/* * Mesa 3-D graphics library * Version: 7.5 * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file imports.h * Standard C library function wrappers. * * This file provides wrappers for all the standard C library functions * like malloc(), free(), printf(), getenv(), etc. */ #ifndef IMPORTS_H #define IMPORTS_H #include "compiler.h" #include "glheader.h" #include "errors.h" #ifdef __cplusplus extern "C" { #endif /**********************************************************************/ /** Memory macros */ /*@{*/ /** Allocate \p BYTES bytes */ #define MALLOC(BYTES) malloc(BYTES) /** Allocate and zero \p BYTES bytes */ #define CALLOC(BYTES) calloc(1, BYTES) /** Allocate a structure of type \p T */ #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T)) /** Allocate and zero a structure of type \p T */ #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T)) /** Free memory */ #define FREE(PTR) free(PTR) /*@}*/ /* * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers * as offsets into buffer stores. Since the vertex array pointer and * buffer store pointer are both pointers and we need to add them, we use * this macro. * Both pointers/offsets are expressed in bytes. */ #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) ) /** * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float * as a int (thereby using integer registers instead of FP registers) is * a performance win. Typically, this can be done with ordinary casts. * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0) * these casts generate warnings. * The following union typedef is used to solve that. */ typedef union { GLfloat f; GLint i; GLuint u; } fi_type; /********************************************************************** * Math macros */ #define MAX_GLUSHORT 0xffff #define MAX_GLUINT 0xffffffff /* Degrees to radians conversion: */ #define DEG2RAD (M_PI/180.0) /*** *** SQRTF: single-precision square root ***/ #define SQRTF(X) (float) sqrt((float) (X)) /*** *** INV_SQRTF: single-precision inverse square root ***/ #define INV_SQRTF(X) (1.0F / SQRTF(X)) /** * \name Work-arounds for platforms that lack C99 math functions */ /*@{*/ #if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \ && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \ && (!defined(_MSC_VER) || (_MSC_VER < 1400)) #define acosf(f) ((float) acos(f)) #define asinf(f) ((float) asin(f)) #define atan2f(x,y) ((float) atan2(x,y)) #define atanf(f) ((float) atan(f)) #define ceilf(f) ((float) ceil(f)) #define cosf(f) ((float) cos(f)) #define coshf(f) ((float) cosh(f)) #define expf(f) ((float) exp(f)) #define exp2f(f) ((float) exp2(f)) #define floorf(f) ((float) floor(f)) #define logf(f) ((float) log(f)) #ifdef ANDROID #define log2f(f) (logf(f) * (float) (1.0 / M_LN2)) #else #define log2f(f) ((float) log2(f)) #endif #define powf(x,y) ((float) pow(x,y)) #define sinf(f) ((float) sin(f)) #define sinhf(f) ((float) sinh(f)) #define sqrtf(f) ((float) sqrt(f)) #define tanf(f) ((float) tan(f)) #define tanhf(f) ((float) tanh(f)) #define acoshf(f) ((float) acosh(f)) #define asinhf(f) ((float) asinh(f)) #define atanhf(f) ((float) atanh(f)) #endif #if defined(_MSC_VER) static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); } static inline float exp2f(float x) { return powf(2.0f, x); } static inline float log2f(float x) { return logf(x) * 1.442695041f; } static inline float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); } static inline float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); } static inline float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; } static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; } #define strtoll(p, e, b) _strtoi64(p, e, b) #endif /*@}*/ /*** *** LOG2: Log base 2 of float ***/ #ifdef USE_IEEE #if 0 /* This is pretty fast, but not accurate enough (only 2 fractional bits). * Based on code from http://www.stereopsis.com/log2.html */ static inline GLfloat LOG2(GLfloat x) { const GLfloat y = x * x * x * x; const GLuint ix = *((GLuint *) &y); const GLuint exp = (ix >> 23) & 0xFF; const GLint log2 = ((GLint) exp) - 127; return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */ } #endif /* Pretty fast, and accurate. * Based on code from http://www.flipcode.com/totd/ */ static inline GLfloat LOG2(GLfloat val) { fi_type num; GLint log_2; num.f = val; log_2 = ((num.i >> 23) & 255) - 128; num.i &= ~(255 << 23); num.i += 127 << 23; num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3; return num.f + log_2; } #else /* * NOTE: log_base_2(x) = log(x) / log(2) * NOTE: 1.442695 = 1/log(2). */ #define LOG2(x) ((GLfloat) (log(x) * 1.442695F)) #endif /*** *** IS_INF_OR_NAN: test if float is infinite or NaN ***/ #ifdef USE_IEEE static inline int IS_INF_OR_NAN( float x ) { fi_type tmp; tmp.f = x; return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31); } #elif defined(isfinite) #define IS_INF_OR_NAN(x) (!isfinite(x)) #elif defined(finite) #define IS_INF_OR_NAN(x) (!finite(x)) #elif defined(__VMS) #define IS_INF_OR_NAN(x) (!finite(x)) #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define IS_INF_OR_NAN(x) (!isfinite(x)) #else #define IS_INF_OR_NAN(x) (!finite(x)) #endif /*** *** IS_NEGATIVE: test if float is negative ***/ #if defined(USE_IEEE) static inline int GET_FLOAT_BITS( float x ) { fi_type fi; fi.f = x; return fi.i; } #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0) #else #define IS_NEGATIVE(x) (x < 0.0F) #endif /*** *** DIFFERENT_SIGNS: test if two floats have opposite signs ***/ #if defined(USE_IEEE) #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31)) #else /* Could just use (x*y<0) except for the flatshading requirements. * Maybe there's a better way? */ #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F) #endif /*** *** CEILF: ceiling of float *** FLOORF: floor of float *** FABSF: absolute value of float *** LOGF: the natural logarithm (base e) of the value *** EXPF: raise e to the value *** LDEXPF: multiply value by an integral power of two *** FREXPF: extract mantissa and exponent from value ***/ #if defined(__gnu_linux__) /* C99 functions */ #define CEILF(x) ceilf(x) #define FLOORF(x) floorf(x) #define FABSF(x) fabsf(x) #define LOGF(x) logf(x) #define EXPF(x) expf(x) #define LDEXPF(x,y) ldexpf(x,y) #define FREXPF(x,y) frexpf(x,y) #else #define CEILF(x) ((GLfloat) ceil(x)) #define FLOORF(x) ((GLfloat) floor(x)) #define FABSF(x) ((GLfloat) fabs(x)) #define LOGF(x) ((GLfloat) log(x)) #define EXPF(x) ((GLfloat) exp(x)) #define LDEXPF(x,y) ((GLfloat) ldexp(x,y)) #define FREXPF(x,y) ((GLfloat) frexp(x,y)) #endif /** * Convert float to int by rounding to nearest integer, away from zero. */ static inline int IROUND(float f) { return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F)); } /** * Convert float to int64 by rounding to nearest integer. */ static inline GLint64 IROUND64(float f) { return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F)); } /** * Convert positive float to int by rounding to nearest integer. */ static inline int IROUND_POS(float f) { assert(f >= 0.0F); return (int) (f + 0.5F); } /** * Convert float to int using a fast method. The rounding mode may vary. * XXX We could use an x86-64/SSE2 version here. */ #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) static inline int F_TO_I(float f) { int r; __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st"); return r; } #elif defined(USE_X86_ASM) && defined(_MSC_VER) static inline int F_TO_I(float f) { int r; _asm { fld f fistp r } return r; } #elif defined(__WATCOMC__) && defined(__386__) long F_TO_I(float f); #pragma aux iround = \ "push eax" \ "fistp dword ptr [esp]" \ "pop eax" \ parm [8087] \ value [eax] \ modify exact [eax]; #else #define F_TO_I(f) IROUND(f) #endif /*** *** IFLOOR: return (as an integer) floor of float ***/ #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) /* * IEEE floor for computers that round to nearest or even. * 'f' must be between -4194304 and 4194303. * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1", * but uses some IEEE specific tricks for better speed. * Contributed by Josh Vanderhoof */ static inline int ifloor(float f) { int ai, bi; double af, bf; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; /* GCC generates an extra fstp/fld without this. */ __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); return (ai - bi) >> 1; } #define IFLOOR(x) ifloor(x) #elif defined(USE_IEEE) static inline int ifloor(float f) { int ai, bi; double af, bf; fi_type u; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; u.f = (float) af; ai = u.i; u.f = (float) bf; bi = u.i; return (ai - bi) >> 1; } #define IFLOOR(x) ifloor(x) #else static inline int ifloor(float f) { int i = IROUND(f); return (i > f) ? i - 1 : i; } #define IFLOOR(x) ifloor(x) #endif /*** *** ICEIL: return (as an integer) ceiling of float ***/ #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) /* * IEEE ceil for computers that round to nearest or even. * 'f' must be between -4194304 and 4194303. * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1", * but uses some IEEE specific tricks for better speed. * Contributed by Josh Vanderhoof */ static inline int iceil(float f) { int ai, bi; double af, bf; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; /* GCC generates an extra fstp/fld without this. */ __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); return (ai - bi + 1) >> 1; } #define ICEIL(x) iceil(x) #elif defined(USE_IEEE) static inline int iceil(float f) { int ai, bi; double af, bf; fi_type u; af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; u.f = (float) af; ai = u.i; u.f = (float) bf; bi = u.i; return (ai - bi + 1) >> 1; } #define ICEIL(x) iceil(x) #else static inline int iceil(float f) { int i = IROUND(f); return (i < f) ? i + 1 : i; } #define ICEIL(x) iceil(x) #endif /** * Is x a power of two? */ static inline int _mesa_is_pow_two(int x) { return !(x & (x - 1)); } /** * Round given integer to next higer power of two * If X is zero result is undefined. * * Source for the fallback implementation is * Sean Eron Anderson's webpage "Bit Twiddling Hacks" * http://graphics.stanford.edu/~seander/bithacks.html * * When using builtin function have to do some work * for case when passed values 1 to prevent hiting * undefined result from __builtin_clz. Undefined * results would be different depending on optimization * level used for build. */ static inline int32_t _mesa_next_pow_two_32(uint32_t x) { #if defined(__GNUC__) && \ ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ uint32_t y = (x != 1); return (1 + y) << ((__builtin_clz(x - y) ^ 31) ); #else x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x; #endif } static inline int64_t _mesa_next_pow_two_64(uint64_t x) { #if defined(__GNUC__) && \ ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ uint64_t y = (x != 1); if (sizeof(x) == sizeof(long)) return (1 + y) << ((__builtin_clzl(x - y) ^ 63)); else return (1 + y) << ((__builtin_clzll(x - y) ^ 63)); #else x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x |= x >> 32; x++; return x; #endif } /* * Returns the floor form of binary logarithm for a 32-bit integer. */ static inline GLuint _mesa_logbase2(GLuint n) { #if defined(__GNUC__) && \ ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ return (31 - __builtin_clz(n | 1)); #else GLuint pos = 0; if (n >= 1<<16) { n >>= 16; pos += 16; } if (n >= 1<< 8) { n >>= 8; pos += 8; } if (n >= 1<< 4) { n >>= 4; pos += 4; } if (n >= 1<< 2) { n >>= 2; pos += 2; } if (n >= 1<< 1) { pos += 1; } return pos; #endif } /** * Return 1 if this is a little endian machine, 0 if big endian. */ static inline GLboolean _mesa_little_endian(void) { const GLuint ui = 1; /* intentionally not static */ return *((const GLubyte *) &ui); } /********************************************************************** * Functions */ extern void * _mesa_align_malloc( size_t bytes, unsigned long alignment ); extern void * _mesa_align_calloc( size_t bytes, unsigned long alignment ); extern void _mesa_align_free( void *ptr ); extern void * _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize, unsigned long alignment); extern void * _mesa_exec_malloc( GLuint size ); extern void _mesa_exec_free( void *addr ); extern void * _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize ); #ifndef FFS_DEFINED #define FFS_DEFINED 1 #ifdef __GNUC__ #if defined(__MINGW32__) || defined(__CYGWIN__) || defined(ANDROID) || defined(__APPLE__) #define ffs __builtin_ffs #define ffsll __builtin_ffsll #endif #else extern int ffs(int i); extern int ffsll(long long int i); #endif /*__ GNUC__ */ #endif /* FFS_DEFINED */ #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ #define _mesa_bitcount(i) __builtin_popcount(i) #define _mesa_bitcount_64(i) __builtin_popcountll(i) #else extern unsigned int _mesa_bitcount(unsigned int n); extern unsigned int _mesa_bitcount_64(uint64_t n); #endif /** * Find the last (most significant) bit set in a word. * * Essentially ffs() in the reverse direction. */ static inline unsigned int _mesa_fls(unsigned int n) { #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) return n == 0 ? 0 : 32 - __builtin_clz(n); #else unsigned int v = 1; if (n == 0) return 0; while (n >>= 1) v++; return v; #endif } extern GLhalfARB _mesa_float_to_half(float f); extern float _mesa_half_to_float(GLhalfARB h); extern void * _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *) ); extern char * _mesa_getenv( const char *var ); extern char * _mesa_strdup( const char *s ); extern float _mesa_strtof( const char *s, char **end ); extern unsigned int _mesa_str_checksum(const char *str); extern int _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4); extern int _mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg); #if defined(_MSC_VER) && !defined(snprintf) #define snprintf _snprintf #endif #ifdef __cplusplus } #endif #endif /* IMPORTS_H */