/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "register_line.h" #include "base/stringprintf.h" #include "dex_instruction-inl.h" #include "method_verifier.h" #include "register_line-inl.h" namespace art { namespace verifier { bool RegisterLine::CheckConstructorReturn() const { for (size_t i = 0; i < num_regs_; i++) { if (GetRegisterType(i).IsUninitializedThisReference() || GetRegisterType(i).IsUnresolvedAndUninitializedThisReference()) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Constructor returning without calling superclass constructor"; return false; } } return true; } bool RegisterLine::SetRegisterType(uint32_t vdst, RegType& new_type) { DCHECK_LT(vdst, num_regs_); if (new_type.IsLowHalf() || new_type.IsHighHalf()) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected category1 register type not '" << new_type << "'"; return false; } else if (new_type.IsConflict()) { // should only be set during a merge verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Set register to unknown type " << new_type; return false; } else { line_[vdst] = new_type.GetId(); } // Clear the monitor entry bits for this register. ClearAllRegToLockDepths(vdst); return true; } bool RegisterLine::SetRegisterTypeWide(uint32_t vdst, RegType& new_type1, RegType& new_type2) { DCHECK_LT(vdst + 1, num_regs_); if (!new_type1.CheckWidePair(new_type2)) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Invalid wide pair '" << new_type1 << "' '" << new_type2 << "'"; return false; } else { line_[vdst] = new_type1.GetId(); line_[vdst + 1] = new_type2.GetId(); } // Clear the monitor entry bits for this register. ClearAllRegToLockDepths(vdst); ClearAllRegToLockDepths(vdst + 1); return true; } void RegisterLine::SetResultTypeToUnknown() { result_[0] = verifier_->GetRegTypeCache()->Undefined().GetId(); result_[1] = result_[0]; } void RegisterLine::SetResultRegisterType(RegType& new_type) { DCHECK(!new_type.IsLowHalf()); DCHECK(!new_type.IsHighHalf()); result_[0] = new_type.GetId(); result_[1] = verifier_->GetRegTypeCache()->Undefined().GetId(); } void RegisterLine::SetResultRegisterTypeWide(RegType& new_type1, RegType& new_type2) { DCHECK(new_type1.CheckWidePair(new_type2)); result_[0] = new_type1.GetId(); result_[1] = new_type2.GetId(); } RegType& RegisterLine::GetInvocationThis(const Instruction* inst, bool is_range) { const size_t args_count = is_range ? inst->VRegA_3rc() : inst->VRegA_35c(); if (args_count < 1) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke lacks 'this'"; return verifier_->GetRegTypeCache()->Conflict(); } /* Get the element type of the array held in vsrc */ const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c(); RegType& this_type = GetRegisterType(this_reg); if (!this_type.IsReferenceTypes()) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "tried to get class from non-reference register v" << this_reg << " (type=" << this_type << ")"; return verifier_->GetRegTypeCache()->Conflict(); } return this_type; } bool RegisterLine::VerifyRegisterType(uint32_t vsrc, RegType& check_type) { // Verify the src register type against the check type refining the type of the register RegType& src_type = GetRegisterType(vsrc); if (!(check_type.IsAssignableFrom(src_type))) { enum VerifyError fail_type; if (!check_type.IsNonZeroReferenceTypes() || !src_type.IsNonZeroReferenceTypes()) { // Hard fail if one of the types is primitive, since they are concretely known. fail_type = VERIFY_ERROR_BAD_CLASS_HARD; } else if (check_type.IsUnresolvedTypes() || src_type.IsUnresolvedTypes()) { fail_type = VERIFY_ERROR_NO_CLASS; } else { fail_type = VERIFY_ERROR_BAD_CLASS_SOFT; } verifier_->Fail(fail_type) << "register v" << vsrc << " has type " << src_type << " but expected " << check_type; return false; } if (check_type.IsLowHalf()) { RegType& src_type_h = GetRegisterType(vsrc + 1); if (!src_type.CheckWidePair(src_type_h)) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type " << src_type << "/" << src_type_h; return false; } } // The register at vsrc has a defined type, we know the lower-upper-bound, but this is less // precise than the subtype in vsrc so leave it for reference types. For primitive types // if they are a defined type then they are as precise as we can get, however, for constant // types we may wish to refine them. Unfortunately constant propagation has rendered this useless. return true; } bool RegisterLine::VerifyRegisterTypeWide(uint32_t vsrc, RegType& check_type1, RegType& check_type2) { DCHECK(check_type1.CheckWidePair(check_type2)); // Verify the src register type against the check type refining the type of the register RegType& src_type = GetRegisterType(vsrc); if (!check_type1.IsAssignableFrom(src_type)) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << vsrc << " has type " << src_type << " but expected " << check_type1; return false; } RegType& src_type_h = GetRegisterType(vsrc + 1); if (!src_type.CheckWidePair(src_type_h)) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type " << src_type << "/" << src_type_h; return false; } // The register at vsrc has a defined type, we know the lower-upper-bound, but this is less // precise than the subtype in vsrc so leave it for reference types. For primitive types // if they are a defined type then they are as precise as we can get, however, for constant // types we may wish to refine them. Unfortunately constant propagation has rendered this useless. return true; } void RegisterLine::MarkRefsAsInitialized(RegType& uninit_type) { DCHECK(uninit_type.IsUninitializedTypes()); RegType& init_type = verifier_->GetRegTypeCache()->FromUninitialized(uninit_type); size_t changed = 0; for (uint32_t i = 0; i < num_regs_; i++) { if (GetRegisterType(i).Equals(uninit_type)) { line_[i] = init_type.GetId(); changed++; } } DCHECK_GT(changed, 0u); } void RegisterLine::MarkAllRegistersAsConflicts() { uint16_t conflict_type_id = verifier_->GetRegTypeCache()->Conflict().GetId(); for (uint32_t i = 0; i < num_regs_; i++) { line_[i] = conflict_type_id; } } void RegisterLine::MarkAllRegistersAsConflictsExcept(uint32_t vsrc) { uint16_t conflict_type_id = verifier_->GetRegTypeCache()->Conflict().GetId(); for (uint32_t i = 0; i < num_regs_; i++) { if (i != vsrc) { line_[i] = conflict_type_id; } } } void RegisterLine::MarkAllRegistersAsConflictsExceptWide(uint32_t vsrc) { uint16_t conflict_type_id = verifier_->GetRegTypeCache()->Conflict().GetId(); for (uint32_t i = 0; i < num_regs_; i++) { if ((i != vsrc) && (i != (vsrc + 1))) { line_[i] = conflict_type_id; } } } std::string RegisterLine::Dump() { std::string result; for (size_t i = 0; i < num_regs_; i++) { result += StringPrintf("%zd:[", i); result += GetRegisterType(i).Dump(); result += "],"; } for (const auto& monitor : monitors_) { result += StringPrintf("{%d},", monitor); } return result; } void RegisterLine::MarkUninitRefsAsInvalid(RegType& uninit_type) { for (size_t i = 0; i < num_regs_; i++) { if (GetRegisterType(i).Equals(uninit_type)) { line_[i] = verifier_->GetRegTypeCache()->Conflict().GetId(); ClearAllRegToLockDepths(i); } } } void RegisterLine::CopyRegister1(uint32_t vdst, uint32_t vsrc, TypeCategory cat) { DCHECK(cat == kTypeCategory1nr || cat == kTypeCategoryRef); RegType& type = GetRegisterType(vsrc); if (!SetRegisterType(vdst, type)) { return; } if ((cat == kTypeCategory1nr && !type.IsCategory1Types()) || (cat == kTypeCategoryRef && !type.IsReferenceTypes())) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy1 v" << vdst << "<-v" << vsrc << " type=" << type << " cat=" << static_cast<int>(cat); } else if (cat == kTypeCategoryRef) { CopyRegToLockDepth(vdst, vsrc); } } void RegisterLine::CopyRegister2(uint32_t vdst, uint32_t vsrc) { RegType& type_l = GetRegisterType(vsrc); RegType& type_h = GetRegisterType(vsrc + 1); if (!type_l.CheckWidePair(type_h)) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy2 v" << vdst << "<-v" << vsrc << " type=" << type_l << "/" << type_h; } else { SetRegisterTypeWide(vdst, type_l, type_h); } } void RegisterLine::CopyResultRegister1(uint32_t vdst, bool is_reference) { RegType& type = verifier_->GetRegTypeCache()->GetFromId(result_[0]); if ((!is_reference && !type.IsCategory1Types()) || (is_reference && !type.IsReferenceTypes())) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copyRes1 v" << vdst << "<- result0" << " type=" << type; } else { DCHECK(verifier_->GetRegTypeCache()->GetFromId(result_[1]).IsUndefined()); SetRegisterType(vdst, type); result_[0] = verifier_->GetRegTypeCache()->Undefined().GetId(); } } /* * Implement "move-result-wide". Copy the category-2 value from the result * register to another register, and reset the result register. */ void RegisterLine::CopyResultRegister2(uint32_t vdst) { RegType& type_l = verifier_->GetRegTypeCache()->GetFromId(result_[0]); RegType& type_h = verifier_->GetRegTypeCache()->GetFromId(result_[1]); if (!type_l.IsCategory2Types()) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copyRes2 v" << vdst << "<- result0" << " type=" << type_l; } else { DCHECK(type_l.CheckWidePair(type_h)); // Set should never allow this case SetRegisterTypeWide(vdst, type_l, type_h); // also sets the high result_[0] = verifier_->GetRegTypeCache()->Undefined().GetId(); result_[1] = verifier_->GetRegTypeCache()->Undefined().GetId(); } } void RegisterLine::CheckUnaryOp(const Instruction* inst, RegType& dst_type, RegType& src_type) { if (VerifyRegisterType(inst->VRegB_12x(), src_type)) { SetRegisterType(inst->VRegA_12x(), dst_type); } } void RegisterLine::CheckUnaryOpWide(const Instruction* inst, RegType& dst_type1, RegType& dst_type2, RegType& src_type1, RegType& src_type2) { if (VerifyRegisterTypeWide(inst->VRegB_12x(), src_type1, src_type2)) { SetRegisterTypeWide(inst->VRegA_12x(), dst_type1, dst_type2); } } void RegisterLine::CheckUnaryOpToWide(const Instruction* inst, RegType& dst_type1, RegType& dst_type2, RegType& src_type) { if (VerifyRegisterType(inst->VRegB_12x(), src_type)) { SetRegisterTypeWide(inst->VRegA_12x(), dst_type1, dst_type2); } } void RegisterLine::CheckUnaryOpFromWide(const Instruction* inst, RegType& dst_type, RegType& src_type1, RegType& src_type2) { if (VerifyRegisterTypeWide(inst->VRegB_12x(), src_type1, src_type2)) { SetRegisterType(inst->VRegA_12x(), dst_type); } } void RegisterLine::CheckBinaryOp(const Instruction* inst, RegType& dst_type, RegType& src_type1, RegType& src_type2, bool check_boolean_op) { const uint32_t vregB = inst->VRegB_23x(); const uint32_t vregC = inst->VRegC_23x(); if (VerifyRegisterType(vregB, src_type1) && VerifyRegisterType(vregC, src_type2)) { if (check_boolean_op) { DCHECK(dst_type.IsInteger()); if (GetRegisterType(vregB).IsBooleanTypes() && GetRegisterType(vregC).IsBooleanTypes()) { SetRegisterType(inst->VRegA_23x(), verifier_->GetRegTypeCache()->Boolean()); return; } } SetRegisterType(inst->VRegA_23x(), dst_type); } } void RegisterLine::CheckBinaryOpWide(const Instruction* inst, RegType& dst_type1, RegType& dst_type2, RegType& src_type1_1, RegType& src_type1_2, RegType& src_type2_1, RegType& src_type2_2) { if (VerifyRegisterTypeWide(inst->VRegB_23x(), src_type1_1, src_type1_2) && VerifyRegisterTypeWide(inst->VRegC_23x(), src_type2_1, src_type2_2)) { SetRegisterTypeWide(inst->VRegA_23x(), dst_type1, dst_type2); } } void RegisterLine::CheckBinaryOpWideShift(const Instruction* inst, RegType& long_lo_type, RegType& long_hi_type, RegType& int_type) { if (VerifyRegisterTypeWide(inst->VRegB_23x(), long_lo_type, long_hi_type) && VerifyRegisterType(inst->VRegC_23x(), int_type)) { SetRegisterTypeWide(inst->VRegA_23x(), long_lo_type, long_hi_type); } } void RegisterLine::CheckBinaryOp2addr(const Instruction* inst, RegType& dst_type, RegType& src_type1, RegType& src_type2, bool check_boolean_op) { const uint32_t vregA = inst->VRegA_12x(); const uint32_t vregB = inst->VRegB_12x(); if (VerifyRegisterType(vregA, src_type1) && VerifyRegisterType(vregB, src_type2)) { if (check_boolean_op) { DCHECK(dst_type.IsInteger()); if (GetRegisterType(vregA).IsBooleanTypes() && GetRegisterType(vregB).IsBooleanTypes()) { SetRegisterType(vregA, verifier_->GetRegTypeCache()->Boolean()); return; } } SetRegisterType(vregA, dst_type); } } void RegisterLine::CheckBinaryOp2addrWide(const Instruction* inst, RegType& dst_type1, RegType& dst_type2, RegType& src_type1_1, RegType& src_type1_2, RegType& src_type2_1, RegType& src_type2_2) { const uint32_t vregA = inst->VRegA_12x(); const uint32_t vregB = inst->VRegB_12x(); if (VerifyRegisterTypeWide(vregA, src_type1_1, src_type1_2) && VerifyRegisterTypeWide(vregB, src_type2_1, src_type2_2)) { SetRegisterTypeWide(vregA, dst_type1, dst_type2); } } void RegisterLine::CheckBinaryOp2addrWideShift(const Instruction* inst, RegType& long_lo_type, RegType& long_hi_type, RegType& int_type) { const uint32_t vregA = inst->VRegA_12x(); const uint32_t vregB = inst->VRegB_12x(); if (VerifyRegisterTypeWide(vregA, long_lo_type, long_hi_type) && VerifyRegisterType(vregB, int_type)) { SetRegisterTypeWide(vregA, long_lo_type, long_hi_type); } } void RegisterLine::CheckLiteralOp(const Instruction* inst, RegType& dst_type, RegType& src_type, bool check_boolean_op, bool is_lit16) { const uint32_t vregA = is_lit16 ? inst->VRegA_22s() : inst->VRegA_22b(); const uint32_t vregB = is_lit16 ? inst->VRegB_22s() : inst->VRegB_22b(); if (VerifyRegisterType(vregB, src_type)) { if (check_boolean_op) { DCHECK(dst_type.IsInteger()); /* check vB with the call, then check the constant manually */ const uint32_t val = is_lit16 ? inst->VRegC_22s() : inst->VRegC_22b(); if (GetRegisterType(vregB).IsBooleanTypes() && (val == 0 || val == 1)) { SetRegisterType(vregA, verifier_->GetRegTypeCache()->Boolean()); return; } } SetRegisterType(vregA, dst_type); } } void RegisterLine::PushMonitor(uint32_t reg_idx, int32_t insn_idx) { RegType& reg_type = GetRegisterType(reg_idx); if (!reg_type.IsReferenceTypes()) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter on non-object (" << reg_type << ")"; } else if (monitors_.size() >= 32) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter stack overflow: " << monitors_.size(); } else { SetRegToLockDepth(reg_idx, monitors_.size()); monitors_.push_back(insn_idx); } } void RegisterLine::PopMonitor(uint32_t reg_idx) { RegType& reg_type = GetRegisterType(reg_idx); if (!reg_type.IsReferenceTypes()) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit on non-object (" << reg_type << ")"; } else if (monitors_.empty()) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit stack underflow"; } else { monitors_.pop_back(); if (!IsSetLockDepth(reg_idx, monitors_.size())) { // Bug 3215458: Locks and unlocks are on objects, if that object is a literal then before // format "036" the constant collector may create unlocks on the same object but referenced // via different registers. ((verifier_->DexFileVersion() >= 36) ? verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) : verifier_->LogVerifyInfo()) << "monitor-exit not unlocking the top of the monitor stack"; } else { // Record the register was unlocked ClearRegToLockDepth(reg_idx, monitors_.size()); } } } bool RegisterLine::VerifyMonitorStackEmpty() const { if (MonitorStackDepth() != 0) { verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected empty monitor stack"; return false; } else { return true; } } bool RegisterLine::MergeRegisters(const RegisterLine* incoming_line) { bool changed = false; DCHECK(incoming_line != nullptr); for (size_t idx = 0; idx < num_regs_; idx++) { if (line_[idx] != incoming_line->line_[idx]) { RegType& incoming_reg_type = incoming_line->GetRegisterType(idx); RegType& cur_type = GetRegisterType(idx); RegType& new_type = cur_type.Merge(incoming_reg_type, verifier_->GetRegTypeCache()); changed = changed || !cur_type.Equals(new_type); line_[idx] = new_type.GetId(); } } if (monitors_.size() != incoming_line->monitors_.size()) { LOG(WARNING) << "mismatched stack depths (depth=" << MonitorStackDepth() << ", incoming depth=" << incoming_line->MonitorStackDepth() << ")"; } else if (reg_to_lock_depths_ != incoming_line->reg_to_lock_depths_) { for (uint32_t idx = 0; idx < num_regs_; idx++) { size_t depths = reg_to_lock_depths_.count(idx); size_t incoming_depths = incoming_line->reg_to_lock_depths_.count(idx); if (depths != incoming_depths) { if (depths == 0 || incoming_depths == 0) { reg_to_lock_depths_.erase(idx); } else { LOG(WARNING) << "mismatched stack depths for register v" << idx << ": " << depths << " != " << incoming_depths; break; } } } } return changed; } void RegisterLine::WriteReferenceBitMap(std::vector<uint8_t>& data, size_t max_bytes) { for (size_t i = 0; i < num_regs_; i += 8) { uint8_t val = 0; for (size_t j = 0; j < 8 && (i + j) < num_regs_; j++) { // Note: we write 1 for a Reference but not for Null if (GetRegisterType(i + j).IsNonZeroReferenceTypes()) { val |= 1 << j; } } if ((i / 8) >= max_bytes) { DCHECK_EQ(0, val); continue; } DCHECK_LT(i / 8, max_bytes) << "val=" << static_cast<uint32_t>(val); data.push_back(val); } } std::ostream& operator<<(std::ostream& os, const RegisterLine& rhs) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { RegisterLine& rhs_non_const = const_cast<RegisterLine&>(rhs); os << rhs_non_const.Dump(); return os; } } // namespace verifier } // namespace art