/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "local_value_numbering.h" #include "global_value_numbering.h" #include "mir_field_info.h" #include "mir_graph.h" namespace art { namespace { // anonymous namespace // Operations used for value map keys instead of actual opcode. static constexpr uint16_t kInvokeMemoryVersionBumpOp = Instruction::INVOKE_VIRTUAL; static constexpr uint16_t kUnresolvedSFieldOp = Instruction::SGET; static constexpr uint16_t kResolvedSFieldOp = Instruction::SGET_WIDE; static constexpr uint16_t kUnresolvedIFieldOp = Instruction::IGET; static constexpr uint16_t kNonAliasingIFieldLocOp = Instruction::IGET_WIDE; static constexpr uint16_t kNonAliasingIFieldInitialOp = Instruction::IGET_OBJECT; static constexpr uint16_t kAliasingIFieldOp = Instruction::IGET_BOOLEAN; static constexpr uint16_t kAliasingIFieldStartVersionOp = Instruction::IGET_BYTE; static constexpr uint16_t kAliasingIFieldBumpVersionOp = Instruction::IGET_CHAR; static constexpr uint16_t kNonAliasingArrayOp = Instruction::AGET; static constexpr uint16_t kNonAliasingArrayStartVersionOp = Instruction::AGET_WIDE; static constexpr uint16_t kNonAliasingArrayBumpVersionOp = Instruction::AGET_OBJECT; static constexpr uint16_t kAliasingArrayOp = Instruction::AGET_BOOLEAN; static constexpr uint16_t kAliasingArrayStartVersionOp = Instruction::AGET_BYTE; static constexpr uint16_t kAliasingArrayBumpVersionOp = Instruction::AGET_CHAR; static constexpr uint16_t kMergeBlockMemoryVersionBumpOp = Instruction::INVOKE_VIRTUAL_RANGE; static constexpr uint16_t kMergeBlockAliasingIFieldVersionBumpOp = Instruction::IPUT; static constexpr uint16_t kMergeBlockAliasingIFieldMergeLocationOp = Instruction::IPUT_WIDE; static constexpr uint16_t kMergeBlockNonAliasingArrayVersionBumpOp = Instruction::APUT; static constexpr uint16_t kMergeBlockNonAliasingArrayMergeLocationOp = Instruction::APUT_WIDE; static constexpr uint16_t kMergeBlockAliasingArrayVersionBumpOp = Instruction::APUT_OBJECT; static constexpr uint16_t kMergeBlockAliasingArrayMergeLocationOp = Instruction::APUT_BOOLEAN; static constexpr uint16_t kMergeBlockNonAliasingIFieldVersionBumpOp = Instruction::APUT_BYTE; static constexpr uint16_t kMergeBlockSFieldVersionBumpOp = Instruction::APUT_CHAR; } // anonymous namespace class LocalValueNumbering::AliasingIFieldVersions { public: static uint16_t StartMemoryVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, uint16_t field_id) { uint16_t type = gvn->GetFieldType(field_id); return gvn->LookupValue(kAliasingIFieldStartVersionOp, field_id, lvn->global_memory_version_, lvn->unresolved_ifield_version_[type]); } static uint16_t BumpMemoryVersion(GlobalValueNumbering* gvn, uint16_t old_version, uint16_t store_ref_set_id, uint16_t stored_value) { return gvn->LookupValue(kAliasingIFieldBumpVersionOp, old_version, store_ref_set_id, stored_value); } static uint16_t LookupGlobalValue(GlobalValueNumbering* gvn, uint16_t field_id, uint16_t base, uint16_t memory_version) { return gvn->LookupValue(kAliasingIFieldOp, field_id, base, memory_version); } static uint16_t LookupMergeValue(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, uint16_t field_id, uint16_t base) { // If the base/field_id is non-aliasing in lvn, use the non-aliasing value. uint16_t type = gvn->GetFieldType(field_id); if (lvn->IsNonAliasingIField(base, field_id, type)) { uint16_t loc = gvn->LookupValue(kNonAliasingIFieldLocOp, base, field_id, type); auto lb = lvn->non_aliasing_ifield_value_map_.find(loc); return (lb != lvn->non_aliasing_ifield_value_map_.end()) ? lb->second : gvn->LookupValue(kNonAliasingIFieldInitialOp, loc, kNoValue, kNoValue); } return AliasingValuesMergeGet<AliasingIFieldVersions>( gvn, lvn, &lvn->aliasing_ifield_value_map_, field_id, base); } static bool HasNewBaseVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, uint16_t field_id) { uint16_t type = gvn->GetFieldType(field_id); return lvn->unresolved_ifield_version_[type] == lvn->merge_new_memory_version_ || lvn->global_memory_version_ == lvn->merge_new_memory_version_; } static uint16_t LookupMergeBlockValue(GlobalValueNumbering* gvn, uint16_t lvn_id, uint16_t field_id) { return gvn->LookupValue(kMergeBlockAliasingIFieldVersionBumpOp, field_id, kNoValue, lvn_id); } static uint16_t LookupMergeLocationValue(GlobalValueNumbering* gvn, uint16_t lvn_id, uint16_t field_id, uint16_t base) { return gvn->LookupValue(kMergeBlockAliasingIFieldMergeLocationOp, field_id, base, lvn_id); } }; class LocalValueNumbering::NonAliasingArrayVersions { public: static uint16_t StartMemoryVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, uint16_t array) { return gvn->LookupValue(kNonAliasingArrayStartVersionOp, array, kNoValue, kNoValue); } static uint16_t BumpMemoryVersion(GlobalValueNumbering* gvn, uint16_t old_version, uint16_t store_ref_set_id, uint16_t stored_value) { return gvn->LookupValue(kNonAliasingArrayBumpVersionOp, old_version, store_ref_set_id, stored_value); } static uint16_t LookupGlobalValue(GlobalValueNumbering* gvn, uint16_t array, uint16_t index, uint16_t memory_version) { return gvn->LookupValue(kNonAliasingArrayOp, array, index, memory_version); } static uint16_t LookupMergeValue(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, uint16_t array, uint16_t index) { return AliasingValuesMergeGet<NonAliasingArrayVersions>( gvn, lvn, &lvn->non_aliasing_array_value_map_, array, index); } static bool HasNewBaseVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, uint16_t array) { return false; // Not affected by global_memory_version_. } static uint16_t LookupMergeBlockValue(GlobalValueNumbering* gvn, uint16_t lvn_id, uint16_t array) { return gvn->LookupValue(kMergeBlockNonAliasingArrayVersionBumpOp, array, kNoValue, lvn_id); } static uint16_t LookupMergeLocationValue(GlobalValueNumbering* gvn, uint16_t lvn_id, uint16_t array, uint16_t index) { return gvn->LookupValue(kMergeBlockNonAliasingArrayMergeLocationOp, array, index, lvn_id); } }; class LocalValueNumbering::AliasingArrayVersions { public: static uint16_t StartMemoryVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, uint16_t type) { return gvn->LookupValue(kAliasingArrayStartVersionOp, type, lvn->global_memory_version_, kNoValue); } static uint16_t BumpMemoryVersion(GlobalValueNumbering* gvn, uint16_t old_version, uint16_t store_ref_set_id, uint16_t stored_value) { return gvn->LookupValue(kAliasingArrayBumpVersionOp, old_version, store_ref_set_id, stored_value); } static uint16_t LookupGlobalValue(GlobalValueNumbering* gvn, uint16_t type, uint16_t location, uint16_t memory_version) { return gvn->LookupValue(kAliasingArrayOp, type, location, memory_version); } static uint16_t LookupMergeValue(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, uint16_t type, uint16_t location) { // If the location is non-aliasing in lvn, use the non-aliasing value. uint16_t array = gvn->GetArrayLocationBase(location); if (lvn->IsNonAliasingArray(array, type)) { uint16_t index = gvn->GetArrayLocationIndex(location); return NonAliasingArrayVersions::LookupMergeValue(gvn, lvn, array, index); } return AliasingValuesMergeGet<AliasingArrayVersions>( gvn, lvn, &lvn->aliasing_array_value_map_, type, location); } static bool HasNewBaseVersion(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, uint16_t type) { return lvn->global_memory_version_ == lvn->merge_new_memory_version_; } static uint16_t LookupMergeBlockValue(GlobalValueNumbering* gvn, uint16_t lvn_id, uint16_t type) { return gvn->LookupValue(kMergeBlockAliasingArrayVersionBumpOp, type, kNoValue, lvn_id); } static uint16_t LookupMergeLocationValue(GlobalValueNumbering* gvn, uint16_t lvn_id, uint16_t type, uint16_t location) { return gvn->LookupValue(kMergeBlockAliasingArrayMergeLocationOp, type, location, lvn_id); } }; template <typename Map> LocalValueNumbering::AliasingValues* LocalValueNumbering::GetAliasingValues( Map* map, const typename Map::key_type& key) { auto lb = map->lower_bound(key); if (lb == map->end() || map->key_comp()(key, lb->first)) { lb = map->PutBefore(lb, key, AliasingValues(this)); } return &lb->second; } template <typename Versions, typename KeyType> void LocalValueNumbering::UpdateAliasingValuesLoadVersion(const KeyType& key, AliasingValues* values) { if (values->last_load_memory_version == kNoValue) { // Get the start version that accounts for aliasing with unresolved fields of the same // type and make it unique for the field by including the field_id. uint16_t memory_version = values->memory_version_before_stores; if (memory_version == kNoValue) { memory_version = Versions::StartMemoryVersion(gvn_, this, key); } if (!values->store_loc_set.empty()) { uint16_t ref_set_id = gvn_->GetRefSetId(values->store_loc_set); memory_version = Versions::BumpMemoryVersion(gvn_, memory_version, ref_set_id, values->last_stored_value); } values->last_load_memory_version = memory_version; } } template <typename Versions, typename Map> uint16_t LocalValueNumbering::AliasingValuesMergeGet(GlobalValueNumbering* gvn, const LocalValueNumbering* lvn, Map* map, const typename Map::key_type& key, uint16_t location) { // Retrieve the value name that we would get from // const_cast<LocalValueNumbering*>(lvn)->HandleAliasingValueGet(map. key, location) // but don't modify the map. uint16_t value_name; auto it = map->find(key); if (it == map->end()) { uint16_t start_version = Versions::StartMemoryVersion(gvn, lvn, key); value_name = Versions::LookupGlobalValue(gvn, key, location, start_version); } else if (it->second.store_loc_set.count(location) != 0u) { value_name = it->second.last_stored_value; } else { auto load_it = it->second.load_value_map.find(location); if (load_it != it->second.load_value_map.end()) { value_name = load_it->second; } else { value_name = Versions::LookupGlobalValue(gvn, key, location, it->second.last_load_memory_version); } } return value_name; } template <typename Versions, typename Map> uint16_t LocalValueNumbering::HandleAliasingValuesGet(Map* map, const typename Map::key_type& key, uint16_t location) { // Retrieve the value name for IGET/SGET/AGET, update the map with new value if any. uint16_t res; AliasingValues* values = GetAliasingValues(map, key); if (values->store_loc_set.count(location) != 0u) { res = values->last_stored_value; } else { UpdateAliasingValuesLoadVersion<Versions>(key, values); auto lb = values->load_value_map.lower_bound(location); if (lb != values->load_value_map.end() && lb->first == location) { res = lb->second; } else { res = Versions::LookupGlobalValue(gvn_, key, location, values->last_load_memory_version); values->load_value_map.PutBefore(lb, location, res); } } return res; } template <typename Versions, typename Map> bool LocalValueNumbering::HandleAliasingValuesPut(Map* map, const typename Map::key_type& key, uint16_t location, uint16_t value) { AliasingValues* values = GetAliasingValues(map, key); auto load_values_it = values->load_value_map.find(location); if (load_values_it != values->load_value_map.end() && load_values_it->second == value) { // This insn can be eliminated, it stores the same value that's already in the field. return false; } if (value == values->last_stored_value) { auto store_loc_lb = values->store_loc_set.lower_bound(location); if (store_loc_lb != values->store_loc_set.end() && *store_loc_lb == location) { // This insn can be eliminated, it stores the same value that's already in the field. return false; } values->store_loc_set.emplace_hint(store_loc_lb, location); } else { UpdateAliasingValuesLoadVersion<Versions>(key, values); values->memory_version_before_stores = values->last_load_memory_version; values->last_stored_value = value; values->store_loc_set.clear(); values->store_loc_set.insert(location); } // Clear the last load memory version and remove all potentially overwritten values. values->last_load_memory_version = kNoValue; auto it = values->load_value_map.begin(), end = values->load_value_map.end(); while (it != end) { if (it->second == value) { ++it; } else { it = values->load_value_map.erase(it); } } return true; } template <typename K> void LocalValueNumbering::CopyAliasingValuesMap(ScopedArenaSafeMap<K, AliasingValues>* dest, const ScopedArenaSafeMap<K, AliasingValues>& src) { // We need each new AliasingValues (or rather its map members) to be constructed // with our allocator, rather than the allocator of the source. for (const auto& entry : src) { auto it = dest->PutBefore(dest->end(), entry.first, AliasingValues(this)); it->second = entry.second; // Map assignments preserve current allocator. } } LocalValueNumbering::LocalValueNumbering(GlobalValueNumbering* gvn, uint16_t id, ScopedArenaAllocator* allocator) : gvn_(gvn), id_(id), sreg_value_map_(std::less<uint16_t>(), allocator->Adapter()), sreg_wide_value_map_(std::less<uint16_t>(), allocator->Adapter()), sfield_value_map_(std::less<uint16_t>(), allocator->Adapter()), non_aliasing_ifield_value_map_(std::less<uint16_t>(), allocator->Adapter()), aliasing_ifield_value_map_(std::less<uint16_t>(), allocator->Adapter()), non_aliasing_array_value_map_(std::less<uint16_t>(), allocator->Adapter()), aliasing_array_value_map_(std::less<uint16_t>(), allocator->Adapter()), global_memory_version_(0u), non_aliasing_refs_(std::less<uint16_t>(), allocator->Adapter()), escaped_refs_(std::less<uint16_t>(), allocator->Adapter()), escaped_ifield_clobber_set_(EscapedIFieldClobberKeyComparator(), allocator->Adapter()), escaped_array_clobber_set_(EscapedArrayClobberKeyComparator(), allocator->Adapter()), range_checked_(RangeCheckKeyComparator() , allocator->Adapter()), null_checked_(std::less<uint16_t>(), allocator->Adapter()), merge_names_(allocator->Adapter()), merge_map_(std::less<ScopedArenaVector<BasicBlockId>>(), allocator->Adapter()), merge_new_memory_version_(kNoValue) { std::fill_n(unresolved_sfield_version_, kFieldTypeCount, 0u); std::fill_n(unresolved_ifield_version_, kFieldTypeCount, 0u); } bool LocalValueNumbering::Equals(const LocalValueNumbering& other) const { DCHECK(gvn_ == other.gvn_); // Compare the maps/sets and memory versions. return sreg_value_map_ == other.sreg_value_map_ && sreg_wide_value_map_ == other.sreg_wide_value_map_ && sfield_value_map_ == other.sfield_value_map_ && non_aliasing_ifield_value_map_ == other.non_aliasing_ifield_value_map_ && aliasing_ifield_value_map_ == other.aliasing_ifield_value_map_ && non_aliasing_array_value_map_ == other.non_aliasing_array_value_map_ && aliasing_array_value_map_ == other.aliasing_array_value_map_ && SameMemoryVersion(other) && non_aliasing_refs_ == other.non_aliasing_refs_ && escaped_refs_ == other.escaped_refs_ && escaped_ifield_clobber_set_ == other.escaped_ifield_clobber_set_ && escaped_array_clobber_set_ == other.escaped_array_clobber_set_ && range_checked_ == other.range_checked_ && null_checked_ == other.null_checked_; } void LocalValueNumbering::MergeOne(const LocalValueNumbering& other, MergeType merge_type) { CopyLiveSregValues(&sreg_value_map_, other.sreg_value_map_); CopyLiveSregValues(&sreg_wide_value_map_, other.sreg_wide_value_map_); if (merge_type == kReturnMerge) { // RETURN or PHI+RETURN. We need only sreg value maps. return; } non_aliasing_ifield_value_map_ = other.non_aliasing_ifield_value_map_; CopyAliasingValuesMap(&non_aliasing_array_value_map_, other.non_aliasing_array_value_map_); non_aliasing_refs_ = other.non_aliasing_refs_; range_checked_ = other.range_checked_; null_checked_ = other.null_checked_; if (merge_type == kCatchMerge) { // Memory is clobbered. Use new memory version and don't merge aliasing locations. global_memory_version_ = NewMemoryVersion(&merge_new_memory_version_); std::fill_n(unresolved_sfield_version_, kFieldTypeCount, global_memory_version_); std::fill_n(unresolved_ifield_version_, kFieldTypeCount, global_memory_version_); PruneNonAliasingRefsForCatch(); return; } DCHECK(merge_type == kNormalMerge); global_memory_version_ = other.global_memory_version_; std::copy_n(other.unresolved_ifield_version_, kFieldTypeCount, unresolved_ifield_version_); std::copy_n(other.unresolved_sfield_version_, kFieldTypeCount, unresolved_sfield_version_); sfield_value_map_ = other.sfield_value_map_; CopyAliasingValuesMap(&aliasing_ifield_value_map_, other.aliasing_ifield_value_map_); CopyAliasingValuesMap(&aliasing_array_value_map_, other.aliasing_array_value_map_); escaped_refs_ = other.escaped_refs_; escaped_ifield_clobber_set_ = other.escaped_ifield_clobber_set_; escaped_array_clobber_set_ = other.escaped_array_clobber_set_; } bool LocalValueNumbering::SameMemoryVersion(const LocalValueNumbering& other) const { return global_memory_version_ == other.global_memory_version_ && std::equal(unresolved_ifield_version_, unresolved_ifield_version_ + kFieldTypeCount, other.unresolved_ifield_version_) && std::equal(unresolved_sfield_version_, unresolved_sfield_version_ + kFieldTypeCount, other.unresolved_sfield_version_); } uint16_t LocalValueNumbering::NewMemoryVersion(uint16_t* new_version) { if (*new_version == kNoValue) { *new_version = gvn_->LookupValue(kMergeBlockMemoryVersionBumpOp, 0u, 0u, id_); } return *new_version; } void LocalValueNumbering::MergeMemoryVersions(bool clobbered_catch) { DCHECK_GE(gvn_->merge_lvns_.size(), 2u); const LocalValueNumbering* cmp = gvn_->merge_lvns_[0]; // Check if the global version has changed. bool new_global_version = clobbered_catch; if (!new_global_version) { for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { if (lvn->global_memory_version_ != cmp->global_memory_version_) { // Use a new version for everything. new_global_version = true; break; } } } if (new_global_version) { global_memory_version_ = NewMemoryVersion(&merge_new_memory_version_); std::fill_n(unresolved_sfield_version_, kFieldTypeCount, merge_new_memory_version_); std::fill_n(unresolved_ifield_version_, kFieldTypeCount, merge_new_memory_version_); } else { // Initialize with a copy of memory versions from the comparison LVN. global_memory_version_ = cmp->global_memory_version_; std::copy_n(cmp->unresolved_ifield_version_, kFieldTypeCount, unresolved_ifield_version_); std::copy_n(cmp->unresolved_sfield_version_, kFieldTypeCount, unresolved_sfield_version_); for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { if (lvn == cmp) { continue; } for (size_t i = 0; i != kFieldTypeCount; ++i) { if (lvn->unresolved_ifield_version_[i] != cmp->unresolved_ifield_version_[i]) { unresolved_ifield_version_[i] = NewMemoryVersion(&merge_new_memory_version_); } if (lvn->unresolved_sfield_version_[i] != cmp->unresolved_sfield_version_[i]) { unresolved_sfield_version_[i] = NewMemoryVersion(&merge_new_memory_version_); } } } } } void LocalValueNumbering::PruneNonAliasingRefsForCatch() { for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { const BasicBlock* bb = gvn_->GetBasicBlock(lvn->Id()); if (UNLIKELY(bb->taken == id_) || UNLIKELY(bb->fall_through == id_)) { // Non-exceptional path to a catch handler means that the catch block was actually // empty and all exceptional paths lead to the shared path after that empty block. continue; } DCHECK_EQ(bb->taken, kNullBlock); DCHECK_NE(bb->fall_through, kNullBlock); const BasicBlock* fall_through_bb = gvn_->GetBasicBlock(bb->fall_through); const MIR* mir = fall_through_bb->first_mir_insn; DCHECK(mir != nullptr); // Only INVOKEs can leak and clobber non-aliasing references if they throw. if ((Instruction::FlagsOf(mir->dalvikInsn.opcode) & Instruction::kInvoke) != 0) { for (uint16_t i = 0u; i != mir->ssa_rep->num_uses; ++i) { uint16_t value_name = lvn->GetOperandValue(mir->ssa_rep->uses[i]); non_aliasing_refs_.erase(value_name); } } } } template <typename Set, Set LocalValueNumbering::* set_ptr> void LocalValueNumbering::IntersectSets() { DCHECK_GE(gvn_->merge_lvns_.size(), 2u); // Find the LVN with the least entries in the set. const LocalValueNumbering* least_entries_lvn = gvn_->merge_lvns_[0]; for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { if ((lvn->*set_ptr).size() < (least_entries_lvn->*set_ptr).size()) { least_entries_lvn = lvn; } } // For each key check if it's in all the LVNs. for (const auto& key : least_entries_lvn->*set_ptr) { bool checked = true; for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { if (lvn != least_entries_lvn && (lvn->*set_ptr).count(key) == 0u) { checked = false; break; } } if (checked) { (this->*set_ptr).emplace_hint((this->*set_ptr).end(), key); } } } void LocalValueNumbering::CopyLiveSregValues(SregValueMap* dest, const SregValueMap& src) { auto dest_end = dest->end(); ArenaBitVector* live_in_v = gvn_->GetMirGraph()->GetBasicBlock(id_)->data_flow_info->live_in_v; DCHECK(live_in_v != nullptr); for (const auto& entry : src) { bool live = live_in_v->IsBitSet(gvn_->GetMirGraph()->SRegToVReg(entry.first)); if (live) { dest->PutBefore(dest_end, entry.first, entry.second); } } } template <LocalValueNumbering::SregValueMap LocalValueNumbering::* map_ptr> void LocalValueNumbering::IntersectSregValueMaps() { DCHECK_GE(gvn_->merge_lvns_.size(), 2u); // Find the LVN with the least entries in the set. const LocalValueNumbering* least_entries_lvn = gvn_->merge_lvns_[0]; for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { if ((lvn->*map_ptr).size() < (least_entries_lvn->*map_ptr).size()) { least_entries_lvn = lvn; } } // For each key check if it's in all the LVNs. ArenaBitVector* live_in_v = gvn_->GetMirGraph()->GetBasicBlock(id_)->data_flow_info->live_in_v; DCHECK(live_in_v != nullptr); for (const auto& entry : least_entries_lvn->*map_ptr) { bool live_and_same = live_in_v->IsBitSet(gvn_->GetMirGraph()->SRegToVReg(entry.first)); if (live_and_same) { for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { if (lvn != least_entries_lvn) { auto it = (lvn->*map_ptr).find(entry.first); if (it == (lvn->*map_ptr).end() || !(it->second == entry.second)) { live_and_same = false; break; } } } } if (live_and_same) { (this->*map_ptr).PutBefore((this->*map_ptr).end(), entry.first, entry.second); } } } // Intersect maps as sets. The value type must be equality-comparable. template <typename Map> void LocalValueNumbering::InPlaceIntersectMaps(Map* work_map, const Map& other_map) { auto work_it = work_map->begin(), work_end = work_map->end(); auto cmp = work_map->value_comp(); for (const auto& entry : other_map) { while (work_it != work_end && (cmp(*work_it, entry) || (!cmp(entry, *work_it) && !(work_it->second == entry.second)))) { work_it = work_map->erase(work_it); } if (work_it == work_end) { return; } ++work_it; } } template <typename Set, Set LocalValueNumbering::*set_ptr, void (LocalValueNumbering::*MergeFn)( const typename Set::value_type& entry, typename Set::iterator hint)> void LocalValueNumbering::MergeSets() { auto cmp = (this->*set_ptr).value_comp(); for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { auto my_it = (this->*set_ptr).begin(), my_end = (this->*set_ptr).end(); for (const auto& entry : lvn->*set_ptr) { while (my_it != my_end && cmp(*my_it, entry)) { ++my_it; } if (my_it != my_end && !cmp(entry, *my_it)) { // Already handled. ++my_it; } else { // Merge values for this field_id. (this->*MergeFn)(entry, my_it); // my_it remains valid across inserts to std::set/SafeMap. } } } } void LocalValueNumbering::IntersectAliasingValueLocations(AliasingValues* work_values, const AliasingValues* values) { auto cmp = work_values->load_value_map.key_comp(); auto work_it = work_values->load_value_map.begin(), work_end = work_values->load_value_map.end(); auto store_it = values->store_loc_set.begin(), store_end = values->store_loc_set.end(); auto load_it = values->load_value_map.begin(), load_end = values->load_value_map.end(); while (store_it != store_end || load_it != load_end) { uint16_t loc; if (store_it != store_end && (load_it == load_end || *store_it < load_it->first)) { loc = *store_it; ++store_it; } else { loc = load_it->first; ++load_it; DCHECK(store_it == store_end || cmp(loc, *store_it)); } while (work_it != work_end && cmp(work_it->first, loc)) { work_it = work_values->load_value_map.erase(work_it); } if (work_it != work_end && !cmp(loc, work_it->first)) { // The location matches, keep it. ++work_it; } } while (work_it != work_end) { work_it = work_values->load_value_map.erase(work_it); } } void LocalValueNumbering::MergeEscapedRefs(const ValueNameSet::value_type& entry, ValueNameSet::iterator hint) { // See if the ref is either escaped or non-aliasing in each predecessor. bool is_escaped = true; for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { if (lvn->non_aliasing_refs_.count(entry) == 0u && lvn->escaped_refs_.count(entry) == 0u) { is_escaped = false; break; } } if (is_escaped) { escaped_refs_.emplace_hint(hint, entry); } } void LocalValueNumbering::MergeEscapedIFieldTypeClobberSets( const EscapedIFieldClobberSet::value_type& entry, EscapedIFieldClobberSet::iterator hint) { // Insert only type-clobber entries (field_id == kNoValue) of escaped refs. if (entry.field_id == kNoValue && escaped_refs_.count(entry.base) != 0u) { escaped_ifield_clobber_set_.emplace_hint(hint, entry); } } void LocalValueNumbering::MergeEscapedIFieldClobberSets( const EscapedIFieldClobberSet::value_type& entry, EscapedIFieldClobberSet::iterator hint) { // Insert only those entries of escaped refs that are not overridden by a type clobber. if (!(hint == escaped_ifield_clobber_set_.end() && hint->base == entry.base && hint->type == entry.type) && escaped_refs_.count(entry.base) != 0u) { escaped_ifield_clobber_set_.emplace_hint(hint, entry); } } void LocalValueNumbering::MergeEscapedArrayClobberSets( const EscapedArrayClobberSet::value_type& entry, EscapedArrayClobberSet::iterator hint) { if (escaped_refs_.count(entry.base) != 0u) { escaped_array_clobber_set_.emplace_hint(hint, entry); } } void LocalValueNumbering::MergeNullChecked(const ValueNameSet::value_type& entry, ValueNameSet::iterator hint) { // Merge null_checked_ for this ref. merge_names_.clear(); merge_names_.resize(gvn_->merge_lvns_.size(), entry); if (gvn_->NullCheckedInAllPredecessors(merge_names_)) { null_checked_.insert(hint, entry); } } void LocalValueNumbering::MergeSFieldValues(const SFieldToValueMap::value_type& entry, SFieldToValueMap::iterator hint) { uint16_t field_id = entry.first; merge_names_.clear(); uint16_t value_name = kNoValue; bool same_values = true; for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { // Get the value name as in HandleSGet() but don't modify *lvn. auto it = lvn->sfield_value_map_.find(field_id); if (it != lvn->sfield_value_map_.end()) { value_name = it->second; } else { uint16_t type = gvn_->GetFieldType(field_id); value_name = gvn_->LookupValue(kResolvedSFieldOp, field_id, lvn->unresolved_sfield_version_[type], lvn->global_memory_version_); } same_values = same_values && (merge_names_.empty() || value_name == merge_names_.back()); merge_names_.push_back(value_name); } if (same_values) { // value_name already contains the result. } else { auto lb = merge_map_.lower_bound(merge_names_); if (lb != merge_map_.end() && !merge_map_.key_comp()(merge_names_, lb->first)) { value_name = lb->second; } else { value_name = gvn_->LookupValue(kMergeBlockSFieldVersionBumpOp, field_id, id_, kNoValue); merge_map_.PutBefore(lb, merge_names_, value_name); if (gvn_->NullCheckedInAllPredecessors(merge_names_)) { null_checked_.insert(value_name); } } } sfield_value_map_.PutBefore(hint, field_id, value_name); } void LocalValueNumbering::MergeNonAliasingIFieldValues(const IFieldLocToValueMap::value_type& entry, IFieldLocToValueMap::iterator hint) { uint16_t field_loc = entry.first; merge_names_.clear(); uint16_t value_name = kNoValue; bool same_values = true; for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { // Get the value name as in HandleIGet() but don't modify *lvn. auto it = lvn->non_aliasing_ifield_value_map_.find(field_loc); if (it != lvn->non_aliasing_ifield_value_map_.end()) { value_name = it->second; } else { value_name = gvn_->LookupValue(kNonAliasingIFieldInitialOp, field_loc, kNoValue, kNoValue); } same_values = same_values && (merge_names_.empty() || value_name == merge_names_.back()); merge_names_.push_back(value_name); } if (same_values) { // value_name already contains the result. } else { auto lb = merge_map_.lower_bound(merge_names_); if (lb != merge_map_.end() && !merge_map_.key_comp()(merge_names_, lb->first)) { value_name = lb->second; } else { value_name = gvn_->LookupValue(kMergeBlockNonAliasingIFieldVersionBumpOp, field_loc, id_, kNoValue); merge_map_.PutBefore(lb, merge_names_, value_name); if (gvn_->NullCheckedInAllPredecessors(merge_names_)) { null_checked_.insert(value_name); } } } non_aliasing_ifield_value_map_.PutBefore(hint, field_loc, value_name); } template <typename Map, Map LocalValueNumbering::*map_ptr, typename Versions> void LocalValueNumbering::MergeAliasingValues(const typename Map::value_type& entry, typename Map::iterator hint) { const typename Map::key_type& key = entry.first; auto it = (this->*map_ptr).PutBefore(hint, key, AliasingValues(this)); AliasingValues* my_values = &it->second; const AliasingValues* cmp_values = nullptr; bool same_version = !Versions::HasNewBaseVersion(gvn_, this, key); uint16_t load_memory_version_for_same_version = kNoValue; if (same_version) { // Find the first non-null values. for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { auto it = (lvn->*map_ptr).find(key); if (it != (lvn->*map_ptr).end()) { cmp_values = &it->second; break; } } DCHECK(cmp_values != nullptr); // There must be at least one non-null values. // Check if we have identical memory versions, i.e. the global memory version, unresolved // field version and the values' memory_version_before_stores, last_stored_value // and store_loc_set are identical. for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { auto it = (lvn->*map_ptr).find(key); if (it == (lvn->*map_ptr).end()) { if (cmp_values->memory_version_before_stores != kNoValue) { same_version = false; break; } } else if (cmp_values->last_stored_value != it->second.last_stored_value || cmp_values->memory_version_before_stores != it->second.memory_version_before_stores || cmp_values->store_loc_set != it->second.store_loc_set) { same_version = false; break; } else if (it->second.last_load_memory_version != kNoValue) { DCHECK(load_memory_version_for_same_version == kNoValue || load_memory_version_for_same_version == it->second.last_load_memory_version); load_memory_version_for_same_version = it->second.last_load_memory_version; } } } if (same_version) { // Copy the identical values. my_values->memory_version_before_stores = cmp_values->memory_version_before_stores; my_values->last_stored_value = cmp_values->last_stored_value; my_values->store_loc_set = cmp_values->store_loc_set; my_values->last_load_memory_version = load_memory_version_for_same_version; // Merge load values seen in all incoming arcs (i.e. an intersection). if (!cmp_values->load_value_map.empty()) { my_values->load_value_map = cmp_values->load_value_map; for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { auto it = (lvn->*map_ptr).find(key); if (it == (lvn->*map_ptr).end() || it->second.load_value_map.empty()) { my_values->load_value_map.clear(); break; } InPlaceIntersectMaps(&my_values->load_value_map, it->second.load_value_map); if (my_values->load_value_map.empty()) { break; } } } } else { // Bump version number for the merge. my_values->memory_version_before_stores = my_values->last_load_memory_version = Versions::LookupMergeBlockValue(gvn_, id_, key); // Calculate the locations that have been either read from or written to in each incoming LVN. bool first_lvn = true; for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { auto it = (lvn->*map_ptr).find(key); if (it == (lvn->*map_ptr).end()) { my_values->load_value_map.clear(); break; } if (first_lvn) { first_lvn = false; // Copy the first LVN's locations. Values will be overwritten later. my_values->load_value_map = it->second.load_value_map; for (uint16_t location : it->second.store_loc_set) { my_values->load_value_map.Put(location, 0u); } } else { IntersectAliasingValueLocations(my_values, &it->second); } } // Calculate merged values for the intersection. for (auto& load_value_entry : my_values->load_value_map) { uint16_t location = load_value_entry.first; bool same_values = true; uint16_t value_name = kNoValue; merge_names_.clear(); for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { value_name = Versions::LookupMergeValue(gvn_, lvn, key, location); same_values = same_values && (merge_names_.empty() || value_name == merge_names_.back()); merge_names_.push_back(value_name); } if (same_values) { // value_name already contains the result. } else { auto lb = merge_map_.lower_bound(merge_names_); if (lb != merge_map_.end() && !merge_map_.key_comp()(merge_names_, lb->first)) { value_name = lb->second; } else { // NOTE: In addition to the key and id_ which don't change on an LVN recalculation // during GVN, we also add location which can actually change on recalculation, so the // value_name below may change. This could lead to an infinite loop if the location // value name always changed when the refereced value name changes. However, given that // we assign unique value names for other merges, such as Phis, such a dependency is // not possible in a well-formed SSA graph. value_name = Versions::LookupMergeLocationValue(gvn_, id_, key, location); merge_map_.PutBefore(lb, merge_names_, value_name); if (gvn_->NullCheckedInAllPredecessors(merge_names_)) { null_checked_.insert(value_name); } } } load_value_entry.second = value_name; } } } void LocalValueNumbering::Merge(MergeType merge_type) { DCHECK_GE(gvn_->merge_lvns_.size(), 2u); IntersectSregValueMaps<&LocalValueNumbering::sreg_value_map_>(); IntersectSregValueMaps<&LocalValueNumbering::sreg_wide_value_map_>(); if (merge_type == kReturnMerge) { // RETURN or PHI+RETURN. We need only sreg value maps. return; } MergeMemoryVersions(merge_type == kCatchMerge); // Merge non-aliasing maps/sets. IntersectSets<ValueNameSet, &LocalValueNumbering::non_aliasing_refs_>(); if (!non_aliasing_refs_.empty() && merge_type == kCatchMerge) { PruneNonAliasingRefsForCatch(); } if (!non_aliasing_refs_.empty()) { MergeSets<IFieldLocToValueMap, &LocalValueNumbering::non_aliasing_ifield_value_map_, &LocalValueNumbering::MergeNonAliasingIFieldValues>(); MergeSets<NonAliasingArrayValuesMap, &LocalValueNumbering::non_aliasing_array_value_map_, &LocalValueNumbering::MergeAliasingValues< NonAliasingArrayValuesMap, &LocalValueNumbering::non_aliasing_array_value_map_, NonAliasingArrayVersions>>(); } // We won't do anything complicated for range checks, just calculate the intersection. IntersectSets<RangeCheckSet, &LocalValueNumbering::range_checked_>(); // Merge null_checked_. We may later insert more, such as merged object field values. MergeSets<ValueNameSet, &LocalValueNumbering::null_checked_, &LocalValueNumbering::MergeNullChecked>(); if (merge_type == kCatchMerge) { // Memory is clobbered. New memory version already created, don't merge aliasing locations. return; } DCHECK(merge_type == kNormalMerge); // Merge escaped refs and clobber sets. MergeSets<ValueNameSet, &LocalValueNumbering::escaped_refs_, &LocalValueNumbering::MergeEscapedRefs>(); if (!escaped_refs_.empty()) { MergeSets<EscapedIFieldClobberSet, &LocalValueNumbering::escaped_ifield_clobber_set_, &LocalValueNumbering::MergeEscapedIFieldTypeClobberSets>(); MergeSets<EscapedIFieldClobberSet, &LocalValueNumbering::escaped_ifield_clobber_set_, &LocalValueNumbering::MergeEscapedIFieldClobberSets>(); MergeSets<EscapedArrayClobberSet, &LocalValueNumbering::escaped_array_clobber_set_, &LocalValueNumbering::MergeEscapedArrayClobberSets>(); } MergeSets<SFieldToValueMap, &LocalValueNumbering::sfield_value_map_, &LocalValueNumbering::MergeSFieldValues>(); MergeSets<AliasingIFieldValuesMap, &LocalValueNumbering::aliasing_ifield_value_map_, &LocalValueNumbering::MergeAliasingValues< AliasingIFieldValuesMap, &LocalValueNumbering::aliasing_ifield_value_map_, AliasingIFieldVersions>>(); MergeSets<AliasingArrayValuesMap, &LocalValueNumbering::aliasing_array_value_map_, &LocalValueNumbering::MergeAliasingValues< AliasingArrayValuesMap, &LocalValueNumbering::aliasing_array_value_map_, AliasingArrayVersions>>(); } uint16_t LocalValueNumbering::MarkNonAliasingNonNull(MIR* mir) { uint16_t res = GetOperandValue(mir->ssa_rep->defs[0]); DCHECK(null_checked_.find(res) == null_checked_.end()); null_checked_.insert(res); non_aliasing_refs_.insert(res); return res; } bool LocalValueNumbering::IsNonAliasing(uint16_t reg) const { return non_aliasing_refs_.find(reg) != non_aliasing_refs_.end(); } bool LocalValueNumbering::IsNonAliasingIField(uint16_t reg, uint16_t field_id, uint16_t type) const { if (IsNonAliasing(reg)) { return true; } if (escaped_refs_.find(reg) == escaped_refs_.end()) { return false; } // Check for IPUTs to unresolved fields. EscapedIFieldClobberKey key1 = { reg, type, kNoValue }; if (escaped_ifield_clobber_set_.find(key1) != escaped_ifield_clobber_set_.end()) { return false; } // Check for aliased IPUTs to the same field. EscapedIFieldClobberKey key2 = { reg, type, field_id }; return escaped_ifield_clobber_set_.find(key2) == escaped_ifield_clobber_set_.end(); } bool LocalValueNumbering::IsNonAliasingArray(uint16_t reg, uint16_t type) const { if (IsNonAliasing(reg)) { return true; } if (escaped_refs_.count(reg) == 0u) { return false; } // Check for aliased APUTs. EscapedArrayClobberKey key = { reg, type }; return escaped_array_clobber_set_.find(key) == escaped_array_clobber_set_.end(); } void LocalValueNumbering::HandleNullCheck(MIR* mir, uint16_t reg) { auto lb = null_checked_.lower_bound(reg); if (lb != null_checked_.end() && *lb == reg) { if (LIKELY(gvn_->CanModify())) { if (gvn_->GetCompilationUnit()->verbose) { LOG(INFO) << "Removing null check for 0x" << std::hex << mir->offset; } mir->optimization_flags |= MIR_IGNORE_NULL_CHECK; } } else { null_checked_.insert(lb, reg); } } void LocalValueNumbering::HandleRangeCheck(MIR* mir, uint16_t array, uint16_t index) { RangeCheckKey key = { array, index }; auto lb = range_checked_.lower_bound(key); if (lb != range_checked_.end() && !RangeCheckKeyComparator()(key, *lb)) { if (LIKELY(gvn_->CanModify())) { if (gvn_->GetCompilationUnit()->verbose) { LOG(INFO) << "Removing range check for 0x" << std::hex << mir->offset; } mir->optimization_flags |= MIR_IGNORE_RANGE_CHECK; } } else { // Mark range check completed. range_checked_.insert(lb, key); } } void LocalValueNumbering::HandlePutObject(MIR* mir) { // If we're storing a non-aliasing reference, stop tracking it as non-aliasing now. uint16_t base = GetOperandValue(mir->ssa_rep->uses[0]); HandleEscapingRef(base); } void LocalValueNumbering::HandleEscapingRef(uint16_t base) { auto it = non_aliasing_refs_.find(base); if (it != non_aliasing_refs_.end()) { non_aliasing_refs_.erase(it); escaped_refs_.insert(base); } } uint16_t LocalValueNumbering::HandlePhi(MIR* mir) { if (gvn_->merge_lvns_.empty()) { // Running LVN without a full GVN? return kNoValue; } int16_t num_uses = mir->ssa_rep->num_uses; int32_t* uses = mir->ssa_rep->uses; // Try to find out if this is merging wide regs. if (mir->ssa_rep->defs[0] != 0 && sreg_wide_value_map_.count(mir->ssa_rep->defs[0] - 1) != 0u) { // This is the high part of a wide reg. Ignore the Phi. return kNoValue; } bool wide = false; for (int16_t i = 0; i != num_uses; ++i) { if (sreg_wide_value_map_.count(uses[i]) != 0u) { wide = true; break; } } // Iterate over *merge_lvns_ and skip incoming sregs for BBs without associated LVN. uint16_t value_name = kNoValue; merge_names_.clear(); BasicBlockId* incoming = mir->meta.phi_incoming; int16_t pos = 0; bool same_values = true; for (const LocalValueNumbering* lvn : gvn_->merge_lvns_) { DCHECK_LT(pos, mir->ssa_rep->num_uses); while (incoming[pos] != lvn->Id()) { ++pos; DCHECK_LT(pos, mir->ssa_rep->num_uses); } int s_reg = uses[pos]; ++pos; value_name = wide ? lvn->GetOperandValueWide(s_reg) : lvn->GetOperandValue(s_reg); same_values = same_values && (merge_names_.empty() || value_name == merge_names_.back()); merge_names_.push_back(value_name); } if (same_values) { // value_name already contains the result. } else { auto lb = merge_map_.lower_bound(merge_names_); if (lb != merge_map_.end() && !merge_map_.key_comp()(merge_names_, lb->first)) { value_name = lb->second; } else { value_name = gvn_->LookupValue(kNoValue, mir->ssa_rep->defs[0], kNoValue, kNoValue); merge_map_.PutBefore(lb, merge_names_, value_name); if (!wide && gvn_->NullCheckedInAllPredecessors(merge_names_)) { null_checked_.insert(value_name); } } } if (wide) { SetOperandValueWide(mir->ssa_rep->defs[0], value_name); } else { SetOperandValue(mir->ssa_rep->defs[0], value_name); } return value_name; } uint16_t LocalValueNumbering::HandleAGet(MIR* mir, uint16_t opcode) { // uint16_t type = opcode - Instruction::AGET; uint16_t array = GetOperandValue(mir->ssa_rep->uses[0]); HandleNullCheck(mir, array); uint16_t index = GetOperandValue(mir->ssa_rep->uses[1]); HandleRangeCheck(mir, array, index); uint16_t type = opcode - Instruction::AGET; // Establish value number for loaded register. uint16_t res; if (IsNonAliasingArray(array, type)) { res = HandleAliasingValuesGet<NonAliasingArrayVersions>(&non_aliasing_array_value_map_, array, index); } else { uint16_t location = gvn_->GetArrayLocation(array, index); res = HandleAliasingValuesGet<AliasingArrayVersions>(&aliasing_array_value_map_, type, location); } if (opcode == Instruction::AGET_WIDE) { SetOperandValueWide(mir->ssa_rep->defs[0], res); } else { SetOperandValue(mir->ssa_rep->defs[0], res); } return res; } void LocalValueNumbering::HandleAPut(MIR* mir, uint16_t opcode) { int array_idx = (opcode == Instruction::APUT_WIDE) ? 2 : 1; int index_idx = array_idx + 1; uint16_t array = GetOperandValue(mir->ssa_rep->uses[array_idx]); HandleNullCheck(mir, array); uint16_t index = GetOperandValue(mir->ssa_rep->uses[index_idx]); HandleRangeCheck(mir, array, index); uint16_t type = opcode - Instruction::APUT; uint16_t value = (opcode == Instruction::APUT_WIDE) ? GetOperandValueWide(mir->ssa_rep->uses[0]) : GetOperandValue(mir->ssa_rep->uses[0]); if (IsNonAliasing(array)) { bool put_is_live = HandleAliasingValuesPut<NonAliasingArrayVersions>( &non_aliasing_array_value_map_, array, index, value); if (!put_is_live) { // This APUT can be eliminated, it stores the same value that's already in the field. // TODO: Eliminate the APUT. return; } } else { uint16_t location = gvn_->GetArrayLocation(array, index); bool put_is_live = HandleAliasingValuesPut<AliasingArrayVersions>( &aliasing_array_value_map_, type, location, value); if (!put_is_live) { // This APUT can be eliminated, it stores the same value that's already in the field. // TODO: Eliminate the APUT. return; } // Clobber all escaped array refs for this type. for (uint16_t escaped_array : escaped_refs_) { EscapedArrayClobberKey clobber_key = { escaped_array, type }; escaped_array_clobber_set_.insert(clobber_key); } } } uint16_t LocalValueNumbering::HandleIGet(MIR* mir, uint16_t opcode) { uint16_t base = GetOperandValue(mir->ssa_rep->uses[0]); HandleNullCheck(mir, base); const MirFieldInfo& field_info = gvn_->GetMirGraph()->GetIFieldLoweringInfo(mir); uint16_t res; if (!field_info.IsResolved() || field_info.IsVolatile()) { // Volatile fields always get a new memory version; field id is irrelevant. // Unresolved fields may be volatile, so handle them as such to be safe. // Use result s_reg - will be unique. res = gvn_->LookupValue(kNoValue, mir->ssa_rep->defs[0], kNoValue, kNoValue); } else { uint16_t type = opcode - Instruction::IGET; uint16_t field_id = gvn_->GetFieldId(field_info, type); if (IsNonAliasingIField(base, field_id, type)) { uint16_t loc = gvn_->LookupValue(kNonAliasingIFieldLocOp, base, field_id, type); auto lb = non_aliasing_ifield_value_map_.lower_bound(loc); if (lb != non_aliasing_ifield_value_map_.end() && lb->first == loc) { res = lb->second; } else { res = gvn_->LookupValue(kNonAliasingIFieldInitialOp, loc, kNoValue, kNoValue); non_aliasing_ifield_value_map_.PutBefore(lb, loc, res); } } else { res = HandleAliasingValuesGet<AliasingIFieldVersions>(&aliasing_ifield_value_map_, field_id, base); } } if (opcode == Instruction::IGET_WIDE) { SetOperandValueWide(mir->ssa_rep->defs[0], res); } else { SetOperandValue(mir->ssa_rep->defs[0], res); } return res; } void LocalValueNumbering::HandleIPut(MIR* mir, uint16_t opcode) { uint16_t type = opcode - Instruction::IPUT; int base_reg = (opcode == Instruction::IPUT_WIDE) ? 2 : 1; uint16_t base = GetOperandValue(mir->ssa_rep->uses[base_reg]); HandleNullCheck(mir, base); const MirFieldInfo& field_info = gvn_->GetMirGraph()->GetIFieldLoweringInfo(mir); if (!field_info.IsResolved()) { // Unresolved fields always alias with everything of the same type. // Use mir->offset as modifier; without elaborate inlining, it will be unique. unresolved_ifield_version_[type] = gvn_->LookupValue(kUnresolvedIFieldOp, kNoValue, kNoValue, mir->offset); // For simplicity, treat base as escaped now. HandleEscapingRef(base); // Clobber all fields of escaped references of the same type. for (uint16_t escaped_ref : escaped_refs_) { EscapedIFieldClobberKey clobber_key = { escaped_ref, type, kNoValue }; escaped_ifield_clobber_set_.insert(clobber_key); } // Aliasing fields of the same type may have been overwritten. auto it = aliasing_ifield_value_map_.begin(), end = aliasing_ifield_value_map_.end(); while (it != end) { if (gvn_->GetFieldType(it->first) != type) { ++it; } else { it = aliasing_ifield_value_map_.erase(it); } } } else if (field_info.IsVolatile()) { // Nothing to do, resolved volatile fields always get a new memory version anyway and // can't alias with resolved non-volatile fields. } else { uint16_t field_id = gvn_->GetFieldId(field_info, type); uint16_t value = (opcode == Instruction::IPUT_WIDE) ? GetOperandValueWide(mir->ssa_rep->uses[0]) : GetOperandValue(mir->ssa_rep->uses[0]); if (IsNonAliasing(base)) { uint16_t loc = gvn_->LookupValue(kNonAliasingIFieldLocOp, base, field_id, type); auto lb = non_aliasing_ifield_value_map_.lower_bound(loc); if (lb != non_aliasing_ifield_value_map_.end() && lb->first == loc) { if (lb->second == value) { // This IPUT can be eliminated, it stores the same value that's already in the field. // TODO: Eliminate the IPUT. return; } lb->second = value; // Overwrite. } else { non_aliasing_ifield_value_map_.PutBefore(lb, loc, value); } } else { bool put_is_live = HandleAliasingValuesPut<AliasingIFieldVersions>( &aliasing_ifield_value_map_, field_id, base, value); if (!put_is_live) { // This IPUT can be eliminated, it stores the same value that's already in the field. // TODO: Eliminate the IPUT. return; } // Clobber all fields of escaped references for this field. for (uint16_t escaped_ref : escaped_refs_) { EscapedIFieldClobberKey clobber_key = { escaped_ref, type, field_id }; escaped_ifield_clobber_set_.insert(clobber_key); } } } } uint16_t LocalValueNumbering::HandleSGet(MIR* mir, uint16_t opcode) { const MirSFieldLoweringInfo& field_info = gvn_->GetMirGraph()->GetSFieldLoweringInfo(mir); if (!field_info.IsInitialized() && (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) { // Class initialization can call arbitrary functions, we need to wipe aliasing values. HandleInvokeOrClInit(mir); } uint16_t res; if (!field_info.IsResolved() || field_info.IsVolatile()) { // Volatile fields always get a new memory version; field id is irrelevant. // Unresolved fields may be volatile, so handle them as such to be safe. // Use result s_reg - will be unique. res = gvn_->LookupValue(kNoValue, mir->ssa_rep->defs[0], kNoValue, kNoValue); } else { uint16_t type = opcode - Instruction::SGET; uint16_t field_id = gvn_->GetFieldId(field_info, type); auto lb = sfield_value_map_.lower_bound(field_id); if (lb != sfield_value_map_.end() && lb->first == field_id) { res = lb->second; } else { // Resolved non-volatile static fields can alias with non-resolved fields of the same type, // so we need to use unresolved_sfield_version_[type] in addition to global_memory_version_ // to determine the version of the field. res = gvn_->LookupValue(kResolvedSFieldOp, field_id, unresolved_sfield_version_[type], global_memory_version_); sfield_value_map_.PutBefore(lb, field_id, res); } } if (opcode == Instruction::SGET_WIDE) { SetOperandValueWide(mir->ssa_rep->defs[0], res); } else { SetOperandValue(mir->ssa_rep->defs[0], res); } return res; } void LocalValueNumbering::HandleSPut(MIR* mir, uint16_t opcode) { const MirSFieldLoweringInfo& field_info = gvn_->GetMirGraph()->GetSFieldLoweringInfo(mir); if (!field_info.IsInitialized() && (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) { // Class initialization can call arbitrary functions, we need to wipe aliasing values. HandleInvokeOrClInit(mir); } uint16_t type = opcode - Instruction::SPUT; if (!field_info.IsResolved()) { // Unresolved fields always alias with everything of the same type. // Use mir->offset as modifier; without elaborate inlining, it will be unique. unresolved_sfield_version_[type] = gvn_->LookupValue(kUnresolvedSFieldOp, kNoValue, kNoValue, mir->offset); RemoveSFieldsForType(type); } else if (field_info.IsVolatile()) { // Nothing to do, resolved volatile fields always get a new memory version anyway and // can't alias with resolved non-volatile fields. } else { uint16_t field_id = gvn_->GetFieldId(field_info, type); uint16_t value = (opcode == Instruction::SPUT_WIDE) ? GetOperandValueWide(mir->ssa_rep->uses[0]) : GetOperandValue(mir->ssa_rep->uses[0]); // Resolved non-volatile static fields can alias with non-resolved fields of the same type, // so we need to use unresolved_sfield_version_[type] in addition to global_memory_version_ // to determine the version of the field. auto lb = sfield_value_map_.lower_bound(field_id); if (lb != sfield_value_map_.end() && lb->first == field_id) { if (lb->second == value) { // This SPUT can be eliminated, it stores the same value that's already in the field. // TODO: Eliminate the SPUT. return; } lb->second = value; // Overwrite. } else { sfield_value_map_.PutBefore(lb, field_id, value); } } } void LocalValueNumbering::RemoveSFieldsForType(uint16_t type) { // Erase all static fields of this type from the sfield_value_map_. for (auto it = sfield_value_map_.begin(), end = sfield_value_map_.end(); it != end; ) { if (gvn_->GetFieldType(it->first) == type) { it = sfield_value_map_.erase(it); } else { ++it; } } } void LocalValueNumbering::HandleInvokeOrClInit(MIR* mir) { // Use mir->offset as modifier; without elaborate inlining, it will be unique. global_memory_version_ = gvn_->LookupValue(kInvokeMemoryVersionBumpOp, 0u, 0u, mir->offset); // All static fields and instance fields and array elements of aliasing references, // including escaped references, may have been modified. sfield_value_map_.clear(); aliasing_ifield_value_map_.clear(); aliasing_array_value_map_.clear(); escaped_refs_.clear(); escaped_ifield_clobber_set_.clear(); escaped_array_clobber_set_.clear(); } uint16_t LocalValueNumbering::GetValueNumber(MIR* mir) { uint16_t res = kNoValue; uint16_t opcode = mir->dalvikInsn.opcode; switch (opcode) { case Instruction::NOP: case Instruction::RETURN_VOID: case Instruction::RETURN: case Instruction::RETURN_OBJECT: case Instruction::RETURN_WIDE: case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: case Instruction::CHECK_CAST: case Instruction::THROW: case Instruction::FILL_ARRAY_DATA: case Instruction::PACKED_SWITCH: case Instruction::SPARSE_SWITCH: case Instruction::IF_EQ: case Instruction::IF_NE: case Instruction::IF_LT: case Instruction::IF_GE: case Instruction::IF_GT: case Instruction::IF_LE: case Instruction::IF_EQZ: case Instruction::IF_NEZ: case Instruction::IF_LTZ: case Instruction::IF_GEZ: case Instruction::IF_GTZ: case Instruction::IF_LEZ: case kMirOpFusedCmplFloat: case kMirOpFusedCmpgFloat: case kMirOpFusedCmplDouble: case kMirOpFusedCmpgDouble: case kMirOpFusedCmpLong: // Nothing defined - take no action. break; case Instruction::MONITOR_ENTER: HandleNullCheck(mir, GetOperandValue(mir->ssa_rep->uses[0])); // NOTE: Keeping all aliasing values intact. Programs that rely on loads/stores of the // same non-volatile locations outside and inside a synchronized block being different // contain races that we cannot fix. break; case Instruction::MONITOR_EXIT: HandleNullCheck(mir, GetOperandValue(mir->ssa_rep->uses[0])); // If we're running GVN and CanModify(), uneliminated null check indicates bytecode error. if ((gvn_->GetCompilationUnit()->disable_opt & (1u << kGlobalValueNumbering)) == 0u && gvn_->CanModify() && (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) == 0) { LOG(WARNING) << "Bytecode error: MONITOR_EXIT is still null checked at 0x" << std::hex << mir->offset << " in " << PrettyMethod(gvn_->cu_->method_idx, *gvn_->cu_->dex_file); } break; case Instruction::FILLED_NEW_ARRAY: case Instruction::FILLED_NEW_ARRAY_RANGE: // Nothing defined but the result will be unique and non-null. if (mir->next != nullptr && mir->next->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) { uint16_t array = MarkNonAliasingNonNull(mir->next); // Do not SetOperandValue(), we'll do that when we process the MOVE_RESULT_OBJECT. if (kLocalValueNumberingEnableFilledNewArrayTracking && mir->ssa_rep->num_uses != 0u) { AliasingValues* values = GetAliasingValues(&non_aliasing_array_value_map_, array); // Clear the value if we got a merged version in a loop. *values = AliasingValues(this); for (size_t i = 0u, count = mir->ssa_rep->num_uses; i != count; ++i) { DCHECK_EQ(High16Bits(i), 0u); uint16_t index = gvn_->LookupValue(Instruction::CONST, i, 0u, 0); uint16_t value = GetOperandValue(mir->ssa_rep->uses[i]); values->load_value_map.Put(index, value); RangeCheckKey key = { array, index }; range_checked_.insert(key); } } // The MOVE_RESULT_OBJECT will be processed next and we'll return the value name then. } // All args escaped (if references). for (size_t i = 0u, count = mir->ssa_rep->num_uses; i != count; ++i) { uint16_t reg = GetOperandValue(mir->ssa_rep->uses[i]); HandleEscapingRef(reg); } break; case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_DIRECT_RANGE: case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_RANGE: case Instruction::INVOKE_SUPER: case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_INTERFACE_RANGE: { // Nothing defined but handle the null check. uint16_t reg = GetOperandValue(mir->ssa_rep->uses[0]); HandleNullCheck(mir, reg); } // Intentional fall-through. case Instruction::INVOKE_STATIC: case Instruction::INVOKE_STATIC_RANGE: if ((mir->optimization_flags & MIR_INLINED) == 0) { // Make ref args aliasing. for (size_t i = 0u, count = mir->ssa_rep->num_uses; i != count; ++i) { uint16_t reg = GetOperandValue(mir->ssa_rep->uses[i]); non_aliasing_refs_.erase(reg); } HandleInvokeOrClInit(mir); } break; case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_OBJECT: case Instruction::INSTANCE_OF: // 1 result, treat as unique each time, use result s_reg - will be unique. res = GetOperandValue(mir->ssa_rep->defs[0]); SetOperandValue(mir->ssa_rep->defs[0], res); break; case Instruction::MOVE_EXCEPTION: case Instruction::NEW_INSTANCE: case Instruction::CONST_CLASS: case Instruction::NEW_ARRAY: // 1 result, treat as unique each time, use result s_reg - will be unique. res = MarkNonAliasingNonNull(mir); SetOperandValue(mir->ssa_rep->defs[0], res); break; case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: // These strings are internalized, so assign value based on the string pool index. res = gvn_->LookupValue(Instruction::CONST_STRING, Low16Bits(mir->dalvikInsn.vB), High16Bits(mir->dalvikInsn.vB), 0); SetOperandValue(mir->ssa_rep->defs[0], res); null_checked_.insert(res); // May already be there. // NOTE: Hacking the contents of an internalized string via reflection is possible // but the behavior is undefined. Therefore, we consider the string constant and // the reference non-aliasing. // TUNING: We could keep this property even if the reference "escapes". non_aliasing_refs_.insert(res); // May already be there. break; case Instruction::MOVE_RESULT_WIDE: // 1 wide result, treat as unique each time, use result s_reg - will be unique. res = GetOperandValueWide(mir->ssa_rep->defs[0]); SetOperandValueWide(mir->ssa_rep->defs[0], res); break; case kMirOpPhi: res = HandlePhi(mir); break; case Instruction::MOVE: case Instruction::MOVE_OBJECT: case Instruction::MOVE_16: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_FROM16: case Instruction::MOVE_OBJECT_FROM16: case kMirOpCopy: // Just copy value number of source to value number of result. res = GetOperandValue(mir->ssa_rep->uses[0]); SetOperandValue(mir->ssa_rep->defs[0], res); break; case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_16: case Instruction::MOVE_WIDE_FROM16: // Just copy value number of source to value number of result. res = GetOperandValueWide(mir->ssa_rep->uses[0]); SetOperandValueWide(mir->ssa_rep->defs[0], res); break; case Instruction::CONST: case Instruction::CONST_4: case Instruction::CONST_16: res = gvn_->LookupValue(Instruction::CONST, Low16Bits(mir->dalvikInsn.vB), High16Bits(mir->dalvikInsn.vB), 0); SetOperandValue(mir->ssa_rep->defs[0], res); break; case Instruction::CONST_HIGH16: res = gvn_->LookupValue(Instruction::CONST, 0, mir->dalvikInsn.vB, 0); SetOperandValue(mir->ssa_rep->defs[0], res); break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: { uint16_t low_res = gvn_->LookupValue(Instruction::CONST, Low16Bits(mir->dalvikInsn.vB), High16Bits(mir->dalvikInsn.vB >> 16), 1); uint16_t high_res; if (mir->dalvikInsn.vB & 0x80000000) { high_res = gvn_->LookupValue(Instruction::CONST, 0xffff, 0xffff, 2); } else { high_res = gvn_->LookupValue(Instruction::CONST, 0, 0, 2); } res = gvn_->LookupValue(Instruction::CONST, low_res, high_res, 3); SetOperandValueWide(mir->ssa_rep->defs[0], res); } break; case Instruction::CONST_WIDE: { uint32_t low_word = Low32Bits(mir->dalvikInsn.vB_wide); uint32_t high_word = High32Bits(mir->dalvikInsn.vB_wide); uint16_t low_res = gvn_->LookupValue(Instruction::CONST, Low16Bits(low_word), High16Bits(low_word), 1); uint16_t high_res = gvn_->LookupValue(Instruction::CONST, Low16Bits(high_word), High16Bits(high_word), 2); res = gvn_->LookupValue(Instruction::CONST, low_res, high_res, 3); SetOperandValueWide(mir->ssa_rep->defs[0], res); } break; case Instruction::CONST_WIDE_HIGH16: { uint16_t low_res = gvn_->LookupValue(Instruction::CONST, 0, 0, 1); uint16_t high_res = gvn_->LookupValue(Instruction::CONST, 0, Low16Bits(mir->dalvikInsn.vB), 2); res = gvn_->LookupValue(Instruction::CONST, low_res, high_res, 3); SetOperandValueWide(mir->ssa_rep->defs[0], res); } break; case Instruction::ARRAY_LENGTH: { // Handle the null check. uint16_t reg = GetOperandValue(mir->ssa_rep->uses[0]); HandleNullCheck(mir, reg); } // Intentional fall-through. case Instruction::NEG_INT: case Instruction::NOT_INT: case Instruction::NEG_FLOAT: case Instruction::INT_TO_BYTE: case Instruction::INT_TO_SHORT: case Instruction::INT_TO_CHAR: case Instruction::INT_TO_FLOAT: case Instruction::FLOAT_TO_INT: { // res = op + 1 operand uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]); res = gvn_->LookupValue(opcode, operand1, kNoValue, kNoValue); SetOperandValue(mir->ssa_rep->defs[0], res); } break; case Instruction::LONG_TO_FLOAT: case Instruction::LONG_TO_INT: case Instruction::DOUBLE_TO_FLOAT: case Instruction::DOUBLE_TO_INT: { // res = op + 1 wide operand uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]); res = gvn_->LookupValue(opcode, operand1, kNoValue, kNoValue); SetOperandValue(mir->ssa_rep->defs[0], res); } break; case Instruction::DOUBLE_TO_LONG: case Instruction::LONG_TO_DOUBLE: case Instruction::NEG_LONG: case Instruction::NOT_LONG: case Instruction::NEG_DOUBLE: { // wide res = op + 1 wide operand uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]); res = gvn_->LookupValue(opcode, operand1, kNoValue, kNoValue); SetOperandValueWide(mir->ssa_rep->defs[0], res); } break; case Instruction::FLOAT_TO_DOUBLE: case Instruction::FLOAT_TO_LONG: case Instruction::INT_TO_DOUBLE: case Instruction::INT_TO_LONG: { // wide res = op + 1 operand uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]); res = gvn_->LookupValue(opcode, operand1, kNoValue, kNoValue); SetOperandValueWide(mir->ssa_rep->defs[0], res); } break; case Instruction::CMPL_DOUBLE: case Instruction::CMPG_DOUBLE: case Instruction::CMP_LONG: { // res = op + 2 wide operands uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]); uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]); res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue); SetOperandValue(mir->ssa_rep->defs[0], res); } break; case Instruction::CMPG_FLOAT: case Instruction::CMPL_FLOAT: case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: { // res = op + 2 operands uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]); uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[1]); res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue); SetOperandValue(mir->ssa_rep->defs[0], res); } break; case Instruction::ADD_LONG: case Instruction::SUB_LONG: case Instruction::MUL_LONG: case Instruction::DIV_LONG: case Instruction::REM_LONG: case Instruction::AND_LONG: case Instruction::OR_LONG: case Instruction::XOR_LONG: case Instruction::ADD_LONG_2ADDR: case Instruction::SUB_LONG_2ADDR: case Instruction::MUL_LONG_2ADDR: case Instruction::DIV_LONG_2ADDR: case Instruction::REM_LONG_2ADDR: case Instruction::AND_LONG_2ADDR: case Instruction::OR_LONG_2ADDR: case Instruction::XOR_LONG_2ADDR: case Instruction::ADD_DOUBLE: case Instruction::SUB_DOUBLE: case Instruction::MUL_DOUBLE: case Instruction::DIV_DOUBLE: case Instruction::REM_DOUBLE: case Instruction::ADD_DOUBLE_2ADDR: case Instruction::SUB_DOUBLE_2ADDR: case Instruction::MUL_DOUBLE_2ADDR: case Instruction::DIV_DOUBLE_2ADDR: case Instruction::REM_DOUBLE_2ADDR: { // wide res = op + 2 wide operands uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]); uint16_t operand2 = GetOperandValueWide(mir->ssa_rep->uses[2]); res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue); SetOperandValueWide(mir->ssa_rep->defs[0], res); } break; case Instruction::SHL_LONG: case Instruction::SHR_LONG: case Instruction::USHR_LONG: case Instruction::SHL_LONG_2ADDR: case Instruction::SHR_LONG_2ADDR: case Instruction::USHR_LONG_2ADDR: { // wide res = op + 1 wide operand + 1 operand uint16_t operand1 = GetOperandValueWide(mir->ssa_rep->uses[0]); uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[2]); res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue); SetOperandValueWide(mir->ssa_rep->defs[0], res); } break; case Instruction::ADD_FLOAT: case Instruction::SUB_FLOAT: case Instruction::MUL_FLOAT: case Instruction::DIV_FLOAT: case Instruction::REM_FLOAT: case Instruction::ADD_FLOAT_2ADDR: case Instruction::SUB_FLOAT_2ADDR: case Instruction::MUL_FLOAT_2ADDR: case Instruction::DIV_FLOAT_2ADDR: case Instruction::REM_FLOAT_2ADDR: { // res = op + 2 operands uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]); uint16_t operand2 = GetOperandValue(mir->ssa_rep->uses[1]); res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue); SetOperandValue(mir->ssa_rep->defs[0], res); } break; case Instruction::RSUB_INT: case Instruction::ADD_INT_LIT16: case Instruction::MUL_INT_LIT16: case Instruction::DIV_INT_LIT16: case Instruction::REM_INT_LIT16: case Instruction::AND_INT_LIT16: case Instruction::OR_INT_LIT16: case Instruction::XOR_INT_LIT16: case Instruction::ADD_INT_LIT8: case Instruction::RSUB_INT_LIT8: case Instruction::MUL_INT_LIT8: case Instruction::DIV_INT_LIT8: case Instruction::REM_INT_LIT8: case Instruction::AND_INT_LIT8: case Instruction::OR_INT_LIT8: case Instruction::XOR_INT_LIT8: case Instruction::SHL_INT_LIT8: case Instruction::SHR_INT_LIT8: case Instruction::USHR_INT_LIT8: { // Same as res = op + 2 operands, except use vC as operand 2 uint16_t operand1 = GetOperandValue(mir->ssa_rep->uses[0]); uint16_t operand2 = gvn_->LookupValue(Instruction::CONST, mir->dalvikInsn.vC, 0, 0); res = gvn_->LookupValue(opcode, operand1, operand2, kNoValue); SetOperandValue(mir->ssa_rep->defs[0], res); } break; case Instruction::AGET_OBJECT: case Instruction::AGET: case Instruction::AGET_WIDE: case Instruction::AGET_BOOLEAN: case Instruction::AGET_BYTE: case Instruction::AGET_CHAR: case Instruction::AGET_SHORT: res = HandleAGet(mir, opcode); break; case Instruction::APUT_OBJECT: HandlePutObject(mir); // Intentional fall-through. case Instruction::APUT: case Instruction::APUT_WIDE: case Instruction::APUT_BYTE: case Instruction::APUT_BOOLEAN: case Instruction::APUT_SHORT: case Instruction::APUT_CHAR: HandleAPut(mir, opcode); break; case Instruction::IGET_OBJECT: case Instruction::IGET: case Instruction::IGET_WIDE: case Instruction::IGET_BOOLEAN: case Instruction::IGET_BYTE: case Instruction::IGET_CHAR: case Instruction::IGET_SHORT: res = HandleIGet(mir, opcode); break; case Instruction::IPUT_OBJECT: HandlePutObject(mir); // Intentional fall-through. case Instruction::IPUT: case Instruction::IPUT_WIDE: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: case Instruction::IPUT_CHAR: case Instruction::IPUT_SHORT: HandleIPut(mir, opcode); break; case Instruction::SGET_OBJECT: case Instruction::SGET: case Instruction::SGET_WIDE: case Instruction::SGET_BOOLEAN: case Instruction::SGET_BYTE: case Instruction::SGET_CHAR: case Instruction::SGET_SHORT: res = HandleSGet(mir, opcode); break; case Instruction::SPUT_OBJECT: HandlePutObject(mir); // Intentional fall-through. case Instruction::SPUT: case Instruction::SPUT_WIDE: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: HandleSPut(mir, opcode); break; } return res; } } // namespace art