/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cv.h"
/* The function calculates center of gravity and central second order moments */
static void
icvCompleteMomentState( CvMoments* moments )
{
double cx = 0, cy = 0;
double mu20, mu11, mu02;
assert( moments != 0 );
moments->inv_sqrt_m00 = 0;
if( fabs(moments->m00) > DBL_EPSILON )
{
double inv_m00 = 1. / moments->m00;
cx = moments->m10 * inv_m00;
cy = moments->m01 * inv_m00;
moments->inv_sqrt_m00 = sqrt( fabs(inv_m00) );
}
/* mu20 = m20 - m10*cx */
mu20 = moments->m20 - moments->m10 * cx;
/* mu11 = m11 - m10*cy */
mu11 = moments->m11 - moments->m10 * cy;
/* mu02 = m02 - m01*cy */
mu02 = moments->m02 - moments->m01 * cy;
moments->mu20 = mu20;
moments->mu11 = mu11;
moments->mu02 = mu02;
/* mu30 = m30 - cx*(3*mu20 + cx*m10) */
moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10);
mu11 += mu11;
/* mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20 */
moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20;
/* mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02 */
moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02;
/* mu03 = m03 - cy*(3*mu02 + cy*m01) */
moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01);
}
static void
icvContourMoments( CvSeq* contour, CvMoments* moments )
{
int is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2;
if( contour->total )
{
CvSeqReader reader;
double a00, a10, a01, a20, a11, a02, a30, a21, a12, a03;
double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1;
int lpt = contour->total;
a00 = a10 = a01 = a20 = a11 = a02 = a30 = a21 = a12 = a03 = 0;
cvStartReadSeq( contour, &reader, 0 );
if( !is_float )
{
xi_1 = ((CvPoint*)(reader.ptr))->x;
yi_1 = ((CvPoint*)(reader.ptr))->y;
}
else
{
xi_1 = ((CvPoint2D32f*)(reader.ptr))->x;
yi_1 = ((CvPoint2D32f*)(reader.ptr))->y;
}
CV_NEXT_SEQ_ELEM( contour->elem_size, reader );
xi_12 = xi_1 * xi_1;
yi_12 = yi_1 * yi_1;
while( lpt-- > 0 )
{
if( !is_float )
{
xi = ((CvPoint*)(reader.ptr))->x;
yi = ((CvPoint*)(reader.ptr))->y;
}
else
{
xi = ((CvPoint2D32f*)(reader.ptr))->x;
yi = ((CvPoint2D32f*)(reader.ptr))->y;
}
CV_NEXT_SEQ_ELEM( contour->elem_size, reader );
xi2 = xi * xi;
yi2 = yi * yi;
dxy = xi_1 * yi - xi * yi_1;
xii_1 = xi_1 + xi;
yii_1 = yi_1 + yi;
a00 += dxy;
a10 += dxy * xii_1;
a01 += dxy * yii_1;
a20 += dxy * (xi_1 * xii_1 + xi2);
a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi));
a02 += dxy * (yi_1 * yii_1 + yi2);
a30 += dxy * xii_1 * (xi_12 + xi2);
a03 += dxy * yii_1 * (yi_12 + yi2);
a21 +=
dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 +
xi2 * (yi_1 + 3 * yi));
a12 +=
dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 +
yi2 * (xi_1 + 3 * xi));
xi_1 = xi;
yi_1 = yi;
xi_12 = xi2;
yi_12 = yi2;
}
double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60;
if( fabs(a00) > FLT_EPSILON )
{
if( a00 > 0 )
{
db1_2 = 0.5;
db1_6 = 0.16666666666666666666666666666667;
db1_12 = 0.083333333333333333333333333333333;
db1_24 = 0.041666666666666666666666666666667;
db1_20 = 0.05;
db1_60 = 0.016666666666666666666666666666667;
}
else
{
db1_2 = -0.5;
db1_6 = -0.16666666666666666666666666666667;
db1_12 = -0.083333333333333333333333333333333;
db1_24 = -0.041666666666666666666666666666667;
db1_20 = -0.05;
db1_60 = -0.016666666666666666666666666666667;
}
/* spatial moments */
moments->m00 = a00 * db1_2;
moments->m10 = a10 * db1_6;
moments->m01 = a01 * db1_6;
moments->m20 = a20 * db1_12;
moments->m11 = a11 * db1_24;
moments->m02 = a02 * db1_12;
moments->m30 = a30 * db1_20;
moments->m21 = a21 * db1_60;
moments->m12 = a12 * db1_60;
moments->m03 = a03 * db1_20;
icvCompleteMomentState( moments );
}
}
}
/* summarizes moment values for all tiles */
static void
icvAccumulateMoments( double *tiles, CvSize size, CvSize tile_size, CvMoments * moments )
{
int x, y;
for( y = 0; y < size.height; y += tile_size.height )
{
for( x = 0; x < size.width; x += tile_size.width, tiles += 10 )
{
double dx = x, dy = y;
double dxm = dx * tiles[0], dym = dy * tiles[0];
/* + m00 ( = m00' ) */
moments->m00 += tiles[0];
/* + m10 ( = m10' + dx*m00' ) */
moments->m10 += tiles[1] + dxm;
/* + m01 ( = m01' + dy*m00' ) */
moments->m01 += tiles[2] + dym;
/* + m20 ( = m20' + 2*dx*m10' + dx*dx*m00' ) */
moments->m20 += tiles[3] + dx * (tiles[1] * 2 + dxm);
/* + m11 ( = m11' + dx*m01' + dy*m10' + dx*dy*m00' ) */
moments->m11 += tiles[4] + dx * (tiles[2] + dym) + dy * tiles[1];
/* + m02 ( = m02' + 2*dy*m01' + dy*dy*m00' ) */
moments->m02 += tiles[5] + dy * (tiles[2] * 2 + dym);
/* + m30 ( = m30' + 3*dx*m20' + 3*dx*dx*m10' + dx*dx*dx*m00' ) */
moments->m30 += tiles[6] + dx * (3. * tiles[3] + dx * (3. * tiles[1] + dxm));
/* + m21 (= m21' + dx*(2*m11' + 2*dy*m10' + dx*m01' + dx*dy*m00') + dy*m20') */
moments->m21 += tiles[7] + dx * (2 * (tiles[4] + dy * tiles[1]) +
dx * (tiles[2] + dym)) + dy * tiles[3];
/* + m12 (= m12' + dy*(2*m11' + 2*dx*m01' + dy*m10' + dx*dy*m00') + dx*m02') */
moments->m12 += tiles[8] + dy * (2 * (tiles[4] + dx * tiles[2]) +
dy * (tiles[1] + dxm)) + dx * tiles[5];
/* + m03 ( = m03' + 3*dy*m02' + 3*dy*dy*m01' + dy*dy*dy*m00' ) */
moments->m03 += tiles[9] + dy * (3. * tiles[5] + dy * (3. * tiles[2] + dym));
}
}
icvCompleteMomentState( moments );
}
/****************************************************************************************\
* Spatial Moments *
\****************************************************************************************/
#define ICV_DEF_CALC_MOMENTS_IN_TILE( __op__, name, flavor, srctype, temptype, momtype ) \
static CvStatus CV_STDCALL icv##name##_##flavor##_CnCR \
( const srctype* img, int step, CvSize size, int cn, int coi, double *moments ) \
{ \
int x, y, sx_init = (size.width & -4) * (size.width & -4), sy = 0; \
momtype mom[10]; \
\
assert( img && size.width && (size.width | size.height) >= 0 ); \
memset( mom, 0, 10 * sizeof( mom[0] )); \
\
if( coi ) \
img += coi - 1; \
step /= sizeof(img[0]); \
\
for( y = 0; y < size.height; sy += 2 * y + 1, y++, img += step ) \
{ \
temptype x0 = 0; \
temptype x1 = 0; \
temptype x2 = 0; \
momtype x3 = 0; \
int sx = sx_init; \
const srctype* ptr = img; \
\
for( x = 0; x < size.width - 3; x += 4, ptr += cn*4 ) \
{ \
temptype p0 = __op__(ptr[0]), p1 = __op__(ptr[cn]), \
p2 = __op__(ptr[2*cn]), p3 = __op__(ptr[3*cn]); \
temptype t = p1; \
temptype a, b, c; \
\
p0 += p1 + p2 + p3; /* p0 + p1 + p2 + p3 */ \
p1 += 2 * p2 + 3 * p3; /* p1 + p2*2 + p3*3 */ \
p2 = p1 + 2 * p2 + 6 * p3; /* p1 + p2*4 + p3*9 */ \
p3 = 2 * p2 - t + 9 * p3; /* p1 + p2*8 + p3*27 */ \
\
a = x * p0 + p1; /* x*p0 + (x+1)*p1 + (x+2)*p2 + (x+3)*p3 */ \
b = x * p1 + p2; /* (x+1)*p1 + 2*(x+2)*p2 + 3*(x+3)*p3 */ \
c = x * p2 + p3; /* (x+1)*p1 + 4*(x+2)*p2 + 9*(x+3)*p3 */ \
\
x0 += p0; \
x1 += a; \
a = a * x + b; /*(x^2)*p0+((x+1)^2)*p1+((x+2)^2)*p2+((x+3)^2)*p3 */ \
x2 += a; \
x3 += ((momtype)(a + b)) * x + c; /*x3 += (x^3)*p0+((x+1)^3)*p1 + */ \
/* ((x+2)^3)*p2+((x+3)^3)*p3 */ \
} \
\
/* process the rest */ \
for( ; x < size.width; sx += 2 * x + 1, x++, ptr += cn ) \
{ \
temptype p = __op__(ptr[0]); \
temptype xp = x * p; \
\
x0 += p; \
x1 += xp; \
x2 += sx * p; \
x3 += ((momtype)sx) * xp; \
} \
\
{ \
temptype py = y * x0; \
\
mom[9] += ((momtype)py) * sy; /* m03 */ \
mom[8] += ((momtype)x1) * sy; /* m12 */ \
mom[7] += ((momtype)x2) * y; /* m21 */ \
mom[6] += x3; /* m30 */ \
mom[5] += x0 * sy; /* m02 */ \
mom[4] += x1 * y; /* m11 */ \
mom[3] += x2; /* m20 */ \
mom[2] += py; /* m01 */ \
mom[1] += x1; /* m10 */ \
mom[0] += x0; /* m00 */ \
} \
} \
\
for( x = 0; x < 10; x++ ) \
moments[x] = (double)mom[x]; \
\
return CV_OK; \
}
ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 8u, uchar, int, int )
ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 16u, ushort, int, int64 )
ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 16s, short, int, int64 )
ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 32f, float, double, double )
ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NOP, MomentsInTile, 64f, double, double, double )
ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NONZERO, MomentsInTileBin, 8u, uchar, int, int )
ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NONZERO, MomentsInTileBin, 16s, ushort, int, int )
ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NONZERO_FLT, MomentsInTileBin, 32f, int, int, int )
ICV_DEF_CALC_MOMENTS_IN_TILE( CV_NONZERO_FLT, MomentsInTileBin, 64f, int64, double, double )
#define icvMomentsInTile_8s_CnCR 0
#define icvMomentsInTile_32s_CnCR 0
#define icvMomentsInTileBin_8s_CnCR icvMomentsInTileBin_8u_CnCR
#define icvMomentsInTileBin_16u_CnCR icvMomentsInTileBin_16s_CnCR
#define icvMomentsInTileBin_32s_CnCR 0
CV_DEF_INIT_FUNC_TAB_2D( MomentsInTile, CnCR )
CV_DEF_INIT_FUNC_TAB_2D( MomentsInTileBin, CnCR )
////////////////////////////////// IPP moment functions //////////////////////////////////
icvMoments_8u_C1R_t icvMoments_8u_C1R_p = 0;
icvMoments_32f_C1R_t icvMoments_32f_C1R_p = 0;
icvMomentInitAlloc_64f_t icvMomentInitAlloc_64f_p = 0;
icvMomentFree_64f_t icvMomentFree_64f_p = 0;
icvGetSpatialMoment_64f_t icvGetSpatialMoment_64f_p = 0;
typedef CvStatus (CV_STDCALL * CvMomentIPPFunc)
( const void* img, int step, CvSize size, void* momentstate );
CV_IMPL void
cvMoments( const void* array, CvMoments* moments, int binary )
{
static CvFuncTable mom_tab;
static CvFuncTable mombin_tab;
static int inittab = 0;
double* tiles = 0;
void* ippmomentstate = 0;
CV_FUNCNAME("cvMoments");
__BEGIN__;
int type = 0, depth, cn, pix_size;
int coi = 0;
int x, y, k, tile_num = 1;
CvSize size, tile_size = { 32, 32 };
CvMat stub, *mat = (CvMat*)array;
CvFunc2DnC_1A1P func = 0;
CvMomentIPPFunc ipp_func = 0;
CvContour contour_header;
CvSeq* contour = 0;
CvSeqBlock block;
if( CV_IS_SEQ( array ))
{
contour = (CvSeq*)array;
if( !CV_IS_SEQ_POLYGON( contour ))
CV_ERROR( CV_StsBadArg, "The passed sequence is not a valid contour" );
}
if( !inittab )
{
icvInitMomentsInTileCnCRTable( &mom_tab );
icvInitMomentsInTileBinCnCRTable( &mombin_tab );
inittab = 1;
}
if( !moments )
CV_ERROR( CV_StsNullPtr, "" );
memset( moments, 0, sizeof(*moments));
if( !contour )
{
CV_CALL( mat = cvGetMat( mat, &stub, &coi ));
type = CV_MAT_TYPE( mat->type );
if( type == CV_32SC2 || type == CV_32FC2 )
{
CV_CALL( contour = cvPointSeqFromMat(
CV_SEQ_KIND_CURVE | CV_SEQ_FLAG_CLOSED,
mat, &contour_header, &block ));
}
}
if( contour )
{
icvContourMoments( contour, moments );
EXIT;
}
type = CV_MAT_TYPE( mat->type );
depth = CV_MAT_DEPTH( type );
cn = CV_MAT_CN( type );
pix_size = CV_ELEM_SIZE(type);
size = cvGetMatSize( mat );
if( cn > 1 && coi == 0 )
CV_ERROR( CV_StsBadArg, "Invalid image type" );
if( size.width <= 0 || size.height <= 0 )
{
EXIT;
}
if( type == CV_8UC1 )
ipp_func = (CvMomentIPPFunc)icvMoments_8u_C1R_p;
else if( type == CV_32FC1 )
ipp_func = (CvMomentIPPFunc)icvMoments_32f_C1R_p;
if( ipp_func && !binary )
{
int matstep = mat->step ? mat->step : CV_STUB_STEP;
IPPI_CALL( icvMomentInitAlloc_64f_p( &ippmomentstate, cvAlgHintAccurate ));
IPPI_CALL( ipp_func( mat->data.ptr, matstep, size, ippmomentstate ));
icvGetSpatialMoment_64f_p( ippmomentstate, 0, 0, 0, cvPoint(0,0), &moments->m00 );
icvGetSpatialMoment_64f_p( ippmomentstate, 1, 0, 0, cvPoint(0,0), &moments->m10 );
icvGetSpatialMoment_64f_p( ippmomentstate, 0, 1, 0, cvPoint(0,0), &moments->m01 );
icvGetSpatialMoment_64f_p( ippmomentstate, 2, 0, 0, cvPoint(0,0), &moments->m20 );
icvGetSpatialMoment_64f_p( ippmomentstate, 1, 1, 0, cvPoint(0,0), &moments->m11 );
icvGetSpatialMoment_64f_p( ippmomentstate, 0, 2, 0, cvPoint(0,0), &moments->m02 );
icvGetSpatialMoment_64f_p( ippmomentstate, 3, 0, 0, cvPoint(0,0), &moments->m30 );
icvGetSpatialMoment_64f_p( ippmomentstate, 2, 1, 0, cvPoint(0,0), &moments->m21 );
icvGetSpatialMoment_64f_p( ippmomentstate, 1, 2, 0, cvPoint(0,0), &moments->m12 );
icvGetSpatialMoment_64f_p( ippmomentstate, 0, 3, 0, cvPoint(0,0), &moments->m03 );
icvCompleteMomentState( moments );
EXIT;
}
func = (CvFunc2DnC_1A1P)(!binary ? mom_tab.fn_2d[depth] : mombin_tab.fn_2d[depth]);
if( !func )
CV_ERROR( CV_StsBadArg, cvUnsupportedFormat );
if( depth >= CV_32S && !binary )
tile_size = size;
else
tile_num = ((size.width + tile_size.width - 1)/tile_size.width)*
((size.height + tile_size.height - 1)/tile_size.height);
CV_CALL( tiles = (double*)cvAlloc( tile_num*10*sizeof(double)));
for( y = 0, k = 0; y < size.height; y += tile_size.height )
{
CvSize cur_tile_size = tile_size;
if( y + cur_tile_size.height > size.height )
cur_tile_size.height = size.height - y;
for( x = 0; x < size.width; x += tile_size.width, k++ )
{
if( x + cur_tile_size.width > size.width )
cur_tile_size.width = size.width - x;
assert( k < tile_num );
IPPI_CALL( func( mat->data.ptr + y*mat->step + x*pix_size,
mat->step, cur_tile_size, cn, coi, tiles + k*10 ));
}
}
icvAccumulateMoments( tiles, size, tile_size, moments );
__END__;
if( ippmomentstate )
icvMomentFree_64f_p( ippmomentstate );
cvFree( &tiles );
}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvGetHuMoments
// Purpose: Returns Hu moments
// Context:
// Parameters:
// mState - moment structure filled by one of the icvMoments[Binary]*** function
// HuState - pointer to output structure containing seven Hu moments
// Returns:
// CV_NO_ERR if success or error code
// Notes:
//F*/
CV_IMPL void
cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState )
{
CV_FUNCNAME( "cvGetHuMoments" );
__BEGIN__;
if( !mState || !HuState )
CV_ERROR_FROM_STATUS( CV_NULLPTR_ERR );
{
double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s;
double nu20 = mState->mu20 * s2,
nu11 = mState->mu11 * s2,
nu02 = mState->mu02 * s2,
nu30 = mState->mu30 * s3,
nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3;
double t0 = nu30 + nu12;
double t1 = nu21 + nu03;
double q0 = t0 * t0, q1 = t1 * t1;
double n4 = 4 * nu11;
double s = nu20 + nu02;
double d = nu20 - nu02;
HuState->hu1 = s;
HuState->hu2 = d * d + n4 * nu11;
HuState->hu4 = q0 + q1;
HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1;
t0 *= q0 - 3 * q1;
t1 *= 3 * q0 - q1;
q0 = nu30 - 3 * nu12;
q1 = 3 * nu21 - nu03;
HuState->hu3 = q0 * q0 + q1 * q1;
HuState->hu5 = q0 * t0 + q1 * t1;
HuState->hu7 = q1 * t0 - q0 * t1;
}
__END__;
}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvGetSpatialMoment
// Purpose: Returns spatial moment(x_order, y_order) which is determined as:
// m(x_o,y_o) = sum (x ^ x_o)*(y ^ y_o)*I(x,y)
// 0 <= x_o, y_o; x_o + y_o <= 3
// Context:
// Parameters:
// mom - moment structure filled by one of the icvMoments[Binary]*** function
// x_order - x order of the moment
// y_order - y order of the moment
// Returns:
// moment value or large negative number (-DBL_MAX) if error
// Notes:
//F*/
CV_IMPL double
cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order )
{
int order = x_order + y_order;
double moment = -DBL_MAX;
CV_FUNCNAME( "cvGetSpatialMoment" );
__BEGIN__;
if( !moments )
CV_ERROR_FROM_STATUS( CV_NULLPTR_ERR );
if( (x_order | y_order) < 0 || order > 3 )
CV_ERROR_FROM_STATUS( CV_BADRANGE_ERR );
moment = (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order];
__END__;
return moment;
}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvGetCentralMoment
// Purpose: Returns central moment(x_order, y_order) which is determined as:
// mu(x_o,y_o) = sum ((x - xc)^ x_o)*((y - yc) ^ y_o)*I(x,y)
// 0 <= x_o, y_o; x_o + y_o <= 3,
// (xc, yc) = (m10/m00,m01/m00) - center of gravity
// Context:
// Parameters:
// mom - moment structure filled by one of the icvMoments[Binary]*** function
// x_order - x order of the moment
// y_order - y order of the moment
// Returns:
// moment value or large negative number (-DBL_MAX) if error
// Notes:
//F*/
CV_IMPL double
cvGetCentralMoment( CvMoments * moments, int x_order, int y_order )
{
int order = x_order + y_order;
double mu = 0;
CV_FUNCNAME( "cvGetCentralMoment" );
__BEGIN__;
if( !moments )
CV_ERROR_FROM_STATUS( CV_NULLPTR_ERR );
if( (x_order | y_order) < 0 || order > 3 )
CV_ERROR_FROM_STATUS( CV_BADRANGE_ERR );
if( order >= 2 )
{
mu = (&(moments->m00))[4 + order * 3 + y_order];
}
else if( order == 0 )
mu = moments->m00;
__END__;
return mu;
}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvGetNormalizedCentralMoment
// Purpose: Returns normalized central moment(x_order,y_order) which is determined as:
// nu(x_o,y_o) = mu(x_o, y_o)/(m00 ^ (((x_o + y_o)/2) + 1))
// 0 <= x_o, y_o; x_o + y_o <= 3,
// (xc, yc) = (m10/m00,m01/m00) - center of gravity
// Context:
// Parameters:
// mom - moment structure filled by one of the icvMoments[Binary]*** function
// x_order - x order of the moment
// y_order - y order of the moment
// Returns:
// moment value or large negative number (-DBL_MAX) if error
// Notes:
//F*/
CV_IMPL double
cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order )
{
int order = x_order + y_order;
double mu = 0;
double m00s, m00;
CV_FUNCNAME( "cvGetCentralNormalizedMoment" );
__BEGIN__;
mu = cvGetCentralMoment( moments, x_order, y_order );
CV_CHECK();
m00s = moments->inv_sqrt_m00;
m00 = m00s * m00s;
while( --order >= 0 )
m00 *= m00s;
mu *= m00;
__END__;
return mu;
}
/* End of file. */