// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <vector>
#include "base/basictypes.h"
#include "base/compiler_specific.h"
#include "base/file_util.h"
#include "base/strings/string_util.h"
#include "skia/ext/image_operations.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkRect.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gfx/size.h"
namespace {
// Computes the average pixel value for the given range, inclusive.
uint32_t AveragePixel(const SkBitmap& bmp,
int x_min, int x_max,
int y_min, int y_max) {
float accum[4] = {0, 0, 0, 0};
int count = 0;
for (int y = y_min; y <= y_max; y++) {
for (int x = x_min; x <= x_max; x++) {
uint32_t cur = *bmp.getAddr32(x, y);
accum[0] += SkColorGetB(cur);
accum[1] += SkColorGetG(cur);
accum[2] += SkColorGetR(cur);
accum[3] += SkColorGetA(cur);
count++;
}
}
return SkColorSetARGB(static_cast<unsigned char>(accum[3] / count),
static_cast<unsigned char>(accum[2] / count),
static_cast<unsigned char>(accum[1] / count),
static_cast<unsigned char>(accum[0] / count));
}
// Computes the average pixel (/color) value for the given colors.
SkColor AveragePixel(const SkColor colors[], size_t color_count) {
float accum[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
for (size_t i = 0; i < color_count; ++i) {
const SkColor cur = colors[i];
accum[0] += static_cast<float>(SkColorGetA(cur));
accum[1] += static_cast<float>(SkColorGetR(cur));
accum[2] += static_cast<float>(SkColorGetG(cur));
accum[3] += static_cast<float>(SkColorGetB(cur));
}
const SkColor average_color =
SkColorSetARGB(static_cast<uint8_t>(accum[0] / color_count),
static_cast<uint8_t>(accum[1] / color_count),
static_cast<uint8_t>(accum[2] / color_count),
static_cast<uint8_t>(accum[3] / color_count));
return average_color;
}
void PrintPixel(const SkBitmap& bmp,
int x_min, int x_max,
int y_min, int y_max) {
char str[128];
for (int y = y_min; y <= y_max; ++y) {
for (int x = x_min; x <= x_max; ++x) {
const uint32_t cur = *bmp.getAddr32(x, y);
base::snprintf(str, sizeof(str), "bmp[%d,%d] = %08X", x, y, cur);
ADD_FAILURE() << str;
}
}
}
// Returns the euclidian distance between two RGBA colors interpreted
// as 4-components vectors.
//
// Notes:
// - This is a really poor definition of color distance. Yet it
// is "good enough" for our uses here.
// - More realistic measures like the various Delta E formulas defined
// by CIE are way more complex and themselves require the RGBA to
// to transformed into CIELAB (typically via sRGB first).
// - The static_cast<int> below are needed to avoid interpreting "negative"
// differences as huge positive values.
float ColorsEuclidianDistance(const SkColor a, const SkColor b) {
int b_int_diff = static_cast<int>(SkColorGetB(a) - SkColorGetB(b));
int g_int_diff = static_cast<int>(SkColorGetG(a) - SkColorGetG(b));
int r_int_diff = static_cast<int>(SkColorGetR(a) - SkColorGetR(b));
int a_int_diff = static_cast<int>(SkColorGetA(a) - SkColorGetA(b));
float b_float_diff = static_cast<float>(b_int_diff);
float g_float_diff = static_cast<float>(g_int_diff);
float r_float_diff = static_cast<float>(r_int_diff);
float a_float_diff = static_cast<float>(a_int_diff);
return sqrtf((b_float_diff * b_float_diff) + (g_float_diff * g_float_diff) +
(r_float_diff * r_float_diff) + (a_float_diff * a_float_diff));
}
// Returns true if each channel of the given two colors are "close." This is
// used for comparing colors where rounding errors may cause off-by-one.
bool ColorsClose(uint32_t a, uint32_t b) {
return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) < 2 &&
abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) < 2 &&
abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) < 2 &&
abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) < 2;
}
void FillDataToBitmap(int w, int h, SkBitmap* bmp) {
bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bmp->allocPixels();
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const uint8_t component = static_cast<uint8_t>(y * w + x);
const SkColor pixel = SkColorSetARGB(component, component,
component, component);
*bmp->getAddr32(x, y) = pixel;
}
}
}
// Draws a horizontal and vertical grid into the w x h bitmap passed in.
// Each line in the grid is drawn with a width of "grid_width" pixels,
// and those lines repeat every "grid_pitch" pixels. The top left pixel (0, 0)
// is considered to be part of a grid line.
// The pixels that fall on a line are colored with "grid_color", while those
// outside of the lines are colored in "background_color".
// Note that grid_with can be greather than or equal to grid_pitch, in which
// case the resulting bitmap will be a solid color "grid_color".
void DrawGridToBitmap(int w, int h,
SkColor background_color, SkColor grid_color,
int grid_pitch, int grid_width,
SkBitmap* bmp) {
ASSERT_GT(grid_pitch, 0);
ASSERT_GT(grid_width, 0);
ASSERT_NE(background_color, grid_color);
bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bmp->allocPixels();
for (int y = 0; y < h; ++y) {
bool y_on_grid = ((y % grid_pitch) < grid_width);
for (int x = 0; x < w; ++x) {
bool on_grid = (y_on_grid || ((x % grid_pitch) < grid_width));
*bmp->getAddr32(x, y) = (on_grid ? grid_color : background_color);
}
}
}
// Draws a checkerboard pattern into the w x h bitmap passed in.
// Each rectangle is rect_w in width, rect_h in height.
// The colors alternate between color1 and color2, color1 being used
// in the rectangle at the top left corner.
void DrawCheckerToBitmap(int w, int h,
SkColor color1, SkColor color2,
int rect_w, int rect_h,
SkBitmap* bmp) {
ASSERT_GT(rect_w, 0);
ASSERT_GT(rect_h, 0);
ASSERT_NE(color1, color2);
bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bmp->allocPixels();
for (int y = 0; y < h; ++y) {
bool y_bit = (((y / rect_h) & 0x1) == 0);
for (int x = 0; x < w; ++x) {
bool x_bit = (((x / rect_w) & 0x1) == 0);
bool use_color2 = (x_bit != y_bit); // xor
*bmp->getAddr32(x, y) = (use_color2 ? color2 : color1);
}
}
}
// DEBUG_BITMAP_GENERATION (0 or 1) controls whether the routines
// to save the test bitmaps are present. By default the test just fails
// without reading/writing files but it is then convenient to have
// a simple way to make the failing tests write out the input/output images
// to check them visually.
#define DEBUG_BITMAP_GENERATION (0)
#if DEBUG_BITMAP_GENERATION
void SaveBitmapToPNG(const SkBitmap& bmp, const char* path) {
SkAutoLockPixels lock(bmp);
std::vector<unsigned char> png;
gfx::PNGCodec::ColorFormat color_format = gfx::PNGCodec::FORMAT_RGBA;
if (!gfx::PNGCodec::Encode(
reinterpret_cast<const unsigned char*>(bmp.getPixels()),
color_format, gfx::Size(bmp.width(), bmp.height()),
static_cast<int>(bmp.rowBytes()),
false, std::vector<gfx::PNGCodec::Comment>(), &png)) {
FAIL() << "Failed to encode image";
}
const base::FilePath fpath(path);
const int num_written =
file_util::WriteFile(fpath, reinterpret_cast<const char*>(&png[0]),
png.size());
if (num_written != static_cast<int>(png.size())) {
FAIL() << "Failed to write dest \"" << path << '"';
}
}
#endif // #if DEBUG_BITMAP_GENERATION
void CheckResampleToSame(skia::ImageOperations::ResizeMethod method) {
// Make our source bitmap.
const int src_w = 16, src_h = 34;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a resize of the full bitmap to the same size. The lanczos filter is good
// enough that we should get exactly the same image for output.
SkBitmap results = skia::ImageOperations::Resize(src, method, src_w, src_h);
ASSERT_EQ(src_w, results.width());
ASSERT_EQ(src_h, results.height());
SkAutoLockPixels src_lock(src);
SkAutoLockPixels results_lock(results);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
EXPECT_EQ(*src.getAddr32(x, y), *results.getAddr32(x, y));
}
}
}
// Types defined outside of the ResizeShouldAverageColors test to allow
// use of the arraysize() macro.
//
// 'max_color_distance_override' is used in a max() call together with
// the value of 'max_color_distance' defined in a TestedPixel instance.
// Hence a value of 0.0 in 'max_color_distance_override' means
// "use the pixel-specific value" and larger values can be used to allow
// worse computation errors than provided in a TestedPixel instance.
struct TestedResizeMethod {
skia::ImageOperations::ResizeMethod method;
const char* name;
float max_color_distance_override;
};
struct TestedPixel {
int x;
int y;
float max_color_distance;
const char* name;
};
// Helper function used by the test "ResizeShouldAverageColors" below.
// Note that ASSERT_EQ does a "return;" on failure, hence we can't have
// a "bool" return value to reflect success. Hence "all_pixels_pass"
void CheckResizeMethodShouldAverageGrid(
const SkBitmap& src,
const TestedResizeMethod& tested_method,
int dest_w, int dest_h, SkColor average_color,
bool* method_passed) {
*method_passed = false;
const TestedPixel tested_pixels[] = {
// Corners
{ 0, 0, 2.3f, "Top left corner" },
{ 0, dest_h - 1, 2.3f, "Bottom left corner" },
{ dest_w - 1, 0, 2.3f, "Top right corner" },
{ dest_w - 1, dest_h - 1, 2.3f, "Bottom right corner" },
// Middle points of each side
{ dest_w / 2, 0, 1.0f, "Top middle" },
{ dest_w / 2, dest_h - 1, 1.0f, "Bottom middle" },
{ 0, dest_h / 2, 1.0f, "Left middle" },
{ dest_w - 1, dest_h / 2, 1.0f, "Right middle" },
// Center
{ dest_w / 2, dest_h / 2, 1.0f, "Center" }
};
// Resize the src
const skia::ImageOperations::ResizeMethod method = tested_method.method;
SkBitmap dest = skia::ImageOperations::Resize(src, method, dest_w, dest_h);
ASSERT_EQ(dest_w, dest.width());
ASSERT_EQ(dest_h, dest.height());
// Check that pixels match the expected average.
float max_observed_distance = 0.0f;
bool all_pixels_ok = true;
SkAutoLockPixels dest_lock(dest);
for (size_t pixel_index = 0;
pixel_index < arraysize(tested_pixels);
++pixel_index) {
const TestedPixel& tested_pixel = tested_pixels[pixel_index];
const int x = tested_pixel.x;
const int y = tested_pixel.y;
const float max_allowed_distance =
std::max(tested_pixel.max_color_distance,
tested_method.max_color_distance_override);
const SkColor actual_color = *dest.getAddr32(x, y);
// Check that the pixels away from the border region are very close
// to the expected average color
float distance = ColorsEuclidianDistance(average_color, actual_color);
EXPECT_LE(distance, max_allowed_distance)
<< "Resizing method: " << tested_method.name
<< ", pixel tested: " << tested_pixel.name
<< "(" << x << ", " << y << ")"
<< std::hex << std::showbase
<< ", expected (avg) hex: " << average_color
<< ", actual hex: " << actual_color;
if (distance > max_allowed_distance) {
all_pixels_ok = false;
}
if (distance > max_observed_distance) {
max_observed_distance = distance;
}
}
if (!all_pixels_ok) {
ADD_FAILURE() << "Maximum observed color distance for method "
<< tested_method.name << ": " << max_observed_distance;
#if DEBUG_BITMAP_GENERATION
char path[128];
base::snprintf(path, sizeof(path),
"/tmp/ResizeShouldAverageColors_%s_dest.png",
tested_method.name);
SaveBitmapToPNG(dest, path);
#endif // #if DEBUG_BITMAP_GENERATION
}
*method_passed = all_pixels_ok;
}
} // namespace
// Helper tests that saves bitmaps to PNGs in /tmp/ to visually check
// that the bitmap generation functions work as expected.
// Those tests are not enabled by default as verification is done
// manually/visually, however it is convenient to leave the functions
// in place.
#if 0 && DEBUG_BITMAP_GENERATION
TEST(ImageOperations, GenerateGradientBitmap) {
// Make our source bitmap.
const int src_w = 640, src_h = 480;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
SaveBitmapToPNG(src, "/tmp/gradient_640x480.png");
}
TEST(ImageOperations, GenerateGridBitmap) {
const int src_w = 640, src_h = 480, src_grid_pitch = 10, src_grid_width = 4;
const SkColor grid_color = SK_ColorRED, background_color = SK_ColorBLUE;
SkBitmap src;
DrawGridToBitmap(src_w, src_h,
background_color, grid_color,
src_grid_pitch, src_grid_width,
&src);
SaveBitmapToPNG(src, "/tmp/grid_640x408_10_4_red_blue.png");
}
TEST(ImageOperations, GenerateCheckerBitmap) {
const int src_w = 640, src_h = 480, rect_w = 10, rect_h = 4;
const SkColor color1 = SK_ColorRED, color2 = SK_ColorBLUE;
SkBitmap src;
DrawCheckerToBitmap(src_w, src_h, color1, color2, rect_w, rect_h, &src);
SaveBitmapToPNG(src, "/tmp/checker_640x408_10_4_red_blue.png");
}
#endif // #if ... && DEBUG_BITMAP_GENERATION
// Makes the bitmap 50% the size as the original using a box filter. This is
// an easy operation that we can check the results for manually.
TEST(ImageOperations, Halve) {
// Make our source bitmap.
int src_w = 30, src_h = 38;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a halving of the full bitmap.
SkBitmap actual_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX, src_w / 2, src_h / 2);
ASSERT_EQ(src_w / 2, actual_results.width());
ASSERT_EQ(src_h / 2, actual_results.height());
// Compute the expected values & compare.
SkAutoLockPixels lock(actual_results);
for (int y = 0; y < actual_results.height(); y++) {
for (int x = 0; x < actual_results.width(); x++) {
// Note that those expressions take into account the "half-pixel"
// offset that comes into play due to considering the coordinates
// of the center of the pixels. So x * 2 is a simplification
// of ((x+0.5) * 2 - 1) and (x * 2 + 1) is really (x + 0.5) * 2.
int first_x = x * 2;
int last_x = std::min(src_w - 1, x * 2 + 1);
int first_y = y * 2;
int last_y = std::min(src_h - 1, y * 2 + 1);
const uint32_t expected_color = AveragePixel(src,
first_x, last_x,
first_y, last_y);
const uint32_t actual_color = *actual_results.getAddr32(x, y);
const bool close = ColorsClose(expected_color, actual_color);
EXPECT_TRUE(close);
if (!close) {
char str[128];
base::snprintf(str, sizeof(str),
"exp[%d,%d] = %08X, actual[%d,%d] = %08X",
x, y, expected_color, x, y, actual_color);
ADD_FAILURE() << str;
PrintPixel(src, first_x, last_x, first_y, last_y);
}
}
}
}
TEST(ImageOperations, HalveSubset) {
// Make our source bitmap.
int src_w = 16, src_h = 34;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Do a halving of the full bitmap.
SkBitmap full_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX, src_w / 2, src_h / 2);
ASSERT_EQ(src_w / 2, full_results.width());
ASSERT_EQ(src_h / 2, full_results.height());
// Now do a halving of a a subset, recall the destination subset is in the
// destination coordinate system (max = half of the original image size).
SkIRect subset_rect = { 2, 3, 3, 6 };
SkBitmap subset_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX,
src_w / 2, src_h / 2, subset_rect);
ASSERT_EQ(subset_rect.width(), subset_results.width());
ASSERT_EQ(subset_rect.height(), subset_results.height());
// The computed subset and the corresponding subset of the original image
// should be the same.
SkAutoLockPixels full_lock(full_results);
SkAutoLockPixels subset_lock(subset_results);
for (int y = 0; y < subset_rect.height(); y++) {
for (int x = 0; x < subset_rect.width(); x++) {
ASSERT_EQ(
*full_results.getAddr32(x + subset_rect.fLeft, y + subset_rect.fTop),
*subset_results.getAddr32(x, y));
}
}
}
TEST(ImageOperations, InvalidParams) {
// Make our source bitmap.
SkBitmap src;
src.setConfig(SkBitmap::kA8_Config, 16, 34);
src.allocPixels();
// Scale it, don't die.
SkBitmap full_results = skia::ImageOperations::Resize(
src, skia::ImageOperations::RESIZE_BOX, 10, 20);
}
// Resamples an image to the same image, it should give the same result.
TEST(ImageOperations, ResampleToSameHamming1) {
CheckResampleToSame(skia::ImageOperations::RESIZE_HAMMING1);
}
TEST(ImageOperations, ResampleToSameLanczos2) {
CheckResampleToSame(skia::ImageOperations::RESIZE_LANCZOS2);
}
TEST(ImageOperations, ResampleToSameLanczos3) {
CheckResampleToSame(skia::ImageOperations::RESIZE_LANCZOS3);
}
// Check that all Good/Better/Best, Box, Lanczos2 and Lanczos3 generate purple
// when resizing a 4x8 red/blue checker pattern by 1/16x1/16.
TEST(ImageOperations, ResizeShouldAverageColors) {
// Make our source bitmap.
const int src_w = 640, src_h = 480, checker_rect_w = 4, checker_rect_h = 8;
const SkColor checker_color1 = SK_ColorRED, checker_color2 = SK_ColorBLUE;
const int dest_w = src_w / (4 * checker_rect_w);
const int dest_h = src_h / (2 * checker_rect_h);
// Compute the expected (average) color
const SkColor colors[] = { checker_color1, checker_color2 };
const SkColor average_color = AveragePixel(colors, arraysize(colors));
// RESIZE_SUBPIXEL is only supported on Linux/non-GTV platforms.
static const TestedResizeMethod tested_methods[] = {
{ skia::ImageOperations::RESIZE_GOOD, "GOOD", 0.0f },
{ skia::ImageOperations::RESIZE_BETTER, "BETTER", 0.0f },
{ skia::ImageOperations::RESIZE_BEST, "BEST", 0.0f },
{ skia::ImageOperations::RESIZE_BOX, "BOX", 0.0f },
{ skia::ImageOperations::RESIZE_HAMMING1, "HAMMING1", 0.0f },
{ skia::ImageOperations::RESIZE_LANCZOS2, "LANCZOS2", 0.0f },
{ skia::ImageOperations::RESIZE_LANCZOS3, "LANCZOS3", 0.0f },
#if defined(OS_LINUX) && !defined(GTV)
// SUBPIXEL has slightly worse performance than the other filters:
// 6.324 Bottom left/right corners
// 5.099 Top left/right corners
// 2.828 Bottom middle
// 1.414 Top/Left/Right middle, center
//
// This is expected since, in order to judge RESIZE_SUBPIXEL accurately,
// we'd need to compute distances for each sub-pixel, and potentially
// tweak the test parameters so that expectations were realistic when
// looking at sub-pixels in isolation.
//
// Rather than going to these lengths, we added the "max_distance_override"
// field in TestedResizeMethod, intended for RESIZE_SUBPIXEL. It allows
// us to to enable its testing without having to lower the success criteria
// for the other methods. This procedure is distateful but defining
// a distance limit for each tested pixel for each method was judged to add
// unneeded complexity.
{ skia::ImageOperations::RESIZE_SUBPIXEL, "SUBPIXEL", 6.4f },
#endif
};
// Create our source bitmap.
SkBitmap src;
DrawCheckerToBitmap(src_w, src_h,
checker_color1, checker_color2,
checker_rect_w, checker_rect_h,
&src);
// For each method, downscale by 16 in each dimension,
// and check each tested pixel against the expected average color.
bool all_methods_ok ALLOW_UNUSED = true;
for (size_t method_index = 0;
method_index < arraysize(tested_methods);
++method_index) {
bool pass = true;
CheckResizeMethodShouldAverageGrid(src,
tested_methods[method_index],
dest_w, dest_h, average_color,
&pass);
if (!pass) {
all_methods_ok = false;
}
}
#if DEBUG_BITMAP_GENERATION
if (!all_methods_ok) {
SaveBitmapToPNG(src, "/tmp/ResizeShouldAverageColors_src.png");
}
#endif // #if DEBUG_BITMAP_GENERATION
}
// Check that Lanczos2 and Lanczos3 thumbnails produce similar results
TEST(ImageOperations, CompareLanczosMethods) {
const int src_w = 640, src_h = 480, src_grid_pitch = 8, src_grid_width = 4;
const int dest_w = src_w / 4;
const int dest_h = src_h / 4;
// 5.0f is the maximum distance we see in this test given the current
// parameters. The value is very ad-hoc and the parameters of the scaling
// were picked to produce a small value. So this test is very much about
// revealing egregious regression rather than doing a good job at checking
// the math behind the filters.
// TODO(evannier): because of the half pixel error mentioned inside
// image_operations.cc, this distance is much larger than it should be.
// This should read:
// const float max_color_distance = 5.0f;
const float max_color_distance = 12.1f;
// Make our source bitmap.
SkColor grid_color = SK_ColorRED, background_color = SK_ColorBLUE;
SkBitmap src;
DrawGridToBitmap(src_w, src_h,
background_color, grid_color,
src_grid_pitch, src_grid_width,
&src);
// Resize the src using both methods.
SkBitmap dest_l2 = skia::ImageOperations::Resize(
src,
skia::ImageOperations::RESIZE_LANCZOS2,
dest_w, dest_h);
ASSERT_EQ(dest_w, dest_l2.width());
ASSERT_EQ(dest_h, dest_l2.height());
SkBitmap dest_l3 = skia::ImageOperations::Resize(
src,
skia::ImageOperations::RESIZE_LANCZOS3,
dest_w, dest_h);
ASSERT_EQ(dest_w, dest_l3.width());
ASSERT_EQ(dest_h, dest_l3.height());
// Compare the pixels produced by both methods.
float max_observed_distance = 0.0f;
bool all_pixels_ok = true;
SkAutoLockPixels l2_lock(dest_l2);
SkAutoLockPixels l3_lock(dest_l3);
for (int y = 0; y < dest_h; ++y) {
for (int x = 0; x < dest_w; ++x) {
const SkColor color_lanczos2 = *dest_l2.getAddr32(x, y);
const SkColor color_lanczos3 = *dest_l3.getAddr32(x, y);
float distance = ColorsEuclidianDistance(color_lanczos2, color_lanczos3);
EXPECT_LE(distance, max_color_distance)
<< "pixel tested: (" << x << ", " << y
<< std::hex << std::showbase
<< "), lanczos2 hex: " << color_lanczos2
<< ", lanczos3 hex: " << color_lanczos3
<< std::setprecision(2)
<< ", distance: " << distance;
if (distance > max_color_distance) {
all_pixels_ok = false;
}
if (distance > max_observed_distance) {
max_observed_distance = distance;
}
}
}
if (!all_pixels_ok) {
ADD_FAILURE() << "Maximum observed color distance: "
<< max_observed_distance;
#if DEBUG_BITMAP_GENERATION
SaveBitmapToPNG(src, "/tmp/CompareLanczosMethods_source.png");
SaveBitmapToPNG(dest_l2, "/tmp/CompareLanczosMethods_lanczos2.png");
SaveBitmapToPNG(dest_l3, "/tmp/CompareLanczosMethods_lanczos3.png");
#endif // #if DEBUG_BITMAP_GENERATION
}
}
#ifndef M_PI
// No M_PI in math.h on windows? No problem.
#define M_PI 3.14159265358979323846
#endif
static double sinc(double x) {
if (x == 0.0) return 1.0;
x *= M_PI;
return sin(x) / x;
}
static double lanczos3(double offset) {
if (fabs(offset) >= 3) return 0.0;
return sinc(offset) * sinc(offset / 3.0);
}
TEST(ImageOperations, ScaleUp) {
const int src_w = 3;
const int src_h = 3;
const int dst_w = 9;
const int dst_h = 9;
SkBitmap src;
src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src.allocPixels();
for (int src_y = 0; src_y < src_h; ++src_y) {
for (int src_x = 0; src_x < src_w; ++src_x) {
*src.getAddr32(src_x, src_y) = SkColorSetARGBInline(255,
10 + src_x * 100,
10 + src_y * 100,
0);
}
}
SkBitmap dst = skia::ImageOperations::Resize(
src,
skia::ImageOperations::RESIZE_LANCZOS3,
dst_w, dst_h);
SkAutoLockPixels dst_lock(dst);
for (int dst_y = 0; dst_y < dst_h; ++dst_y) {
for (int dst_x = 0; dst_x < dst_w; ++dst_x) {
float dst_x_in_src = (dst_x + 0.5) * src_w / dst_w;
float dst_y_in_src = (dst_y + 0.5) * src_h / dst_h;
float a = 0.0f;
float r = 0.0f;
float g = 0.0f;
float b = 0.0f;
float sum = 0.0f;
for (int src_y = 0; src_y < src_h; ++src_y) {
for (int src_x = 0; src_x < src_w; ++src_x) {
double coeff =
lanczos3(src_x + 0.5 - dst_x_in_src) *
lanczos3(src_y + 0.5 - dst_y_in_src);
sum += coeff;
SkColor tmp = *src.getAddr32(src_x, src_y);
a += coeff * SkColorGetA(tmp);
r += coeff * SkColorGetR(tmp);
g += coeff * SkColorGetG(tmp);
b += coeff * SkColorGetB(tmp);
}
}
a /= sum;
r /= sum;
g /= sum;
b /= sum;
if (a < 0.0f) a = 0.0f;
if (r < 0.0f) r = 0.0f;
if (g < 0.0f) g = 0.0f;
if (b < 0.0f) b = 0.0f;
if (a > 255.0f) a = 255.0f;
if (r > 255.0f) r = 255.0f;
if (g > 255.0f) g = 255.0f;
if (b > 255.0f) b = 255.0f;
SkColor dst_color = *dst.getAddr32(dst_x, dst_y);
EXPECT_LE(fabs(SkColorGetA(dst_color) - a), 1.5f);
EXPECT_LE(fabs(SkColorGetR(dst_color) - r), 1.5f);
EXPECT_LE(fabs(SkColorGetG(dst_color) - g), 1.5f);
EXPECT_LE(fabs(SkColorGetB(dst_color) - b), 1.5f);
if (HasFailure()) {
return;
}
}
}
}