/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <gtest/gtest.h> #include <errno.h> #include <malloc.h> #include <math.h> #include <string.h> #include "buffer_tests.h" #define KB 1024 #define SMALL 1*KB #define MEDIUM 4*KB #define LARGE 64*KB static int signum(int i) { if (i < 0) { return -1; } else if (i > 0) { return 1; } return 0; } TEST(string, strerror) { // Valid. ASSERT_STREQ("Success", strerror(0)); ASSERT_STREQ("Operation not permitted", strerror(1)); // Invalid. ASSERT_STREQ("Unknown error -1", strerror(-1)); ASSERT_STREQ("Unknown error 1234", strerror(1234)); } #if defined(__BIONIC__) static void* ConcurrentStrErrorFn(void*) { bool equal = (strcmp("Unknown error 2002", strerror(2002)) == 0); return reinterpret_cast<void*>(equal); } #endif // __BIONIC__ // glibc's strerror isn't thread safe, only its strsignal. TEST(string, strerror_concurrent) { #if defined(__BIONIC__) const char* strerror1001 = strerror(1001); ASSERT_STREQ("Unknown error 1001", strerror1001); pthread_t t; ASSERT_EQ(0, pthread_create(&t, NULL, ConcurrentStrErrorFn, NULL)); void* result; ASSERT_EQ(0, pthread_join(t, &result)); ASSERT_TRUE(static_cast<bool>(result)); ASSERT_STREQ("Unknown error 1001", strerror1001); #else // __BIONIC__ GTEST_LOG_(INFO) << "This test does nothing.\n"; #endif // __BIONIC__ } TEST(string, strerror_r) { #if defined(__BIONIC__) // glibc's strerror_r doesn't even have the same signature as the POSIX one. char buf[256]; // Valid. ASSERT_EQ(0, strerror_r(0, buf, sizeof(buf))); ASSERT_STREQ("Success", buf); ASSERT_EQ(0, strerror_r(1, buf, sizeof(buf))); ASSERT_STREQ("Operation not permitted", buf); // Invalid. ASSERT_EQ(0, strerror_r(-1, buf, sizeof(buf))); ASSERT_STREQ("Unknown error -1", buf); ASSERT_EQ(0, strerror_r(1234, buf, sizeof(buf))); ASSERT_STREQ("Unknown error 1234", buf); // Buffer too small. ASSERT_EQ(-1, strerror_r(0, buf, 2)); ASSERT_EQ(ERANGE, errno); #else // __BIONIC__ GTEST_LOG_(INFO) << "This test does nothing.\n"; #endif // __BIONIC__ } TEST(string, strsignal) { // A regular signal. ASSERT_STREQ("Hangup", strsignal(1)); // A real-time signal. ASSERT_STREQ("Real-time signal 14", strsignal(SIGRTMIN + 14)); // One of the signals the C library keeps to itself. ASSERT_STREQ("Unknown signal 32", strsignal(__SIGRTMIN)); // Errors. ASSERT_STREQ("Unknown signal -1", strsignal(-1)); // Too small. ASSERT_STREQ("Unknown signal 0", strsignal(0)); // Still too small. ASSERT_STREQ("Unknown signal 1234", strsignal(1234)); // Too large. } static void* ConcurrentStrSignalFn(void*) { bool equal = (strcmp("Unknown signal 2002", strsignal(2002)) == 0); return reinterpret_cast<void*>(equal); } TEST(string, strsignal_concurrent) { const char* strsignal1001 = strsignal(1001); ASSERT_STREQ("Unknown signal 1001", strsignal1001); pthread_t t; ASSERT_EQ(0, pthread_create(&t, NULL, ConcurrentStrSignalFn, NULL)); void* result; ASSERT_EQ(0, pthread_join(t, &result)); ASSERT_TRUE(static_cast<bool>(result)); ASSERT_STREQ("Unknown signal 1001", strsignal1001); } // TODO: where did these numbers come from? #define POS_ITER 10 #define ITER 500 // For every length we want to test, vary and change alignment // of allocated memory, fill it with some values, calculate // expected result and then run function and compare what we got. // These tests contributed by Intel Corporation. // TODO: make these tests more intention-revealing and less random. template<class Character> struct StringTestState { StringTestState(size_t MAX_LEN) : MAX_LEN(MAX_LEN) { int max_alignment = 64; // TODO: fix the tests to not sometimes use twice their specified "MAX_LEN". glob_ptr = reinterpret_cast<Character*>(memalign(sysconf(_SC_PAGESIZE), 2 * sizeof(Character) * MAX_LEN + max_alignment)); glob_ptr1 = reinterpret_cast<Character*>(memalign(sysconf(_SC_PAGESIZE), 2 * sizeof(Character) * MAX_LEN + max_alignment)); glob_ptr2 = reinterpret_cast<Character*>(memalign(sysconf(_SC_PAGESIZE), 2 * sizeof(Character) * MAX_LEN + max_alignment)); InitLenArray(); srandom(1234); } ~StringTestState() { free(glob_ptr); free(glob_ptr1); free(glob_ptr2); } void NewIteration() { int alignments[] = { 24, 32, 16, 48, 1, 2, 3, 0, 5, 11 }; int usable_alignments = 10; int align1 = alignments[random() % (usable_alignments - 1)]; int align2 = alignments[random() % (usable_alignments - 1)]; ptr = glob_ptr + align1; ptr1 = glob_ptr1 + align1; ptr2 = glob_ptr2 + align2; } const size_t MAX_LEN; Character *ptr, *ptr1, *ptr2; size_t n; size_t len[ITER + 1]; private: Character *glob_ptr, *glob_ptr1, *glob_ptr2; // Calculate input lengths and fill state.len with them. // Test small lengths with more density than big ones. Manually push // smallest (0) and biggest (MAX_LEN) lengths. Avoid repeats. // Return number of lengths to test. void InitLenArray() { n = 0; len[n++] = 0; for (size_t i = 1; i < ITER; ++i) { size_t l = static_cast<size_t>(exp(log(static_cast<double>(MAX_LEN)) * i / ITER)); if (l != len[n - 1]) { len[n++] = l; } } len[n++] = MAX_LEN; } }; TEST(string, strcat) { StringTestState<char> state(SMALL); for (size_t i = 1; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr2, '\2', state.MAX_LEN); state.ptr2[state.MAX_LEN - 1] = '\0'; memcpy(state.ptr, state.ptr2, 2 * state.MAX_LEN); memset(state.ptr1, random() & 255, state.len[i]); state.ptr1[random() % state.len[i]] = '\0'; state.ptr1[state.len[i] - 1] = '\0'; strcpy(state.ptr + state.MAX_LEN - 1, state.ptr1); EXPECT_TRUE(strcat(state.ptr2, state.ptr1) == state.ptr2); EXPECT_TRUE(memcmp(state.ptr, state.ptr2, 2 * state.MAX_LEN) == 0); } } } // one byte target with "\0" source TEST(string, strcpy2) { char buf[1]; char* orig = strdup(""); ASSERT_EQ(buf, strcpy(buf, orig)); ASSERT_EQ('\0', buf[0]); free(orig); } // multibyte target where we under fill target TEST(string, strcpy3) { char buf[10]; char* orig = strdup("12345"); memset(buf, 'A', sizeof(buf)); ASSERT_EQ(buf, strcpy(buf, orig)); ASSERT_STREQ("12345", buf); ASSERT_EQ('A', buf[6]); ASSERT_EQ('A', buf[7]); ASSERT_EQ('A', buf[8]); ASSERT_EQ('A', buf[9]); free(orig); } // multibyte target where we fill target exactly TEST(string, strcpy4) { char buf[10]; char* orig = strdup("123456789"); memset(buf, 'A', sizeof(buf)); ASSERT_EQ(buf, strcpy(buf, orig)); ASSERT_STREQ("123456789", buf); free(orig); } // one byte target with "\0" source TEST(string, stpcpy2) { char buf[1]; char* orig = strdup(""); ASSERT_EQ(buf, stpcpy(buf, orig)); ASSERT_EQ('\0', buf[0]); free(orig); } // multibyte target where we under fill target TEST(string, stpcpy3) { char buf[10]; char* orig = strdup("12345"); memset(buf, 'A', sizeof(buf)); ASSERT_EQ(buf+strlen(orig), stpcpy(buf, orig)); ASSERT_STREQ("12345", buf); ASSERT_EQ('A', buf[6]); ASSERT_EQ('A', buf[7]); ASSERT_EQ('A', buf[8]); ASSERT_EQ('A', buf[9]); free(orig); } // multibyte target where we fill target exactly TEST(string, stpcpy4) { char buf[10]; char* orig = strdup("123456789"); memset(buf, 'A', sizeof(buf)); ASSERT_EQ(buf+strlen(orig), stpcpy(buf, orig)); ASSERT_STREQ("123456789", buf); free(orig); } TEST(string, strcat2) { char buf[10]; memset(buf, 'A', sizeof(buf)); buf[0] = 'a'; buf[1] = '\0'; char* res = strcat(buf, "01234"); ASSERT_EQ(buf, res); ASSERT_STREQ("a01234", buf); ASSERT_EQ('A', buf[7]); ASSERT_EQ('A', buf[8]); ASSERT_EQ('A', buf[9]); } TEST(string, strcat3) { char buf[10]; memset(buf, 'A', sizeof(buf)); buf[0] = 'a'; buf[1] = '\0'; char* res = strcat(buf, "01234567"); ASSERT_EQ(buf, res); ASSERT_STREQ("a01234567", buf); } TEST(string, strncat2) { char buf[10]; memset(buf, 'A', sizeof(buf)); buf[0] = 'a'; buf[1] = '\0'; char* res = strncat(buf, "01234", sizeof(buf) - strlen(buf) - 1); ASSERT_EQ(buf, res); ASSERT_STREQ("a01234", buf); ASSERT_EQ('A', buf[7]); ASSERT_EQ('A', buf[8]); ASSERT_EQ('A', buf[9]); } TEST(string, strncat3) { char buf[10]; memset(buf, 'A', sizeof(buf)); buf[0] = 'a'; buf[1] = '\0'; char* res = strncat(buf, "0123456789", 5); ASSERT_EQ(buf, res); ASSERT_STREQ("a01234", buf); ASSERT_EQ('A', buf[7]); ASSERT_EQ('A', buf[8]); ASSERT_EQ('A', buf[9]); } TEST(string, strncat4) { char buf[10]; memset(buf, 'A', sizeof(buf)); buf[0] = 'a'; buf[1] = '\0'; char* res = strncat(buf, "01234567", 8); ASSERT_EQ(buf, res); ASSERT_STREQ("a01234567", buf); } TEST(string, strncat5) { char buf[10]; memset(buf, 'A', sizeof(buf)); buf[0] = 'a'; buf[1] = '\0'; char* res = strncat(buf, "01234567", 9); ASSERT_EQ(buf, res); ASSERT_STREQ("a01234567", buf); } TEST(string, strchr_with_0) { char buf[10]; const char* s = "01234"; memcpy(buf, s, strlen(s) + 1); EXPECT_TRUE(strchr(buf, '\0') == (buf + strlen(s))); } TEST(string, strchr_multiple) { char str[128]; memset(str, 'a', sizeof(str) - 1); str[sizeof(str)-1] = '\0'; // Verify that strchr finds the first occurrence of 'a' in a string // filled with 'a' characters. Iterate over the string putting // non 'a' characters at the front of the string during each iteration // and continue to verify that strchr can find the first occurrence // properly. The idea is to cover all possible alignments of the location // of the first occurrence of the 'a' character and which includes // other 'a' characters close by. for (size_t i = 0; i < sizeof(str) - 1; i++) { EXPECT_EQ(&str[i], strchr(str, 'a')); str[i] = 'b'; } } TEST(string, strchr) { int seek_char = random() & 255; StringTestState<char> state(SMALL); for (size_t i = 1; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); if (~seek_char > 0) { memset(state.ptr1, ~seek_char, state.len[i]); } else { memset(state.ptr1, '\1', state.len[i]); } state.ptr1[state.len[i] - 1] = '\0'; size_t pos = random() % state.MAX_LEN; char* expected; if (pos >= state.len[i] - 1) { if (seek_char == 0) { expected = state.ptr1 + state.len[i] - 1; } else { expected = NULL; } } else { state.ptr1[pos] = seek_char; expected = state.ptr1 + pos; } ASSERT_TRUE(strchr(state.ptr1, seek_char) == expected); } } } TEST(string, strcmp) { StringTestState<char> state(SMALL); for (size_t i = 1; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr1, 'v', state.MAX_LEN); memset(state.ptr2, 'n', state.MAX_LEN); state.ptr1[state.len[i] - 1] = '\0'; state.ptr2[state.len[i] - 1] = '\0'; size_t pos = 1 + (random() % (state.MAX_LEN - 1)); int actual; int expected; if (pos >= state.len[i] - 1) { memcpy(state.ptr1, state.ptr2, state.len[i]); expected = 0; actual = strcmp(state.ptr1, state.ptr2); } else { memcpy(state.ptr1, state.ptr2, pos); if (state.ptr1[pos] > state.ptr2[pos]) { expected = 1; } else if (state.ptr1[pos] == state.ptr2[pos]) { state.ptr1[pos + 1] = '\0'; state.ptr2[pos + 1] = '\0'; expected = 0; } else { expected = -1; } actual = strcmp(state.ptr1, state.ptr2); } ASSERT_EQ(expected, signum(actual)); } } } TEST(string, stpcpy) { StringTestState<char> state(SMALL); for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); size_t pos = random() % state.MAX_LEN; memset(state.ptr1, '\2', pos); state.ptr1[pos] = '\0'; state.ptr1[state.MAX_LEN - 1] = '\0'; memcpy(state.ptr, state.ptr1, state.MAX_LEN); memset(state.ptr2, '\1', state.MAX_LEN); state.ptr2[state.MAX_LEN - 1] = '\0'; memset(state.ptr + state.MAX_LEN, '\1', state.MAX_LEN); memcpy(state.ptr + state.MAX_LEN, state.ptr1, pos + 1); state.ptr[2 * state.MAX_LEN - 1] = '\0'; ASSERT_TRUE(stpcpy(state.ptr2, state.ptr1) == state.ptr2 + strlen(state.ptr1)); ASSERT_FALSE((memcmp(state.ptr1, state.ptr, state.MAX_LEN)) != 0 || (memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN) != 0)); } } TEST(string, strcpy) { StringTestState<char> state(SMALL); for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); size_t pos = random() % state.MAX_LEN; memset(state.ptr1, '\2', pos); state.ptr1[pos] = '\0'; state.ptr1[state.MAX_LEN - 1] = '\0'; memcpy(state.ptr, state.ptr1, state.MAX_LEN); memset(state.ptr2, '\1', state.MAX_LEN); state.ptr2[state.MAX_LEN - 1] = '\0'; memset(state.ptr + state.MAX_LEN, '\1', state.MAX_LEN); memcpy(state.ptr + state.MAX_LEN, state.ptr1, pos + 1); state.ptr[2 * state.MAX_LEN - 1] = '\0'; ASSERT_TRUE(strcpy(state.ptr2, state.ptr1) == state.ptr2); ASSERT_FALSE((memcmp(state.ptr1, state.ptr, state.MAX_LEN)) != 0 || (memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN) != 0)); } } TEST(string, strlcat) { #if defined(__BIONIC__) StringTestState<char> state(SMALL); for (size_t i = 0; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr2, '\2', state.MAX_LEN + state.len[i]); state.ptr2[state.MAX_LEN - 1] = '\0'; memcpy(state.ptr, state.ptr2, state.MAX_LEN + state.len[i]); size_t pos = random() % state.MAX_LEN; memset(state.ptr1, '\3', pos); state.ptr1[pos] = '\0'; if (pos < state.len[i]) { memcpy(state.ptr + state.MAX_LEN - 1, state.ptr1, pos + 1); } else { memcpy(state.ptr + state.MAX_LEN - 1, state.ptr1, state.len[i]); state.ptr[state.MAX_LEN + state.len[i] - 1] = '\0'; } strlcat(state.ptr2, state.ptr1, state.MAX_LEN + state.len[i]); ASSERT_TRUE(memcmp(state.ptr, state.ptr2, state.MAX_LEN + state.len[i]) == 0); } } #else // __BIONIC__ GTEST_LOG_(INFO) << "This test does nothing.\n"; #endif // __BIONIC__ } TEST(string, strlcpy) { #if defined(__BIONIC__) StringTestState<char> state(SMALL); for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); int rand = random() & 255; if (rand < 1) { rand = 1; } memset(state.ptr1, rand, state.MAX_LEN); size_t pos = random() % state.MAX_LEN; if (pos < state.MAX_LEN) { state.ptr1[pos] = '\0'; } memcpy(state.ptr, state.ptr1, state.MAX_LEN); memset(state.ptr2, random() & 255, state.MAX_LEN); memcpy(state.ptr + state.MAX_LEN, state.ptr2, state.MAX_LEN); if (pos > state.MAX_LEN - 1) { memcpy(state.ptr + state.MAX_LEN, state.ptr1, state.MAX_LEN); state.ptr[2 * state.MAX_LEN - 1] = '\0'; } else { memcpy(state.ptr + state.MAX_LEN, state.ptr1, pos + 1); } ASSERT_EQ(strlcpy(state.ptr2, state.ptr1, state.MAX_LEN), strlen(state.ptr1)); ASSERT_FALSE((memcmp(state.ptr1, state.ptr, state.MAX_LEN) != 0) || (memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN) != 0)); } #else // __BIONIC__ GTEST_LOG_(INFO) << "This test does nothing.\n"; #endif // __BIONIC__ } TEST(string, strncat) { StringTestState<char> state(SMALL); for (size_t i = 1; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr2, '\2', state.MAX_LEN); state.ptr2[state.MAX_LEN - 1] = '\0'; memcpy(state.ptr, state.ptr2, 2 * state.MAX_LEN); memset(state.ptr1, random() & 255, state.len[i]); state.ptr1[random() % state.len[i]] = '\0'; state.ptr1[state.len[i] - 1] = '\0'; size_t pos = strlen(state.ptr1); size_t actual = random() % state.len[i]; strncpy(state.ptr + state.MAX_LEN - 1, state.ptr1, std::min(actual, pos)); state.ptr[state.MAX_LEN + std::min(actual, pos) - 1] = '\0'; ASSERT_TRUE(strncat(state.ptr2, state.ptr1, actual) == state.ptr2); ASSERT_EQ(memcmp(state.ptr, state.ptr2, 2 * state.MAX_LEN), 0); } } } TEST(string, strncmp) { StringTestState<char> state(SMALL); for (size_t i = 1; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr1, 'v', state.MAX_LEN); memset(state.ptr2, 'n', state.MAX_LEN); state.ptr1[state.len[i] - 1] = '\0'; state.ptr2[state.len[i] - 1] = '\0'; size_t pos = 1 + (random() % (state.MAX_LEN - 1)); int actual; int expected; if (pos >= state.len[i] - 1) { memcpy(state.ptr1, state.ptr2, state.len[i]); expected = 0; actual = strncmp(state.ptr1, state.ptr2, state.len[i]); } else { memcpy(state.ptr1, state.ptr2, pos); if (state.ptr1[pos] > state.ptr2[pos]) { expected = 1; } else if (state.ptr1[pos] == state.ptr2[pos]) { state.ptr1[pos + 1] = '\0'; state.ptr2[pos + 1] = '\0'; expected = 0; } else { expected = -1; } actual = strncmp(state.ptr1, state.ptr2, state.len[i]); } ASSERT_EQ(expected, signum(actual)); } } } TEST(string, stpncpy) { StringTestState<char> state(SMALL); for (size_t j = 0; j < ITER; j++) { state.NewIteration(); // Choose a random value to fill the string, except \0 (string terminator), // or \1 (guarantees it's different from anything in ptr2). memset(state.ptr1, (random() % 254) + 2, state.MAX_LEN); // Choose a random size for our src buffer. size_t ptr1_len = random() % state.MAX_LEN; state.ptr1[ptr1_len] = '\0'; // Copy ptr1 into ptr, used to verify that ptr1 does not get modified. memcpy(state.ptr, state.ptr1, state.MAX_LEN); // Init ptr2 to a set value. memset(state.ptr2, '\1', state.MAX_LEN); // Choose a random amount of data to copy. size_t copy_len = random() % state.MAX_LEN; // Set the second half of ptr to the expected pattern in ptr2. memset(state.ptr + state.MAX_LEN, '\1', state.MAX_LEN); memcpy(state.ptr + state.MAX_LEN, state.ptr1, copy_len); size_t expected_end; if (copy_len > ptr1_len) { memset(state.ptr + state.MAX_LEN + ptr1_len, '\0', copy_len - ptr1_len); expected_end = ptr1_len; } else { expected_end = copy_len; } ASSERT_EQ(state.ptr2 + expected_end, stpncpy(state.ptr2, state.ptr1, copy_len)); // Verify ptr1 was not modified. ASSERT_EQ(0, memcmp(state.ptr1, state.ptr, state.MAX_LEN)); // Verify ptr2 contains the expected data. ASSERT_EQ(0, memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN)); } } TEST(string, strncpy) { StringTestState<char> state(SMALL); for (size_t j = 0; j < ITER; j++) { state.NewIteration(); // Choose a random value to fill the string, except \0 (string terminator), // or \1 (guarantees it's different from anything in ptr2). memset(state.ptr1, (random() % 254) + 2, state.MAX_LEN); // Choose a random size for our src buffer. size_t ptr1_len = random() % state.MAX_LEN; state.ptr1[ptr1_len] = '\0'; // Copy ptr1 into ptr, used to verify that ptr1 does not get modified. memcpy(state.ptr, state.ptr1, state.MAX_LEN); // Init ptr2 to a set value. memset(state.ptr2, '\1', state.MAX_LEN); // Choose a random amount of data to copy. size_t copy_len = random() % state.MAX_LEN; // Set the second half of ptr to the expected pattern in ptr2. memset(state.ptr + state.MAX_LEN, '\1', state.MAX_LEN); memcpy(state.ptr + state.MAX_LEN, state.ptr1, copy_len); size_t expected_end; if (copy_len > ptr1_len) { memset(state.ptr + state.MAX_LEN + ptr1_len, '\0', copy_len - ptr1_len); expected_end = ptr1_len; } else { expected_end = copy_len; } ASSERT_EQ(state.ptr2 + expected_end, stpncpy(state.ptr2, state.ptr1, copy_len)); // Verify ptr1 was not modified. ASSERT_EQ(0, memcmp(state.ptr1, state.ptr, state.MAX_LEN)); // Verify ptr2 contains the expected data. ASSERT_EQ(0, memcmp(state.ptr2, state.ptr + state.MAX_LEN, state.MAX_LEN)); } } TEST(string, strrchr) { int seek_char = random() & 255; StringTestState<char> state(SMALL); for (size_t i = 1; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); if (~seek_char > 0) { memset(state.ptr1, ~seek_char, state.len[i]); } else { memset(state.ptr1, '\1', state.len[i]); } state.ptr1[state.len[i] - 1] = '\0'; size_t pos = random() % state.MAX_LEN; char* expected; if (pos >= state.len[i] - 1) { if (seek_char == 0) { expected = state.ptr1 + state.len[i] - 1; } else { expected = NULL; } } else { state.ptr1[pos] = seek_char; expected = state.ptr1 + pos; } ASSERT_TRUE(strrchr(state.ptr1, seek_char) == expected); } } } TEST(string, memchr) { int seek_char = random() & 255; StringTestState<char> state(SMALL); for (size_t i = 0; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr1, ~seek_char, state.len[i]); size_t pos = random() % state.MAX_LEN; char* expected; if (pos >= state.len[i]) { expected = NULL; } else { state.ptr1[pos] = seek_char; expected = state.ptr1 + pos; } ASSERT_TRUE(memchr(state.ptr1, seek_char, state.len[i]) == expected); } } } TEST(string, memchr_zero) { uint8_t* buffer; ASSERT_EQ(0, posix_memalign(reinterpret_cast<void**>(&buffer), 64, 64)); memset(buffer, 10, 64); ASSERT_TRUE(NULL == memchr(buffer, 5, 0)); ASSERT_TRUE(NULL == memchr(buffer, 10, 0)); } TEST(string, memrchr) { int seek_char = random() & 255; StringTestState<char> state(SMALL); for (size_t i = 0; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr1, ~seek_char, state.len[i]); size_t pos = random() % state.MAX_LEN; char* expected; if (pos >= state.len[i]) { expected = NULL; } else { state.ptr1[pos] = seek_char; expected = state.ptr1 + pos; } ASSERT_TRUE(memrchr(state.ptr1, seek_char, state.len[i]) == expected); } } } TEST(string, memcmp) { StringTestState<char> state(SMALL); for (size_t i = 0; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); int c1 = random() & 0xff; int c2 = random() & 0xff; memset(state.ptr1, c1, state.MAX_LEN); memset(state.ptr2, c1, state.MAX_LEN); int pos = (state.len[i] == 0) ? 0 : (random() % state.len[i]); state.ptr2[pos] = c2; int expected = (static_cast<int>(c1) - static_cast<int>(c2)); int actual = memcmp(state.ptr1, state.ptr2, state.MAX_LEN); ASSERT_EQ(signum(expected), signum(actual)); } } } TEST(string, wmemcmp) { StringTestState<wchar_t> state(SMALL); for (size_t i = 0; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); long long mask = ((long long) 1 << 8 * sizeof(wchar_t)) - 1; int c1 = rand() & mask; int c2 = rand() & mask; wmemset(state.ptr1, c1, state.MAX_LEN); wmemset(state.ptr2, c1, state.MAX_LEN); int pos = (state.len[i] == 0) ? 0 : (random() % state.len[i]); state.ptr2[pos] = c2; int expected = (static_cast<int>(c1) - static_cast<int>(c2)); int actual = wmemcmp(state.ptr1, state.ptr2, (size_t) state.MAX_LEN); ASSERT_EQ(signum(expected), signum(actual)); } } } TEST(string, memcpy) { StringTestState<char> state(LARGE); int rand = random() & 255; for (size_t i = 0; i < state.n - 1; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); size_t pos = random() % (state.MAX_LEN - state.len[i]); memset(state.ptr1, rand, state.len[i]); memset(state.ptr1 + state.len[i], ~rand, state.MAX_LEN - state.len[i]); memset(state.ptr2, rand, state.len[i]); memset(state.ptr2 + state.len[i], ~rand, state.MAX_LEN - state.len[i]); memset(state.ptr2 + pos, '\0', state.len[i]); ASSERT_FALSE(memcpy(state.ptr2 + pos, state.ptr1 + pos, state.len[i]) != state.ptr2 + pos); ASSERT_EQ(0, memcmp(state.ptr1, state.ptr2, state.MAX_LEN)); } } } TEST(string, memset) { StringTestState<char> state(LARGE); char ch = random () & 255; for (size_t i = 0; i < state.n - 1; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr1, ~ch, state.MAX_LEN); memcpy(state.ptr2, state.ptr1, state.MAX_LEN); size_t pos = random () % (state.MAX_LEN - state.len[i]); for (size_t k = pos; k < pos + state.len[i]; k++) { state.ptr1[k] = ch; } ASSERT_TRUE(memset(state.ptr2 + pos, ch, state.len[i]) == state.ptr2 + pos); ASSERT_EQ(0, memcmp(state.ptr1, state.ptr2, state.MAX_LEN)); } } } TEST(string, memmove) { StringTestState<char> state(LARGE); for (size_t i = 0; i < state.n - 1; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr1, random() & 255, 2 * state.MAX_LEN); size_t pos = random() % (state.MAX_LEN - state.len[i]); memset(state.ptr1, random() & 255, state.len[i]); memcpy(state.ptr2, state.ptr1, 2 * state.MAX_LEN); memcpy(state.ptr, state.ptr1, state.len[i]); memcpy(state.ptr1 + pos, state.ptr, state.len[i]); ASSERT_TRUE(memmove(state.ptr2 + pos, state.ptr2, state.len[i]) == state.ptr2 + pos); ASSERT_EQ(0, memcmp(state.ptr2, state.ptr1, 2 * state.MAX_LEN)); } } } TEST(string, memmove_cache_size) { size_t len = 600000; int max_alignment = 31; int alignments[] = {0, 5, 11, 29, 30}; char* ptr = reinterpret_cast<char*>(malloc(sizeof(char) * len)); char* ptr1 = reinterpret_cast<char*>(malloc(2 * sizeof(char) * len)); char* glob_ptr2 = reinterpret_cast<char*>(malloc(2 * sizeof(char) * len + max_alignment)); size_t pos = 64; ASSERT_TRUE(ptr != NULL); ASSERT_TRUE(ptr1 != NULL); ASSERT_TRUE(glob_ptr2 != NULL); for (int i = 0; i < 5; i++) { char* ptr2 = glob_ptr2 + alignments[i]; memset(ptr1, random() & 255, 2 * len); memset(ptr1, random() & 255, len); memcpy(ptr2, ptr1, 2 * len); memcpy(ptr, ptr1, len); memcpy(ptr1 + pos, ptr, len); ASSERT_TRUE(memmove(ptr2 + pos, ptr, len) == ptr2 + pos); ASSERT_EQ(0, memcmp(ptr2, ptr1, 2 * len)); } free(ptr); free(ptr1); free(glob_ptr2); } static void verify_memmove(char* src_copy, char* dst, char* src, size_t size) { memset(dst, 0, size); memcpy(src, src_copy, size); ASSERT_EQ(dst, memmove(dst, src, size)); ASSERT_EQ(0, memcmp(dst, src_copy, size)); } #define MEMMOVE_DATA_SIZE (1024*1024*3) TEST(string, memmove_check) { char* buffer = reinterpret_cast<char*>(malloc(MEMMOVE_DATA_SIZE)); ASSERT_TRUE(buffer != NULL); char* src_data = reinterpret_cast<char*>(malloc(MEMMOVE_DATA_SIZE)); ASSERT_TRUE(src_data != NULL); // Initialize to a known pattern to copy into src for each test and // to compare dst against. for (size_t i = 0; i < MEMMOVE_DATA_SIZE; i++) { src_data[i] = (i + 1) % 255; } // Check all different dst offsets between 0 and 127 inclusive. char* src = buffer; for (size_t i = 0; i < 127; i++) { char* dst = buffer + 256 + i; // Small copy. verify_memmove(src_data, dst, src, 1024); // Medium copy. verify_memmove(src_data, dst, src, 64 * 1024); // Medium copy. verify_memmove(src_data, dst, src, 1024 * 1024 + 128 * 1024); } // Check all leftover size offsets between 1 and 127 inclusive. char* dst = buffer + 256; src = buffer; for (size_t size = 1; size < 127; size++) { // Small copy. verify_memmove(src_data, dst, src, 1024); // Medium copy. verify_memmove(src_data, dst, src, 64 * 1024); // Large copy. verify_memmove(src_data, dst, src, 1024 * 1024 + 128 * 1024); } } TEST(string, bcopy) { StringTestState<char> state(LARGE); for (size_t i = 0; i < state.n; i++) { for (size_t j = 0; j < POS_ITER; j++) { state.NewIteration(); memset(state.ptr1, random() & 255, state.MAX_LEN); memset(state.ptr1 + state.MAX_LEN, random() & 255, state.MAX_LEN); memcpy(state.ptr2, state.ptr1, 2 * state.MAX_LEN); size_t start = random() % (2 * state.MAX_LEN - state.len[i]); memcpy(state.ptr2 + start, state.ptr1, state.len[i]); bcopy(state.ptr1, state.ptr1 + start, state.len[i]); ASSERT_EQ(0, memcmp(state.ptr1, state.ptr2, 2 * state.MAX_LEN)); } } } TEST(string, bzero) { StringTestState<char> state(LARGE); for (size_t j = 0; j < ITER; j++) { state.NewIteration(); memset(state.ptr1, random() & 255, state.MAX_LEN); size_t start = random() % state.MAX_LEN; size_t end = start + random() % (state.MAX_LEN - start); memcpy(state.ptr2, state.ptr1, start); memset(state.ptr2 + start, '\0', end - start); memcpy(state.ptr2 + end, state.ptr1 + end, state.MAX_LEN - end); bzero(state.ptr1 + start, end - start); ASSERT_EQ(0, memcmp(state.ptr1, state.ptr2, state.MAX_LEN)); } } static void DoMemcpyTest(uint8_t* src, uint8_t* dst, size_t len) { memset(src, (len % 255) + 1, len); memset(dst, 0, len); ASSERT_EQ(dst, memcpy(dst, src, len)); ASSERT_TRUE(memcmp(src, dst, len) == 0); } TEST(string, memcpy_align) { RunSrcDstBufferAlignTest(LARGE, DoMemcpyTest); } TEST(string, memcpy_overread) { RunSrcDstBufferOverreadTest(DoMemcpyTest); } static void DoMemmoveTest(uint8_t* src, uint8_t* dst, size_t len) { memset(src, (len % 255) + 1, len); memset(dst, 0, len); ASSERT_EQ(dst, memmove(dst, src, len)); ASSERT_TRUE(memcmp(src, dst, len) == 0); } TEST(string, memmove_align) { RunSrcDstBufferAlignTest(LARGE, DoMemmoveTest); } TEST(string, memmove_overread) { RunSrcDstBufferOverreadTest(DoMemmoveTest); } static void DoMemsetTest(uint8_t* buf, size_t len) { for (size_t i = 0; i < len; i++) { buf[i] = 0; } int value = (len % 255) + 1; ASSERT_EQ(buf, memset(buf, value, len)); for (size_t i = 0; i < len; i++) { ASSERT_EQ(value, buf[i]); } } TEST(string, memset_align) { RunSingleBufferAlignTest(LARGE, DoMemsetTest); } static void DoStrlenTest(uint8_t* buf, size_t len) { if (len >= 1) { memset(buf, (32 + (len % 96)), len - 1); buf[len-1] = '\0'; ASSERT_EQ(len-1, strlen(reinterpret_cast<char*>(buf))); } } TEST(string, strlen_align) { RunSingleBufferAlignTest(LARGE, DoStrlenTest); } TEST(string, strlen_overread) { RunSingleBufferOverreadTest(DoStrlenTest); } static void DoStrcpyTest(uint8_t* src, uint8_t* dst, size_t len) { if (len >= 1) { memset(src, (32 + (len % 96)), len - 1); src[len-1] = '\0'; memset(dst, 0, len); ASSERT_EQ(dst, reinterpret_cast<uint8_t*>(strcpy(reinterpret_cast<char*>(dst), reinterpret_cast<char*>(src)))); ASSERT_TRUE(memcmp(src, dst, len) == 0); } } TEST(string, strcpy_align) { RunSrcDstBufferAlignTest(LARGE, DoStrcpyTest); } TEST(string, strcpy_overread) { RunSrcDstBufferOverreadTest(DoStrcpyTest); } static void DoStpcpyTest(uint8_t* src, uint8_t* dst, size_t len) { if (len >= 1) { memset(src, (32 + (len % 96)), len - 1); src[len-1] = '\0'; memset(dst, 0, len); ASSERT_EQ(dst+len-1, reinterpret_cast<uint8_t*>(stpcpy(reinterpret_cast<char*>(dst), reinterpret_cast<char*>(src)))); ASSERT_TRUE(memcmp(src, dst, len) == 0); } } TEST(string, stpcpy_align) { RunSrcDstBufferAlignTest(LARGE, DoStpcpyTest); } TEST(string, stpcpy_overread) { RunSrcDstBufferOverreadTest(DoStpcpyTest); } // Use our own incrementer to cut down on the total number of calls. static size_t LargeSetIncrement(size_t len) { if (len >= 4096) { return 4096; } else if (len >= 1024) { return 1024; } else if (len >= 256) { return 256; } return 1; } #define STRCAT_DST_LEN 128 static void DoStrcatTest(uint8_t* src, uint8_t* dst, size_t len) { if (len >= 1) { int value = 32 + (len % 96); memset(src, value, len - 1); src[len-1] = '\0'; if (len >= STRCAT_DST_LEN) { // Create a small buffer for doing quick compares in each loop. uint8_t cmp_buf[STRCAT_DST_LEN]; // Make sure dst string contains a different value then the src string. int value2 = 32 + (value + 2) % 96; memset(cmp_buf, value2, sizeof(cmp_buf)); for (size_t i = 1; i <= STRCAT_DST_LEN; i++) { memset(dst, value2, i-1); memset(dst+i-1, 0, len-i); src[len-i] = '\0'; ASSERT_EQ(dst, reinterpret_cast<uint8_t*>(strcat(reinterpret_cast<char*>(dst), reinterpret_cast<char*>(src)))); ASSERT_TRUE(memcmp(dst, cmp_buf, i-1) == 0); ASSERT_TRUE(memcmp(src, dst+i-1, len-i+1) == 0); } } else { dst[0] = '\0'; ASSERT_EQ(dst, reinterpret_cast<uint8_t*>(strcat(reinterpret_cast<char*>(dst), reinterpret_cast<char*>(src)))); ASSERT_TRUE(memcmp(src, dst, len) == 0); } } } TEST(string, strcat_align) { RunSrcDstBufferAlignTest(MEDIUM, DoStrcatTest, LargeSetIncrement); } TEST(string, strcat_overread) { RunSrcDstBufferOverreadTest(DoStrcatTest); } static void DoStrcmpTest(uint8_t* buf1, uint8_t* buf2, size_t len) { if (len >= 1) { memset(buf1, (32 + (len % 96)), len - 1); buf1[len-1] = '\0'; memset(buf2, (32 + (len % 96)), len - 1); buf2[len-1] = '\0'; ASSERT_EQ(0, strcmp(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2))); } } static void DoStrcmpFailTest(uint8_t* buf1, uint8_t* buf2, size_t len1, size_t len2) { // Do string length differences. int c = (32 + (len1 % 96)); memset(buf1, c, len1 - 1); buf1[len1-1] = '\0'; memset(buf2, c, len2 - 1); buf2[len2-1] = '\0'; ASSERT_NE(0, strcmp(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2))); // Do single character differences. size_t len; if (len1 > len2) { len = len2; } else { len = len1; } // Need at least a two character buffer to do this test. if (len > 1) { buf1[len-1] = '\0'; buf2[len-1] = '\0'; int diff_c = (c + 1) % 96; buf1[len-2] = diff_c; ASSERT_NE(0, strcmp(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2))); buf1[len-2] = c; buf2[len-2] = diff_c; ASSERT_NE(0, strcmp(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2))); } } TEST(string, strcmp_align) { RunCmpBufferAlignTest(MEDIUM, DoStrcmpTest, DoStrcmpFailTest, LargeSetIncrement); } TEST(string, strcmp_overread) { RunCmpBufferOverreadTest(DoStrcmpTest, DoStrcmpFailTest); } static void DoMemcmpTest(uint8_t* buf1, uint8_t* buf2, size_t len) { memset(buf1, len+1, len); memset(buf2, len+1, len); ASSERT_EQ(0, memcmp(buf1, buf2, len)); } static void DoMemcmpFailTest(uint8_t* buf1, uint8_t* buf2, size_t len1, size_t len2) { size_t len; if (len1 > len2) { len = len2; } else { len = len1; } memset(buf1, len2+1, len); buf1[len-1] = len2; memset(buf2, len2+1, len); ASSERT_NE(0, memcmp(buf1, buf2, len)); buf1[len-1] = len2+1; buf2[len-1] = len2; ASSERT_NE(0, memcmp(buf1, buf2, len)); } TEST(string, memcmp_align) { RunCmpBufferAlignTest(MEDIUM, DoMemcmpTest, DoMemcmpFailTest, LargeSetIncrement); } TEST(string, memcmp_overread) { RunCmpBufferOverreadTest(DoMemcmpTest, DoMemcmpFailTest); } static void DoStrchrTest(uint8_t* buf, size_t len) { if (len >= 1) { char value = 32 + (len % 96); char search_value = 33 + (len % 96); memset(buf, value, len - 1); buf[len-1] = '\0'; ASSERT_EQ(NULL, strchr(reinterpret_cast<char*>(buf), search_value)); ASSERT_EQ(reinterpret_cast<char*>(&buf[len-1]), strchr(reinterpret_cast<char*>(buf), '\0')); if (len >= 2) { buf[0] = search_value; ASSERT_EQ(reinterpret_cast<char*>(&buf[0]), strchr(reinterpret_cast<char*>(buf), search_value)); buf[0] = value; buf[len-2] = search_value; ASSERT_EQ(reinterpret_cast<char*>(&buf[len-2]), strchr(reinterpret_cast<char*>(buf), search_value)); } } } TEST(string, strchr_align) { RunSingleBufferAlignTest(MEDIUM, DoStrchrTest); } TEST(string, strchr_overread) { RunSingleBufferOverreadTest(DoStrchrTest); }