/* * Copyright (C) 2005 Ben Skeggs. * * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ /** * \file * * Emit the r300_fragment_program_code that can be understood by the hardware. * Input is a pre-transformed radeon_program. * * \author Ben Skeggs <darktama@iinet.net.au> * * \author Jerome Glisse <j.glisse@gmail.com> */ #include "r300_fragprog.h" #include "../r300_reg.h" #include "radeon_program_pair.h" #include "r300_fragprog_swizzle.h" struct r300_emit_state { struct r300_fragment_program_compiler * compiler; unsigned current_node : 2; unsigned node_first_tex : 8; unsigned node_first_alu : 8; uint32_t node_flags; }; #define PROG_CODE \ struct r300_fragment_program_compiler *c = emit->compiler; \ struct r300_fragment_program_code *code = &c->code->code.r300 #define error(fmt, args...) do { \ rc_error(&c->Base, "%s::%s(): " fmt "\n", \ __FILE__, __FUNCTION__, ##args); \ } while(0) static unsigned int get_msbs_alu(unsigned int bits) { return (bits >> 6) & 0x7; } /** * @param lsbs The number of least significant bits */ static unsigned int get_msbs_tex(unsigned int bits, unsigned int lsbs) { return (bits >> lsbs) & 0x15; } #define R400_EXT_GET_MSBS(x, lsbs, mask) (((x) >> lsbs) & mask) /** * Mark a temporary register as used. */ static void use_temporary(struct r300_fragment_program_code *code, unsigned int index) { if (index > code->pixsize) code->pixsize = index; } static unsigned int use_source(struct r300_fragment_program_code* code, struct rc_pair_instruction_source src) { if (!src.Used) return 0; if (src.File == RC_FILE_CONSTANT) { return src.Index | (1 << 5); } else if (src.File == RC_FILE_TEMPORARY || src.File == RC_FILE_INPUT) { use_temporary(code, src.Index); return src.Index & 0x1f; } return 0; } static unsigned int translate_rgb_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode) { switch(opcode) { case RC_OPCODE_CMP: return R300_ALU_OUTC_CMP; case RC_OPCODE_CND: return R300_ALU_OUTC_CND; case RC_OPCODE_DP3: return R300_ALU_OUTC_DP3; case RC_OPCODE_DP4: return R300_ALU_OUTC_DP4; case RC_OPCODE_FRC: return R300_ALU_OUTC_FRC; default: error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name); /* fall through */ case RC_OPCODE_NOP: /* fall through */ case RC_OPCODE_MAD: return R300_ALU_OUTC_MAD; case RC_OPCODE_MAX: return R300_ALU_OUTC_MAX; case RC_OPCODE_MIN: return R300_ALU_OUTC_MIN; case RC_OPCODE_REPL_ALPHA: return R300_ALU_OUTC_REPL_ALPHA; } } static unsigned int translate_alpha_opcode(struct r300_fragment_program_compiler * c, rc_opcode opcode) { switch(opcode) { case RC_OPCODE_CMP: return R300_ALU_OUTA_CMP; case RC_OPCODE_CND: return R300_ALU_OUTA_CND; case RC_OPCODE_DP3: return R300_ALU_OUTA_DP4; case RC_OPCODE_DP4: return R300_ALU_OUTA_DP4; case RC_OPCODE_EX2: return R300_ALU_OUTA_EX2; case RC_OPCODE_FRC: return R300_ALU_OUTA_FRC; case RC_OPCODE_LG2: return R300_ALU_OUTA_LG2; default: error("translate_rgb_opcode: Unknown opcode %s", rc_get_opcode_info(opcode)->Name); /* fall through */ case RC_OPCODE_NOP: /* fall through */ case RC_OPCODE_MAD: return R300_ALU_OUTA_MAD; case RC_OPCODE_MAX: return R300_ALU_OUTA_MAX; case RC_OPCODE_MIN: return R300_ALU_OUTA_MIN; case RC_OPCODE_RCP: return R300_ALU_OUTA_RCP; case RC_OPCODE_RSQ: return R300_ALU_OUTA_RSQ; } } /** * Emit one paired ALU instruction. */ static int emit_alu(struct r300_emit_state * emit, struct rc_pair_instruction* inst) { int ip; int j; PROG_CODE; if (code->alu.length >= c->Base.max_alu_insts) { error("Too many ALU instructions"); return 0; } ip = code->alu.length++; code->alu.inst[ip].rgb_inst = translate_rgb_opcode(c, inst->RGB.Opcode); code->alu.inst[ip].alpha_inst = translate_alpha_opcode(c, inst->Alpha.Opcode); for(j = 0; j < 3; ++j) { /* Set the RGB address */ unsigned int src = use_source(code, inst->RGB.Src[j]); unsigned int arg; if (inst->RGB.Src[j].Index >= R300_PFS_NUM_TEMP_REGS) code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_RGB_MSB_BIT(j); code->alu.inst[ip].rgb_addr |= src << (6*j); /* Set the Alpha address */ src = use_source(code, inst->Alpha.Src[j]); if (inst->Alpha.Src[j].Index >= R300_PFS_NUM_TEMP_REGS) code->alu.inst[ip].r400_ext_addr |= R400_ADDR_EXT_A_MSB_BIT(j); code->alu.inst[ip].alpha_addr |= src << (6*j); arg = r300FPTranslateRGBSwizzle(inst->RGB.Arg[j].Source, inst->RGB.Arg[j].Swizzle); arg |= inst->RGB.Arg[j].Abs << 6; arg |= inst->RGB.Arg[j].Negate << 5; code->alu.inst[ip].rgb_inst |= arg << (7*j); arg = r300FPTranslateAlphaSwizzle(inst->Alpha.Arg[j].Source, inst->Alpha.Arg[j].Swizzle); arg |= inst->Alpha.Arg[j].Abs << 6; arg |= inst->Alpha.Arg[j].Negate << 5; code->alu.inst[ip].alpha_inst |= arg << (7*j); } /* Presubtract */ if (inst->RGB.Src[RC_PAIR_PRESUB_SRC].Used) { switch(inst->RGB.Src[RC_PAIR_PRESUB_SRC].Index) { case RC_PRESUB_BIAS: code->alu.inst[ip].rgb_inst |= R300_ALU_SRCP_1_MINUS_2_SRC0; break; case RC_PRESUB_ADD: code->alu.inst[ip].rgb_inst |= R300_ALU_SRCP_SRC1_PLUS_SRC0; break; case RC_PRESUB_SUB: code->alu.inst[ip].rgb_inst |= R300_ALU_SRCP_SRC1_MINUS_SRC0; break; case RC_PRESUB_INV: code->alu.inst[ip].rgb_inst |= R300_ALU_SRCP_1_MINUS_SRC0; break; default: break; } } if (inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Used) { switch(inst->Alpha.Src[RC_PAIR_PRESUB_SRC].Index) { case RC_PRESUB_BIAS: code->alu.inst[ip].alpha_inst |= R300_ALU_SRCP_1_MINUS_2_SRC0; break; case RC_PRESUB_ADD: code->alu.inst[ip].alpha_inst |= R300_ALU_SRCP_SRC1_PLUS_SRC0; break; case RC_PRESUB_SUB: code->alu.inst[ip].alpha_inst |= R300_ALU_SRCP_SRC1_MINUS_SRC0; break; case RC_PRESUB_INV: code->alu.inst[ip].alpha_inst |= R300_ALU_SRCP_1_MINUS_SRC0; break; default: break; } } if (inst->RGB.Saturate) code->alu.inst[ip].rgb_inst |= R300_ALU_OUTC_CLAMP; if (inst->Alpha.Saturate) code->alu.inst[ip].alpha_inst |= R300_ALU_OUTA_CLAMP; if (inst->RGB.WriteMask) { use_temporary(code, inst->RGB.DestIndex); if (inst->RGB.DestIndex >= R300_PFS_NUM_TEMP_REGS) code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_RGB_MSB_BIT; code->alu.inst[ip].rgb_addr |= ((inst->RGB.DestIndex & 0x1f) << R300_ALU_DSTC_SHIFT) | (inst->RGB.WriteMask << R300_ALU_DSTC_REG_MASK_SHIFT); } if (inst->RGB.OutputWriteMask) { code->alu.inst[ip].rgb_addr |= (inst->RGB.OutputWriteMask << R300_ALU_DSTC_OUTPUT_MASK_SHIFT) | R300_RGB_TARGET(inst->RGB.Target); emit->node_flags |= R300_RGBA_OUT; } if (inst->Alpha.WriteMask) { use_temporary(code, inst->Alpha.DestIndex); if (inst->Alpha.DestIndex >= R300_PFS_NUM_TEMP_REGS) code->alu.inst[ip].r400_ext_addr |= R400_ADDRD_EXT_A_MSB_BIT; code->alu.inst[ip].alpha_addr |= ((inst->Alpha.DestIndex & 0x1f) << R300_ALU_DSTA_SHIFT) | R300_ALU_DSTA_REG; } if (inst->Alpha.OutputWriteMask) { code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_OUTPUT | R300_ALPHA_TARGET(inst->Alpha.Target); emit->node_flags |= R300_RGBA_OUT; } if (inst->Alpha.DepthWriteMask) { code->alu.inst[ip].alpha_addr |= R300_ALU_DSTA_DEPTH; emit->node_flags |= R300_W_OUT; c->code->writes_depth = 1; } if (inst->Nop) code->alu.inst[ip].rgb_inst |= R300_ALU_INSERT_NOP; /* Handle Output Modifier * According to the r300 docs, there is no RC_OMOD_DISABLE for r300 */ if (inst->RGB.Omod) { if (inst->RGB.Omod == RC_OMOD_DISABLE) { rc_error(&c->Base, "RC_OMOD_DISABLE not supported"); } code->alu.inst[ip].rgb_inst |= (inst->RGB.Omod << R300_ALU_OUTC_MOD_SHIFT); } if (inst->Alpha.Omod) { if (inst->Alpha.Omod == RC_OMOD_DISABLE) { rc_error(&c->Base, "RC_OMOD_DISABLE not supported"); } code->alu.inst[ip].alpha_inst |= (inst->Alpha.Omod << R300_ALU_OUTC_MOD_SHIFT); } return 1; } /** * Finish the current node without advancing to the next one. */ static int finish_node(struct r300_emit_state * emit) { struct r300_fragment_program_compiler * c = emit->compiler; struct r300_fragment_program_code *code = &emit->compiler->code->code.r300; unsigned alu_offset; unsigned alu_end; unsigned tex_offset; unsigned tex_end; unsigned int alu_offset_msbs, alu_end_msbs; if (code->alu.length == emit->node_first_alu) { /* Generate a single NOP for this node */ struct rc_pair_instruction inst; memset(&inst, 0, sizeof(inst)); if (!emit_alu(emit, &inst)) return 0; } alu_offset = emit->node_first_alu; alu_end = code->alu.length - alu_offset - 1; tex_offset = emit->node_first_tex; tex_end = code->tex.length - tex_offset - 1; if (code->tex.length == emit->node_first_tex) { if (emit->current_node > 0) { error("Node %i has no TEX instructions", emit->current_node); return 0; } tex_end = 0; } else { if (emit->current_node == 0) code->config |= R300_PFS_CNTL_FIRST_NODE_HAS_TEX; } /* Write the config register. * Note: The order in which the words for each node are written * is not correct here and needs to be fixed up once we're entirely * done * * Also note that the register specification from AMD is slightly * incorrect in its description of this register. */ code->code_addr[emit->current_node] = ((alu_offset << R300_ALU_START_SHIFT) & R300_ALU_START_MASK) | ((alu_end << R300_ALU_SIZE_SHIFT) & R300_ALU_SIZE_MASK) | ((tex_offset << R300_TEX_START_SHIFT) & R300_TEX_START_MASK) | ((tex_end << R300_TEX_SIZE_SHIFT) & R300_TEX_SIZE_MASK) | emit->node_flags | (get_msbs_tex(tex_offset, 5) << R400_TEX_START_MSB_SHIFT) | (get_msbs_tex(tex_end, 5) << R400_TEX_SIZE_MSB_SHIFT) ; /* Write r400 extended instruction fields. These will be ignored on * r300 cards. */ alu_offset_msbs = get_msbs_alu(alu_offset); alu_end_msbs = get_msbs_alu(alu_end); switch(emit->current_node) { case 0: code->r400_code_offset_ext |= alu_offset_msbs << R400_ALU_START3_MSB_SHIFT | alu_end_msbs << R400_ALU_SIZE3_MSB_SHIFT; break; case 1: code->r400_code_offset_ext |= alu_offset_msbs << R400_ALU_START2_MSB_SHIFT | alu_end_msbs << R400_ALU_SIZE2_MSB_SHIFT; break; case 2: code->r400_code_offset_ext |= alu_offset_msbs << R400_ALU_START1_MSB_SHIFT | alu_end_msbs << R400_ALU_SIZE1_MSB_SHIFT; break; case 3: code->r400_code_offset_ext |= alu_offset_msbs << R400_ALU_START0_MSB_SHIFT | alu_end_msbs << R400_ALU_SIZE0_MSB_SHIFT; break; } return 1; } /** * Begin a block of texture instructions. * Create the necessary indirection. */ static int begin_tex(struct r300_emit_state * emit) { PROG_CODE; if (code->alu.length == emit->node_first_alu && code->tex.length == emit->node_first_tex) { return 1; } if (emit->current_node == 3) { error("Too many texture indirections"); return 0; } if (!finish_node(emit)) return 0; emit->current_node++; emit->node_first_tex = code->tex.length; emit->node_first_alu = code->alu.length; emit->node_flags = 0; return 1; } static int emit_tex(struct r300_emit_state * emit, struct rc_instruction * inst) { unsigned int unit; unsigned int dest; unsigned int opcode; PROG_CODE; if (code->tex.length >= emit->compiler->Base.max_tex_insts) { error("Too many TEX instructions"); return 0; } unit = inst->U.I.TexSrcUnit; dest = inst->U.I.DstReg.Index; switch(inst->U.I.Opcode) { case RC_OPCODE_KIL: opcode = R300_TEX_OP_KIL; break; case RC_OPCODE_TEX: opcode = R300_TEX_OP_LD; break; case RC_OPCODE_TXB: opcode = R300_TEX_OP_TXB; break; case RC_OPCODE_TXP: opcode = R300_TEX_OP_TXP; break; default: error("Unknown texture opcode %s", rc_get_opcode_info(inst->U.I.Opcode)->Name); return 0; } if (inst->U.I.Opcode == RC_OPCODE_KIL) { unit = 0; dest = 0; } else { use_temporary(code, dest); } use_temporary(code, inst->U.I.SrcReg[0].Index); code->tex.inst[code->tex.length++] = ((inst->U.I.SrcReg[0].Index << R300_SRC_ADDR_SHIFT) & R300_SRC_ADDR_MASK) | ((dest << R300_DST_ADDR_SHIFT) & R300_DST_ADDR_MASK) | (unit << R300_TEX_ID_SHIFT) | (opcode << R300_TEX_INST_SHIFT) | (inst->U.I.SrcReg[0].Index >= R300_PFS_NUM_TEMP_REGS ? R400_SRC_ADDR_EXT_BIT : 0) | (dest >= R300_PFS_NUM_TEMP_REGS ? R400_DST_ADDR_EXT_BIT : 0) ; return 1; } /** * Final compilation step: Turn the intermediate radeon_program into * machine-readable instructions. */ void r300BuildFragmentProgramHwCode(struct radeon_compiler *c, void *user) { struct r300_fragment_program_compiler *compiler = (struct r300_fragment_program_compiler*)c; struct r300_emit_state emit; struct r300_fragment_program_code *code = &compiler->code->code.r300; unsigned int tex_end; memset(&emit, 0, sizeof(emit)); emit.compiler = compiler; memset(code, 0, sizeof(struct r300_fragment_program_code)); for(struct rc_instruction * inst = compiler->Base.Program.Instructions.Next; inst != &compiler->Base.Program.Instructions && !compiler->Base.Error; inst = inst->Next) { if (inst->Type == RC_INSTRUCTION_NORMAL) { if (inst->U.I.Opcode == RC_OPCODE_BEGIN_TEX) { begin_tex(&emit); continue; } emit_tex(&emit, inst); } else { emit_alu(&emit, &inst->U.P); } } if (code->pixsize >= compiler->Base.max_temp_regs) rc_error(&compiler->Base, "Too many hardware temporaries used.\n"); if (compiler->Base.Error) return; /* Finish the program */ finish_node(&emit); code->config |= emit.current_node; /* FIRST_NODE_HAS_TEX set by finish_node */ /* Set r400 extended instruction fields. These values will be ignored * on r300 cards. */ code->r400_code_offset_ext |= (get_msbs_alu(0) << R400_ALU_OFFSET_MSB_SHIFT) | (get_msbs_alu(code->alu.length - 1) << R400_ALU_SIZE_MSB_SHIFT); tex_end = code->tex.length ? code->tex.length - 1 : 0; code->code_offset = ((0 << R300_PFS_CNTL_ALU_OFFSET_SHIFT) & R300_PFS_CNTL_ALU_OFFSET_MASK) | (((code->alu.length - 1) << R300_PFS_CNTL_ALU_END_SHIFT) & R300_PFS_CNTL_ALU_END_MASK) | ((0 << R300_PFS_CNTL_TEX_OFFSET_SHIFT) & R300_PFS_CNTL_TEX_OFFSET_MASK) | ((tex_end << R300_PFS_CNTL_TEX_END_SHIFT) & R300_PFS_CNTL_TEX_END_MASK) | (get_msbs_tex(0, 5) << R400_TEX_START_MSB_SHIFT) | (get_msbs_tex(tex_end, 6) << R400_TEX_SIZE_MSB_SHIFT) ; if (emit.current_node < 3) { int shift = 3 - emit.current_node; int i; for(i = emit.current_node; i >= 0; --i) code->code_addr[shift + i] = code->code_addr[i]; for(i = 0; i < shift; ++i) code->code_addr[i] = 0; } if (code->pixsize >= R300_PFS_NUM_TEMP_REGS || code->alu.length > R300_PFS_MAX_ALU_INST || code->tex.length > R300_PFS_MAX_TEX_INST) { code->r390_mode = 1; } }