// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// A Disassembler object is used to disassemble a block of code instruction by
// instruction. The default implementation of the NameConverter object can be
// overriden to modify register names or to do symbol lookup on addresses.
//
// The example below will disassemble a block of code and print it to stdout.
//
// NameConverter converter;
// Disassembler d(converter);
// for (byte* pc = begin; pc < end;) {
// v8::internal::EmbeddedVector<char, 256> buffer;
// byte* prev_pc = pc;
// pc += d.InstructionDecode(buffer, pc);
// printf("%p %08x %s\n",
// prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
// }
//
// The Disassembler class also has a convenience method to disassemble a block
// of code into a FILE*, meaning that the above functionality could also be
// achieved by just calling Disassembler::Disassemble(stdout, begin, end);
#include <assert.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#ifndef WIN32
#include <stdint.h>
#endif
#include "v8.h"
#if defined(V8_TARGET_ARCH_MIPS)
#include "mips/constants-mips.h"
#include "disasm.h"
#include "macro-assembler.h"
#include "platform.h"
namespace v8 {
namespace internal {
//------------------------------------------------------------------------------
// Decoder decodes and disassembles instructions into an output buffer.
// It uses the converter to convert register names and call destinations into
// more informative description.
class Decoder {
public:
Decoder(const disasm::NameConverter& converter,
v8::internal::Vector<char> out_buffer)
: converter_(converter),
out_buffer_(out_buffer),
out_buffer_pos_(0) {
out_buffer_[out_buffer_pos_] = '\0';
}
~Decoder() {}
// Writes one disassembled instruction into 'buffer' (0-terminated).
// Returns the length of the disassembled machine instruction in bytes.
int InstructionDecode(byte* instruction);
private:
// Bottleneck functions to print into the out_buffer.
void PrintChar(const char ch);
void Print(const char* str);
// Printing of common values.
void PrintRegister(int reg);
void PrintFPURegister(int freg);
void PrintRs(Instruction* instr);
void PrintRt(Instruction* instr);
void PrintRd(Instruction* instr);
void PrintFs(Instruction* instr);
void PrintFt(Instruction* instr);
void PrintFd(Instruction* instr);
void PrintSa(Instruction* instr);
void PrintSd(Instruction* instr);
void PrintSs1(Instruction* instr);
void PrintSs2(Instruction* instr);
void PrintBc(Instruction* instr);
void PrintCc(Instruction* instr);
void PrintFunction(Instruction* instr);
void PrintSecondaryField(Instruction* instr);
void PrintUImm16(Instruction* instr);
void PrintSImm16(Instruction* instr);
void PrintXImm16(Instruction* instr);
void PrintXImm26(Instruction* instr);
void PrintCode(Instruction* instr); // For break and trap instructions.
// Printing of instruction name.
void PrintInstructionName(Instruction* instr);
// Handle formatting of instructions and their options.
int FormatRegister(Instruction* instr, const char* option);
int FormatFPURegister(Instruction* instr, const char* option);
int FormatOption(Instruction* instr, const char* option);
void Format(Instruction* instr, const char* format);
void Unknown(Instruction* instr);
// Each of these functions decodes one particular instruction type.
void DecodeTypeRegister(Instruction* instr);
void DecodeTypeImmediate(Instruction* instr);
void DecodeTypeJump(Instruction* instr);
const disasm::NameConverter& converter_;
v8::internal::Vector<char> out_buffer_;
int out_buffer_pos_;
DISALLOW_COPY_AND_ASSIGN(Decoder);
};
// Support for assertions in the Decoder formatting functions.
#define STRING_STARTS_WITH(string, compare_string) \
(strncmp(string, compare_string, strlen(compare_string)) == 0)
// Append the ch to the output buffer.
void Decoder::PrintChar(const char ch) {
out_buffer_[out_buffer_pos_++] = ch;
}
// Append the str to the output buffer.
void Decoder::Print(const char* str) {
char cur = *str++;
while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
PrintChar(cur);
cur = *str++;
}
out_buffer_[out_buffer_pos_] = 0;
}
// Print the register name according to the active name converter.
void Decoder::PrintRegister(int reg) {
Print(converter_.NameOfCPURegister(reg));
}
void Decoder::PrintRs(Instruction* instr) {
int reg = instr->RsValue();
PrintRegister(reg);
}
void Decoder::PrintRt(Instruction* instr) {
int reg = instr->RtValue();
PrintRegister(reg);
}
void Decoder::PrintRd(Instruction* instr) {
int reg = instr->RdValue();
PrintRegister(reg);
}
// Print the FPUregister name according to the active name converter.
void Decoder::PrintFPURegister(int freg) {
Print(converter_.NameOfXMMRegister(freg));
}
void Decoder::PrintFs(Instruction* instr) {
int freg = instr->RsValue();
PrintFPURegister(freg);
}
void Decoder::PrintFt(Instruction* instr) {
int freg = instr->RtValue();
PrintFPURegister(freg);
}
void Decoder::PrintFd(Instruction* instr) {
int freg = instr->RdValue();
PrintFPURegister(freg);
}
// Print the integer value of the sa field.
void Decoder::PrintSa(Instruction* instr) {
int sa = instr->SaValue();
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, "%d", sa);
}
// Print the integer value of the rd field, when it is not used as reg.
void Decoder::PrintSd(Instruction* instr) {
int sd = instr->RdValue();
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, "%d", sd);
}
// Print the integer value of the rd field, when used as 'ext' size.
void Decoder::PrintSs1(Instruction* instr) {
int ss = instr->RdValue();
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, "%d", ss + 1);
}
// Print the integer value of the rd field, when used as 'ins' size.
void Decoder::PrintSs2(Instruction* instr) {
int ss = instr->RdValue();
int pos = instr->SaValue();
out_buffer_pos_ +=
OS::SNPrintF(out_buffer_ + out_buffer_pos_, "%d", ss - pos + 1);
}
// Print the integer value of the cc field for the bc1t/f instructions.
void Decoder::PrintBc(Instruction* instr) {
int cc = instr->FBccValue();
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, "%d", cc);
}
// Print the integer value of the cc field for the FP compare instructions.
void Decoder::PrintCc(Instruction* instr) {
int cc = instr->FCccValue();
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, "cc(%d)", cc);
}
// Print 16-bit unsigned immediate value.
void Decoder::PrintUImm16(Instruction* instr) {
int32_t imm = instr->Imm16Value();
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, "%u", imm);
}
// Print 16-bit signed immediate value.
void Decoder::PrintSImm16(Instruction* instr) {
int32_t imm = ((instr->Imm16Value()) << 16) >> 16;
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, "%d", imm);
}
// Print 16-bit hexa immediate value.
void Decoder::PrintXImm16(Instruction* instr) {
int32_t imm = instr->Imm16Value();
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
}
// Print 26-bit immediate value.
void Decoder::PrintXImm26(Instruction* instr) {
uint32_t imm = instr->Imm26Value() << kImmFieldShift;
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_, "0x%x", imm);
}
// Print 26-bit immediate value.
void Decoder::PrintCode(Instruction* instr) {
if (instr->OpcodeFieldRaw() != SPECIAL)
return; // Not a break or trap instruction.
switch (instr->FunctionFieldRaw()) {
case BREAK: {
int32_t code = instr->Bits(25, 6);
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
"0x%05x (%d)", code, code);
break;
}
case TGE:
case TGEU:
case TLT:
case TLTU:
case TEQ:
case TNE: {
int32_t code = instr->Bits(15, 6);
out_buffer_pos_ +=
OS::SNPrintF(out_buffer_ + out_buffer_pos_, "0x%03x", code);
break;
}
default: // Not a break or trap instruction.
break;
};
}
// Printing of instruction name.
void Decoder::PrintInstructionName(Instruction* instr) {
}
// Handle all register based formatting in this function to reduce the
// complexity of FormatOption.
int Decoder::FormatRegister(Instruction* instr, const char* format) {
ASSERT(format[0] == 'r');
if (format[1] == 's') { // 'rs: Rs register.
int reg = instr->RsValue();
PrintRegister(reg);
return 2;
} else if (format[1] == 't') { // 'rt: rt register.
int reg = instr->RtValue();
PrintRegister(reg);
return 2;
} else if (format[1] == 'd') { // 'rd: rd register.
int reg = instr->RdValue();
PrintRegister(reg);
return 2;
}
UNREACHABLE();
return -1;
}
// Handle all FPUregister based formatting in this function to reduce the
// complexity of FormatOption.
int Decoder::FormatFPURegister(Instruction* instr, const char* format) {
ASSERT(format[0] == 'f');
if (format[1] == 's') { // 'fs: fs register.
int reg = instr->FsValue();
PrintFPURegister(reg);
return 2;
} else if (format[1] == 't') { // 'ft: ft register.
int reg = instr->FtValue();
PrintFPURegister(reg);
return 2;
} else if (format[1] == 'd') { // 'fd: fd register.
int reg = instr->FdValue();
PrintFPURegister(reg);
return 2;
}
UNREACHABLE();
return -1;
}
// FormatOption takes a formatting string and interprets it based on
// the current instructions. The format string points to the first
// character of the option string (the option escape has already been
// consumed by the caller.) FormatOption returns the number of
// characters that were consumed from the formatting string.
int Decoder::FormatOption(Instruction* instr, const char* format) {
switch (format[0]) {
case 'c': { // 'code for break or trap instructions.
ASSERT(STRING_STARTS_WITH(format, "code"));
PrintCode(instr);
return 4;
}
case 'i': { // 'imm16u or 'imm26.
if (format[3] == '1') {
ASSERT(STRING_STARTS_WITH(format, "imm16"));
if (format[5] == 's') {
ASSERT(STRING_STARTS_WITH(format, "imm16s"));
PrintSImm16(instr);
} else if (format[5] == 'u') {
ASSERT(STRING_STARTS_WITH(format, "imm16u"));
PrintSImm16(instr);
} else {
ASSERT(STRING_STARTS_WITH(format, "imm16x"));
PrintXImm16(instr);
}
return 6;
} else {
ASSERT(STRING_STARTS_WITH(format, "imm26x"));
PrintXImm26(instr);
return 6;
}
}
case 'r': { // 'r: registers.
return FormatRegister(instr, format);
}
case 'f': { // 'f: FPUregisters.
return FormatFPURegister(instr, format);
}
case 's': { // 'sa.
switch (format[1]) {
case 'a': {
ASSERT(STRING_STARTS_WITH(format, "sa"));
PrintSa(instr);
return 2;
}
case 'd': {
ASSERT(STRING_STARTS_WITH(format, "sd"));
PrintSd(instr);
return 2;
}
case 's': {
if (format[2] == '1') {
ASSERT(STRING_STARTS_WITH(format, "ss1")); /* ext size */
PrintSs1(instr);
return 3;
} else {
ASSERT(STRING_STARTS_WITH(format, "ss2")); /* ins size */
PrintSs2(instr);
return 3;
}
}
}
}
case 'b': { // 'bc - Special for bc1 cc field.
ASSERT(STRING_STARTS_WITH(format, "bc"));
PrintBc(instr);
return 2;
}
case 'C': { // 'Cc - Special for c.xx.d cc field.
ASSERT(STRING_STARTS_WITH(format, "Cc"));
PrintCc(instr);
return 2;
}
};
UNREACHABLE();
return -1;
}
// Format takes a formatting string for a whole instruction and prints it into
// the output buffer. All escaped options are handed to FormatOption to be
// parsed further.
void Decoder::Format(Instruction* instr, const char* format) {
char cur = *format++;
while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
if (cur == '\'') { // Single quote is used as the formatting escape.
format += FormatOption(instr, format);
} else {
out_buffer_[out_buffer_pos_++] = cur;
}
cur = *format++;
}
out_buffer_[out_buffer_pos_] = '\0';
}
// For currently unimplemented decodings the disassembler calls Unknown(instr)
// which will just print "unknown" of the instruction bits.
void Decoder::Unknown(Instruction* instr) {
Format(instr, "unknown");
}
void Decoder::DecodeTypeRegister(Instruction* instr) {
switch (instr->OpcodeFieldRaw()) {
case COP1: // Coprocessor instructions.
switch (instr->RsFieldRaw()) {
case BC1: // bc1 handled in DecodeTypeImmediate.
UNREACHABLE();
break;
case MFC1:
Format(instr, "mfc1 'rt, 'fs");
break;
case MFHC1:
Format(instr, "mfhc1 'rt, 'fs");
break;
case MTC1:
Format(instr, "mtc1 'rt, 'fs");
break;
// These are called "fs" too, although they are not FPU registers.
case CTC1:
Format(instr, "ctc1 'rt, 'fs");
break;
case CFC1:
Format(instr, "cfc1 'rt, 'fs");
break;
case MTHC1:
Format(instr, "mthc1 'rt, 'fs");
break;
case D:
switch (instr->FunctionFieldRaw()) {
case ADD_D:
Format(instr, "add.d 'fd, 'fs, 'ft");
break;
case SUB_D:
Format(instr, "sub.d 'fd, 'fs, 'ft");
break;
case MUL_D:
Format(instr, "mul.d 'fd, 'fs, 'ft");
break;
case DIV_D:
Format(instr, "div.d 'fd, 'fs, 'ft");
break;
case ABS_D:
Format(instr, "abs.d 'fd, 'fs");
break;
case MOV_D:
Format(instr, "mov.d 'fd, 'fs");
break;
case NEG_D:
Format(instr, "neg.d 'fd, 'fs");
break;
case SQRT_D:
Format(instr, "sqrt.d 'fd, 'fs");
break;
case CVT_W_D:
Format(instr, "cvt.w.d 'fd, 'fs");
break;
case CVT_L_D: {
if (kArchVariant == kMips32r2) {
Format(instr, "cvt.l.d 'fd, 'fs");
} else {
Unknown(instr);
}
break;
}
case TRUNC_W_D:
Format(instr, "trunc.w.d 'fd, 'fs");
break;
case TRUNC_L_D: {
if (kArchVariant == kMips32r2) {
Format(instr, "trunc.l.d 'fd, 'fs");
} else {
Unknown(instr);
}
break;
}
case ROUND_W_D:
Format(instr, "round.w.d 'fd, 'fs");
break;
case FLOOR_W_D:
Format(instr, "floor.w.d 'fd, 'fs");
break;
case CEIL_W_D:
Format(instr, "ceil.w.d 'fd, 'fs");
break;
case CVT_S_D:
Format(instr, "cvt.s.d 'fd, 'fs");
break;
case C_F_D:
Format(instr, "c.f.d 'fs, 'ft, 'Cc");
break;
case C_UN_D:
Format(instr, "c.un.d 'fs, 'ft, 'Cc");
break;
case C_EQ_D:
Format(instr, "c.eq.d 'fs, 'ft, 'Cc");
break;
case C_UEQ_D:
Format(instr, "c.ueq.d 'fs, 'ft, 'Cc");
break;
case C_OLT_D:
Format(instr, "c.olt.d 'fs, 'ft, 'Cc");
break;
case C_ULT_D:
Format(instr, "c.ult.d 'fs, 'ft, 'Cc");
break;
case C_OLE_D:
Format(instr, "c.ole.d 'fs, 'ft, 'Cc");
break;
case C_ULE_D:
Format(instr, "c.ule.d 'fs, 'ft, 'Cc");
break;
default:
Format(instr, "unknown.cop1.d");
break;
}
break;
case S:
UNIMPLEMENTED_MIPS();
break;
case W:
switch (instr->FunctionFieldRaw()) {
case CVT_S_W: // Convert word to float (single).
Format(instr, "cvt.s.w 'fd, 'fs");
break;
case CVT_D_W: // Convert word to double.
Format(instr, "cvt.d.w 'fd, 'fs");
break;
default:
UNREACHABLE();
}
break;
case L:
switch (instr->FunctionFieldRaw()) {
case CVT_D_L: {
if (kArchVariant == kMips32r2) {
Format(instr, "cvt.d.l 'fd, 'fs");
} else {
Unknown(instr);
}
break;
}
case CVT_S_L: {
if (kArchVariant == kMips32r2) {
Format(instr, "cvt.s.l 'fd, 'fs");
} else {
Unknown(instr);
}
break;
}
default:
UNREACHABLE();
}
break;
case PS:
UNIMPLEMENTED_MIPS();
break;
default:
UNREACHABLE();
}
break;
case SPECIAL:
switch (instr->FunctionFieldRaw()) {
case JR:
Format(instr, "jr 'rs");
break;
case JALR:
Format(instr, "jalr 'rs");
break;
case SLL:
if ( 0x0 == static_cast<int>(instr->InstructionBits()))
Format(instr, "nop");
else
Format(instr, "sll 'rd, 'rt, 'sa");
break;
case SRL:
if (instr->RsValue() == 0) {
Format(instr, "srl 'rd, 'rt, 'sa");
} else {
if (kArchVariant == kMips32r2) {
Format(instr, "rotr 'rd, 'rt, 'sa");
} else {
Unknown(instr);
}
}
break;
case SRA:
Format(instr, "sra 'rd, 'rt, 'sa");
break;
case SLLV:
Format(instr, "sllv 'rd, 'rt, 'rs");
break;
case SRLV:
if (instr->SaValue() == 0) {
Format(instr, "srlv 'rd, 'rt, 'rs");
} else {
if (kArchVariant == kMips32r2) {
Format(instr, "rotrv 'rd, 'rt, 'rs");
} else {
Unknown(instr);
}
}
break;
case SRAV:
Format(instr, "srav 'rd, 'rt, 'rs");
break;
case MFHI:
Format(instr, "mfhi 'rd");
break;
case MFLO:
Format(instr, "mflo 'rd");
break;
case MULT:
Format(instr, "mult 'rs, 'rt");
break;
case MULTU:
Format(instr, "multu 'rs, 'rt");
break;
case DIV:
Format(instr, "div 'rs, 'rt");
break;
case DIVU:
Format(instr, "divu 'rs, 'rt");
break;
case ADD:
Format(instr, "add 'rd, 'rs, 'rt");
break;
case ADDU:
Format(instr, "addu 'rd, 'rs, 'rt");
break;
case SUB:
Format(instr, "sub 'rd, 'rs, 'rt");
break;
case SUBU:
Format(instr, "subu 'rd, 'rs, 'rt");
break;
case AND:
Format(instr, "and 'rd, 'rs, 'rt");
break;
case OR:
if (0 == instr->RsValue()) {
Format(instr, "mov 'rd, 'rt");
} else if (0 == instr->RtValue()) {
Format(instr, "mov 'rd, 'rs");
} else {
Format(instr, "or 'rd, 'rs, 'rt");
}
break;
case XOR:
Format(instr, "xor 'rd, 'rs, 'rt");
break;
case NOR:
Format(instr, "nor 'rd, 'rs, 'rt");
break;
case SLT:
Format(instr, "slt 'rd, 'rs, 'rt");
break;
case SLTU:
Format(instr, "sltu 'rd, 'rs, 'rt");
break;
case BREAK:
Format(instr, "break, code: 'code");
break;
case TGE:
Format(instr, "tge 'rs, 'rt, code: 'code");
break;
case TGEU:
Format(instr, "tgeu 'rs, 'rt, code: 'code");
break;
case TLT:
Format(instr, "tlt 'rs, 'rt, code: 'code");
break;
case TLTU:
Format(instr, "tltu 'rs, 'rt, code: 'code");
break;
case TEQ:
Format(instr, "teq 'rs, 'rt, code: 'code");
break;
case TNE:
Format(instr, "tne 'rs, 'rt, code: 'code");
break;
case MOVZ:
Format(instr, "movz 'rd, 'rs, 'rt");
break;
case MOVN:
Format(instr, "movn 'rd, 'rs, 'rt");
break;
case MOVCI:
if (instr->Bit(16)) {
Format(instr, "movt 'rd, 'rs, 'bc");
} else {
Format(instr, "movf 'rd, 'rs, 'bc");
}
break;
default:
UNREACHABLE();
}
break;
case SPECIAL2:
switch (instr->FunctionFieldRaw()) {
case MUL:
Format(instr, "mul 'rd, 'rs, 'rt");
break;
case CLZ:
Format(instr, "clz 'rd, 'rs");
break;
default:
UNREACHABLE();
}
break;
case SPECIAL3:
switch (instr->FunctionFieldRaw()) {
case INS: {
if (kArchVariant == kMips32r2) {
Format(instr, "ins 'rt, 'rs, 'sa, 'ss2");
} else {
Unknown(instr);
}
break;
}
case EXT: {
if (kArchVariant == kMips32r2) {
Format(instr, "ext 'rt, 'rs, 'sa, 'ss1");
} else {
Unknown(instr);
}
break;
}
default:
UNREACHABLE();
}
break;
default:
UNREACHABLE();
}
}
void Decoder::DecodeTypeImmediate(Instruction* instr) {
switch (instr->OpcodeFieldRaw()) {
// ------------- REGIMM class.
case COP1:
switch (instr->RsFieldRaw()) {
case BC1:
if (instr->FBtrueValue()) {
Format(instr, "bc1t 'bc, 'imm16u");
} else {
Format(instr, "bc1f 'bc, 'imm16u");
}
break;
default:
UNREACHABLE();
};
break; // Case COP1.
case REGIMM:
switch (instr->RtFieldRaw()) {
case BLTZ:
Format(instr, "bltz 'rs, 'imm16u");
break;
case BLTZAL:
Format(instr, "bltzal 'rs, 'imm16u");
break;
case BGEZ:
Format(instr, "bgez 'rs, 'imm16u");
break;
case BGEZAL:
Format(instr, "bgezal 'rs, 'imm16u");
break;
default:
UNREACHABLE();
}
break; // Case REGIMM.
// ------------- Branch instructions.
case BEQ:
Format(instr, "beq 'rs, 'rt, 'imm16u");
break;
case BNE:
Format(instr, "bne 'rs, 'rt, 'imm16u");
break;
case BLEZ:
Format(instr, "blez 'rs, 'imm16u");
break;
case BGTZ:
Format(instr, "bgtz 'rs, 'imm16u");
break;
// ------------- Arithmetic instructions.
case ADDI:
Format(instr, "addi 'rt, 'rs, 'imm16s");
break;
case ADDIU:
Format(instr, "addiu 'rt, 'rs, 'imm16s");
break;
case SLTI:
Format(instr, "slti 'rt, 'rs, 'imm16s");
break;
case SLTIU:
Format(instr, "sltiu 'rt, 'rs, 'imm16u");
break;
case ANDI:
Format(instr, "andi 'rt, 'rs, 'imm16x");
break;
case ORI:
Format(instr, "ori 'rt, 'rs, 'imm16x");
break;
case XORI:
Format(instr, "xori 'rt, 'rs, 'imm16x");
break;
case LUI:
Format(instr, "lui 'rt, 'imm16x");
break;
// ------------- Memory instructions.
case LB:
Format(instr, "lb 'rt, 'imm16s('rs)");
break;
case LH:
Format(instr, "lh 'rt, 'imm16s('rs)");
break;
case LWL:
Format(instr, "lwl 'rt, 'imm16s('rs)");
break;
case LW:
Format(instr, "lw 'rt, 'imm16s('rs)");
break;
case LBU:
Format(instr, "lbu 'rt, 'imm16s('rs)");
break;
case LHU:
Format(instr, "lhu 'rt, 'imm16s('rs)");
break;
case LWR:
Format(instr, "lwr 'rt, 'imm16s('rs)");
break;
case SB:
Format(instr, "sb 'rt, 'imm16s('rs)");
break;
case SH:
Format(instr, "sh 'rt, 'imm16s('rs)");
break;
case SWL:
Format(instr, "swl 'rt, 'imm16s('rs)");
break;
case SW:
Format(instr, "sw 'rt, 'imm16s('rs)");
break;
case SWR:
Format(instr, "swr 'rt, 'imm16s('rs)");
break;
case LWC1:
Format(instr, "lwc1 'ft, 'imm16s('rs)");
break;
case LDC1:
Format(instr, "ldc1 'ft, 'imm16s('rs)");
break;
case SWC1:
Format(instr, "swc1 'ft, 'imm16s('rs)");
break;
case SDC1:
Format(instr, "sdc1 'ft, 'imm16s('rs)");
break;
default:
UNREACHABLE();
break;
};
}
void Decoder::DecodeTypeJump(Instruction* instr) {
switch (instr->OpcodeFieldRaw()) {
case J:
Format(instr, "j 'imm26x");
break;
case JAL:
Format(instr, "jal 'imm26x");
break;
default:
UNREACHABLE();
}
}
// Disassemble the instruction at *instr_ptr into the output buffer.
int Decoder::InstructionDecode(byte* instr_ptr) {
Instruction* instr = Instruction::At(instr_ptr);
// Print raw instruction bytes.
out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
"%08x ",
instr->InstructionBits());
switch (instr->InstructionType()) {
case Instruction::kRegisterType: {
DecodeTypeRegister(instr);
break;
}
case Instruction::kImmediateType: {
DecodeTypeImmediate(instr);
break;
}
case Instruction::kJumpType: {
DecodeTypeJump(instr);
break;
}
default: {
Format(instr, "UNSUPPORTED");
UNSUPPORTED_MIPS();
}
}
return Instruction::kInstrSize;
}
} } // namespace v8::internal
//------------------------------------------------------------------------------
namespace disasm {
const char* NameConverter::NameOfAddress(byte* addr) const {
v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr);
return tmp_buffer_.start();
}
const char* NameConverter::NameOfConstant(byte* addr) const {
return NameOfAddress(addr);
}
const char* NameConverter::NameOfCPURegister(int reg) const {
return v8::internal::Registers::Name(reg);
}
const char* NameConverter::NameOfXMMRegister(int reg) const {
return v8::internal::FPURegisters::Name(reg);
}
const char* NameConverter::NameOfByteCPURegister(int reg) const {
UNREACHABLE(); // MIPS does not have the concept of a byte register.
return "nobytereg";
}
const char* NameConverter::NameInCode(byte* addr) const {
// The default name converter is called for unknown code. So we will not try
// to access any memory.
return "";
}
//------------------------------------------------------------------------------
Disassembler::Disassembler(const NameConverter& converter)
: converter_(converter) {}
Disassembler::~Disassembler() {}
int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
byte* instruction) {
v8::internal::Decoder d(converter_, buffer);
return d.InstructionDecode(instruction);
}
// The MIPS assembler does not currently use constant pools.
int Disassembler::ConstantPoolSizeAt(byte* instruction) {
return -1;
}
void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
NameConverter converter;
Disassembler d(converter);
for (byte* pc = begin; pc < end;) {
v8::internal::EmbeddedVector<char, 128> buffer;
buffer[0] = '\0';
byte* prev_pc = pc;
pc += d.InstructionDecode(buffer, pc);
fprintf(f, "%p %08x %s\n",
prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
}
}
#undef UNSUPPORTED
} // namespace disasm
#endif // V8_TARGET_ARCH_MIPS