// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "components/metrics/persisted_logs.h" #include <string> #include "base/base64.h" #include "base/md5.h" #include "base/metrics/histogram.h" #include "base/prefs/pref_service.h" #include "base/prefs/scoped_user_pref_update.h" #include "base/sha1.h" #include "base/timer/elapsed_timer.h" #include "components/metrics/compression_utils.h" namespace metrics { namespace { PersistedLogs::LogReadStatus MakeRecallStatusHistogram( PersistedLogs::LogReadStatus status) { UMA_HISTOGRAM_ENUMERATION("PrefService.PersistentLogRecallProtobufs", status, PersistedLogs::END_RECALL_STATUS); return status; } // Reads the value at |index| from |list_value| as a string and Base64-decodes // it into |result|. Returns true on success. bool ReadBase64String(const base::ListValue& list_value, size_t index, std::string* result) { std::string base64_result; if (!list_value.GetString(index, &base64_result)) return false; return base::Base64Decode(base64_result, result); } // Base64-encodes |str| and appends the result to |list_value|. void AppendBase64String(const std::string& str, base::ListValue* list_value) { std::string base64_str; base::Base64Encode(str, &base64_str); list_value->Append(base::Value::CreateStringValue(base64_str)); } } // namespace void PersistedLogs::LogHashPair::Init(const std::string& log_data) { DCHECK(!log_data.empty()); if (!GzipCompress(log_data, &compressed_log_data)) { NOTREACHED(); return; } UMA_HISTOGRAM_PERCENTAGE( "UMA.ProtoCompressionRatio", static_cast<int>(100 * compressed_log_data.size() / log_data.size())); UMA_HISTOGRAM_CUSTOM_COUNTS( "UMA.ProtoGzippedKBSaved", static_cast<int>((log_data.size() - compressed_log_data.size()) / 1024), 1, 2000, 50); hash = base::SHA1HashString(log_data); } void PersistedLogs::LogHashPair::Clear() { compressed_log_data.clear(); hash.clear(); } void PersistedLogs::LogHashPair::Swap(PersistedLogs::LogHashPair* input) { compressed_log_data.swap(input->compressed_log_data); hash.swap(input->hash); } PersistedLogs::PersistedLogs(PrefService* local_state, const char* pref_name, const char* old_pref_name, size_t min_log_count, size_t min_log_bytes, size_t max_log_size) : local_state_(local_state), pref_name_(pref_name), old_pref_name_(old_pref_name), min_log_count_(min_log_count), min_log_bytes_(min_log_bytes), max_log_size_(max_log_size), last_provisional_store_index_(-1) { DCHECK(local_state_); // One of the limit arguments must be non-zero. DCHECK(min_log_count_ > 0 || min_log_bytes_ > 0); } PersistedLogs::~PersistedLogs() {} void PersistedLogs::SerializeLogs() { // Remove any logs that are over the serialization size limit. if (max_log_size_) { for (std::vector<LogHashPair>::iterator it = list_.begin(); it != list_.end();) { size_t log_size = it->compressed_log_data.length(); if (log_size > max_log_size_) { UMA_HISTOGRAM_COUNTS("UMA.Large Accumulated Log Not Persisted", static_cast<int>(log_size)); it = list_.erase(it); } else { ++it; } } } ListPrefUpdate update(local_state_, pref_name_); WriteLogsToPrefList(update.Get()); // Clear the old pref now that we've written to the new one. // TODO(asvitkine): Remove the old pref in M39. local_state_->ClearPref(old_pref_name_); } PersistedLogs::LogReadStatus PersistedLogs::DeserializeLogs() { // First, try reading from old pref. If it's empty, read from the new one. // TODO(asvitkine): Remove the old pref in M39. const base::ListValue* unsent_logs = local_state_->GetList(old_pref_name_); if (!unsent_logs->empty()) return ReadLogsFromOldPrefList(*unsent_logs); unsent_logs = local_state_->GetList(pref_name_); return ReadLogsFromPrefList(*unsent_logs); } void PersistedLogs::StoreLog(const std::string& log_data) { list_.push_back(LogHashPair()); list_.back().Init(log_data); } void PersistedLogs::StageLog() { // CHECK, rather than DCHECK, because swap()ing with an empty list causes // hard-to-identify crashes much later. CHECK(!list_.empty()); DCHECK(!has_staged_log()); staged_log_.Swap(&list_.back()); list_.pop_back(); // If the staged log was the last provisional store, clear that. if (static_cast<size_t>(last_provisional_store_index_) == list_.size()) last_provisional_store_index_ = -1; DCHECK(has_staged_log()); } void PersistedLogs::DiscardStagedLog() { DCHECK(has_staged_log()); staged_log_.Clear(); } void PersistedLogs::StoreStagedLogAsUnsent(StoreType store_type) { list_.push_back(LogHashPair()); list_.back().Swap(&staged_log_); if (store_type == PROVISIONAL_STORE) last_provisional_store_index_ = list_.size() - 1; } void PersistedLogs::DiscardLastProvisionalStore() { if (last_provisional_store_index_ == -1) return; DCHECK_LT(static_cast<size_t>(last_provisional_store_index_), list_.size()); list_.erase(list_.begin() + last_provisional_store_index_); last_provisional_store_index_ = -1; } void PersistedLogs::WriteLogsToPrefList(base::ListValue* list_value) { list_value->Clear(); // Leave the list completely empty if there are no storable values. if (list_.empty()) return; size_t start = 0; // If there are too many logs, keep the most recent logs up to the length // limit, and at least to the minimum number of bytes. if (list_.size() > min_log_count_) { start = list_.size(); size_t bytes_used = 0; std::vector<LogHashPair>::const_reverse_iterator end = list_.rend(); for (std::vector<LogHashPair>::const_reverse_iterator it = list_.rbegin(); it != end; ++it) { const size_t log_size = it->compressed_log_data.length(); if (bytes_used >= min_log_bytes_ && (list_.size() - start) >= min_log_count_) { break; } bytes_used += log_size; --start; } } DCHECK_LT(start, list_.size()); for (size_t i = start; i < list_.size(); ++i) { AppendBase64String(list_[i].compressed_log_data, list_value); AppendBase64String(list_[i].hash, list_value); } } PersistedLogs::LogReadStatus PersistedLogs::ReadLogsFromPrefList( const base::ListValue& list_value) { if (list_value.empty()) return MakeRecallStatusHistogram(LIST_EMPTY); // For each log, there's two entries in the list (the data and the hash). DCHECK_EQ(0U, list_value.GetSize() % 2); const size_t log_count = list_value.GetSize() / 2; // Resize |list_| ahead of time, so that values can be decoded directly into // the elements of the list. DCHECK(list_.empty()); list_.resize(log_count); for (size_t i = 0; i < log_count; ++i) { if (!ReadBase64String(list_value, i * 2, &list_[i].compressed_log_data) || !ReadBase64String(list_value, i * 2 + 1, &list_[i].hash)) { list_.clear(); return MakeRecallStatusHistogram(LOG_STRING_CORRUPTION); } } return MakeRecallStatusHistogram(RECALL_SUCCESS); } PersistedLogs::LogReadStatus PersistedLogs::ReadLogsFromOldPrefList( const base::ListValue& list_value) { // We append (2) more elements to persisted lists: the size of the list and a // checksum of the elements. const size_t kChecksumEntryCount = 2; if (list_value.GetSize() == 0) return MakeRecallStatusHistogram(LIST_EMPTY); if (list_value.GetSize() <= kChecksumEntryCount) return MakeRecallStatusHistogram(LIST_SIZE_TOO_SMALL); // The size is stored at the beginning of the list_value. int size; bool valid = (*list_value.begin())->GetAsInteger(&size); if (!valid) return MakeRecallStatusHistogram(LIST_SIZE_MISSING); // Account for checksum and size included in the list_value. if (static_cast<size_t>(size) != list_value.GetSize() - kChecksumEntryCount) return MakeRecallStatusHistogram(LIST_SIZE_CORRUPTION); // Allocate strings for all of the logs we are going to read in. // Do this ahead of time so that we can decode the string values directly into // the elements of |list_|, and thereby avoid making copies of the // serialized logs, which can be fairly large. DCHECK(list_.empty()); list_.resize(size); base::MD5Context ctx; base::MD5Init(&ctx); std::string encoded_log; size_t local_index = 0; for (base::ListValue::const_iterator it = list_value.begin() + 1; it != list_value.end() - 1; // Last element is the checksum. ++it, ++local_index) { bool valid = (*it)->GetAsString(&encoded_log); if (!valid) { list_.clear(); return MakeRecallStatusHistogram(LOG_STRING_CORRUPTION); } base::MD5Update(&ctx, encoded_log); std::string log_text; if (!base::Base64Decode(encoded_log, &log_text)) { list_.clear(); return MakeRecallStatusHistogram(DECODE_FAIL); } DCHECK_LT(local_index, list_.size()); list_[local_index].Init(log_text); } // Verify checksum. base::MD5Digest digest; base::MD5Final(&digest, &ctx); std::string recovered_md5; // We store the hash at the end of the list_value. valid = (*(list_value.end() - 1))->GetAsString(&recovered_md5); if (!valid) { list_.clear(); return MakeRecallStatusHistogram(CHECKSUM_STRING_CORRUPTION); } if (recovered_md5 != base::MD5DigestToBase16(digest)) { list_.clear(); return MakeRecallStatusHistogram(CHECKSUM_CORRUPTION); } return MakeRecallStatusHistogram(RECALL_SUCCESS); } } // namespace metrics