// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/renderer_host/web_cache_manager.h"
#include <algorithm>
#include "base/compiler_specific.h"
#include "base/memory/singleton.h"
#include "base/metrics/histogram.h"
#include "base/sys_info.h"
#include "base/time.h"
#include "chrome/browser/browser_process.h"
#include "chrome/browser/prefs/pref_service.h"
#include "chrome/common/chrome_constants.h"
#include "chrome/common/pref_names.h"
#include "chrome/common/render_messages.h"
#include "content/browser/renderer_host/render_process_host.h"
#include "content/common/notification_service.h"
using base::Time;
using base::TimeDelta;
using WebKit::WebCache;
static const unsigned int kReviseAllocationDelayMS = 200 /* milliseconds */;
// The default size limit of the in-memory cache is 8 MB
static const int kDefaultMemoryCacheSize = 8 * 1024 * 1024;
namespace {
int GetDefaultCacheSize() {
// Start off with a modest default
int default_cache_size = kDefaultMemoryCacheSize;
// Check how much physical memory the OS has
int mem_size_mb = base::SysInfo::AmountOfPhysicalMemoryMB();
if (mem_size_mb >= 1000) // If we have a GB of memory, set a larger default.
default_cache_size *= 4;
else if (mem_size_mb >= 512) // With 512 MB, set a slightly larger default.
default_cache_size *= 2;
UMA_HISTOGRAM_MEMORY_MB("Cache.MaxCacheSizeMB",
default_cache_size / 1024 / 1024);
return default_cache_size;
}
} // anonymous namespace
// static
void WebCacheManager::RegisterPrefs(PrefService* prefs) {
prefs->RegisterIntegerPref(prefs::kMemoryCacheSize, GetDefaultCacheSize());
}
// static
WebCacheManager* WebCacheManager::GetInstance() {
return Singleton<WebCacheManager>::get();
}
WebCacheManager::WebCacheManager()
: global_size_limit_(GetDefaultGlobalSizeLimit()),
ALLOW_THIS_IN_INITIALIZER_LIST(revise_allocation_factory_(this)) {
}
WebCacheManager::~WebCacheManager() {
}
void WebCacheManager::Add(int renderer_id) {
DCHECK(inactive_renderers_.count(renderer_id) == 0);
// It is tempting to make the following DCHECK here, but it fails when a new
// tab is created as we observe activity from that tab because the
// RenderProcessHost is recreated and adds itself.
//
// DCHECK(active_renderers_.count(renderer_id) == 0);
//
// However, there doesn't seem to be much harm in receiving the calls in this
// order.
active_renderers_.insert(renderer_id);
RendererInfo* stats = &(stats_[renderer_id]);
memset(stats, 0, sizeof(*stats));
stats->access = Time::Now();
// Revise our allocation strategy to account for this new renderer.
ReviseAllocationStrategyLater();
}
void WebCacheManager::Remove(int renderer_id) {
// Erase all knowledge of this renderer
active_renderers_.erase(renderer_id);
inactive_renderers_.erase(renderer_id);
stats_.erase(renderer_id);
// Reallocate the resources used by this renderer
ReviseAllocationStrategyLater();
}
void WebCacheManager::ObserveActivity(int renderer_id) {
StatsMap::iterator item = stats_.find(renderer_id);
if (item == stats_.end())
return; // We might see stats for a renderer that has been destroyed.
// Record activity.
active_renderers_.insert(renderer_id);
item->second.access = Time::Now();
std::set<int>::iterator elmt = inactive_renderers_.find(renderer_id);
if (elmt != inactive_renderers_.end()) {
inactive_renderers_.erase(elmt);
// A renderer that was inactive, just became active. We should make sure
// it is given a fair cache allocation, but we defer this for a bit in
// order to make this function call cheap.
ReviseAllocationStrategyLater();
}
}
void WebCacheManager::ObserveStats(int renderer_id,
const WebCache::UsageStats& stats) {
StatsMap::iterator entry = stats_.find(renderer_id);
if (entry == stats_.end())
return; // We might see stats for a renderer that has been destroyed.
// Record the updated stats.
entry->second.capacity = stats.capacity;
entry->second.deadSize = stats.deadSize;
entry->second.liveSize = stats.liveSize;
entry->second.maxDeadCapacity = stats.maxDeadCapacity;
entry->second.minDeadCapacity = stats.minDeadCapacity;
// trigger notification
WebCache::UsageStats stats_details(stats);
// &stats_details is only valid during the notification.
// See notification_types.h.
NotificationService::current()->Notify(
NotificationType::WEB_CACHE_STATS_OBSERVED,
Source<RenderProcessHost>(RenderProcessHost::FromID(renderer_id)),
Details<WebCache::UsageStats>(&stats_details));
}
void WebCacheManager::SetGlobalSizeLimit(size_t bytes) {
global_size_limit_ = bytes;
ReviseAllocationStrategyLater();
}
void WebCacheManager::ClearCache() {
// Tell each renderer process to clear the cache.
ClearRendederCache(active_renderers_);
ClearRendederCache(inactive_renderers_);
}
// static
size_t WebCacheManager::GetDefaultGlobalSizeLimit() {
PrefService* perf_service = g_browser_process->local_state();
if (perf_service)
return perf_service->GetInteger(prefs::kMemoryCacheSize);
return GetDefaultCacheSize();
}
void WebCacheManager::GatherStats(const std::set<int>& renderers,
WebCache::UsageStats* stats) {
DCHECK(stats);
memset(stats, 0, sizeof(WebCache::UsageStats));
std::set<int>::const_iterator iter = renderers.begin();
while (iter != renderers.end()) {
StatsMap::iterator elmt = stats_.find(*iter);
if (elmt != stats_.end()) {
stats->minDeadCapacity += elmt->second.minDeadCapacity;
stats->maxDeadCapacity += elmt->second.maxDeadCapacity;
stats->capacity += elmt->second.capacity;
stats->liveSize += elmt->second.liveSize;
stats->deadSize += elmt->second.deadSize;
}
++iter;
}
}
// static
size_t WebCacheManager::GetSize(AllocationTactic tactic,
const WebCache::UsageStats& stats) {
switch (tactic) {
case DIVIDE_EVENLY:
// We aren't going to reserve any space for existing objects.
return 0;
case KEEP_CURRENT_WITH_HEADROOM:
// We need enough space for our current objects, plus some headroom.
return 3 * GetSize(KEEP_CURRENT, stats) / 2;
case KEEP_CURRENT:
// We need enough space to keep our current objects.
return stats.liveSize + stats.deadSize;
case KEEP_LIVE_WITH_HEADROOM:
// We need enough space to keep out live resources, plus some headroom.
return 3 * GetSize(KEEP_LIVE, stats) / 2;
case KEEP_LIVE:
// We need enough space to keep our live resources.
return stats.liveSize;
default:
NOTREACHED() << "Unknown cache allocation tactic";
return 0;
}
}
bool WebCacheManager::AttemptTactic(
AllocationTactic active_tactic,
const WebCache::UsageStats& active_stats,
AllocationTactic inactive_tactic,
const WebCache::UsageStats& inactive_stats,
AllocationStrategy* strategy) {
DCHECK(strategy);
size_t active_size = GetSize(active_tactic, active_stats);
size_t inactive_size = GetSize(inactive_tactic, inactive_stats);
// Give up if we don't have enough space to use this tactic.
if (global_size_limit_ < active_size + inactive_size)
return false;
// Compute the unreserved space available.
size_t total_extra = global_size_limit_ - (active_size + inactive_size);
// The plan for the extra space is to divide it evenly amoung the active
// renderers.
size_t shares = active_renderers_.size();
// The inactive renderers get one share of the extra memory to be divided
// among themselves.
size_t inactive_extra = 0;
if (!inactive_renderers_.empty()) {
++shares;
inactive_extra = total_extra / shares;
}
// The remaining memory is allocated to the active renderers.
size_t active_extra = total_extra - inactive_extra;
// Actually compute the allocations for each renderer.
AddToStrategy(active_renderers_, active_tactic, active_extra, strategy);
AddToStrategy(inactive_renderers_, inactive_tactic, inactive_extra, strategy);
// We succeeded in computing an allocation strategy.
return true;
}
void WebCacheManager::AddToStrategy(const std::set<int>& renderers,
AllocationTactic tactic,
size_t extra_bytes_to_allocate,
AllocationStrategy* strategy) {
DCHECK(strategy);
// Nothing to do if there are no renderers. It is common for there to be no
// inactive renderers if there is a single active tab.
if (renderers.empty())
return;
// Divide the extra memory evenly among the renderers.
size_t extra_each = extra_bytes_to_allocate / renderers.size();
std::set<int>::const_iterator iter = renderers.begin();
while (iter != renderers.end()) {
size_t cache_size = extra_each;
// Add in the space required to implement |tactic|.
StatsMap::iterator elmt = stats_.find(*iter);
if (elmt != stats_.end())
cache_size += GetSize(tactic, elmt->second);
// Record the allocation in our strategy.
strategy->push_back(Allocation(*iter, cache_size));
++iter;
}
}
void WebCacheManager::EnactStrategy(const AllocationStrategy& strategy) {
// Inform each render process of its cache allocation.
AllocationStrategy::const_iterator allocation = strategy.begin();
while (allocation != strategy.end()) {
RenderProcessHost* host = RenderProcessHost::FromID(allocation->first);
if (host) {
// This is the capacity this renderer has been allocated.
size_t capacity = allocation->second;
// We don't reserve any space for dead objects in the cache. Instead, we
// prefer to keep live objects around. There is probably some performance
// tuning to be done here.
size_t min_dead_capacity = 0;
// We allow the dead objects to consume all of the cache, if the renderer
// so desires. If we wanted this memory, we would have set the total
// capacity lower.
size_t max_dead_capacity = capacity;
host->Send(new ViewMsg_SetCacheCapacities(min_dead_capacity,
max_dead_capacity,
capacity));
}
++allocation;
}
}
void WebCacheManager::ClearRendederCache(const std::set<int>& renderers) {
std::set<int>::const_iterator iter = renderers.begin();
for (; iter != renderers.end(); ++iter) {
RenderProcessHost* host = RenderProcessHost::FromID(*iter);
if (host)
host->Send(new ViewMsg_ClearCache());
}
}
void WebCacheManager::ReviseAllocationStrategy() {
DCHECK(stats_.size() <=
active_renderers_.size() + inactive_renderers_.size());
// Check if renderers have gone inactive.
FindInactiveRenderers();
// Gather statistics
WebCache::UsageStats active;
WebCache::UsageStats inactive;
GatherStats(active_renderers_, &active);
GatherStats(inactive_renderers_, &inactive);
UMA_HISTOGRAM_COUNTS_100("Cache.ActiveTabs", active_renderers_.size());
UMA_HISTOGRAM_COUNTS_100("Cache.InactiveTabs", inactive_renderers_.size());
UMA_HISTOGRAM_MEMORY_MB("Cache.ActiveCapacityMB",
active.capacity / 1024 / 1024);
UMA_HISTOGRAM_MEMORY_MB("Cache.ActiveDeadSizeMB",
active.deadSize / 1024 / 1024);
UMA_HISTOGRAM_MEMORY_MB("Cache.ActiveLiveSizeMB",
active.liveSize / 1024 / 1024);
UMA_HISTOGRAM_MEMORY_MB("Cache.InactiveCapacityMB",
inactive.capacity / 1024 / 1024);
UMA_HISTOGRAM_MEMORY_MB("Cache.InactiveDeadSizeMB",
inactive.deadSize / 1024 / 1024);
UMA_HISTOGRAM_MEMORY_MB("Cache.InactiveLiveSizeMB",
inactive.liveSize / 1024 / 1024);
// Compute an allocation strategy.
//
// We attempt various tactics in order of preference. Our first preference
// is not to evict any objects. If we don't have enough resources, we'll
// first try to evict dead data only. If that fails, we'll just divide the
// resources we have evenly.
//
// We always try to give the active renderers some head room in their
// allocations so they can take memory away from an inactive renderer with
// a large cache allocation.
//
// Notice the early exit will prevent attempting less desirable tactics once
// we've found a workable strategy.
AllocationStrategy strategy;
if ( // Ideally, we'd like to give the active renderers some headroom and
// keep all our current objects.
AttemptTactic(KEEP_CURRENT_WITH_HEADROOM, active,
KEEP_CURRENT, inactive, &strategy) ||
// If we can't have that, then we first try to evict the dead objects in
// the caches of inactive renderers.
AttemptTactic(KEEP_CURRENT_WITH_HEADROOM, active,
KEEP_LIVE, inactive, &strategy) ||
// Next, we try to keep the live objects in the active renders (with some
// room for new objects) and give whatever is left to the inactive
// renderers.
AttemptTactic(KEEP_LIVE_WITH_HEADROOM, active,
DIVIDE_EVENLY, inactive, &strategy) ||
// If we've gotten this far, then we are very tight on memory. Let's try
// to at least keep around the live objects for the active renderers.
AttemptTactic(KEEP_LIVE, active, DIVIDE_EVENLY, inactive, &strategy) ||
// We're basically out of memory. The best we can do is just divide up
// what we have and soldier on.
AttemptTactic(DIVIDE_EVENLY, active, DIVIDE_EVENLY, inactive,
&strategy)) {
// Having found a workable strategy, we enact it.
EnactStrategy(strategy);
} else {
// DIVIDE_EVENLY / DIVIDE_EVENLY should always succeed.
NOTREACHED() << "Unable to find a cache allocation";
}
}
void WebCacheManager::ReviseAllocationStrategyLater() {
// Ask to be called back in a few milliseconds to actually recompute our
// allocation.
MessageLoop::current()->PostDelayedTask(FROM_HERE,
revise_allocation_factory_.NewRunnableMethod(
&WebCacheManager::ReviseAllocationStrategy),
kReviseAllocationDelayMS);
}
void WebCacheManager::FindInactiveRenderers() {
std::set<int>::const_iterator iter = active_renderers_.begin();
while (iter != active_renderers_.end()) {
StatsMap::iterator elmt = stats_.find(*iter);
DCHECK(elmt != stats_.end());
TimeDelta idle = Time::Now() - elmt->second.access;
if (idle >= TimeDelta::FromMinutes(kRendererInactiveThresholdMinutes)) {
// Moved to inactive status. This invalidates our iterator.
inactive_renderers_.insert(*iter);
active_renderers_.erase(*iter);
iter = active_renderers_.begin();
continue;
}
++iter;
}
}