/************************************************************************** * * Copyright 2011 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include <limits.h> #include <stdio.h> #include <stdlib.h> #include "util/u_pointer.h" #include "util/u_memory.h" #include "util/u_math.h" #include "gallivm/lp_bld.h" #include "gallivm/lp_bld_debug.h" #include "gallivm/lp_bld_init.h" #include "gallivm/lp_bld_arit.h" #include "lp_test.h" void write_tsv_header(FILE *fp) { fprintf(fp, "result\t" "format\n"); fflush(fp); } typedef void (*unary_func_t)(float *out, const float *in); /** * Describe a test case of one unary function. */ struct unary_test_t { /* * Test name -- name of the mathematical function under test. */ const char *name; LLVMValueRef (*builder)(struct lp_build_context *bld, LLVMValueRef a); /* * Reference (pure-C) function. */ float (*ref)(float a); /* * Test values. */ const float *values; unsigned num_values; /* * Required precision in bits. */ double precision; }; static float negf(float x) { return -x; } static float sgnf(float x) { if (x > 0.0f) { return 1.0f; } if (x < 0.0f) { return -1.0f; } return 0.0f; } const float exp2_values[] = { -60, -4, -2, -1, -1e-007, 0, 1e-007, 0.01, 0.1, 0.9, 0.99, 1, 2, 4, 60 }; const float log2_values[] = { #if 0 /* * Smallest denormalized number; meant just for experimentation, but not * validation. */ 1.4012984643248171e-45, #endif 1e-007, 0.1, 0.5, 0.99, 1, 1.01, 1.1, 1.9, 1.99, 2, 4, 100000, 1e+018 }; static float rsqrtf(float x) { return 1.0/sqrt(x); } const float rsqrt_values[] = { -1, -1e-007, 1e-007, 1, -4, -1, 1, 4, -1e+035, -100000, 100000, 1e+035, }; const float sincos_values[] = { -5*M_PI/4, -4*M_PI/4, -4*M_PI/4, -3*M_PI/4, -2*M_PI/4, -1*M_PI/4, 1*M_PI/4, 2*M_PI/4, 3*M_PI/4, 4*M_PI/4, 5*M_PI/4, }; const float round_values[] = { -10.0, -1, 0.0, 12.0, -1.49, -0.25, 1.25, 2.51, -0.99, -0.01, 0.01, 0.99, }; static float fractf(float x) { x -= floorf(x); if (x >= 1.0f) { // clamp to the largest number smaller than one x = 1.0f - 0.5f*FLT_EPSILON; } return x; } const float fract_values[] = { // http://en.wikipedia.org/wiki/IEEE_754-1985#Examples 0.0f, -0.0f, 1.0f, -1.0f, 0.5f, -0.5f, 1.401298464324817e-45f, // smallest denormal -1.401298464324817e-45f, 5.88e-39f, // middle denormal 1.18e-38f, // largest denormal -1.18e-38f, -1.62981451e-08f, FLT_EPSILON, -FLT_EPSILON, 1.0f - 0.5f*FLT_EPSILON, -1.0f + FLT_EPSILON, FLT_MAX, -FLT_MAX }; /* * Unary test cases. */ static const struct unary_test_t unary_tests[] = { {"neg", &lp_build_negate, &negf, exp2_values, Elements(exp2_values), 20.0 }, {"exp2", &lp_build_exp2, &exp2f, exp2_values, Elements(exp2_values), 20.0 }, {"log2", &lp_build_log2, &log2f, log2_values, Elements(log2_values), 20.0 }, {"exp", &lp_build_exp, &expf, exp2_values, Elements(exp2_values), 18.0 }, {"log", &lp_build_log, &logf, log2_values, Elements(log2_values), 20.0 }, {"rsqrt", &lp_build_rsqrt, &rsqrtf, rsqrt_values, Elements(rsqrt_values), 20.0 }, {"sin", &lp_build_sin, &sinf, sincos_values, Elements(sincos_values), 20.0 }, {"cos", &lp_build_cos, &cosf, sincos_values, Elements(sincos_values), 20.0 }, {"sgn", &lp_build_sgn, &sgnf, exp2_values, Elements(exp2_values), 20.0 }, {"round", &lp_build_round, &roundf, round_values, Elements(round_values), 24.0 }, {"trunc", &lp_build_trunc, &truncf, round_values, Elements(round_values), 24.0 }, {"floor", &lp_build_floor, &floorf, round_values, Elements(round_values), 24.0 }, {"ceil", &lp_build_ceil, &ceilf, round_values, Elements(round_values), 24.0 }, {"fract", &lp_build_fract_safe, &fractf, fract_values, Elements(fract_values), 24.0 }, }; /* * Build LLVM function that exercises the unary operator builder. */ static LLVMValueRef build_unary_test_func(struct gallivm_state *gallivm, const struct unary_test_t *test) { struct lp_type type = lp_type_float_vec(32, lp_native_vector_width); LLVMContextRef context = gallivm->context; LLVMModuleRef module = gallivm->module; LLVMTypeRef vf32t = lp_build_vec_type(gallivm, type); LLVMTypeRef args[2] = { LLVMPointerType(vf32t, 0), LLVMPointerType(vf32t, 0) }; LLVMValueRef func = LLVMAddFunction(module, test->name, LLVMFunctionType(LLVMVoidTypeInContext(context), args, Elements(args), 0)); LLVMValueRef arg0 = LLVMGetParam(func, 0); LLVMValueRef arg1 = LLVMGetParam(func, 1); LLVMBuilderRef builder = gallivm->builder; LLVMBasicBlockRef block = LLVMAppendBasicBlockInContext(context, func, "entry"); LLVMValueRef ret; struct lp_build_context bld; lp_build_context_init(&bld, gallivm, type); LLVMSetFunctionCallConv(func, LLVMCCallConv); LLVMPositionBuilderAtEnd(builder, block); arg1 = LLVMBuildLoad(builder, arg1, ""); ret = test->builder(&bld, arg1); LLVMBuildStore(builder, ret, arg0); LLVMBuildRetVoid(builder); gallivm_verify_function(gallivm, func); return func; } /* * Test one LLVM unary arithmetic builder function. */ static boolean test_unary(unsigned verbose, FILE *fp, const struct unary_test_t *test) { struct gallivm_state *gallivm; LLVMValueRef test_func; unary_func_t test_func_jit; boolean success = TRUE; int i, j; int length = lp_native_vector_width / 32; float *in, *out; in = align_malloc(length * 4, length * 4); out = align_malloc(length * 4, length * 4); /* random NaNs or 0s could wreak havoc */ for (i = 0; i < length; i++) { in[i] = 1.0; } gallivm = gallivm_create(); test_func = build_unary_test_func(gallivm, test); gallivm_compile_module(gallivm); test_func_jit = (unary_func_t) gallivm_jit_function(gallivm, test_func); for (j = 0; j < (test->num_values + length - 1) / length; j++) { int num_vals = ((j + 1) * length <= test->num_values) ? length : test->num_values % length; for (i = 0; i < num_vals; ++i) { in[i] = test->values[i+j*length]; } test_func_jit(out, in); for (i = 0; i < num_vals; ++i) { float ref = test->ref(in[i]); double error, precision; bool pass; error = fabs(out[i] - ref); precision = error ? -log2(error/fabs(ref)) : FLT_MANT_DIG; pass = precision >= test->precision; if (isnan(ref)) { continue; } if (!pass || verbose) { printf("%s(%.9g): ref = %.9g, out = %.9g, precision = %f bits, %s\n", test->name, in[i], ref, out[i], precision, pass ? "PASS" : "FAIL"); } if (!pass) { success = FALSE; } } } gallivm_free_function(gallivm, test_func, test_func_jit); gallivm_destroy(gallivm); align_free(in); align_free(out); return success; } boolean test_all(unsigned verbose, FILE *fp) { boolean success = TRUE; int i; for (i = 0; i < Elements(unary_tests); ++i) { if (!test_unary(verbose, fp, &unary_tests[i])) { success = FALSE; } } return success; } boolean test_some(unsigned verbose, FILE *fp, unsigned long n) { /* * Not randomly generated test cases, so test all. */ return test_all(verbose, fp); } boolean test_single(unsigned verbose, FILE *fp) { return TRUE; }