()->getPointeeType();
if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
// make an exception for id
!LHSType->isObjCQualifiedIdType())
return Sema::CompatiblePointerDiscardsQualifiers;
if (S.Context.typesAreCompatible(LHSType, RHSType))
return Sema::Compatible;
if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
return Sema::IncompatibleObjCQualifiedId;
return Sema::IncompatiblePointer;
}
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(SourceLocation Loc,
QualType LHSType, QualType RHSType) {
// Fake up an opaque expression. We don't actually care about what
// cast operations are required, so if CheckAssignmentConstraints
// adds casts to this they'll be wasted, but fortunately that doesn't
// usually happen on valid code.
OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
ExprResult RHSPtr = &RHSExpr;
CastKind K = CK_Invalid;
return CheckAssignmentConstraints(LHSType, RHSPtr, K);
}
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
/// has code to accommodate several GCC extensions when type checking
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
/// int a, *pint;
/// short *pshort;
/// struct foo *pfoo;
///
/// pint = pshort; // warning: assignment from incompatible pointer type
/// a = pint; // warning: assignment makes integer from pointer without a cast
/// pint = a; // warning: assignment makes pointer from integer without a cast
/// pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
///
/// Sets 'Kind' for any result kind except Incompatible.
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
CastKind &Kind) {
QualType RHSType = RHS.get()->getType();
QualType OrigLHSType = LHSType;
// Get canonical types. We're not formatting these types, just comparing
// them.
LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
// Common case: no conversion required.
if (LHSType == RHSType) {
Kind = CK_NoOp;
return Compatible;
}
// If we have an atomic type, try a non-atomic assignment, then just add an
// atomic qualification step.
if (const AtomicType *AtomicTy = dyn_cast(LHSType)) {
Sema::AssignConvertType result =
CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
if (result != Compatible)
return result;
if (Kind != CK_NoOp)
RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
Kind = CK_NonAtomicToAtomic;
return Compatible;
}
// If the left-hand side is a reference type, then we are in a
// (rare!) case where we've allowed the use of references in C,
// e.g., as a parameter type in a built-in function. In this case,
// just make sure that the type referenced is compatible with the
// right-hand side type. The caller is responsible for adjusting
// LHSType so that the resulting expression does not have reference
// type.
if (const ReferenceType *LHSTypeRef = LHSType->getAs()) {
if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
Kind = CK_LValueBitCast;
return Compatible;
}
return Incompatible;
}
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
// to the same ExtVector type.
if (LHSType->isExtVectorType()) {
if (RHSType->isExtVectorType())
return Incompatible;
if (RHSType->isArithmeticType()) {
// CK_VectorSplat does T -> vector T, so first cast to the
// element type.
QualType elType = cast(LHSType)->getElementType();
if (elType != RHSType) {
Kind = PrepareScalarCast(RHS, elType);
RHS = ImpCastExprToType(RHS.take(), elType, Kind);
}
Kind = CK_VectorSplat;
return Compatible;
}
}
// Conversions to or from vector type.
if (LHSType->isVectorType() || RHSType->isVectorType()) {
if (LHSType->isVectorType() && RHSType->isVectorType()) {
// Allow assignments of an AltiVec vector type to an equivalent GCC
// vector type and vice versa
if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
Kind = CK_BitCast;
return Compatible;
}
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a bitcast;
// no bits are changed but the result type is different.
if (getLangOpts().LaxVectorConversions &&
(Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
Kind = CK_BitCast;
return IncompatibleVectors;
}
}
return Incompatible;
}
// Arithmetic conversions.
if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
!(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
Kind = PrepareScalarCast(RHS, LHSType);
return Compatible;
}
// Conversions to normal pointers.
if (const PointerType *LHSPointer = dyn_cast(LHSType)) {
// U* -> T*
if (isa(RHSType)) {
Kind = CK_BitCast;
return checkPointerTypesForAssignment(*this, LHSType, RHSType);
}
// int -> T*
if (RHSType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null?
return IntToPointer;
}
// C pointers are not compatible with ObjC object pointers,
// with two exceptions:
if (isa(RHSType)) {
// - conversions to void*
if (LHSPointer->getPointeeType()->isVoidType()) {
Kind = CK_BitCast;
return Compatible;
}
// - conversions from 'Class' to the redefinition type
if (RHSType->isObjCClassType() &&
Context.hasSameType(LHSType,
Context.getObjCClassRedefinitionType())) {
Kind = CK_BitCast;
return Compatible;
}
Kind = CK_BitCast;
return IncompatiblePointer;
}
// U^ -> void*
if (RHSType->getAs()) {
if (LHSPointer->getPointeeType()->isVoidType()) {
Kind = CK_BitCast;
return Compatible;
}
}
return Incompatible;
}
// Conversions to block pointers.
if (isa(LHSType)) {
// U^ -> T^
if (RHSType->isBlockPointerType()) {
Kind = CK_BitCast;
return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
}
// int or null -> T^
if (RHSType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null
return IntToBlockPointer;
}
// id -> T^
if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
}
// void* -> T^
if (const PointerType *RHSPT = RHSType->getAs