, HeapNumber::kValueOffset)); bind(&have_double_value); movsd(FieldOperand(elements, index, times_8, FixedDoubleArray::kHeaderSize), xmm_scratch); jmp(&done); bind(&maybe_nan); // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise // it's an Infinity, and the non-NaN code path applies. j(greater, &is_nan, Label::kNear); cmpl(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0)); j(zero, ¬_nan); bind(&is_nan); // Convert all NaNs to the same canonical NaN value when they are stored in // the double array. Set(kScratchRegister, BitCast<uint64_t>( FixedDoubleArray::canonical_not_the_hole_nan_as_double())); movq(xmm_scratch, kScratchRegister); jmp(&have_double_value, Label::kNear); bind(&smi_value); // Value is a smi. convert to a double and store. // Preserve original value. SmiToInteger32(kScratchRegister, maybe_number); cvtlsi2sd(xmm_scratch, kScratchRegister); movsd(FieldOperand(elements, index, times_8, FixedDoubleArray::kHeaderSize), xmm_scratch); bind(&done); } void MacroAssembler::CompareMap(Register obj, Handle<Map> map, Label* early_success, CompareMapMode mode) { Cmp(FieldOperand(obj, HeapObject::kMapOffset), map); if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) { Map* transitioned_fast_element_map( map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL)); ASSERT(transitioned_fast_element_map == NULL || map->elements_kind() != FAST_ELEMENTS); if (transitioned_fast_element_map != NULL) { j(equal, early_success, Label::kNear); Cmp(FieldOperand(obj, HeapObject::kMapOffset), Handle<Map>(transitioned_fast_element_map)); } Map* transitioned_double_map( map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL)); ASSERT(transitioned_double_map == NULL || map->elements_kind() == FAST_SMI_ONLY_ELEMENTS); if (transitioned_double_map != NULL) { j(equal, early_success, Label::kNear); Cmp(FieldOperand(obj, HeapObject::kMapOffset), Handle<Map>(transitioned_double_map)); } } } void MacroAssembler::CheckMap(Register obj, Handle<Map> map, Label* fail, SmiCheckType smi_check_type, CompareMapMode mode) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } Label success; CompareMap(obj, map, &success, mode); j(not_equal, fail); bind(&success); } void MacroAssembler::ClampUint8(Register reg) { Label done; testl(reg, Immediate(0xFFFFFF00)); j(zero, &done, Label::kNear); setcc(negative, reg); // 1 if negative, 0 if positive. decb(reg); // 0 if negative, 255 if positive. bind(&done); } void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg, XMMRegister temp_xmm_reg, Register result_reg, Register temp_reg) { Label done; Set(result_reg, 0); xorps(temp_xmm_reg, temp_xmm_reg); ucomisd(input_reg, temp_xmm_reg); j(below, &done, Label::kNear); uint64_t one_half = BitCast<uint64_t, double>(0.5); Set(temp_reg, one_half); movq(temp_xmm_reg, temp_reg); addsd(temp_xmm_reg, input_reg); cvttsd2si(result_reg, temp_xmm_reg); testl(result_reg, Immediate(0xFFFFFF00)); j(zero, &done, Label::kNear); Set(result_reg, 255); bind(&done); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { movq(descriptors, FieldOperand(map, Map::kInstanceDescriptorsOrBitField3Offset)); Label not_smi; JumpIfNotSmi(descriptors, ¬_smi, Label::kNear); Move(descriptors, isolate()->factory()->empty_descriptor_array()); bind(¬_smi); } void MacroAssembler::DispatchMap(Register obj, Handle<Map> map, Handle<Code> success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } Cmp(FieldOperand(obj, HeapObject::kMapOffset), map); j(equal, success, RelocInfo::CODE_TARGET); bind(&fail); } void MacroAssembler::AbortIfNotNumber(Register object) { Label ok; Condition is_smi = CheckSmi(object); j(is_smi, &ok, Label::kNear); Cmp(FieldOperand(object, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); Assert(equal, "Operand not a number"); bind(&ok); } void MacroAssembler::AbortIfSmi(Register object) { Condition is_smi = CheckSmi(object); Assert(NegateCondition(is_smi), "Operand is a smi"); } void MacroAssembler::AbortIfNotSmi(Register object) { Condition is_smi = CheckSmi(object); Assert(is_smi, "Operand is not a smi"); } void MacroAssembler::AbortIfNotSmi(const Operand& object) { Condition is_smi = CheckSmi(object); Assert(is_smi, "Operand is not a smi"); } void MacroAssembler::AbortIfNotZeroExtended(Register int32_register) { ASSERT(!int32_register.is(kScratchRegister)); movq(kScratchRegister, 0x100000000l, RelocInfo::NONE); cmpq(kScratchRegister, int32_register); Assert(above_equal, "32 bit value in register is not zero-extended"); } void MacroAssembler::AbortIfNotString(Register object) { testb(object, Immediate(kSmiTagMask)); Assert(not_equal, "Operand is not a string"); push(object); movq(object, FieldOperand(object, HeapObject::kMapOffset)); CmpInstanceType(object, FIRST_NONSTRING_TYPE); pop(object); Assert(below, "Operand is not a string"); } void MacroAssembler::AbortIfNotRootValue(Register src, Heap::RootListIndex root_value_index, const char* message) { ASSERT(!src.is(kScratchRegister)); LoadRoot(kScratchRegister, root_value_index); cmpq(src, kScratchRegister); Check(equal, message); } Condition MacroAssembler::IsObjectStringType(Register heap_object, Register map, Register instance_type) { movq(map, FieldOperand(heap_object, HeapObject::kMapOffset)); movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); testb(instance_type, Immediate(kIsNotStringMask)); return zero; } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Label* miss, bool miss_on_bound_function) { // Check that the receiver isn't a smi. testl(function, Immediate(kSmiTagMask)); j(zero, miss); // Check that the function really is a function. CmpObjectType(function, JS_FUNCTION_TYPE, result); j(not_equal, miss); if (miss_on_bound_function) { movq(kScratchRegister, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); // It's not smi-tagged (stored in the top half of a smi-tagged 8-byte // field). TestBit(FieldOperand(kScratchRegister, SharedFunctionInfo::kCompilerHintsOffset), SharedFunctionInfo::kBoundFunction); j(not_zero, miss); } // Make sure that the function has an instance prototype. Label non_instance; testb(FieldOperand(result, Map::kBitFieldOffset), Immediate(1 << Map::kHasNonInstancePrototype)); j(not_zero, &non_instance, Label::kNear); // Get the prototype or initial map from the function. movq(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. CompareRoot(result, Heap::kTheHoleValueRootIndex); j(equal, miss); // If the function does not have an initial map, we're done. Label done; CmpObjectType(result, MAP_TYPE, kScratchRegister); j(not_equal, &done, Label::kNear); // Get the prototype from the initial map. movq(result, FieldOperand(result, Map::kPrototypeOffset)); jmp(&done, Label::kNear); // Non-instance prototype: Fetch prototype from constructor field // in initial map. bind(&non_instance); movq(result, FieldOperand(result, Map::kConstructorOffset)); // All done. bind(&done); } void MacroAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { Operand counter_operand = ExternalOperand(ExternalReference(counter)); movl(counter_operand, Immediate(value)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand counter_operand = ExternalOperand(ExternalReference(counter)); if (value == 1) { incl(counter_operand); } else { addl(counter_operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand counter_operand = ExternalOperand(ExternalReference(counter)); if (value == 1) { decl(counter_operand); } else { subl(counter_operand, Immediate(value)); } } } #ifdef ENABLE_DEBUGGER_SUPPORT void MacroAssembler::DebugBreak() { Set(rax, 0); // No arguments. LoadAddress(rbx, ExternalReference(Runtime::kDebugBreak, isolate())); CEntryStub ces(1); ASSERT(AllowThisStubCall(&ces)); Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); } #endif // ENABLE_DEBUGGER_SUPPORT void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) { // This macro takes the dst register to make the code more readable // at the call sites. However, the dst register has to be rcx to // follow the calling convention which requires the call type to be // in rcx. ASSERT(dst.is(rcx)); if (call_kind == CALL_AS_FUNCTION) { LoadSmiConstant(dst, Smi::FromInt(1)); } else { LoadSmiConstant(dst, Smi::FromInt(0)); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, &definitely_mismatches, flag, Label::kNear, call_wrapper, call_kind); if (!definitely_mismatches) { if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); SetCallKind(rcx, call_kind); call(code); call_wrapper.AfterCall(); } else { ASSERT(flag == JUMP_FUNCTION); SetCallKind(rcx, call_kind); jmp(code); } bind(&done); } } void MacroAssembler::InvokeCode(Handle<Code> code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); Label done; bool definitely_mismatches = false; Register dummy = rax; InvokePrologue(expected, actual, code, dummy, &done, &definitely_mismatches, flag, Label::kNear, call_wrapper, call_kind); if (!definitely_mismatches) { if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); SetCallKind(rcx, call_kind); Call(code, rmode); call_wrapper.AfterCall(); } else { ASSERT(flag == JUMP_FUNCTION); SetCallKind(rcx, call_kind); Jump(code, rmode); } bind(&done); } } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); ASSERT(function.is(rdi)); movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); movq(rsi, FieldOperand(function, JSFunction::kContextOffset)); movsxlq(rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); // Advances rdx to the end of the Code object header, to the start of // the executable code. movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); ParameterCount expected(rbx); InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind); } void MacroAssembler::InvokeFunction(Handle<JSFunction> function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); // Get the function and setup the context. LoadHeapObject(rdi, function); movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); ParameterCount expected(function->shared()->formal_parameter_count()); InvokeCode(rdx, expected, actual, flag, call_wrapper, call_kind); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle<Code> code_constant, Register code_register, Label* done, bool* definitely_mismatches, InvokeFlag flag, Label::Distance near_jump, const CallWrapper& call_wrapper, CallKind call_kind) { bool definitely_matches = false; *definitely_mismatches = false; Label invoke; if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { Set(rax, actual.immediate()); if (expected.immediate() == SharedFunctionInfo::kDontAdaptArgumentsSentinel) { // Don't worry about adapting arguments for built-ins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; Set(rbx, expected.immediate()); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. cmpq(expected.reg(), Immediate(actual.immediate())); j(equal, &invoke, Label::kNear); ASSERT(expected.reg().is(rbx)); Set(rax, actual.immediate()); } else if (!expected.reg().is(actual.reg())) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmpq(expected.reg(), actual.reg()); j(equal, &invoke, Label::kNear); ASSERT(actual.reg().is(rax)); ASSERT(expected.reg().is(rbx)); } } if (!definitely_matches) { Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (!code_constant.is_null()) { movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT); addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); } else if (!code_register.is(rdx)) { movq(rdx, code_register); } if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor)); SetCallKind(rcx, call_kind); Call(adaptor, RelocInfo::CODE_TARGET); call_wrapper.AfterCall(); if (!*definitely_mismatches) { jmp(done, near_jump); } } else { SetCallKind(rcx, call_kind); Jump(adaptor, RelocInfo::CODE_TARGET); } bind(&invoke); } } void MacroAssembler::EnterFrame(StackFrame::Type type) { push(rbp); movq(rbp, rsp); push(rsi); // Context. Push(Smi::FromInt(type)); movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); if (emit_debug_code()) { movq(kScratchRegister, isolate()->factory()->undefined_value(), RelocInfo::EMBEDDED_OBJECT); cmpq(Operand(rsp, 0), kScratchRegister); Check(not_equal, "code object not properly patched"); } } void MacroAssembler::LeaveFrame(StackFrame::Type type) { if (emit_debug_code()) { Move(kScratchRegister, Smi::FromInt(type)); cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister); Check(equal, "stack frame types must match"); } movq(rsp, rbp); pop(rbp); } void MacroAssembler::EnterExitFramePrologue(bool save_rax) { // Set up the frame structure on the stack. // All constants are relative to the frame pointer of the exit frame. ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); push(rbp); movq(rbp, rsp); // Reserve room for entry stack pointer and push the code object. ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); push(Immediate(0)); // Saved entry sp, patched before call. movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT); push(kScratchRegister); // Accessed from EditFrame::code_slot. // Save the frame pointer and the context in top. if (save_rax) { movq(r14, rax); // Backup rax in callee-save register. } Store(ExternalReference(Isolate::kCEntryFPAddress, isolate()), rbp); Store(ExternalReference(Isolate::kContextAddress, isolate()), rsi); } void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles) { #ifdef _WIN64 const int kShadowSpace = 4; arg_stack_space += kShadowSpace; #endif // Optionally save all XMM registers. if (save_doubles) { int space = XMMRegister::kNumRegisters * kDoubleSize + arg_stack_space * kPointerSize; subq(rsp, Immediate(space)); int offset = -2 * kPointerSize; for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) { XMMRegister reg = XMMRegister::FromAllocationIndex(i); movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg); } } else if (arg_stack_space > 0) { subq(rsp, Immediate(arg_stack_space * kPointerSize)); } // Get the required frame alignment for the OS. const int kFrameAlignment = OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { ASSERT(IsPowerOf2(kFrameAlignment)); ASSERT(is_int8(kFrameAlignment)); and_(rsp, Immediate(-kFrameAlignment)); } // Patch the saved entry sp. movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp); } void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles) { EnterExitFramePrologue(true); // Set up argv in callee-saved register r15. It is reused in LeaveExitFrame, // so it must be retained across the C-call. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; lea(r15, Operand(rbp, r14, times_pointer_size, offset)); EnterExitFrameEpilogue(arg_stack_space, save_doubles); } void MacroAssembler::EnterApiExitFrame(int arg_stack_space) { EnterExitFramePrologue(false); EnterExitFrameEpilogue(arg_stack_space, false); } void MacroAssembler::LeaveExitFrame(bool save_doubles) { // Registers: // r15 : argv if (save_doubles) { int offset = -2 * kPointerSize; for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) { XMMRegister reg = XMMRegister::FromAllocationIndex(i); movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize))); } } // Get the return address from the stack and restore the frame pointer. movq(rcx, Operand(rbp, 1 * kPointerSize)); movq(rbp, Operand(rbp, 0 * kPointerSize)); // Drop everything up to and including the arguments and the receiver // from the caller stack. lea(rsp, Operand(r15, 1 * kPointerSize)); // Push the return address to get ready to return. push(rcx); LeaveExitFrameEpilogue(); } void MacroAssembler::LeaveApiExitFrame() { movq(rsp, rbp); pop(rbp); LeaveExitFrameEpilogue(); } void MacroAssembler::LeaveExitFrameEpilogue() { // Restore current context from top and clear it in debug mode. ExternalReference context_address(Isolate::kContextAddress, isolate()); Operand context_operand = ExternalOperand(context_address); movq(rsi, context_operand); #ifdef DEBUG movq(context_operand, Immediate(0)); #endif // Clear the top frame. ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate()); Operand c_entry_fp_operand = ExternalOperand(c_entry_fp_address); movq(c_entry_fp_operand, Immediate(0)); } void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss) { Label same_contexts; ASSERT(!holder_reg.is(scratch)); ASSERT(!scratch.is(kScratchRegister)); // Load current lexical context from the stack frame. movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset)); // When generating debug code, make sure the lexical context is set. if (emit_debug_code()) { cmpq(scratch, Immediate(0)); Check(not_equal, "we should not have an empty lexical context"); } // Load the global context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; movq(scratch, FieldOperand(scratch, offset)); movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check the context is a global context. if (emit_debug_code()) { Cmp(FieldOperand(scratch, HeapObject::kMapOffset), isolate()->factory()->global_context_map()); Check(equal, "JSGlobalObject::global_context should be a global context."); } // Check if both contexts are the same. cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); j(equal, &same_contexts); // Compare security tokens. // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. // Check the context is a global context. if (emit_debug_code()) { // Preserve original value of holder_reg. push(holder_reg); movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); CompareRoot(holder_reg, Heap::kNullValueRootIndex); Check(not_equal, "JSGlobalProxy::context() should not be null."); // Read the first word and compare to global_context_map(), movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex); Check(equal, "JSGlobalObject::global_context should be a global context."); pop(holder_reg); } movq(kScratchRegister, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; movq(scratch, FieldOperand(scratch, token_offset)); cmpq(scratch, FieldOperand(kScratchRegister, token_offset)); j(not_equal, miss); bind(&same_contexts); } void MacroAssembler::GetNumberHash(Register r0, Register scratch) { // First of all we assign the hash seed to scratch. LoadRoot(scratch, Heap::kHashSeedRootIndex); SmiToInteger32(scratch, scratch); // Xor original key with a seed. xorl(r0, scratch); // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); movl(scratch, r0); notl(r0); shll(scratch, Immediate(15)); addl(r0, scratch); // hash = hash ^ (hash >> 12); movl(scratch, r0); shrl(scratch, Immediate(12)); xorl(r0, scratch); // hash = hash + (hash << 2); leal(r0, Operand(r0, r0, times_4, 0)); // hash = hash ^ (hash >> 4); movl(scratch, r0); shrl(scratch, Immediate(4)); xorl(r0, scratch); // hash = hash * 2057; imull(r0, r0, Immediate(2057)); // hash = hash ^ (hash >> 16); movl(scratch, r0); shrl(scratch, Immediate(16)); xorl(r0, scratch); } void MacroAssembler::LoadFromNumberDictionary(Label* miss, Register elements, Register key, Register r0, Register r1, Register r2, Register result) { // Register use: // // elements - holds the slow-case elements of the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // Scratch registers: // // r0 - holds the untagged key on entry and holds the hash once computed. // // r1 - used to hold the capacity mask of the dictionary // // r2 - used for the index into the dictionary. // // result - holds the result on exit if the load succeeded. // Allowed to be the same as 'key' or 'result'. // Unchanged on bailout so 'key' or 'result' can be used // in further computation. Label done; GetNumberHash(r0, r1); // Compute capacity mask. SmiToInteger32(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset)); decl(r1); // Generate an unrolled loop that performs a few probes before giving up. const int kProbes = 4; for (int i = 0; i < kProbes; i++) { // Use r2 for index calculations and keep the hash intact in r0. movq(r2, r0); // Compute the masked index: (hash + i + i * i) & mask. if (i > 0) { addl(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i))); } and_(r2, r1); // Scale the index by multiplying by the entry size. ASSERT(SeededNumberDictionary::kEntrySize == 3); lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3 // Check if the key matches. cmpq(key, FieldOperand(elements, r2, times_pointer_size, SeededNumberDictionary::kElementsStartOffset)); if (i != (kProbes - 1)) { j(equal, &done); } else { j(not_equal, miss); } } bind(&done); // Check that the value is a normal propety. const int kDetailsOffset = SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; ASSERT_EQ(NORMAL, 0); Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset), Smi::FromInt(PropertyDetails::TypeField::kMask)); j(not_zero, miss); // Get the value at the masked, scaled index. const int kValueOffset = SeededNumberDictionary::kElementsStartOffset + kPointerSize; movq(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset)); } void MacroAssembler::LoadAllocationTopHelper(Register result, Register scratch, AllocationFlags flags) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); // Just return if allocation top is already known. if ((flags & RESULT_CONTAINS_TOP) != 0) { // No use of scratch if allocation top is provided. ASSERT(!scratch.is_valid()); #ifdef DEBUG // Assert that result actually contains top on entry. Operand top_operand = ExternalOperand(new_space_allocation_top); cmpq(result, top_operand); Check(equal, "Unexpected allocation top"); #endif return; } // Move address of new object to result. Use scratch register if available, // and keep address in scratch until call to UpdateAllocationTopHelper. if (scratch.is_valid()) { LoadAddress(scratch, new_space_allocation_top); movq(result, Operand(scratch, 0)); } else { Load(result, new_space_allocation_top); } } void MacroAssembler::UpdateAllocationTopHelper(Register result_end, Register scratch) { if (emit_debug_code()) { testq(result_end, Immediate(kObjectAlignmentMask)); Check(zero, "Unaligned allocation in new space"); } ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); // Update new top. if (scratch.is_valid()) { // Scratch already contains address of allocation top. movq(Operand(scratch, 0), result_end); } else { Store(new_space_allocation_top, result_end); } } void MacroAssembler::AllocateInNewSpace(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. movl(result, Immediate(0x7091)); if (result_end.is_valid()) { movl(result_end, Immediate(0x7191)); } if (scratch.is_valid()) { movl(scratch, Immediate(0x7291)); } } jmp(gc_required); return; } ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); Register top_reg = result_end.is_valid() ? result_end : result; if (!top_reg.is(result)) { movq(top_reg, result); } addq(top_reg, Immediate(object_size)); j(carry, gc_required); Operand limit_operand = ExternalOperand(new_space_allocation_limit); cmpq(top_reg, limit_operand); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(top_reg, scratch); if (top_reg.is(result)) { if ((flags & TAG_OBJECT) != 0) { subq(result, Immediate(object_size - kHeapObjectTag)); } else { subq(result, Immediate(object_size)); } } else if ((flags & TAG_OBJECT) != 0) { // Tag the result if requested. addq(result, Immediate(kHeapObjectTag)); } } void MacroAssembler::AllocateInNewSpace(int header_size, ScaleFactor element_size, Register element_count, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. movl(result, Immediate(0x7091)); movl(result_end, Immediate(0x7191)); if (scratch.is_valid()) { movl(scratch, Immediate(0x7291)); } // Register element_count is not modified by the function. } jmp(gc_required); return; } ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); // We assume that element_count*element_size + header_size does not // overflow. lea(result_end, Operand(element_count, element_size, header_size)); addq(result_end, result); j(carry, gc_required); Operand limit_operand = ExternalOperand(new_space_allocation_limit); cmpq(result_end, limit_operand); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(result_end, scratch); // Tag the result if requested. if ((flags & TAG_OBJECT) != 0) { addq(result, Immediate(kHeapObjectTag)); } } void MacroAssembler::AllocateInNewSpace(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. movl(result, Immediate(0x7091)); movl(result_end, Immediate(0x7191)); if (scratch.is_valid()) { movl(scratch, Immediate(0x7291)); } // object_size is left unchanged by this function. } jmp(gc_required); return; } ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); if (!object_size.is(result_end)) { movq(result_end, object_size); } addq(result_end, result); j(carry, gc_required); Operand limit_operand = ExternalOperand(new_space_allocation_limit); cmpq(result_end, limit_operand); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(result_end, scratch); // Tag the result if requested. if ((flags & TAG_OBJECT) != 0) { addq(result, Immediate(kHeapObjectTag)); } } void MacroAssembler::UndoAllocationInNewSpace(Register object) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); // Make sure the object has no tag before resetting top. and_(object, Immediate(~kHeapObjectTagMask)); Operand top_operand = ExternalOperand(new_space_allocation_top); #ifdef DEBUG cmpq(object, top_operand); Check(below, "Undo allocation of non allocated memory"); #endif movq(top_operand, object); } void MacroAssembler::AllocateHeapNumber(Register result, Register scratch, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(HeapNumber::kSize, result, scratch, no_reg, gc_required, TAG_OBJECT); // Set the map. LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. const int kHeaderAlignment = SeqTwoByteString::kHeaderSize & kObjectAlignmentMask; ASSERT(kShortSize == 2); // scratch1 = length * 2 + kObjectAlignmentMask. lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask + kHeaderAlignment)); and_(scratch1, Immediate(~kObjectAlignmentMask)); if (kHeaderAlignment > 0) { subq(scratch1, Immediate(kHeaderAlignment)); } // Allocate two byte string in new space. AllocateInNewSpace(SeqTwoByteString::kHeaderSize, times_1, scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. LoadRoot(kScratchRegister, Heap::kStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); Integer32ToSmi(scratch1, length); movq(FieldOperand(result, String::kLengthOffset), scratch1); movq(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. const int kHeaderAlignment = SeqAsciiString::kHeaderSize & kObjectAlignmentMask; movl(scratch1, length); ASSERT(kCharSize == 1); addq(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment)); and_(scratch1, Immediate(~kObjectAlignmentMask)); if (kHeaderAlignment > 0) { subq(scratch1, Immediate(kHeaderAlignment)); } // Allocate ASCII string in new space. AllocateInNewSpace(SeqAsciiString::kHeaderSize, times_1, scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); Integer32ToSmi(scratch1, length); movq(FieldOperand(result, String::kLengthOffset), scratch1); movq(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::AllocateAsciiConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. LoadRoot(kScratchRegister, Heap::kSlicedStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } void MacroAssembler::AllocateAsciiSlicedString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. LoadRoot(kScratchRegister, Heap::kSlicedAsciiStringMapRootIndex); movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister); } // Copy memory, byte-by-byte, from source to destination. Not optimized for // long or aligned copies. The contents of scratch and length are destroyed. // Destination is incremented by length, source, length and scratch are // clobbered. // A simpler loop is faster on small copies, but slower on large ones. // The cld() instruction must have been emitted, to set the direction flag(), // before calling this function. void MacroAssembler::CopyBytes(Register destination, Register source, Register length, int min_length, Register scratch) { ASSERT(min_length >= 0); if (FLAG_debug_code) { cmpl(length, Immediate(min_length)); Assert(greater_equal, "Invalid min_length"); } Label loop, done, short_string, short_loop; const int kLongStringLimit = 20; if (min_length <= kLongStringLimit) { cmpl(length, Immediate(kLongStringLimit)); j(less_equal, &short_string); } ASSERT(source.is(rsi)); ASSERT(destination.is(rdi)); ASSERT(length.is(rcx)); // Because source is 8-byte aligned in our uses of this function, // we keep source aligned for the rep movs operation by copying the odd bytes // at the end of the ranges. movq(scratch, length); shrl(length, Immediate(3)); repmovsq(); // Move remaining bytes of length. andl(scratch, Immediate(0x7)); movq(length, Operand(source, scratch, times_1, -8)); movq(Operand(destination, scratch, times_1, -8), length); addq(destination, scratch); if (min_length <= kLongStringLimit) { jmp(&done); bind(&short_string); if (min_length == 0) { testl(length, length); j(zero, &done); } lea(scratch, Operand(destination, length, times_1, 0)); bind(&short_loop); movb(length, Operand(source, 0)); movb(Operand(destination, 0), length); incq(source); incq(destination); cmpq(destination, scratch); j(not_equal, &short_loop); bind(&done); } } void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, Register end_offset, Register filler) { Label loop, entry; jmp(&entry); bind(&loop); movq(Operand(start_offset, 0), filler); addq(start_offset, Immediate(kPointerSize)); bind(&entry); cmpq(start_offset, end_offset); j(less, &loop); } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. movq(dst, Operand(rsi, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { movq(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in rsi). movq(dst, rsi); } // We should not have found a with context by walking the context // chain (i.e., the static scope chain and runtime context chain do // not agree). A variable occurring in such a scope should have // slot type LOOKUP and not CONTEXT. if (emit_debug_code()) { CompareRoot(FieldOperand(dst, HeapObject::kMapOffset), Heap::kWithContextMapRootIndex); Check(not_equal, "Variable resolved to with context."); } } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match) { // Load the global or builtins object from the current context. movq(scratch, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check that the function's map is the same as the expected cached map. int expected_index = Context::GetContextMapIndexFromElementsKind(expected_kind); cmpq(map_in_out, Operand(scratch, Context::SlotOffset(expected_index))); j(not_equal, no_map_match); // Use the transitioned cached map. int trans_index = Context::GetContextMapIndexFromElementsKind(transitioned_kind); movq(map_in_out, Operand(scratch, Context::SlotOffset(trans_index))); } void MacroAssembler::LoadInitialArrayMap( Register function_in, Register scratch, Register map_out) { ASSERT(!function_in.is(map_out)); Label done; movq(map_out, FieldOperand(function_in, JSFunction::kPrototypeOrInitialMapOffset)); if (!FLAG_smi_only_arrays) { LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS, FAST_ELEMENTS, map_out, scratch, &done); } bind(&done); } #ifdef _WIN64 static const int kRegisterPassedArguments = 4; #else static const int kRegisterPassedArguments = 6; #endif void MacroAssembler::LoadGlobalFunction(int index, Register function) { // Load the global or builtins object from the current context. movq(function, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); // Load the global context from the global or builtins object. movq(function, FieldOperand(function, GlobalObject::kGlobalContextOffset)); // Load the function from the global context. movq(function, Operand(function, Context::SlotOffset(index))); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map) { // Load the initial map. The global functions all have initial maps. movq(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK); jmp(&ok); bind(&fail); Abort("Global functions must have initial map"); bind(&ok); } } int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) { // On Windows 64 stack slots are reserved by the caller for all arguments // including the ones passed in registers, and space is always allocated for // the four register arguments even if the function takes fewer than four // arguments. // On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers // and the caller does not reserve stack slots for them. ASSERT(num_arguments >= 0); #ifdef _WIN64 const int kMinimumStackSlots = kRegisterPassedArguments; if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots; return num_arguments; #else if (num_arguments < kRegisterPassedArguments) return 0; return num_arguments - kRegisterPassedArguments; #endif } void MacroAssembler::PrepareCallCFunction(int num_arguments) { int frame_alignment = OS::ActivationFrameAlignment(); ASSERT(frame_alignment != 0); ASSERT(num_arguments >= 0); // Make stack end at alignment and allocate space for arguments and old rsp. movq(kScratchRegister, rsp); ASSERT(IsPowerOf2(frame_alignment)); int argument_slots_on_stack = ArgumentStackSlotsForCFunctionCall(num_arguments); subq(rsp, Immediate((argument_slots_on_stack + 1) * kPointerSize)); and_(rsp, Immediate(-frame_alignment)); movq(Operand(rsp, argument_slots_on_stack * kPointerSize), kScratchRegister); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { LoadAddress(rax, function); CallCFunction(rax, num_arguments); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { ASSERT(has_frame()); // Check stack alignment. if (emit_debug_code()) { CheckStackAlignment(); } call(function); ASSERT(OS::ActivationFrameAlignment() != 0); ASSERT(num_arguments >= 0); int argument_slots_on_stack = ArgumentStackSlotsForCFunctionCall(num_arguments); movq(rsp, Operand(rsp, argument_slots_on_stack * kPointerSize)); } bool AreAliased(Register r1, Register r2, Register r3, Register r4) { if (r1.is(r2)) return true; if (r1.is(r3)) return true; if (r1.is(r4)) return true; if (r2.is(r3)) return true; if (r2.is(r4)) return true; if (r3.is(r4)) return true; return false; } CodePatcher::CodePatcher(byte* address, int size) : address_(address), size_(size), masm_(Isolate::Current(), address, size + Assembler::kGap) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. CPU::FlushICache(address_, size_); // Check that the code was patched as expected. ASSERT(masm_.pc_ == address_ + size_); ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void MacroAssembler::CheckPageFlag( Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance) { ASSERT(cc == zero || cc == not_zero); if (scratch.is(object)) { and_(scratch, Immediate(~Page::kPageAlignmentMask)); } else { movq(scratch, Immediate(~Page::kPageAlignmentMask)); and_(scratch, object); } if (mask < (1 << kBitsPerByte)) { testb(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(static_cast<uint8_t>(mask))); } else { testl(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); } j(cc, condition_met, condition_met_distance); } void MacroAssembler::JumpIfBlack(Register object, Register bitmap_scratch, Register mask_scratch, Label* on_black, Label::Distance on_black_distance) { ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, rcx)); GetMarkBits(object, bitmap_scratch, mask_scratch); ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); // The mask_scratch register contains a 1 at the position of the first bit // and a 0 at all other positions, including the position of the second bit. movq(rcx, mask_scratch); // Make rcx into a mask that covers both marking bits using the operation // rcx = mask | (mask << 1). lea(rcx, Operand(mask_scratch, mask_scratch, times_2, 0)); // Note that we are using a 4-byte aligned 8-byte load. and_(rcx, Operand(bitmap_scratch, MemoryChunk::kHeaderSize)); cmpq(mask_scratch, rcx); j(equal, on_black, on_black_distance); } // Detect some, but not all, common pointer-free objects. This is used by the // incremental write barrier which doesn't care about oddballs (they are always // marked black immediately so this code is not hit). void MacroAssembler::JumpIfDataObject( Register value, Register scratch, Label* not_data_object, Label::Distance not_data_object_distance) { Label is_data_object; movq(scratch, FieldOperand(value, HeapObject::kMapOffset)); CompareRoot(scratch, Heap::kHeapNumberMapRootIndex); j(equal, &is_data_object, Label::kNear); ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); // If it's a string and it's not a cons string then it's an object containing // no GC pointers. testb(FieldOperand(scratch, Map::kInstanceTypeOffset), Immediate(kIsIndirectStringMask | kIsNotStringMask)); j(not_zero, not_data_object, not_data_object_distance); bind(&is_data_object); } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg) { ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, rcx)); movq(bitmap_reg, addr_reg); // Sign extended 32 bit immediate. and_(bitmap_reg, Immediate(~Page::kPageAlignmentMask)); movq(rcx, addr_reg); int shift = Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2; shrl(rcx, Immediate(shift)); and_(rcx, Immediate((Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1))); addq(bitmap_reg, rcx); movq(rcx, addr_reg); shrl(rcx, Immediate(kPointerSizeLog2)); and_(rcx, Immediate((1 << Bitmap::kBitsPerCellLog2) - 1)); movl(mask_reg, Immediate(1)); shl_cl(mask_reg); } void MacroAssembler::EnsureNotWhite( Register value, Register bitmap_scratch, Register mask_scratch, Label* value_is_white_and_not_data, Label::Distance distance) { ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, rcx)); GetMarkBits(value, bitmap_scratch, mask_scratch); // If the value is black or grey we don't need to do anything. ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); Label done; // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. testq(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch); j(not_zero, &done, Label::kNear); if (FLAG_debug_code) { // Check for impossible bit pattern. Label ok; push(mask_scratch); // shl. May overflow making the check conservative. addq(mask_scratch, mask_scratch); testq(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch); j(zero, &ok, Label::kNear); int3(); bind(&ok); pop(mask_scratch); } // Value is white. We check whether it is data that doesn't need scanning. // Currently only checks for HeapNumber and non-cons strings. Register map = rcx; // Holds map while checking type. Register length = rcx; // Holds length of object after checking type. Label not_heap_number; Label is_data_object; // Check for heap-number movq(map, FieldOperand(value, HeapObject::kMapOffset)); CompareRoot(map, Heap::kHeapNumberMapRootIndex); j(not_equal, ¬_heap_number, Label::kNear); movq(length, Immediate(HeapNumber::kSize)); jmp(&is_data_object, Label::kNear); bind(¬_heap_number); // Check for strings. ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); // If it's a string and it's not a cons string then it's an object containing // no GC pointers. Register instance_type = rcx; movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); testb(instance_type, Immediate(kIsIndirectStringMask | kIsNotStringMask)); j(not_zero, value_is_white_and_not_data); // It's a non-indirect (non-cons and non-slice) string. // If it's external, the length is just ExternalString::kSize. // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). Label not_external; // External strings are the only ones with the kExternalStringTag bit // set. ASSERT_EQ(0, kSeqStringTag & kExternalStringTag); ASSERT_EQ(0, kConsStringTag & kExternalStringTag); testb(instance_type, Immediate(kExternalStringTag)); j(zero, ¬_external, Label::kNear); movq(length, Immediate(ExternalString::kSize)); jmp(&is_data_object, Label::kNear); bind(¬_external); // Sequential string, either ASCII or UC16. ASSERT(kAsciiStringTag == 0x04); and_(length, Immediate(kStringEncodingMask)); xor_(length, Immediate(kStringEncodingMask)); addq(length, Immediate(0x04)); // Value now either 4 (if ASCII) or 8 (if UC16), i.e. char-size shifted by 2. imul(length, FieldOperand(value, String::kLengthOffset)); shr(length, Immediate(2 + kSmiTagSize + kSmiShiftSize)); addq(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask)); and_(length, Immediate(~kObjectAlignmentMask)); bind(&is_data_object); // Value is a data object, and it is white. Mark it black. Since we know // that the object is white we can make it black by flipping one bit. or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch); and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask)); addl(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset), length); bind(&done); } void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { Label next; Register empty_fixed_array_value = r8; LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); Register empty_descriptor_array_value = r9; LoadRoot(empty_descriptor_array_value, Heap::kEmptyDescriptorArrayRootIndex); movq(rcx, rax); bind(&next); // Check that there are no elements. Register rcx contains the // current JS object we've reached through the prototype chain. cmpq(empty_fixed_array_value, FieldOperand(rcx, JSObject::kElementsOffset)); j(not_equal, call_runtime); // Check that instance descriptors are not empty so that we can // check for an enum cache. Leave the map in rbx for the subsequent // prototype load. movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset)); movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOrBitField3Offset)); JumpIfSmi(rdx, call_runtime); // Check that there is an enum cache in the non-empty instance // descriptors (rdx). This is the case if the next enumeration // index field does not contain a smi. movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset)); JumpIfSmi(rdx, call_runtime); // For all objects but the receiver, check that the cache is empty. Label check_prototype; cmpq(rcx, rax); j(equal, &check_prototype, Label::kNear); movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset)); cmpq(rdx, empty_fixed_array_value); j(not_equal, call_runtime); // Load the prototype from the map and loop if non-null. bind(&check_prototype); movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset)); cmpq(rcx, null_value); j(not_equal, &next); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64