// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/resources/worker_pool.h"
#include <algorithm>
#include <queue>
#include "base/bind.h"
#include "base/containers/hash_tables.h"
#include "base/debug/trace_event.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/condition_variable.h"
#include "base/threading/simple_thread.h"
#include "base/threading/thread_restrictions.h"
#include "cc/base/scoped_ptr_deque.h"
namespace cc {
namespace internal {
WorkerPoolTask::WorkerPoolTask()
: did_schedule_(false),
did_run_(false),
did_complete_(false) {
}
WorkerPoolTask::~WorkerPoolTask() {
DCHECK_EQ(did_schedule_, did_complete_);
DCHECK(!did_run_ || did_schedule_);
DCHECK(!did_run_ || did_complete_);
}
void WorkerPoolTask::DidSchedule() {
DCHECK(!did_complete_);
did_schedule_ = true;
}
void WorkerPoolTask::WillRun() {
DCHECK(did_schedule_);
DCHECK(!did_complete_);
DCHECK(!did_run_);
}
void WorkerPoolTask::DidRun() {
did_run_ = true;
}
void WorkerPoolTask::WillComplete() {
DCHECK(!did_complete_);
}
void WorkerPoolTask::DidComplete() {
DCHECK(did_schedule_);
DCHECK(!did_complete_);
did_complete_ = true;
}
bool WorkerPoolTask::HasFinishedRunning() const {
return did_run_;
}
bool WorkerPoolTask::HasCompleted() const {
return did_complete_;
}
GraphNode::GraphNode(internal::WorkerPoolTask* task, unsigned priority)
: task_(task),
priority_(priority),
num_dependencies_(0) {
}
GraphNode::~GraphNode() {
}
} // namespace internal
// Internal to the worker pool. Any data or logic that needs to be
// shared between threads lives in this class. All members are guarded
// by |lock_|.
class WorkerPool::Inner : public base::DelegateSimpleThread::Delegate {
public:
Inner(size_t num_threads, const std::string& thread_name_prefix);
virtual ~Inner();
void Shutdown();
// Schedule running of tasks in |graph|. Tasks previously scheduled but
// no longer needed will be canceled unless already running. Canceled
// tasks are moved to |completed_tasks_| without being run. The result
// is that once scheduled, a task is guaranteed to end up in the
// |completed_tasks_| queue even if they later get canceled by another
// call to SetTaskGraph().
void SetTaskGraph(TaskGraph* graph);
// Collect all completed tasks in |completed_tasks|.
void CollectCompletedTasks(TaskVector* completed_tasks);
private:
class PriorityComparator {
public:
bool operator()(const internal::GraphNode* a,
const internal::GraphNode* b) {
// In this system, numerically lower priority is run first.
if (a->priority() != b->priority())
return a->priority() > b->priority();
// Run task with most dependents first when priority is the same.
return a->dependents().size() < b->dependents().size();
}
};
// Overridden from base::DelegateSimpleThread:
virtual void Run() OVERRIDE;
// This lock protects all members of this class except
// |worker_pool_on_origin_thread_|. Do not read or modify anything
// without holding this lock. Do not block while holding this lock.
mutable base::Lock lock_;
// Condition variable that is waited on by worker threads until new
// tasks are ready to run or shutdown starts.
base::ConditionVariable has_ready_to_run_tasks_cv_;
// Provides each running thread loop with a unique index. First thread
// loop index is 0.
unsigned next_thread_index_;
// Set during shutdown. Tells workers to exit when no more tasks
// are pending.
bool shutdown_;
// This set contains all pending tasks.
GraphNodeMap pending_tasks_;
// Ordered set of tasks that are ready to run.
typedef std::priority_queue<internal::GraphNode*,
std::vector<internal::GraphNode*>,
PriorityComparator> TaskQueue;
TaskQueue ready_to_run_tasks_;
// This set contains all currently running tasks.
GraphNodeMap running_tasks_;
// Completed tasks not yet collected by origin thread.
TaskVector completed_tasks_;
ScopedPtrDeque<base::DelegateSimpleThread> workers_;
DISALLOW_COPY_AND_ASSIGN(Inner);
};
WorkerPool::Inner::Inner(
size_t num_threads, const std::string& thread_name_prefix)
: lock_(),
has_ready_to_run_tasks_cv_(&lock_),
next_thread_index_(0),
shutdown_(false) {
base::AutoLock lock(lock_);
while (workers_.size() < num_threads) {
scoped_ptr<base::DelegateSimpleThread> worker = make_scoped_ptr(
new base::DelegateSimpleThread(
this,
thread_name_prefix +
base::StringPrintf(
"Worker%u",
static_cast<unsigned>(workers_.size() + 1)).c_str()));
worker->Start();
#if defined(OS_ANDROID) || defined(OS_LINUX)
worker->SetThreadPriority(base::kThreadPriority_Background);
#endif
workers_.push_back(worker.Pass());
}
}
WorkerPool::Inner::~Inner() {
base::AutoLock lock(lock_);
DCHECK(shutdown_);
DCHECK_EQ(0u, pending_tasks_.size());
DCHECK_EQ(0u, ready_to_run_tasks_.size());
DCHECK_EQ(0u, running_tasks_.size());
DCHECK_EQ(0u, completed_tasks_.size());
}
void WorkerPool::Inner::Shutdown() {
{
base::AutoLock lock(lock_);
DCHECK(!shutdown_);
shutdown_ = true;
// Wake up a worker so it knows it should exit. This will cause all workers
// to exit as each will wake up another worker before exiting.
has_ready_to_run_tasks_cv_.Signal();
}
while (workers_.size()) {
scoped_ptr<base::DelegateSimpleThread> worker = workers_.take_front();
// http://crbug.com/240453 - Join() is considered IO and will block this
// thread. See also http://crbug.com/239423 for further ideas.
base::ThreadRestrictions::ScopedAllowIO allow_io;
worker->Join();
}
}
void WorkerPool::Inner::SetTaskGraph(TaskGraph* graph) {
// It is OK to call SetTaskGraph() after shutdown if |graph| is empty.
DCHECK(graph->empty() || !shutdown_);
GraphNodeMap new_pending_tasks;
GraphNodeMap new_running_tasks;
TaskQueue new_ready_to_run_tasks;
new_pending_tasks.swap(*graph);
{
base::AutoLock lock(lock_);
// First remove all completed tasks from |new_pending_tasks| and
// adjust number of dependencies.
for (TaskVector::iterator it = completed_tasks_.begin();
it != completed_tasks_.end(); ++it) {
internal::WorkerPoolTask* task = it->get();
scoped_ptr<internal::GraphNode> node = new_pending_tasks.take_and_erase(
task);
if (node) {
for (internal::GraphNode::Vector::const_iterator it =
node->dependents().begin();
it != node->dependents().end(); ++it) {
internal::GraphNode* dependent_node = *it;
dependent_node->remove_dependency();
}
}
}
// Build new running task set.
for (GraphNodeMap::iterator it = running_tasks_.begin();
it != running_tasks_.end(); ++it) {
internal::WorkerPoolTask* task = it->first;
// Transfer scheduled task value from |new_pending_tasks| to
// |new_running_tasks| if currently running. Value must be set to
// NULL if |new_pending_tasks| doesn't contain task. This does
// the right in both cases.
new_running_tasks.set(task, new_pending_tasks.take_and_erase(task));
}
// Build new "ready to run" tasks queue.
// TODO(reveman): Create this queue when building the task graph instead.
for (GraphNodeMap::iterator it = new_pending_tasks.begin();
it != new_pending_tasks.end(); ++it) {
internal::WorkerPoolTask* task = it->first;
DCHECK(task);
internal::GraphNode* node = it->second;
// Completed tasks should not exist in |new_pending_tasks|.
DCHECK(!task->HasFinishedRunning());
// Call DidSchedule() to indicate that this task has been scheduled.
// Note: This is only for debugging purposes.
task->DidSchedule();
if (!node->num_dependencies())
new_ready_to_run_tasks.push(node);
// Erase the task from old pending tasks.
pending_tasks_.erase(task);
}
completed_tasks_.reserve(completed_tasks_.size() + pending_tasks_.size());
// The items left in |pending_tasks_| need to be canceled.
for (GraphNodeMap::const_iterator it = pending_tasks_.begin();
it != pending_tasks_.end();
++it) {
completed_tasks_.push_back(it->first);
}
// Swap task sets.
// Note: old tasks are intentionally destroyed after releasing |lock_|.
pending_tasks_.swap(new_pending_tasks);
running_tasks_.swap(new_running_tasks);
std::swap(ready_to_run_tasks_, new_ready_to_run_tasks);
// If |ready_to_run_tasks_| is empty, it means we either have
// running tasks, or we have no pending tasks.
DCHECK(!ready_to_run_tasks_.empty() ||
(pending_tasks_.empty() || !running_tasks_.empty()));
// If there is more work available, wake up worker thread.
if (!ready_to_run_tasks_.empty())
has_ready_to_run_tasks_cv_.Signal();
}
}
void WorkerPool::Inner::CollectCompletedTasks(TaskVector* completed_tasks) {
base::AutoLock lock(lock_);
DCHECK_EQ(0u, completed_tasks->size());
completed_tasks->swap(completed_tasks_);
}
void WorkerPool::Inner::Run() {
base::AutoLock lock(lock_);
// Get a unique thread index.
int thread_index = next_thread_index_++;
while (true) {
if (ready_to_run_tasks_.empty()) {
// Exit when shutdown is set and no more tasks are pending.
if (shutdown_ && pending_tasks_.empty())
break;
// Wait for more tasks.
has_ready_to_run_tasks_cv_.Wait();
continue;
}
// Take top priority task from |ready_to_run_tasks_|.
scoped_refptr<internal::WorkerPoolTask> task(
ready_to_run_tasks_.top()->task());
ready_to_run_tasks_.pop();
// Move task from |pending_tasks_| to |running_tasks_|.
DCHECK(pending_tasks_.contains(task.get()));
DCHECK(!running_tasks_.contains(task.get()));
running_tasks_.set(task.get(), pending_tasks_.take_and_erase(task.get()));
// There may be more work available, so wake up another worker thread.
has_ready_to_run_tasks_cv_.Signal();
// Call WillRun() before releasing |lock_| and running task.
task->WillRun();
{
base::AutoUnlock unlock(lock_);
task->RunOnWorkerThread(thread_index);
}
// This will mark task as finished running.
task->DidRun();
// Now iterate over all dependents to remove dependency and check
// if they are ready to run.
scoped_ptr<internal::GraphNode> node = running_tasks_.take_and_erase(
task.get());
if (node) {
for (internal::GraphNode::Vector::const_iterator it =
node->dependents().begin();
it != node->dependents().end(); ++it) {
internal::GraphNode* dependent_node = *it;
dependent_node->remove_dependency();
// Task is ready if it has no dependencies. Add it to
// |ready_to_run_tasks_|.
if (!dependent_node->num_dependencies())
ready_to_run_tasks_.push(dependent_node);
}
}
// Finally add task to |completed_tasks_|.
completed_tasks_.push_back(task);
}
// We noticed we should exit. Wake up the next worker so it knows it should
// exit as well (because the Shutdown() code only signals once).
has_ready_to_run_tasks_cv_.Signal();
}
WorkerPool::WorkerPool(size_t num_threads,
const std::string& thread_name_prefix)
: in_dispatch_completion_callbacks_(false),
inner_(make_scoped_ptr(new Inner(num_threads, thread_name_prefix))) {
}
WorkerPool::~WorkerPool() {
}
void WorkerPool::Shutdown() {
TRACE_EVENT0("cc", "WorkerPool::Shutdown");
DCHECK(!in_dispatch_completion_callbacks_);
inner_->Shutdown();
}
void WorkerPool::CheckForCompletedTasks() {
TRACE_EVENT0("cc", "WorkerPool::CheckForCompletedTasks");
DCHECK(!in_dispatch_completion_callbacks_);
TaskVector completed_tasks;
inner_->CollectCompletedTasks(&completed_tasks);
ProcessCompletedTasks(completed_tasks);
}
void WorkerPool::ProcessCompletedTasks(
const TaskVector& completed_tasks) {
TRACE_EVENT1("cc", "WorkerPool::ProcessCompletedTasks",
"completed_task_count", completed_tasks.size());
// Worker pool instance is not reentrant while processing completed tasks.
in_dispatch_completion_callbacks_ = true;
for (TaskVector::const_iterator it = completed_tasks.begin();
it != completed_tasks.end();
++it) {
internal::WorkerPoolTask* task = it->get();
task->WillComplete();
task->CompleteOnOriginThread();
task->DidComplete();
}
in_dispatch_completion_callbacks_ = false;
}
void WorkerPool::SetTaskGraph(TaskGraph* graph) {
TRACE_EVENT1("cc", "WorkerPool::SetTaskGraph",
"num_tasks", graph->size());
DCHECK(!in_dispatch_completion_callbacks_);
inner_->SetTaskGraph(graph);
}
} // namespace cc