/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdio.h> #include <stdlib.h> #include <sys/stat.h> #include <valgrind.h> #include <fstream> #include <iostream> #include <sstream> #include <string> #include <vector> #if defined(__linux__) && defined(__arm__) #include <sys/personality.h> #include <sys/utsname.h> #endif #include "base/stl_util.h" #include "base/stringpiece.h" #include "base/timing_logger.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "compiler.h" #include "compiler_callbacks.h" #include "dex_file-inl.h" #include "dex/pass_driver_me_opts.h" #include "dex/verification_results.h" #include "dex/quick_compiler_callbacks.h" #include "dex/quick/dex_file_to_method_inliner_map.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "elf_fixup.h" #include "elf_patcher.h" #include "elf_stripper.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "image_writer.h" #include "leb128.h" #include "mirror/art_method-inl.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "oat_writer.h" #include "os.h" #include "runtime.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "utils.h" #include "vector_output_stream.h" #include "well_known_classes.h" #include "zip_archive.h" namespace art { static int original_argc; static char** original_argv; static std::string CommandLine() { std::vector<std::string> command; for (int i = 0; i < original_argc; ++i) { command.push_back(original_argv[i]); } return Join(command, ' '); } static void UsageErrorV(const char* fmt, va_list ap) { std::string error; StringAppendV(&error, fmt, ap); LOG(ERROR) << error; } static void UsageError(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); } static void Usage(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); UsageError("Command: %s", CommandLine().c_str()); UsageError("Usage: dex2oat [options]..."); UsageError(""); UsageError(" --dex-file=<dex-file>: specifies a .dex file to compile."); UsageError(" Example: --dex-file=/system/framework/core.jar"); UsageError(""); UsageError(" --zip-fd=<file-descriptor>: specifies a file descriptor of a zip file"); UsageError(" containing a classes.dex file to compile."); UsageError(" Example: --zip-fd=5"); UsageError(""); UsageError(" --zip-location=<zip-location>: specifies a symbolic name for the file"); UsageError(" corresponding to the file descriptor specified by --zip-fd."); UsageError(" Example: --zip-location=/system/app/Calculator.apk"); UsageError(""); UsageError(" --oat-file=<file.oat>: specifies the oat output destination via a filename."); UsageError(" Example: --oat-file=/system/framework/boot.oat"); UsageError(""); UsageError(" --oat-fd=<number>: specifies the oat output destination via a file descriptor."); UsageError(" Example: --oat-fd=6"); UsageError(""); UsageError(" --oat-location=<oat-name>: specifies a symbolic name for the file corresponding"); UsageError(" to the file descriptor specified by --oat-fd."); UsageError(" Example: --oat-location=/data/dalvik-cache/system@app@Calculator.apk.oat"); UsageError(""); UsageError(" --oat-symbols=<file.oat>: specifies the oat output destination with full symbols."); UsageError(" Example: --oat-symbols=/symbols/system/framework/boot.oat"); UsageError(""); UsageError(" --bitcode=<file.bc>: specifies the optional bitcode filename."); UsageError(" Example: --bitcode=/system/framework/boot.bc"); UsageError(""); UsageError(" --image=<file.art>: specifies the output image filename."); UsageError(" Example: --image=/system/framework/boot.art"); UsageError(""); UsageError(" --image-classes=<classname-file>: specifies classes to include in an image."); UsageError(" Example: --image=frameworks/base/preloaded-classes"); UsageError(""); UsageError(" --base=<hex-address>: specifies the base address when creating a boot image."); UsageError(" Example: --base=0x50000000"); UsageError(""); UsageError(" --boot-image=<file.art>: provide the image file for the boot class path."); UsageError(" Example: --boot-image=/system/framework/boot.art"); UsageError(" Default: $ANDROID_ROOT/system/framework/boot.art"); UsageError(""); UsageError(" --android-root=<path>: used to locate libraries for portable linking."); UsageError(" Example: --android-root=out/host/linux-x86"); UsageError(" Default: $ANDROID_ROOT"); UsageError(""); UsageError(" --instruction-set=(arm|arm64|mips|x86|x86_64): compile for a particular"); UsageError(" instruction set."); UsageError(" Example: --instruction-set=x86"); UsageError(" Default: arm"); UsageError(""); UsageError(" --instruction-set-features=...,: Specify instruction set features"); UsageError(" Example: --instruction-set-features=div"); UsageError(" Default: default"); UsageError(""); UsageError(" --compile-pic: Force indirect use of code, methods, and classes"); UsageError(" Default: disabled"); UsageError(""); UsageError(" --compiler-backend=(Quick|Optimizing|Portable): select compiler backend"); UsageError(" set."); UsageError(" Example: --compiler-backend=Portable"); UsageError(" Default: Quick"); UsageError(""); UsageError(" --compiler-filter=(verify-none|interpret-only|space|balanced|speed|everything):"); UsageError(" select compiler filter."); UsageError(" Example: --compiler-filter=everything"); #if ART_SMALL_MODE UsageError(" Default: interpret-only"); #else UsageError(" Default: speed"); #endif UsageError(""); UsageError(" --huge-method-max=<method-instruction-count>: the threshold size for a huge"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --huge-method-max=%d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(""); UsageError(" --huge-method-max=<method-instruction-count>: threshold size for a huge"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --huge-method-max=%d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(""); UsageError(" --large-method-max=<method-instruction-count>: threshold size for a large"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --large-method-max=%d", CompilerOptions::kDefaultLargeMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultLargeMethodThreshold); UsageError(""); UsageError(" --small-method-max=<method-instruction-count>: threshold size for a small"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --small-method-max=%d", CompilerOptions::kDefaultSmallMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultSmallMethodThreshold); UsageError(""); UsageError(" --tiny-method-max=<method-instruction-count>: threshold size for a tiny"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --tiny-method-max=%d", CompilerOptions::kDefaultTinyMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultTinyMethodThreshold); UsageError(""); UsageError(" --num-dex-methods=<method-count>: threshold size for a small dex file for"); UsageError(" compiler filter tuning. If the input has fewer than this many methods"); UsageError(" and the filter is not interpret-only or verify-none, overrides the"); UsageError(" filter to use speed"); UsageError(" Example: --num-dex-method=%d", CompilerOptions::kDefaultNumDexMethodsThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultNumDexMethodsThreshold); UsageError(""); UsageError(" --host: used with Portable backend to link against host runtime libraries"); UsageError(""); UsageError(" --dump-timing: display a breakdown of where time was spent"); UsageError(""); UsageError(" --include-patch-information: Include patching information so the generated code"); UsageError(" can have its base address moved without full recompilation."); UsageError(""); UsageError(" --no-include-patch-information: Do not include patching information."); UsageError(""); UsageError(" --include-debug-symbols: Include ELF symbols in this oat file"); UsageError(""); UsageError(" --no-include-debug-symbols: Do not include ELF symbols in this oat file"); UsageError(""); UsageError(" --runtime-arg <argument>: used to specify various arguments for the runtime,"); UsageError(" such as initial heap size, maximum heap size, and verbose output."); UsageError(" Use a separate --runtime-arg switch for each argument."); UsageError(" Example: --runtime-arg -Xms256m"); UsageError(""); UsageError(" --profile-file=<filename>: specify profiler output file to use for compilation."); UsageError(""); UsageError(" --print-pass-names: print a list of pass names"); UsageError(""); UsageError(" --disable-passes=<pass-names>: disable one or more passes separated by comma."); UsageError(" Example: --disable-passes=UseCount,BBOptimizations"); UsageError(""); UsageError(" --swap-file=<file-name>: specifies a file to use for swap."); UsageError(" Example: --swap-file=/data/tmp/swap.001"); UsageError(""); UsageError(" --swap-fd=<file-descriptor>: specifies a file to use for swap (by descriptor)."); UsageError(" Example: --swap-fd=10"); UsageError(""); std::cerr << "See log for usage error information\n"; exit(EXIT_FAILURE); } class Dex2Oat { public: static bool Create(Dex2Oat** p_dex2oat, const RuntimeOptions& runtime_options, const CompilerOptions& compiler_options, Compiler::Kind compiler_kind, InstructionSet instruction_set, InstructionSetFeatures instruction_set_features, VerificationResults* verification_results, DexFileToMethodInlinerMap* method_inliner_map, size_t thread_count) SHARED_TRYLOCK_FUNCTION(true, Locks::mutator_lock_) { CHECK(verification_results != nullptr); CHECK(method_inliner_map != nullptr); std::unique_ptr<Dex2Oat> dex2oat(new Dex2Oat(&compiler_options, compiler_kind, instruction_set, instruction_set_features, verification_results, method_inliner_map, thread_count)); if (!dex2oat->CreateRuntime(runtime_options, instruction_set)) { *p_dex2oat = nullptr; return false; } *p_dex2oat = dex2oat.release(); return true; } ~Dex2Oat() { delete runtime_; } void LogCompletionTime(const CompilerDriver* compiler) { LOG(INFO) << "dex2oat took " << PrettyDuration(NanoTime() - start_ns_) << " (threads: " << thread_count_ << ") " << compiler->GetMemoryUsageString(kIsDebugBuild || VLOG_IS_ON(compiler)); } // Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;) std::set<std::string>* ReadImageClassesFromFile(const char* image_classes_filename) { std::unique_ptr<std::ifstream> image_classes_file(new std::ifstream(image_classes_filename, std::ifstream::in)); if (image_classes_file.get() == nullptr) { LOG(ERROR) << "Failed to open image classes file " << image_classes_filename; return nullptr; } std::unique_ptr<std::set<std::string>> result(ReadImageClasses(*image_classes_file)); image_classes_file->close(); return result.release(); } std::set<std::string>* ReadImageClasses(std::istream& image_classes_stream) { std::unique_ptr<std::set<std::string>> image_classes(new std::set<std::string>); while (image_classes_stream.good()) { std::string dot; std::getline(image_classes_stream, dot); if (StartsWith(dot, "#") || dot.empty()) { continue; } std::string descriptor(DotToDescriptor(dot.c_str())); image_classes->insert(descriptor); } return image_classes.release(); } // Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;) std::set<std::string>* ReadImageClassesFromZip(const char* zip_filename, const char* image_classes_filename, std::string* error_msg) { std::unique_ptr<ZipArchive> zip_archive(ZipArchive::Open(zip_filename, error_msg)); if (zip_archive.get() == nullptr) { return nullptr; } std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(image_classes_filename, error_msg)); if (zip_entry.get() == nullptr) { *error_msg = StringPrintf("Failed to find '%s' within '%s': %s", image_classes_filename, zip_filename, error_msg->c_str()); return nullptr; } std::unique_ptr<MemMap> image_classes_file(zip_entry->ExtractToMemMap(zip_filename, image_classes_filename, error_msg)); if (image_classes_file.get() == nullptr) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", image_classes_filename, zip_filename, error_msg->c_str()); return nullptr; } const std::string image_classes_string(reinterpret_cast<char*>(image_classes_file->Begin()), image_classes_file->Size()); std::istringstream image_classes_stream(image_classes_string); return ReadImageClasses(image_classes_stream); } bool PatchOatCode(const CompilerDriver* compiler_driver, File* oat_file, const std::string& oat_location, std::string* error_msg) { // We asked to include patch information but we are not making an image. We need to fix // everything up manually. std::unique_ptr<ElfFile> elf_file(ElfFile::Open(oat_file, PROT_READ|PROT_WRITE, MAP_SHARED, error_msg)); if (elf_file.get() == NULL) { LOG(ERROR) << error_msg; return false; } { ReaderMutexLock mu(Thread::Current(), *Locks::mutator_lock_); return ElfPatcher::Patch(compiler_driver, elf_file.get(), oat_location, error_msg); } } const CompilerDriver* CreateOatFile(const std::string& boot_image_option, const std::string& android_root, bool is_host, const std::vector<const DexFile*>& dex_files, File* oat_file, const std::string& oat_location, const std::string& bitcode_filename, bool image, std::unique_ptr<std::set<std::string>>& image_classes, std::unique_ptr<std::set<std::string>>& compiled_classes, bool dump_stats, bool dump_passes, TimingLogger& timings, CumulativeLogger& compiler_phases_timings, int swap_fd, std::string profile_file, SafeMap<std::string, std::string>* key_value_store) { CHECK(key_value_store != nullptr); // Handle and ClassLoader creation needs to come after Runtime::Create jobject class_loader = nullptr; Thread* self = Thread::Current(); if (!boot_image_option.empty()) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); std::vector<const DexFile*> class_path_files(dex_files); OpenClassPathFiles(runtime_->GetClassPathString(), class_path_files); ScopedObjectAccess soa(self); for (size_t i = 0; i < class_path_files.size(); i++) { class_linker->RegisterDexFile(*class_path_files[i]); } soa.Env()->AllocObject(WellKnownClasses::dalvik_system_PathClassLoader); ScopedLocalRef<jobject> class_loader_local(soa.Env(), soa.Env()->AllocObject(WellKnownClasses::dalvik_system_PathClassLoader)); class_loader = soa.Env()->NewGlobalRef(class_loader_local.get()); Runtime::Current()->SetCompileTimeClassPath(class_loader, class_path_files); } std::unique_ptr<CompilerDriver> driver(new CompilerDriver(compiler_options_, verification_results_, method_inliner_map_, compiler_kind_, instruction_set_, instruction_set_features_, image, image_classes.release(), compiled_classes.release(), thread_count_, dump_stats, dump_passes, &compiler_phases_timings, swap_fd, profile_file)); driver->GetCompiler()->SetBitcodeFileName(*driver.get(), bitcode_filename); driver->CompileAll(class_loader, dex_files, &timings); TimingLogger::ScopedTiming t2("dex2oat OatWriter", &timings); std::string image_file_location; uint32_t image_file_location_oat_checksum = 0; uintptr_t image_file_location_oat_data_begin = 0; int32_t image_patch_delta = 0; if (!driver->IsImage()) { TimingLogger::ScopedTiming t3("Loading image checksum", &timings); gc::space::ImageSpace* image_space = Runtime::Current()->GetHeap()->GetImageSpace(); image_file_location_oat_checksum = image_space->GetImageHeader().GetOatChecksum(); image_file_location_oat_data_begin = reinterpret_cast<uintptr_t>(image_space->GetImageHeader().GetOatDataBegin()); image_file_location = image_space->GetImageFilename(); image_patch_delta = image_space->GetImageHeader().GetPatchDelta(); } if (!image_file_location.empty()) { key_value_store->Put(OatHeader::kImageLocationKey, image_file_location); } OatWriter oat_writer(dex_files, image_file_location_oat_checksum, image_file_location_oat_data_begin, image_patch_delta, driver.get(), &timings, key_value_store); t2.NewTiming("Writing ELF"); if (!driver->WriteElf(android_root, is_host, dex_files, &oat_writer, oat_file)) { LOG(ERROR) << "Failed to write ELF file " << oat_file->GetPath(); oat_file->Erase(); return nullptr; } // Flush result to disk. Patching code will re-open the file (mmap), so ensure that our view // of the file already made it there and won't be re-ordered with writes from PatchOat or // image patching. if (oat_file->Flush() != 0) { PLOG(ERROR) << "Failed flushing oat file " << oat_file->GetPath(); oat_file->Erase(); return nullptr; } if (!driver->IsImage() && driver->GetCompilerOptions().GetIncludePatchInformation()) { t2.NewTiming("Patching ELF"); std::string error_msg; if (!PatchOatCode(driver.get(), oat_file, oat_location, &error_msg)) { LOG(ERROR) << "Failed to fixup ELF file " << oat_file->GetPath() << ": " << error_msg; oat_file->Erase(); return nullptr; } } return driver.release(); } bool CreateImageFile(const std::string& image_filename, uintptr_t image_base, const std::string& oat_filename, const std::string& oat_location, const CompilerDriver& compiler) LOCKS_EXCLUDED(Locks::mutator_lock_) { uintptr_t oat_data_begin; { // ImageWriter is scoped so it can free memory before doing FixupElf ImageWriter image_writer(compiler); if (!image_writer.Write(image_filename, image_base, oat_filename, oat_location, compiler_options_->GetCompilePic())) { LOG(ERROR) << "Failed to create image file " << image_filename; return false; } oat_data_begin = image_writer.GetOatDataBegin(); } // Do not fix up the ELF file if we are --compile-pic if (!compiler_options_->GetCompilePic()) { std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename.c_str())); if (oat_file.get() == nullptr) { PLOG(ERROR) << "Failed to open ELF file: " << oat_filename; return false; } if (!ElfFixup::Fixup(oat_file.get(), oat_data_begin)) { LOG(ERROR) << "Failed to fixup ELF file " << oat_file->GetPath(); oat_file->Erase(); return false; } if (oat_file->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close patched oat file " << oat_filename; return false; } } return true; } private: explicit Dex2Oat(const CompilerOptions* compiler_options, Compiler::Kind compiler_kind, InstructionSet instruction_set, InstructionSetFeatures instruction_set_features, VerificationResults* verification_results, DexFileToMethodInlinerMap* method_inliner_map, size_t thread_count) : compiler_options_(compiler_options), compiler_kind_(compiler_kind), instruction_set_(instruction_set), instruction_set_features_(instruction_set_features), verification_results_(verification_results), method_inliner_map_(method_inliner_map), runtime_(nullptr), thread_count_(thread_count), start_ns_(NanoTime()) { CHECK(compiler_options != nullptr); CHECK(verification_results != nullptr); CHECK(method_inliner_map != nullptr); } bool CreateRuntime(const RuntimeOptions& runtime_options, InstructionSet instruction_set) SHARED_TRYLOCK_FUNCTION(true, Locks::mutator_lock_) { if (!Runtime::Create(runtime_options, false)) { LOG(ERROR) << "Failed to create runtime"; return false; } Runtime* runtime = Runtime::Current(); runtime->SetInstructionSet(instruction_set); for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) { Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i); if (!runtime->HasCalleeSaveMethod(type)) { runtime->SetCalleeSaveMethod(runtime->CreateCalleeSaveMethod(type), type); } } runtime->GetClassLinker()->FixupDexCaches(runtime->GetResolutionMethod()); runtime->GetClassLinker()->RunRootClinits(); runtime_ = runtime; return true; } // Appends to dex_files any elements of class_path that it doesn't already // contain. This will open those dex files as necessary. static void OpenClassPathFiles(const std::string& class_path, std::vector<const DexFile*>& dex_files) { std::vector<std::string> parsed; Split(class_path, ':', parsed); // Take Locks::mutator_lock_ so that lock ordering on the ClassLinker::dex_lock_ is maintained. ScopedObjectAccess soa(Thread::Current()); for (size_t i = 0; i < parsed.size(); ++i) { if (DexFilesContains(dex_files, parsed[i])) { continue; } std::string error_msg; if (!DexFile::Open(parsed[i].c_str(), parsed[i].c_str(), &error_msg, &dex_files)) { LOG(WARNING) << "Failed to open dex file '" << parsed[i] << "': " << error_msg; } } } // Returns true if dex_files has a dex with the named location. static bool DexFilesContains(const std::vector<const DexFile*>& dex_files, const std::string& location) { for (size_t i = 0; i < dex_files.size(); ++i) { if (dex_files[i]->GetLocation() == location) { return true; } } return false; } const CompilerOptions* const compiler_options_; const Compiler::Kind compiler_kind_; const InstructionSet instruction_set_; const InstructionSetFeatures instruction_set_features_; VerificationResults* const verification_results_; DexFileToMethodInlinerMap* const method_inliner_map_; Runtime* runtime_; size_t thread_count_; uint64_t start_ns_; DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat); }; static size_t OpenDexFiles(const std::vector<const char*>& dex_filenames, const std::vector<const char*>& dex_locations, std::vector<const DexFile*>& dex_files) { size_t failure_count = 0; for (size_t i = 0; i < dex_filenames.size(); i++) { const char* dex_filename = dex_filenames[i]; const char* dex_location = dex_locations[i]; ATRACE_BEGIN(StringPrintf("Opening dex file '%s'", dex_filenames[i]).c_str()); std::string error_msg; if (!OS::FileExists(dex_filename)) { LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'"; continue; } if (!DexFile::Open(dex_filename, dex_location, &error_msg, &dex_files)) { LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg; ++failure_count; } ATRACE_END(); } return failure_count; } // The primary goal of the watchdog is to prevent stuck build servers // during development when fatal aborts lead to a cascade of failures // that result in a deadlock. class WatchDog { // WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks #undef CHECK_PTHREAD_CALL #define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \ do { \ int rc = call args; \ if (rc != 0) { \ errno = rc; \ std::string message(# call); \ message += " failed for "; \ message += reason; \ Fatal(message); \ } \ } while (false) public: explicit WatchDog(bool is_watch_dog_enabled) { is_watch_dog_enabled_ = is_watch_dog_enabled; if (!is_watch_dog_enabled_) { return; } shutting_down_ = false; const char* reason = "dex2oat watch dog thread startup"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, nullptr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason); } ~WatchDog() { if (!is_watch_dog_enabled_) { return; } const char* reason = "dex2oat watch dog thread shutdown"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); shutting_down_ = true; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason); } private: static void* CallBack(void* arg) { WatchDog* self = reinterpret_cast<WatchDog*>(arg); ::art::SetThreadName("dex2oat watch dog"); self->Wait(); return nullptr; } static void Message(char severity, const std::string& message) { // TODO: Remove when we switch to LOG when we can guarantee it won't prevent shutdown in error // cases. fprintf(stderr, "dex2oat%s %c %d %d %s\n", kIsDebugBuild ? "d" : "", severity, getpid(), GetTid(), message.c_str()); } static void Fatal(const std::string& message) { Message('F', message); exit(1); } void Wait() { // TODO: tune the multiplier for GC verification, the following is just to make the timeout // large. int64_t multiplier = kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1; timespec timeout_ts; InitTimeSpec(true, CLOCK_REALTIME, multiplier * kWatchDogTimeoutSeconds * 1000, 0, &timeout_ts); const char* reason = "dex2oat watch dog thread waiting"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); while (!shutting_down_) { int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts)); if (rc == ETIMEDOUT) { Fatal(StringPrintf("dex2oat did not finish after %d seconds", kWatchDogTimeoutSeconds)); } else if (rc != 0) { std::string message(StringPrintf("pthread_cond_timedwait failed: %s", strerror(errno))); Fatal(message.c_str()); } } CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); } // When setting timeouts, keep in mind that the build server may not be as fast as your desktop. // Debug builds are slower so they have larger timeouts. static const unsigned int kSlowdownFactor = kIsDebugBuild ? 5U : 1U; #if ART_USE_PORTABLE_COMPILER // 30 minutes scaled by kSlowdownFactor. static const unsigned int kWatchDogTimeoutSeconds = kSlowdownFactor * 30 * 60; #else // 6 minutes scaled by kSlowdownFactor. static const unsigned int kWatchDogTimeoutSeconds = kSlowdownFactor * 6 * 60; #endif bool is_watch_dog_enabled_; bool shutting_down_; // TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases. pthread_mutex_t mutex_; pthread_cond_t cond_; pthread_attr_t attr_; pthread_t pthread_; }; const unsigned int WatchDog::kWatchDogTimeoutSeconds; // Given a set of instruction features from the build, parse it. The // input 'str' is a comma separated list of feature names. Parse it and // return the InstructionSetFeatures object. static InstructionSetFeatures ParseFeatureList(std::string str) { InstructionSetFeatures result; typedef std::vector<std::string> FeatureList; FeatureList features; Split(str, ',', features); for (FeatureList::iterator i = features.begin(); i != features.end(); i++) { std::string feature = Trim(*i); if (feature == "default") { // Nothing to do. } else if (feature == "div") { // Supports divide instruction. result.SetHasDivideInstruction(true); } else if (feature == "nodiv") { // Turn off support for divide instruction. result.SetHasDivideInstruction(false); } else if (feature == "lpae") { // Supports Large Physical Address Extension. result.SetHasLpae(true); } else if (feature == "nolpae") { // Turn off support for Large Physical Address Extension. result.SetHasLpae(false); } else { Usage("Unknown instruction set feature: '%s'", feature.c_str()); } } // others... return result; } void ParseStringAfterChar(const std::string& s, char c, std::string* parsed_value) { std::string::size_type colon = s.find(c); if (colon == std::string::npos) { Usage("Missing char %c in option %s\n", c, s.c_str()); } // Add one to remove the char we were trimming until. *parsed_value = s.substr(colon + 1); } void ParseDouble(const std::string& option, char after_char, double min, double max, double* parsed_value) { std::string substring; ParseStringAfterChar(option, after_char, &substring); bool sane_val = true; double value; if (false) { // TODO: this doesn't seem to work on the emulator. b/15114595 std::stringstream iss(substring); iss >> value; // Ensure that we have a value, there was no cruft after it and it satisfies a sensible range. sane_val = iss.eof() && (value >= min) && (value <= max); } else { char* end = nullptr; value = strtod(substring.c_str(), &end); sane_val = *end == '\0' && value >= min && value <= max; } if (!sane_val) { Usage("Invalid double value %s for option %s\n", substring.c_str(), option.c_str()); } *parsed_value = value; } static void b13564922() { #if defined(__linux__) && defined(__arm__) int major, minor; struct utsname uts; if (uname(&uts) != -1 && sscanf(uts.release, "%d.%d", &major, &minor) == 2 && ((major < 3) || ((major == 3) && (minor < 4)))) { // Kernels before 3.4 don't handle the ASLR well and we can run out of address // space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization. int old_personality = personality(0xffffffff); if ((old_personality & ADDR_NO_RANDOMIZE) == 0) { int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE); if (new_personality == -1) { LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed."; } } } #endif } static constexpr size_t kMinDexFilesForSwap = 2; static constexpr size_t kMinDexFileCumulativeSizeForSwap = 20 * MB; static bool UseSwap(bool is_image, std::vector<const DexFile*>& dex_files) { if (is_image) { // Don't use swap, we know generation should succeed, and we don't want to slow it down. return false; } if (dex_files.size() < kMinDexFilesForSwap) { // If there are less dex files than the threshold, assume it's gonna be fine. return false; } size_t dex_files_size = 0; for (const auto* dex_file : dex_files) { dex_files_size += dex_file->GetHeader().file_size_; } return dex_files_size >= kMinDexFileCumulativeSizeForSwap; } static int dex2oat(int argc, char** argv) { b13564922(); original_argc = argc; original_argv = argv; TimingLogger timings("compiler", false, false); CumulativeLogger compiler_phases_timings("compilation times"); InitLogging(argv); // Skip over argv[0]. argv++; argc--; if (argc == 0) { Usage("No arguments specified"); } std::vector<const char*> dex_filenames; std::vector<const char*> dex_locations; int zip_fd = -1; std::string zip_location; std::string oat_filename; std::string oat_symbols; std::string oat_location; int oat_fd = -1; std::string bitcode_filename; const char* image_classes_zip_filename = nullptr; const char* image_classes_filename = nullptr; const char* compiled_classes_zip_filename = nullptr; const char* compiled_classes_filename = nullptr; std::string image_filename; std::string boot_image_filename; uintptr_t image_base = 0; std::string android_root; std::vector<const char*> runtime_args; int thread_count = sysconf(_SC_NPROCESSORS_CONF); Compiler::Kind compiler_kind = kUsePortableCompiler ? Compiler::kPortable : Compiler::kQuick; const char* compiler_filter_string = nullptr; bool compile_pic = false; int huge_method_threshold = CompilerOptions::kDefaultHugeMethodThreshold; int large_method_threshold = CompilerOptions::kDefaultLargeMethodThreshold; int small_method_threshold = CompilerOptions::kDefaultSmallMethodThreshold; int tiny_method_threshold = CompilerOptions::kDefaultTinyMethodThreshold; int num_dex_methods_threshold = CompilerOptions::kDefaultNumDexMethodsThreshold; // Take the default set of instruction features from the build. InstructionSetFeatures instruction_set_features = ParseFeatureList(Runtime::GetDefaultInstructionSetFeatures()); InstructionSet instruction_set = kRuntimeISA; // Profile file to use std::string profile_file; double top_k_profile_threshold = CompilerOptions::kDefaultTopKProfileThreshold; bool is_host = false; bool dump_stats = false; bool dump_timing = false; bool dump_passes = false; bool include_patch_information = CompilerOptions::kDefaultIncludePatchInformation; bool include_debug_symbols = kIsDebugBuild; bool dump_slow_timing = kIsDebugBuild; bool watch_dog_enabled = true; bool generate_gdb_information = kIsDebugBuild; // Checks are all explicit until we know the architecture. bool implicit_null_checks = false; bool implicit_so_checks = false; bool implicit_suspend_checks = false; // Swap file. std::string swap_file_name; int swap_fd = -1; // No swap file descriptor; for (int i = 0; i < argc; i++) { const StringPiece option(argv[i]); const bool log_options = false; if (log_options) { LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i]; } if (option.starts_with("--dex-file=")) { dex_filenames.push_back(option.substr(strlen("--dex-file=")).data()); } else if (option.starts_with("--dex-location=")) { dex_locations.push_back(option.substr(strlen("--dex-location=")).data()); } else if (option.starts_with("--zip-fd=")) { const char* zip_fd_str = option.substr(strlen("--zip-fd=")).data(); if (!ParseInt(zip_fd_str, &zip_fd)) { Usage("Failed to parse --zip-fd argument '%s' as an integer", zip_fd_str); } if (zip_fd < 0) { Usage("--zip-fd passed a negative value %d", zip_fd); } } else if (option.starts_with("--zip-location=")) { zip_location = option.substr(strlen("--zip-location=")).data(); } else if (option.starts_with("--oat-file=")) { oat_filename = option.substr(strlen("--oat-file=")).data(); } else if (option.starts_with("--oat-symbols=")) { oat_symbols = option.substr(strlen("--oat-symbols=")).data(); } else if (option.starts_with("--oat-fd=")) { const char* oat_fd_str = option.substr(strlen("--oat-fd=")).data(); if (!ParseInt(oat_fd_str, &oat_fd)) { Usage("Failed to parse --oat-fd argument '%s' as an integer", oat_fd_str); } if (oat_fd < 0) { Usage("--oat-fd passed a negative value %d", oat_fd); } } else if (option == "--watch-dog") { watch_dog_enabled = true; } else if (option == "--no-watch-dog") { watch_dog_enabled = false; } else if (option == "--gen-gdb-info") { generate_gdb_information = true; // Debug symbols are needed for gdb information. include_debug_symbols = true; } else if (option == "--no-gen-gdb-info") { generate_gdb_information = false; } else if (option.starts_with("-j")) { const char* thread_count_str = option.substr(strlen("-j")).data(); if (!ParseInt(thread_count_str, &thread_count)) { Usage("Failed to parse -j argument '%s' as an integer", thread_count_str); } } else if (option.starts_with("--oat-location=")) { oat_location = option.substr(strlen("--oat-location=")).data(); } else if (option.starts_with("--bitcode=")) { bitcode_filename = option.substr(strlen("--bitcode=")).data(); } else if (option.starts_with("--image=")) { image_filename = option.substr(strlen("--image=")).data(); } else if (option.starts_with("--image-classes=")) { image_classes_filename = option.substr(strlen("--image-classes=")).data(); } else if (option.starts_with("--image-classes-zip=")) { image_classes_zip_filename = option.substr(strlen("--image-classes-zip=")).data(); } else if (option.starts_with("--compiled-classes=")) { compiled_classes_filename = option.substr(strlen("--compiled-classes=")).data(); } else if (option.starts_with("--compiled-classes-zip=")) { compiled_classes_zip_filename = option.substr(strlen("--compiled-classes-zip=")).data(); } else if (option.starts_with("--base=")) { const char* image_base_str = option.substr(strlen("--base=")).data(); char* end; image_base = strtoul(image_base_str, &end, 16); if (end == image_base_str || *end != '\0') { Usage("Failed to parse hexadecimal value for option %s", option.data()); } } else if (option.starts_with("--boot-image=")) { boot_image_filename = option.substr(strlen("--boot-image=")).data(); } else if (option.starts_with("--android-root=")) { android_root = option.substr(strlen("--android-root=")).data(); } else if (option.starts_with("--instruction-set=")) { StringPiece instruction_set_str = option.substr(strlen("--instruction-set=")).data(); if (instruction_set_str == "arm") { instruction_set = kThumb2; } else if (instruction_set_str == "arm64") { instruction_set = kArm64; } else if (instruction_set_str == "mips") { instruction_set = kMips; } else if (instruction_set_str == "x86") { instruction_set = kX86; } else if (instruction_set_str == "x86_64") { instruction_set = kX86_64; } } else if (option.starts_with("--instruction-set-features=")) { StringPiece str = option.substr(strlen("--instruction-set-features=")).data(); instruction_set_features = ParseFeatureList(str.as_string()); } else if (option.starts_with("--compiler-backend=")) { StringPiece backend_str = option.substr(strlen("--compiler-backend=")).data(); if (backend_str == "Quick") { compiler_kind = Compiler::kQuick; } else if (backend_str == "Optimizing") { compiler_kind = Compiler::kOptimizing; } else if (backend_str == "Portable") { compiler_kind = Compiler::kPortable; } } else if (option.starts_with("--compiler-filter=")) { compiler_filter_string = option.substr(strlen("--compiler-filter=")).data(); } else if (option == "--compile-pic") { compile_pic = true; } else if (option.starts_with("--huge-method-max=")) { const char* threshold = option.substr(strlen("--huge-method-max=")).data(); if (!ParseInt(threshold, &huge_method_threshold)) { Usage("Failed to parse --huge-method-max '%s' as an integer", threshold); } if (huge_method_threshold < 0) { Usage("--huge-method-max passed a negative value %s", huge_method_threshold); } } else if (option.starts_with("--large-method-max=")) { const char* threshold = option.substr(strlen("--large-method-max=")).data(); if (!ParseInt(threshold, &large_method_threshold)) { Usage("Failed to parse --large-method-max '%s' as an integer", threshold); } if (large_method_threshold < 0) { Usage("--large-method-max passed a negative value %s", large_method_threshold); } } else if (option.starts_with("--small-method-max=")) { const char* threshold = option.substr(strlen("--small-method-max=")).data(); if (!ParseInt(threshold, &small_method_threshold)) { Usage("Failed to parse --small-method-max '%s' as an integer", threshold); } if (small_method_threshold < 0) { Usage("--small-method-max passed a negative value %s", small_method_threshold); } } else if (option.starts_with("--tiny-method-max=")) { const char* threshold = option.substr(strlen("--tiny-method-max=")).data(); if (!ParseInt(threshold, &tiny_method_threshold)) { Usage("Failed to parse --tiny-method-max '%s' as an integer", threshold); } if (tiny_method_threshold < 0) { Usage("--tiny-method-max passed a negative value %s", tiny_method_threshold); } } else if (option.starts_with("--num-dex-methods=")) { const char* threshold = option.substr(strlen("--num-dex-methods=")).data(); if (!ParseInt(threshold, &num_dex_methods_threshold)) { Usage("Failed to parse --num-dex-methods '%s' as an integer", threshold); } if (num_dex_methods_threshold < 0) { Usage("--num-dex-methods passed a negative value %s", num_dex_methods_threshold); } } else if (option == "--host") { is_host = true; } else if (option == "--runtime-arg") { if (++i >= argc) { Usage("Missing required argument for --runtime-arg"); } if (log_options) { LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i]; } runtime_args.push_back(argv[i]); } else if (option == "--dump-timing") { dump_timing = true; } else if (option == "--dump-passes") { dump_passes = true; } else if (option == "--dump-stats") { dump_stats = true; } else if (option == "--include-debug-symbols" || option == "--no-strip-symbols") { include_debug_symbols = true; } else if (option == "--no-include-debug-symbols" || option == "--strip-symbols") { include_debug_symbols = false; generate_gdb_information = false; // Depends on debug symbols, see above. } else if (option.starts_with("--profile-file=")) { profile_file = option.substr(strlen("--profile-file=")).data(); VLOG(compiler) << "dex2oat: profile file is " << profile_file; } else if (option == "--no-profile-file") { // No profile } else if (option.starts_with("--top-k-profile-threshold=")) { ParseDouble(option.data(), '=', 0.0, 100.0, &top_k_profile_threshold); } else if (option == "--print-pass-names") { PassDriverMEOpts::PrintPassNames(); } else if (option.starts_with("--disable-passes=")) { std::string disable_passes = option.substr(strlen("--disable-passes=")).data(); PassDriverMEOpts::CreateDefaultPassList(disable_passes); } else if (option.starts_with("--print-passes=")) { std::string print_passes = option.substr(strlen("--print-passes=")).data(); PassDriverMEOpts::SetPrintPassList(print_passes); } else if (option == "--print-all-passes") { PassDriverMEOpts::SetPrintAllPasses(); } else if (option.starts_with("--dump-cfg-passes=")) { std::string dump_passes = option.substr(strlen("--dump-cfg-passes=")).data(); PassDriverMEOpts::SetDumpPassList(dump_passes); } else if (option == "--include-patch-information") { include_patch_information = true; } else if (option == "--no-include-patch-information") { include_patch_information = false; } else if (option.starts_with("--swap-file=")) { swap_file_name = option.substr(strlen("--swap-file=")).data(); } else if (option.starts_with("--swap-fd=")) { const char* swap_fd_str = option.substr(strlen("--swap-fd=")).data(); if (!ParseInt(swap_fd_str, &swap_fd)) { Usage("Failed to parse --swap-fd argument '%s' as an integer", swap_fd_str); } if (swap_fd < 0) { Usage("--swap-fd passed a negative value %d", swap_fd); } } else { Usage("Unknown argument %s", option.data()); } } if (oat_filename.empty() && oat_fd == -1) { Usage("Output must be supplied with either --oat-file or --oat-fd"); } if (!oat_filename.empty() && oat_fd != -1) { Usage("--oat-file should not be used with --oat-fd"); } if (!oat_symbols.empty() && oat_fd != -1) { Usage("--oat-symbols should not be used with --oat-fd"); } if (!oat_symbols.empty() && is_host) { Usage("--oat-symbols should not be used with --host"); } if (oat_fd != -1 && !image_filename.empty()) { Usage("--oat-fd should not be used with --image"); } if (android_root.empty()) { const char* android_root_env_var = getenv("ANDROID_ROOT"); if (android_root_env_var == nullptr) { Usage("--android-root unspecified and ANDROID_ROOT not set"); } android_root += android_root_env_var; } bool image = (!image_filename.empty()); if (!image && boot_image_filename.empty()) { boot_image_filename += android_root; boot_image_filename += "/framework/boot.art"; } std::string boot_image_option; if (!boot_image_filename.empty()) { boot_image_option += "-Ximage:"; boot_image_option += boot_image_filename; } if (image_classes_filename != nullptr && !image) { Usage("--image-classes should only be used with --image"); } if (image_classes_filename != nullptr && !boot_image_option.empty()) { Usage("--image-classes should not be used with --boot-image"); } if (image_classes_zip_filename != nullptr && image_classes_filename == nullptr) { Usage("--image-classes-zip should be used with --image-classes"); } if (compiled_classes_filename != nullptr && !image) { Usage("--compiled-classes should only be used with --image"); } if (compiled_classes_filename != nullptr && !boot_image_option.empty()) { Usage("--compiled-classes should not be used with --boot-image"); } if (compiled_classes_zip_filename != nullptr && compiled_classes_filename == nullptr) { Usage("--compiled-classes-zip should be used with --compiled-classes"); } if (dex_filenames.empty() && zip_fd == -1) { Usage("Input must be supplied with either --dex-file or --zip-fd"); } if (!dex_filenames.empty() && zip_fd != -1) { Usage("--dex-file should not be used with --zip-fd"); } if (!dex_filenames.empty() && !zip_location.empty()) { Usage("--dex-file should not be used with --zip-location"); } if (dex_locations.empty()) { for (size_t i = 0; i < dex_filenames.size(); i++) { dex_locations.push_back(dex_filenames[i]); } } else if (dex_locations.size() != dex_filenames.size()) { Usage("--dex-location arguments do not match --dex-file arguments"); } if (zip_fd != -1 && zip_location.empty()) { Usage("--zip-location should be supplied with --zip-fd"); } if (boot_image_option.empty()) { if (image_base == 0) { Usage("Non-zero --base not specified"); } } std::string oat_stripped(oat_filename); std::string oat_unstripped; if (!oat_symbols.empty()) { oat_unstripped += oat_symbols; } else { oat_unstripped += oat_filename; } if (compiler_filter_string == nullptr) { if (instruction_set == kMips64) { // TODO: fix compiler for Mips64. compiler_filter_string = "interpret-only"; } else if (image) { compiler_filter_string = "speed"; } else { #if ART_SMALL_MODE compiler_filter_string = "interpret-only"; #else compiler_filter_string = "speed"; #endif } } CHECK(compiler_filter_string != nullptr); CompilerOptions::CompilerFilter compiler_filter = CompilerOptions::kDefaultCompilerFilter; if (strcmp(compiler_filter_string, "verify-none") == 0) { compiler_filter = CompilerOptions::kVerifyNone; } else if (strcmp(compiler_filter_string, "interpret-only") == 0) { compiler_filter = CompilerOptions::kInterpretOnly; } else if (strcmp(compiler_filter_string, "space") == 0) { compiler_filter = CompilerOptions::kSpace; } else if (strcmp(compiler_filter_string, "balanced") == 0) { compiler_filter = CompilerOptions::kBalanced; } else if (strcmp(compiler_filter_string, "speed") == 0) { compiler_filter = CompilerOptions::kSpeed; } else if (strcmp(compiler_filter_string, "everything") == 0) { compiler_filter = CompilerOptions::kEverything; } else { Usage("Unknown --compiler-filter value %s", compiler_filter_string); } // Set the compilation target's implicit checks options. switch (instruction_set) { case kArm: case kThumb2: case kArm64: case kX86: case kX86_64: implicit_null_checks = true; implicit_so_checks = true; break; default: // Defaults are correct. break; } std::unique_ptr<CompilerOptions> compiler_options(new CompilerOptions(compiler_filter, huge_method_threshold, large_method_threshold, small_method_threshold, tiny_method_threshold, num_dex_methods_threshold, generate_gdb_information, include_patch_information, top_k_profile_threshold, include_debug_symbols, implicit_null_checks, implicit_so_checks, implicit_suspend_checks, compile_pic #ifdef ART_SEA_IR_MODE , compiler_options.sea_ir_ = true; #endif )); // NOLINT(whitespace/parens) // Done with usage checks, enable watchdog if requested WatchDog watch_dog(watch_dog_enabled); // Check early that the result of compilation can be written std::unique_ptr<File> oat_file; bool create_file = !oat_unstripped.empty(); // as opposed to using open file descriptor if (create_file) { oat_file.reset(OS::CreateEmptyFile(oat_unstripped.c_str())); if (oat_location.empty()) { oat_location = oat_filename; } } else { oat_file.reset(new File(oat_fd, oat_location, true)); oat_file->DisableAutoClose(); if (oat_file->SetLength(0)) { // Only warn for truncation error. PLOG(WARNING) << "Truncating oat file " << oat_location << " failed."; } } if (oat_file.get() == nullptr) { PLOG(ERROR) << "Failed to create oat file: " << oat_location; return EXIT_FAILURE; } if (create_file && fchmod(oat_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make oat file world readable: " << oat_location; oat_file->Erase(); return EXIT_FAILURE; } // Swap file handling. // // If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file // that we can use for swap. // // If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We // will immediately unlink to satisfy the swap fd assumption. std::unique_ptr<File> swap_file; if (swap_fd == -1 && !swap_file_name.empty()) { swap_file.reset(OS::CreateEmptyFile(swap_file_name.c_str())); if (swap_file.get() == nullptr) { PLOG(ERROR) << "Failed to create swap file: " << swap_file_name; return EXIT_FAILURE; } swap_fd = swap_file->Fd(); swap_file->MarkUnchecked(); // We don't we to track this, it will be unlinked immediately. unlink(swap_file_name.c_str()); } timings.StartTiming("dex2oat Setup"); LOG(INFO) << CommandLine(); RuntimeOptions runtime_options; std::vector<const DexFile*> boot_class_path; art::MemMap::Init(); // For ZipEntry::ExtractToMemMap. if (boot_image_option.empty()) { size_t failure_count = OpenDexFiles(dex_filenames, dex_locations, boot_class_path); if (failure_count > 0) { LOG(ERROR) << "Failed to open some dex files: " << failure_count; oat_file->Erase(); return EXIT_FAILURE; } runtime_options.push_back(std::make_pair("bootclasspath", &boot_class_path)); } else { runtime_options.push_back(std::make_pair(boot_image_option.c_str(), nullptr)); } for (size_t i = 0; i < runtime_args.size(); i++) { runtime_options.push_back(std::make_pair(runtime_args[i], nullptr)); } std::unique_ptr<VerificationResults> verification_results(new VerificationResults( compiler_options.get())); DexFileToMethodInlinerMap method_inliner_map; QuickCompilerCallbacks callbacks(verification_results.get(), &method_inliner_map); runtime_options.push_back(std::make_pair("compilercallbacks", &callbacks)); runtime_options.push_back( std::make_pair("imageinstructionset", reinterpret_cast<const void*>(GetInstructionSetString(instruction_set)))); if (swap_fd != -1) { // Swap file indicates low-memory mode. Use GC. runtime_options.push_back(std::make_pair("-Xgc:MS", nullptr)); } Dex2Oat* p_dex2oat; if (!Dex2Oat::Create(&p_dex2oat, runtime_options, *compiler_options, compiler_kind, instruction_set, instruction_set_features, verification_results.get(), &method_inliner_map, thread_count)) { LOG(ERROR) << "Failed to create dex2oat"; timings.EndTiming(); oat_file->Erase(); return EXIT_FAILURE; } std::unique_ptr<Dex2Oat> dex2oat(p_dex2oat); // Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start, // give it away now so that we don't starve GC. Thread* self = Thread::Current(); self->TransitionFromRunnableToSuspended(kNative); // If we're doing the image, override the compiler filter to force full compilation. Must be // done ahead of WellKnownClasses::Init that causes verification. Note: doesn't force // compilation of class initializers. // Whilst we're in native take the opportunity to initialize well known classes. WellKnownClasses::Init(self->GetJniEnv()); // If --image-classes was specified, calculate the full list of classes to include in the image std::unique_ptr<std::set<std::string>> image_classes(nullptr); if (image_classes_filename != nullptr) { std::string error_msg; if (image_classes_zip_filename != nullptr) { image_classes.reset(dex2oat->ReadImageClassesFromZip(image_classes_zip_filename, image_classes_filename, &error_msg)); } else { image_classes.reset(dex2oat->ReadImageClassesFromFile(image_classes_filename)); } if (image_classes.get() == nullptr) { LOG(ERROR) << "Failed to create list of image classes from '" << image_classes_filename << "': " << error_msg; timings.EndTiming(); oat_file->Erase(); return EXIT_FAILURE; } } else if (image) { image_classes.reset(new std::set<std::string>); } // If --compiled-classes was specified, calculate the full list of classes to compile in the // image. std::unique_ptr<std::set<std::string>> compiled_classes(nullptr); if (compiled_classes_filename != nullptr) { std::string error_msg; if (compiled_classes_zip_filename != nullptr) { compiled_classes.reset(dex2oat->ReadImageClassesFromZip(compiled_classes_zip_filename, compiled_classes_filename, &error_msg)); } else { compiled_classes.reset(dex2oat->ReadImageClassesFromFile(compiled_classes_filename)); } if (compiled_classes.get() == nullptr) { LOG(ERROR) << "Failed to create list of compiled classes from '" << compiled_classes_filename << "': " << error_msg; timings.EndTiming(); oat_file->Erase(); return EXIT_FAILURE; } } else if (image) { compiled_classes.reset(nullptr); // By default compile everything. } std::vector<const DexFile*> dex_files; if (boot_image_option.empty()) { dex_files = Runtime::Current()->GetClassLinker()->GetBootClassPath(); } else { if (dex_filenames.empty()) { ATRACE_BEGIN("Opening zip archive from file descriptor"); std::string error_msg; std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(zip_fd, zip_location.c_str(), &error_msg)); if (zip_archive.get() == nullptr) { LOG(ERROR) << "Failed to open zip from file descriptor for '" << zip_location << "': " << error_msg; timings.EndTiming(); oat_file->Erase(); return EXIT_FAILURE; } if (!DexFile::OpenFromZip(*zip_archive.get(), zip_location, &error_msg, &dex_files)) { LOG(ERROR) << "Failed to open dex from file descriptor for zip file '" << zip_location << "': " << error_msg; timings.EndTiming(); oat_file->Erase(); return EXIT_FAILURE; } ATRACE_END(); } else { size_t failure_count = OpenDexFiles(dex_filenames, dex_locations, dex_files); if (failure_count > 0) { LOG(ERROR) << "Failed to open some dex files: " << failure_count; timings.EndTiming(); oat_file->Erase(); return EXIT_FAILURE; } } const bool kSaveDexInput = false; if (kSaveDexInput) { for (size_t i = 0; i < dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex", getpid(), i)); std::unique_ptr<File> tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str())); if (tmp_file.get() == nullptr) { PLOG(ERROR) << "Failed to open file " << tmp_file_name << ". Try: adb shell chmod 777 /data/local/tmp"; continue; } // This is just dumping files for debugging. Ignore errors, and leave remnants. UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size())); UNUSED(tmp_file->Flush()); UNUSED(tmp_file->Close()); LOG(INFO) << "Wrote input to " << tmp_file_name; } } } // Ensure opened dex files are writable for dex-to-dex transformations. for (const auto& dex_file : dex_files) { if (!dex_file->EnableWrite()) { PLOG(ERROR) << "Failed to make .dex file writeable '" << dex_file->GetLocation() << "'\n"; } } // If we use a swap file, ensure we are above the threshold to make it necessary. if (swap_fd != -1) { if (!UseSwap(image, dex_files)) { close(swap_fd); swap_fd = -1; LOG(INFO) << "Decided to run without swap."; } else { LOG(INFO) << "Accepted running with swap."; } } /* * If we're not in interpret-only or verify-none mode, go ahead and compile small applications. * Don't bother to check if we're doing the image. */ if (!image && compiler_options->IsCompilationEnabled()) { size_t num_methods = 0; for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != nullptr); num_methods += dex_file->NumMethodIds(); } if (num_methods <= compiler_options->GetNumDexMethodsThreshold()) { compiler_options->SetCompilerFilter(CompilerOptions::kSpeed); VLOG(compiler) << "Below method threshold, compiling anyways"; } } // Fill some values into the key-value store for the oat header. std::unique_ptr<SafeMap<std::string, std::string> > key_value_store( new SafeMap<std::string, std::string>()); // Insert some compiler things. { std::ostringstream oss; for (int i = 0; i < argc; ++i) { if (i > 0) { oss << ' '; } oss << argv[i]; } key_value_store->Put(OatHeader::kDex2OatCmdLineKey, oss.str()); oss.str(""); // Reset. oss << kRuntimeISA; key_value_store->Put(OatHeader::kDex2OatHostKey, oss.str()); key_value_store->Put(OatHeader::kPicKey, compile_pic ? "true" : "false"); } std::unique_ptr<const CompilerDriver> compiler(dex2oat->CreateOatFile(boot_image_option, android_root, is_host, dex_files, oat_file.get(), oat_location, bitcode_filename, image, image_classes, compiled_classes, dump_stats, dump_passes, timings, compiler_phases_timings, swap_fd, profile_file, key_value_store.get())); if (compiler.get() == nullptr) { LOG(ERROR) << "Failed to create oat file: " << oat_location; timings.EndTiming(); return EXIT_FAILURE; } if (!kUsePortableCompiler) { if (oat_file->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close oat file: " << oat_location; timings.EndTiming(); return EXIT_FAILURE; } oat_file.reset(); } VLOG(compiler) << "Oat file written successfully (unstripped): " << oat_location; // Notes on the interleaving of creating the image and oat file to // ensure the references between the two are correct. // // Currently we have a memory layout that looks something like this: // // +--------------+ // | image | // +--------------+ // | boot oat | // +--------------+ // | alloc spaces | // +--------------+ // // There are several constraints on the loading of the image and boot.oat. // // 1. The image is expected to be loaded at an absolute address and // contains Objects with absolute pointers within the image. // // 2. There are absolute pointers from Methods in the image to their // code in the oat. // // 3. There are absolute pointers from the code in the oat to Methods // in the image. // // 4. There are absolute pointers from code in the oat to other code // in the oat. // // To get this all correct, we go through several steps. // // 1. We have already created that oat file above with // CreateOatFile. Originally this was just our own proprietary file // but now it is contained within an ELF dynamic object (aka an .so // file). The Compiler returned by CreateOatFile provides // PatchInformation for references to oat code and Methods that need // to be update once we know where the oat file will be located // after the image. // // 2. We create the image file. It needs to know where the oat file // will be loaded after itself. Originally when oat file was simply // memory mapped so we could predict where its contents were based // on the file size. Now that it is an ELF file, we need to inspect // the ELF file to understand the in memory segment layout including // where the oat header is located within. ElfPatcher's Patch method // uses the PatchInformation from the Compiler to touch up absolute // references in the oat file. // // 3. We fixup the ELF program headers so that dlopen will try to // load the .so at the desired location at runtime by offsetting the // Elf32_Phdr.p_vaddr values by the desired base address. // if (image) { TimingLogger::ScopedTiming t("dex2oat ImageWriter", &timings); bool image_creation_success = dex2oat->CreateImageFile(image_filename, image_base, oat_unstripped, oat_location, *compiler.get()); if (!image_creation_success) { timings.EndTiming(); return EXIT_FAILURE; } VLOG(compiler) << "Image written successfully: " << image_filename; } if (is_host) { timings.EndTiming(); if (dump_timing || (dump_slow_timing && timings.GetTotalNs() > MsToNs(1000))) { LOG(INFO) << Dumpable<TimingLogger>(timings); } if (dump_passes) { LOG(INFO) << Dumpable<CumulativeLogger>(*compiler.get()->GetTimingsLogger()); } return EXIT_SUCCESS; } // If we don't want to strip in place, copy from unstripped location to stripped location. // We need to strip after image creation because FixupElf needs to use .strtab. if (oat_unstripped != oat_stripped) { TimingLogger::ScopedTiming t("dex2oat OatFile copy", &timings); if (kUsePortableCompiler) { if (oat_file->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close oat file: " << oat_location; return EXIT_FAILURE; } oat_file.reset(); } std::unique_ptr<File> in(OS::OpenFileForReading(oat_unstripped.c_str())); std::unique_ptr<File> out(OS::CreateEmptyFile(oat_stripped.c_str())); size_t buffer_size = 8192; std::unique_ptr<uint8_t> buffer(new uint8_t[buffer_size]); while (true) { int bytes_read = TEMP_FAILURE_RETRY(read(in->Fd(), buffer.get(), buffer_size)); if (bytes_read <= 0) { break; } bool write_ok = out->WriteFully(buffer.get(), bytes_read); CHECK(write_ok); } oat_file.reset(out.release()); VLOG(compiler) << "Oat file copied successfully (stripped): " << oat_stripped; } if (kUsePortableCompiler) { if (!compiler_options->GetIncludeDebugSymbols()) { timings.NewTiming("dex2oat ElfStripper"); // Strip unneeded sections for target off_t seek_actual = lseek(oat_file->Fd(), 0, SEEK_SET); CHECK_EQ(0, seek_actual); std::string error_msg; CHECK(ElfStripper::Strip(oat_file.get(), &error_msg)) << error_msg; // We wrote the oat file successfully, and want to keep it. VLOG(compiler) << "Oat file written successfully (stripped): " << oat_location; } else { VLOG(compiler) << "Oat file written successfully without stripping: " << oat_location; } if (oat_file->FlushCloseOrErase() != 0) { LOG(ERROR) << "Failed to flush and close oat file: " << oat_location; return EXIT_FAILURE; } oat_file.reset(nullptr); } if (oat_file.get() != nullptr) { if (oat_file->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close oat file: " << oat_location << "/" << oat_filename; return EXIT_FAILURE; } } timings.EndTiming(); if (dump_timing || (dump_slow_timing && timings.GetTotalNs() > MsToNs(1000))) { LOG(INFO) << Dumpable<TimingLogger>(timings); } if (dump_passes) { LOG(INFO) << Dumpable<CumulativeLogger>(compiler_phases_timings); } dex2oat->LogCompletionTime(compiler.get()); // Everything was successfully written, do an explicit exit here to avoid running Runtime // destructors that take time (bug 10645725) unless we're a debug build or running on valgrind. if (!kIsDebugBuild && (RUNNING_ON_VALGRIND == 0)) { exit(EXIT_SUCCESS); } return EXIT_SUCCESS; } // NOLINT(readability/fn_size) } // namespace art int main(int argc, char** argv) { return art::dex2oat(argc, argv); }