/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "barrier.h" #include "monitor.h" #include <string> #include "atomic.h" #include "common_runtime_test.h" #include "handle_scope-inl.h" #include "mirror/class-inl.h" #include "mirror/string-inl.h" // Strings are easiest to allocate #include "scoped_thread_state_change.h" #include "thread_pool.h" #include "utils.h" namespace art { class MonitorTest : public CommonRuntimeTest { protected: void SetUpRuntimeOptions(RuntimeOptions *options) OVERRIDE { // Use a smaller heap for (std::pair<std::string, const void*>& pair : *options) { if (pair.first.find("-Xmx") == 0) { pair.first = "-Xmx4M"; // Smallest we can go. } } options->push_back(std::make_pair("-Xint", nullptr)); } public: std::unique_ptr<Monitor> monitor_; Handle<mirror::String> object_; Handle<mirror::String> second_object_; Handle<mirror::String> watchdog_object_; // One exception test is for waiting on another Thread's lock. This is used to race-free & // loop-free pass Thread* thread_; std::unique_ptr<Barrier> barrier_; std::unique_ptr<Barrier> complete_barrier_; bool completed_; }; // Fill the heap. static const size_t kMaxHandles = 1000000; // Use arbitrary large amount for now. static void FillHeap(Thread* self, ClassLinker* class_linker, std::unique_ptr<StackHandleScope<kMaxHandles>>* hsp, std::vector<Handle<mirror::Object>>* handles) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Runtime::Current()->GetHeap()->SetIdealFootprint(1 * GB); hsp->reset(new StackHandleScope<kMaxHandles>(self)); // Class java.lang.Object. Handle<mirror::Class> c((*hsp)->NewHandle(class_linker->FindSystemClass(self, "Ljava/lang/Object;"))); // Array helps to fill memory faster. Handle<mirror::Class> ca((*hsp)->NewHandle(class_linker->FindSystemClass(self, "[Ljava/lang/Object;"))); // Start allocating with 128K size_t length = 128 * KB / 4; while (length > 10) { Handle<mirror::Object> h((*hsp)->NewHandle<mirror::Object>( mirror::ObjectArray<mirror::Object>::Alloc(self, ca.Get(), length / 4))); if (self->IsExceptionPending() || h.Get() == nullptr) { self->ClearException(); // Try a smaller length length = length / 8; // Use at most half the reported free space. size_t mem = Runtime::Current()->GetHeap()->GetFreeMemory(); if (length * 8 > mem) { length = mem / 8; } } else { handles->push_back(h); } } // Allocate simple objects till it fails. while (!self->IsExceptionPending()) { Handle<mirror::Object> h = (*hsp)->NewHandle<mirror::Object>(c->AllocObject(self)); if (!self->IsExceptionPending() && h.Get() != nullptr) { handles->push_back(h); } } self->ClearException(); } // Check that an exception can be thrown correctly. // This test is potentially racy, but the timeout is long enough that it should work. class CreateTask : public Task { public: explicit CreateTask(MonitorTest* monitor_test, uint64_t initial_sleep, int64_t millis, bool expected) : monitor_test_(monitor_test), initial_sleep_(initial_sleep), millis_(millis), expected_(expected) {} void Run(Thread* self) { { ScopedObjectAccess soa(self); monitor_test_->thread_ = self; // Pass the Thread. monitor_test_->object_.Get()->MonitorEnter(self); // Lock the object. This should transition LockWord lock_after = monitor_test_->object_.Get()->GetLockWord(false); // it to thinLocked. LockWord::LockState new_state = lock_after.GetState(); // Cannot use ASSERT only, as analysis thinks we'll keep holding the mutex. if (LockWord::LockState::kThinLocked != new_state) { monitor_test_->object_.Get()->MonitorExit(self); // To appease analysis. ASSERT_EQ(LockWord::LockState::kThinLocked, new_state); // To fail the test. return; } // Force a fat lock by running identity hashcode to fill up lock word. monitor_test_->object_.Get()->IdentityHashCode(); LockWord lock_after2 = monitor_test_->object_.Get()->GetLockWord(false); LockWord::LockState new_state2 = lock_after2.GetState(); // Cannot use ASSERT only, as analysis thinks we'll keep holding the mutex. if (LockWord::LockState::kFatLocked != new_state2) { monitor_test_->object_.Get()->MonitorExit(self); // To appease analysis. ASSERT_EQ(LockWord::LockState::kFatLocked, new_state2); // To fail the test. return; } } // Need to drop the mutator lock to use the barrier. monitor_test_->barrier_->Wait(self); // Let the other thread know we're done. { ScopedObjectAccess soa(self); // Give the other task a chance to do its thing. NanoSleep(initial_sleep_ * 1000 * 1000); // Now try to Wait on the Monitor. Monitor::Wait(self, monitor_test_->object_.Get(), millis_, 0, true, ThreadState::kTimedWaiting); // Check the exception status against what we expect. EXPECT_EQ(expected_, self->IsExceptionPending()); if (expected_) { self->ClearException(); } } monitor_test_->complete_barrier_->Wait(self); // Wait for test completion. { ScopedObjectAccess soa(self); monitor_test_->object_.Get()->MonitorExit(self); // Release the object. Appeases analysis. } } void Finalize() { delete this; } private: MonitorTest* monitor_test_; uint64_t initial_sleep_; int64_t millis_; bool expected_; }; class UseTask : public Task { public: UseTask(MonitorTest* monitor_test, uint64_t initial_sleep, int64_t millis, bool expected) : monitor_test_(monitor_test), initial_sleep_(initial_sleep), millis_(millis), expected_(expected) {} void Run(Thread* self) { monitor_test_->barrier_->Wait(self); // Wait for the other thread to set up the monitor. { ScopedObjectAccess soa(self); // Give the other task a chance to do its thing. NanoSleep(initial_sleep_ * 1000 * 1000); Monitor::Wait(self, monitor_test_->object_.Get(), millis_, 0, true, ThreadState::kTimedWaiting); // Check the exception status against what we expect. EXPECT_EQ(expected_, self->IsExceptionPending()); if (expected_) { self->ClearException(); } } monitor_test_->complete_barrier_->Wait(self); // Wait for test completion. } void Finalize() { delete this; } private: MonitorTest* monitor_test_; uint64_t initial_sleep_; int64_t millis_; bool expected_; }; class InterruptTask : public Task { public: InterruptTask(MonitorTest* monitor_test, uint64_t initial_sleep, uint64_t millis) : monitor_test_(monitor_test), initial_sleep_(initial_sleep), millis_(millis) {} void Run(Thread* self) { monitor_test_->barrier_->Wait(self); // Wait for the other thread to set up the monitor. { ScopedObjectAccess soa(self); // Give the other task a chance to do its thing. NanoSleep(initial_sleep_ * 1000 * 1000); // Interrupt the other thread. monitor_test_->thread_->Interrupt(self); // Give it some more time to get to the exception code. NanoSleep(millis_ * 1000 * 1000); // Now try to Wait. Monitor::Wait(self, monitor_test_->object_.Get(), 10, 0, true, ThreadState::kTimedWaiting); // No check here, as depending on scheduling we may or may not fail. if (self->IsExceptionPending()) { self->ClearException(); } } monitor_test_->complete_barrier_->Wait(self); // Wait for test completion. } void Finalize() { delete this; } private: MonitorTest* monitor_test_; uint64_t initial_sleep_; uint64_t millis_; }; class WatchdogTask : public Task { public: explicit WatchdogTask(MonitorTest* monitor_test) : monitor_test_(monitor_test) {} void Run(Thread* self) { ScopedObjectAccess soa(self); monitor_test_->watchdog_object_.Get()->MonitorEnter(self); // Lock the object. monitor_test_->watchdog_object_.Get()->Wait(self, 30 * 1000, 0); // Wait for 30s, or being // woken up. monitor_test_->watchdog_object_.Get()->MonitorExit(self); // Release the lock. if (!monitor_test_->completed_) { LOG(FATAL) << "Watchdog timeout!"; } } void Finalize() { delete this; } private: MonitorTest* monitor_test_; }; static void CommonWaitSetup(MonitorTest* test, ClassLinker* class_linker, uint64_t create_sleep, int64_t c_millis, bool c_expected, bool interrupt, uint64_t use_sleep, int64_t u_millis, bool u_expected, const char* pool_name) { // First create the object we lock. String is easiest. StackHandleScope<3> hs(Thread::Current()); { ScopedObjectAccess soa(Thread::Current()); test->object_ = hs.NewHandle(mirror::String::AllocFromModifiedUtf8(Thread::Current(), "hello, world!")); test->watchdog_object_ = hs.NewHandle(mirror::String::AllocFromModifiedUtf8(Thread::Current(), "hello, world!")); } // Create the barrier used to synchronize. test->barrier_ = std::unique_ptr<Barrier>(new Barrier(2)); test->complete_barrier_ = std::unique_ptr<Barrier>(new Barrier(3)); test->completed_ = false; // Fill the heap. std::unique_ptr<StackHandleScope<kMaxHandles>> hsp; std::vector<Handle<mirror::Object>> handles; { Thread* self = Thread::Current(); ScopedObjectAccess soa(self); // Our job: Fill the heap, then try Wait. FillHeap(self, class_linker, &hsp, &handles); // Now release everything. auto it = handles.begin(); auto end = handles.end(); for ( ; it != end; ++it) { it->Assign(nullptr); } } // Need to drop the mutator lock to allow barriers. Thread* self = Thread::Current(); ThreadPool thread_pool(pool_name, 3); thread_pool.AddTask(self, new CreateTask(test, create_sleep, c_millis, c_expected)); if (interrupt) { thread_pool.AddTask(self, new InterruptTask(test, use_sleep, static_cast<uint64_t>(u_millis))); } else { thread_pool.AddTask(self, new UseTask(test, use_sleep, u_millis, u_expected)); } thread_pool.AddTask(self, new WatchdogTask(test)); thread_pool.StartWorkers(self); // Wait on completion barrier. test->complete_barrier_->Wait(Thread::Current()); test->completed_ = true; // Wake the watchdog. { Thread* self = Thread::Current(); ScopedObjectAccess soa(self); test->watchdog_object_.Get()->MonitorEnter(self); // Lock the object. test->watchdog_object_.Get()->NotifyAll(self); // Wake up waiting parties. test->watchdog_object_.Get()->MonitorExit(self); // Release the lock. } thread_pool.StopWorkers(self); } // First test: throwing an exception when trying to wait in Monitor with another thread. TEST_F(MonitorTest, CheckExceptionsWait1) { // Make the CreateTask wait 10ms, the UseTask wait 10ms. // => The use task will get the lock first and get to self == owner check. CommonWaitSetup(this, class_linker_, 10, 50, false, false, 2, 50, true, "Monitor test thread pool 1"); } // Second test: throwing an exception for invalid wait time. TEST_F(MonitorTest, CheckExceptionsWait2) { // Make the CreateTask wait 0ms, the UseTask wait 10ms. // => The create task will get the lock first and get to ms >= 0 CommonWaitSetup(this, class_linker_, 0, -1, true, false, 10, 50, true, "Monitor test thread pool 2"); } // Third test: throwing an interrupted-exception. TEST_F(MonitorTest, CheckExceptionsWait3) { // Make the CreateTask wait 0ms, then Wait for a long time. Make the InterruptTask wait 10ms, // after which it will interrupt the create task and then wait another 10ms. // => The create task will get to the interrupted-exception throw. CommonWaitSetup(this, class_linker_, 0, 500, true, true, 10, 50, true, "Monitor test thread pool 3"); } } // namespace art