// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layers/nine_patch_layer_impl.h"
#include "base/strings/stringprintf.h"
#include "base/values.h"
#include "cc/base/math_util.h"
#include "cc/layers/quad_sink.h"
#include "cc/quads/texture_draw_quad.h"
#include "cc/trees/layer_tree_impl.h"
#include "ui/gfx/rect_f.h"
namespace cc {
NinePatchLayerImpl::NinePatchLayerImpl(LayerTreeImpl* tree_impl, int id)
: UIResourceLayerImpl(tree_impl, id),
fill_center_(false) {}
NinePatchLayerImpl::~NinePatchLayerImpl() {}
scoped_ptr<LayerImpl> NinePatchLayerImpl::CreateLayerImpl(
LayerTreeImpl* tree_impl) {
return NinePatchLayerImpl::Create(tree_impl, id()).PassAs<LayerImpl>();
}
void NinePatchLayerImpl::PushPropertiesTo(LayerImpl* layer) {
UIResourceLayerImpl::PushPropertiesTo(layer);
NinePatchLayerImpl* layer_impl = static_cast<NinePatchLayerImpl*>(layer);
layer_impl->SetLayout(image_aperture_, border_, fill_center_);
}
static gfx::RectF NormalizedRect(float x,
float y,
float width,
float height,
float total_width,
float total_height) {
return gfx::RectF(x / total_width,
y / total_height,
width / total_width,
height / total_height);
}
void NinePatchLayerImpl::SetLayout(gfx::Rect aperture,
gfx::Rect border,
bool fill_center) {
// This check imposes an ordering on the call sequence. An UIResource must
// exist before SetLayout can be called.
DCHECK(ui_resource_id_);
if (image_aperture_ == aperture &&
border_ == border && fill_center_ == fill_center)
return;
image_aperture_ = aperture;
border_ = border;
fill_center_ = fill_center;
NoteLayerPropertyChanged();
}
void NinePatchLayerImpl::CheckGeometryLimitations() {
// TODO(ccameron): the following "greater than or equal to" (GE) checks should
// be greater than (GT) to avoid degenerate nine-patches. The relaxed
// condition "equal to" is a workaround for the overhang shadow use case and
// should be investigated further.
// |border| is in layer space. It cannot exceed the bounds of the layer.
DCHECK(!border_.size().IsEmpty());
DCHECK_GE(bounds().width(), border_.width());
DCHECK_GE(bounds().height(), border_.height());
// Sanity Check on |border|
DCHECK_LT(border_.x(), border_.width());
DCHECK_LT(border_.y(), border_.height());
DCHECK_GE(border_.x(), 0);
DCHECK_GE(border_.y(), 0);
// |aperture| is in image space. It cannot exceed the bounds of the bitmap.
DCHECK(!image_aperture_.size().IsEmpty());
DCHECK(gfx::Rect(image_bounds_.width(), image_bounds_.height())
.Contains(image_aperture_));
// Avoid the degenerate cases where the aperture touches the edge of the
// image.
DCHECK_LT(image_aperture_.width(), image_bounds_.width() - 1);
DCHECK_LT(image_aperture_.height(), image_bounds_.height() - 1);
DCHECK_GT(image_aperture_.x(), 0);
DCHECK_GT(image_aperture_.y(), 0);
}
void NinePatchLayerImpl::AppendQuads(QuadSink* quad_sink,
AppendQuadsData* append_quads_data) {
CheckGeometryLimitations();
SharedQuadState* shared_quad_state =
quad_sink->UseSharedQuadState(CreateSharedQuadState());
AppendDebugBorderQuad(quad_sink, shared_quad_state, append_quads_data);
if (!ui_resource_id_)
return;
ResourceProvider::ResourceId resource =
layer_tree_impl()->ResourceIdForUIResource(ui_resource_id_);
if (!resource)
return;
static const bool flipped = false;
static const bool premultiplied_alpha = true;
DCHECK(!bounds().IsEmpty());
// NinePatch border widths in layer space.
int layer_left_width = border_.x();
int layer_top_height = border_.y();
int layer_right_width = border_.width() - layer_left_width;
int layer_bottom_height = border_.height() - layer_top_height;
int layer_middle_width = bounds().width() - border_.width();
int layer_middle_height = bounds().height() - border_.height();
// Patch positions in layer space
gfx::Rect layer_top_left(0, 0, layer_left_width, layer_top_height);
gfx::Rect layer_top_right(bounds().width() - layer_right_width,
0,
layer_right_width,
layer_top_height);
gfx::Rect layer_bottom_left(0,
bounds().height() - layer_bottom_height,
layer_left_width,
layer_bottom_height);
gfx::Rect layer_bottom_right(layer_top_right.x(),
layer_bottom_left.y(),
layer_right_width,
layer_bottom_height);
gfx::Rect layer_top(
layer_top_left.right(), 0, layer_middle_width, layer_top_height);
gfx::Rect layer_left(
0, layer_top_left.bottom(), layer_left_width, layer_middle_height);
gfx::Rect layer_right(layer_top_right.x(),
layer_top_right.bottom(),
layer_right_width,
layer_left.height());
gfx::Rect layer_bottom(layer_top.x(),
layer_bottom_left.y(),
layer_top.width(),
layer_bottom_height);
gfx::Rect layer_center(layer_left_width,
layer_top_height,
layer_middle_width,
layer_middle_height);
// Note the following values are in image (bitmap) space.
float image_width = image_bounds_.width();
float image_height = image_bounds_.height();
int image_aperture_left_width = image_aperture_.x();
int image_aperture_top_height = image_aperture_.y();
int image_aperture_right_width = image_width - image_aperture_.right();
int image_aperture_bottom_height = image_height - image_aperture_.bottom();
// Patch positions in bitmap UV space (from zero to one)
gfx::RectF uv_top_left = NormalizedRect(0,
0,
image_aperture_left_width,
image_aperture_top_height,
image_width,
image_height);
gfx::RectF uv_top_right =
NormalizedRect(image_width - image_aperture_right_width,
0,
image_aperture_right_width,
image_aperture_top_height,
image_width,
image_height);
gfx::RectF uv_bottom_left =
NormalizedRect(0,
image_height - image_aperture_bottom_height,
image_aperture_left_width,
image_aperture_bottom_height,
image_width,
image_height);
gfx::RectF uv_bottom_right =
NormalizedRect(image_width - image_aperture_right_width,
image_height - image_aperture_bottom_height,
image_aperture_right_width,
image_aperture_bottom_height,
image_width,
image_height);
gfx::RectF uv_top(
uv_top_left.right(),
0,
(image_width - image_aperture_left_width - image_aperture_right_width) /
image_width,
(image_aperture_top_height) / image_height);
gfx::RectF uv_left(0,
uv_top_left.bottom(),
image_aperture_left_width / image_width,
(image_height - image_aperture_top_height -
image_aperture_bottom_height) /
image_height);
gfx::RectF uv_right(uv_top_right.x(),
uv_top_right.bottom(),
image_aperture_right_width / image_width,
uv_left.height());
gfx::RectF uv_bottom(uv_top.x(),
uv_bottom_left.y(),
uv_top.width(),
image_aperture_bottom_height / image_height);
gfx::RectF uv_center(uv_top_left.right(),
uv_top_left.bottom(),
uv_top.width(),
uv_left.height());
// Nothing is opaque here.
// TODO(danakj): Should we look at the SkBitmaps to determine opaqueness?
gfx::Rect opaque_rect;
const float vertex_opacity[] = {1.0f, 1.0f, 1.0f, 1.0f};
scoped_ptr<TextureDrawQuad> quad;
quad = TextureDrawQuad::Create();
quad->SetNew(shared_quad_state,
layer_top_left,
opaque_rect,
resource,
premultiplied_alpha,
uv_top_left.origin(),
uv_top_left.bottom_right(),
SK_ColorTRANSPARENT,
vertex_opacity,
flipped);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
quad = TextureDrawQuad::Create();
quad->SetNew(shared_quad_state,
layer_top_right,
opaque_rect,
resource,
premultiplied_alpha,
uv_top_right.origin(),
uv_top_right.bottom_right(),
SK_ColorTRANSPARENT,
vertex_opacity,
flipped);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
quad = TextureDrawQuad::Create();
quad->SetNew(shared_quad_state,
layer_bottom_left,
opaque_rect,
resource,
premultiplied_alpha,
uv_bottom_left.origin(),
uv_bottom_left.bottom_right(),
SK_ColorTRANSPARENT,
vertex_opacity,
flipped);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
quad = TextureDrawQuad::Create();
quad->SetNew(shared_quad_state,
layer_bottom_right,
opaque_rect,
resource,
premultiplied_alpha,
uv_bottom_right.origin(),
uv_bottom_right.bottom_right(),
SK_ColorTRANSPARENT,
vertex_opacity,
flipped);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
quad = TextureDrawQuad::Create();
quad->SetNew(shared_quad_state,
layer_top,
opaque_rect,
resource,
premultiplied_alpha,
uv_top.origin(),
uv_top.bottom_right(),
SK_ColorTRANSPARENT,
vertex_opacity,
flipped);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
quad = TextureDrawQuad::Create();
quad->SetNew(shared_quad_state,
layer_left,
opaque_rect,
resource,
premultiplied_alpha,
uv_left.origin(),
uv_left.bottom_right(),
SK_ColorTRANSPARENT,
vertex_opacity,
flipped);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
quad = TextureDrawQuad::Create();
quad->SetNew(shared_quad_state,
layer_right,
opaque_rect,
resource,
premultiplied_alpha,
uv_right.origin(),
uv_right.bottom_right(),
SK_ColorTRANSPARENT,
vertex_opacity,
flipped);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
quad = TextureDrawQuad::Create();
quad->SetNew(shared_quad_state,
layer_bottom,
opaque_rect,
resource,
premultiplied_alpha,
uv_bottom.origin(),
uv_bottom.bottom_right(),
SK_ColorTRANSPARENT,
vertex_opacity,
flipped);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
if (fill_center_) {
quad = TextureDrawQuad::Create();
quad->SetNew(shared_quad_state,
layer_center,
opaque_rect,
resource,
premultiplied_alpha,
uv_center.origin(),
uv_center.bottom_right(),
SK_ColorTRANSPARENT,
vertex_opacity,
flipped);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
}
}
const char* NinePatchLayerImpl::LayerTypeAsString() const {
return "cc::NinePatchLayerImpl";
}
base::DictionaryValue* NinePatchLayerImpl::LayerTreeAsJson() const {
base::DictionaryValue* result = LayerImpl::LayerTreeAsJson();
base::ListValue* list = new base::ListValue;
list->AppendInteger(image_aperture_.origin().x());
list->AppendInteger(image_aperture_.origin().y());
list->AppendInteger(image_aperture_.size().width());
list->AppendInteger(image_aperture_.size().height());
result->Set("ImageAperture", list);
list = new base::ListValue;
list->AppendInteger(image_bounds_.width());
list->AppendInteger(image_bounds_.height());
result->Set("ImageBounds", list);
result->Set("Border", MathUtil::AsValue(border_).release());
base::FundamentalValue* fill_center =
base::Value::CreateBooleanValue(fill_center_);
result->Set("FillCenter", fill_center);
return result;
}
} // namespace cc