/****************************************************************************** * * Copyright (C) 2009-2012 Broadcom Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /**************************************************************************** ** ** Name gki_linux_pthreads.c ** ** Function pthreads version of Linux GKI. This version is used for ** settop projects that already use pthreads and not pth. ** *****************************************************************************/ #include "bt_target.h" #include <assert.h> #include <sys/times.h> #include "gki_int.h" #include "bt_utils.h" #define LOG_TAG "GKI_LINUX" #include <utils/Log.h> #include <hardware/bluetooth.h> /***************************************************************************** ** Constants & Macros ******************************************************************************/ #define SCHED_NORMAL 0 #define SCHED_FIFO 1 #define SCHED_RR 2 #define SCHED_BATCH 3 #define NANOSEC_PER_MILLISEC 1000000 #define NSEC_PER_SEC (1000 * NANOSEC_PER_MILLISEC) #define USEC_PER_SEC 1000000 #define NSEC_PER_USEC 1000 #define WAKE_LOCK_ID "bluedroid_timer" #if GKI_DYNAMIC_MEMORY == FALSE tGKI_CB gki_cb; #endif #ifndef GKI_SHUTDOWN_EVT #define GKI_SHUTDOWN_EVT APPL_EVT_7 #endif /***************************************************************************** ** Local type definitions ******************************************************************************/ typedef struct { UINT8 task_id; /* GKI task id */ TASKPTR task_entry; /* Task entry function*/ UINT32 params; /* Extra params to pass to task entry function */ } gki_pthread_info_t; // Alarm service structure used to pass up via JNI to the bluetooth // app in order to create a wakeable Alarm. typedef struct { UINT32 ticks_scheduled; UINT64 timer_started_us; UINT64 timer_last_expired_us; bool wakelock; } alarm_service_t; /***************************************************************************** ** Static variables ******************************************************************************/ gki_pthread_info_t gki_pthread_info[GKI_MAX_TASKS]; // Only a single alarm is used to wake bluedroid. // NOTE: Must be manipulated with the GKI_disable() lock held. static alarm_service_t alarm_service; static timer_t posix_timer; static bool timer_created; /***************************************************************************** ** Externs ******************************************************************************/ extern bt_os_callouts_t *bt_os_callouts; /***************************************************************************** ** Functions ******************************************************************************/ static UINT64 now_us() { struct timespec ts_now; clock_gettime(CLOCK_BOOTTIME, &ts_now); return ((UINT64)ts_now.tv_sec * USEC_PER_SEC) + ((UINT64)ts_now.tv_nsec / NSEC_PER_USEC); } static bool set_nonwake_alarm(UINT64 delay_millis) { if (!timer_created) { ALOGE("%s timer is not available, not setting timer for %llums", __func__, delay_millis); return false; } const UINT64 now = now_us(); alarm_service.timer_started_us = now; UINT64 prev_timer_delay = 0; if (alarm_service.timer_last_expired_us) prev_timer_delay = now - alarm_service.timer_last_expired_us; UINT64 delay_micros = delay_millis * 1000; if (delay_micros > prev_timer_delay) delay_micros -= prev_timer_delay; else delay_micros = 1; struct itimerspec new_value; memset(&new_value, 0, sizeof(new_value)); new_value.it_value.tv_sec = (delay_micros / USEC_PER_SEC); new_value.it_value.tv_nsec = (delay_micros % USEC_PER_SEC) * NSEC_PER_USEC; if (timer_settime(posix_timer, 0, &new_value, NULL) == -1) { ALOGE("%s unable to set timer: %s", __func__, strerror(errno)); return false; } return true; } /** Callback from Java thread after alarm from AlarmService fires. */ static void bt_alarm_cb(void *data) { UINT32 ticks_taken = 0; alarm_service.timer_last_expired_us = now_us(); if (alarm_service.timer_last_expired_us > alarm_service.timer_started_us) { ticks_taken = GKI_MS_TO_TICKS((alarm_service.timer_last_expired_us - alarm_service.timer_started_us) / 1000); } else { // this could happen on some platform ALOGE("%s now_us %lld less than %lld", __func__, alarm_service.timer_last_expired_us, alarm_service.timer_started_us); } GKI_timer_update(ticks_taken > alarm_service.ticks_scheduled ? ticks_taken : alarm_service.ticks_scheduled); } /** NOTE: This is only called on init and may be called without the GKI_disable() * lock held. */ static void alarm_service_init() { alarm_service.ticks_scheduled = 0; alarm_service.timer_started_us = 0; alarm_service.timer_last_expired_us = 0; alarm_service.wakelock = FALSE; raise_priority_a2dp(TASK_JAVA_ALARM); } /** Requests an alarm from AlarmService to fire when the next * timer in the timer queue is set to expire. Only takes a wakelock * if the timer tick expiration is a short interval in the future * and releases the wakelock if the timer is a longer interval * or if there are no more timers in the queue. * * NOTE: Must be called with GKI_disable() lock held. */ void alarm_service_reschedule() { int32_t ticks_till_next_exp = GKI_ready_to_sleep(); assert(ticks_till_next_exp >= 0); alarm_service.ticks_scheduled = ticks_till_next_exp; // No more timers remaining. Release wakelock if we're holding one. if (ticks_till_next_exp == 0) { alarm_service.timer_last_expired_us = 0; alarm_service.timer_started_us = 0; if (alarm_service.wakelock) { ALOGV("%s releasing wake lock.", __func__); alarm_service.wakelock = false; int rc = bt_os_callouts->release_wake_lock(WAKE_LOCK_ID); if (rc != BT_STATUS_SUCCESS) { ALOGE("%s unable to release wake lock with no timers: %d", __func__, rc); } } ALOGV("%s no more alarms.", __func__); return; } UINT64 ticks_in_millis = GKI_TICKS_TO_MS(ticks_till_next_exp); if (ticks_in_millis <= GKI_TIMER_INTERVAL_FOR_WAKELOCK) { // The next deadline is close, just take a wakelock and set a regular (non-wake) timer. if (!alarm_service.wakelock) { int rc = bt_os_callouts->acquire_wake_lock(WAKE_LOCK_ID); if (rc != BT_STATUS_SUCCESS) { ALOGE("%s unable to acquire wake lock: %d", __func__, rc); return; } alarm_service.wakelock = true; } ALOGV("%s acquired wake lock, setting short alarm (%lldms).", __func__, ticks_in_millis); if (!set_nonwake_alarm(ticks_in_millis)) { ALOGE("%s unable to set short alarm.", __func__); } } else { // The deadline is far away, set a wake alarm and release wakelock if we're holding it. alarm_service.timer_started_us = now_us(); alarm_service.timer_last_expired_us = 0; if (!bt_os_callouts->set_wake_alarm(ticks_in_millis, true, bt_alarm_cb, &alarm_service)) { ALOGE("%s unable to set long alarm, releasing wake lock anyway.", __func__); } else { ALOGV("%s set long alarm (%lldms), releasing wake lock.", __func__, ticks_in_millis); } if (alarm_service.wakelock) { alarm_service.wakelock = false; bt_os_callouts->release_wake_lock(WAKE_LOCK_ID); } } } /***************************************************************************** ** ** Function gki_task_entry ** ** Description GKI pthread callback ** ** Returns void ** *******************************************************************************/ static void gki_task_entry(UINT32 params) { gki_pthread_info_t *p_pthread_info = (gki_pthread_info_t *)params; gki_cb.os.thread_id[p_pthread_info->task_id] = pthread_self(); prctl(PR_SET_NAME, (unsigned long)gki_cb.com.OSTName[p_pthread_info->task_id], 0, 0, 0); ALOGI("gki_task_entry task_id=%i [%s] starting\n", p_pthread_info->task_id, gki_cb.com.OSTName[p_pthread_info->task_id]); /* Call the actual thread entry point */ (p_pthread_info->task_entry)(p_pthread_info->params); ALOGI("gki_task task_id=%i [%s] terminating\n", p_pthread_info->task_id, gki_cb.com.OSTName[p_pthread_info->task_id]); pthread_exit(0); /* GKI tasks have no return value */ } /******************************************************************************* ** ** Function GKI_init ** ** Description This function is called once at startup to initialize ** all the timer structures. ** ** Returns void ** *******************************************************************************/ void GKI_init(void) { pthread_mutexattr_t attr; tGKI_OS *p_os; memset (&gki_cb, 0, sizeof (gki_cb)); gki_buffer_init(); gki_timers_init(); alarm_service_init(); gki_cb.com.OSTicks = (UINT32) times(0); pthread_mutexattr_init(&attr); #ifndef __CYGWIN__ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE_NP); #endif p_os = &gki_cb.os; pthread_mutex_init(&p_os->GKI_mutex, &attr); /* pthread_mutex_init(&GKI_sched_mutex, NULL); */ #if (GKI_DEBUG == TRUE) pthread_mutex_init(&p_os->GKI_trace_mutex, NULL); #endif /* pthread_mutex_init(&thread_delay_mutex, NULL); */ /* used in GKI_delay */ /* pthread_cond_init (&thread_delay_cond, NULL); */ struct sigevent sigevent; memset(&sigevent, 0, sizeof(sigevent)); sigevent.sigev_notify = SIGEV_THREAD; sigevent.sigev_notify_function = (void (*)(union sigval))bt_alarm_cb; sigevent.sigev_value.sival_ptr = NULL; if (timer_create(CLOCK_REALTIME, &sigevent, &posix_timer) == -1) { ALOGE("%s unable to create POSIX timer: %s", __func__, strerror(errno)); timer_created = false; } else { timer_created = true; } } /******************************************************************************* ** ** Function GKI_get_os_tick_count ** ** Description This function is called to retrieve the native OS system tick. ** ** Returns Tick count of native OS. ** *******************************************************************************/ UINT32 GKI_get_os_tick_count(void) { return gki_cb.com.OSTicks; } /******************************************************************************* ** ** Function GKI_create_task ** ** Description This function is called to create a new OSS task. ** ** Parameters: task_entry - (input) pointer to the entry function of the task ** task_id - (input) Task id is mapped to priority ** taskname - (input) name given to the task ** stack - (input) pointer to the top of the stack (highest memory location) ** stacksize - (input) size of the stack allocated for the task ** ** Returns GKI_SUCCESS if all OK, GKI_FAILURE if any problem ** ** NOTE This function take some parameters that may not be needed ** by your particular OS. They are here for compatability ** of the function prototype. ** *******************************************************************************/ UINT8 GKI_create_task (TASKPTR task_entry, UINT8 task_id, INT8 *taskname, UINT16 *stack, UINT16 stacksize) { UINT16 i; UINT8 *p; struct sched_param param; int policy, ret = 0; pthread_attr_t attr1; UNUSED(stack); UNUSED(stacksize); GKI_TRACE( "GKI_create_task %x %d %s %x %d", (int)task_entry, (int)task_id, (char*) taskname, (int) stack, (int)stacksize); if (task_id >= GKI_MAX_TASKS) { ALOGE("Error! task ID > max task allowed"); return (GKI_FAILURE); } gki_cb.com.OSRdyTbl[task_id] = TASK_READY; gki_cb.com.OSTName[task_id] = taskname; gki_cb.com.OSWaitTmr[task_id] = 0; gki_cb.com.OSWaitEvt[task_id] = 0; /* Initialize mutex and condition variable objects for events and timeouts */ pthread_condattr_t cond_attr; pthread_condattr_init(&cond_attr); pthread_condattr_setclock(&cond_attr, CLOCK_MONOTONIC); pthread_mutex_init(&gki_cb.os.thread_evt_mutex[task_id], NULL); pthread_cond_init (&gki_cb.os.thread_evt_cond[task_id], &cond_attr); pthread_mutex_init(&gki_cb.os.thread_timeout_mutex[task_id], NULL); pthread_cond_init (&gki_cb.os.thread_timeout_cond[task_id], NULL); pthread_attr_init(&attr1); /* by default, pthread creates a joinable thread */ #if ( FALSE == GKI_PTHREAD_JOINABLE ) pthread_attr_setdetachstate(&attr1, PTHREAD_CREATE_DETACHED); GKI_TRACE("GKI creating task %i\n", task_id); #else GKI_TRACE("GKI creating JOINABLE task %i\n", task_id); #endif /* On Android, the new tasks starts running before 'gki_cb.os.thread_id[task_id]' is initialized */ /* Pass task_id to new task so it can initialize gki_cb.os.thread_id[task_id] for it calls GKI_wait */ gki_pthread_info[task_id].task_id = task_id; gki_pthread_info[task_id].task_entry = task_entry; gki_pthread_info[task_id].params = 0; ret = pthread_create( &gki_cb.os.thread_id[task_id], &attr1, (void *)gki_task_entry, &gki_pthread_info[task_id]); if (ret != 0) { ALOGE("pthread_create failed(%d), %s!", ret, taskname); return GKI_FAILURE; } if(pthread_getschedparam(gki_cb.os.thread_id[task_id], &policy, ¶m)==0) { #if (GKI_LINUX_BASE_POLICY!=GKI_SCHED_NORMAL) #if defined(PBS_SQL_TASK) if (task_id == PBS_SQL_TASK) { GKI_TRACE("PBS SQL lowest priority task"); policy = SCHED_NORMAL; } else #endif #endif { /* check if define in gki_int.h is correct for this compile environment! */ policy = GKI_LINUX_BASE_POLICY; #if (GKI_LINUX_BASE_POLICY != GKI_SCHED_NORMAL) param.sched_priority = GKI_LINUX_BASE_PRIORITY - task_id - 2; #else param.sched_priority = 0; #endif } pthread_setschedparam(gki_cb.os.thread_id[task_id], policy, ¶m); } GKI_TRACE( "Leaving GKI_create_task %x %d %x %s %x %d\n", (int)task_entry, (int)task_id, (int)gki_cb.os.thread_id[task_id], (char*)taskname, (int)stack, (int)stacksize); return (GKI_SUCCESS); } void GKI_destroy_task(UINT8 task_id) { #if ( FALSE == GKI_PTHREAD_JOINABLE ) int i = 0; #else int result; #endif if (gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD) { gki_cb.com.OSRdyTbl[task_id] = TASK_DEAD; /* paranoi settings, make sure that we do not execute any mailbox events */ gki_cb.com.OSWaitEvt[task_id] &= ~(TASK_MBOX_0_EVT_MASK|TASK_MBOX_1_EVT_MASK| TASK_MBOX_2_EVT_MASK|TASK_MBOX_3_EVT_MASK); #if (GKI_NUM_TIMERS > 0) gki_cb.com.OSTaskTmr0R[task_id] = 0; gki_cb.com.OSTaskTmr0 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 1) gki_cb.com.OSTaskTmr1R[task_id] = 0; gki_cb.com.OSTaskTmr1 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 2) gki_cb.com.OSTaskTmr2R[task_id] = 0; gki_cb.com.OSTaskTmr2 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 3) gki_cb.com.OSTaskTmr3R[task_id] = 0; gki_cb.com.OSTaskTmr3 [task_id] = 0; #endif GKI_send_event(task_id, EVENT_MASK(GKI_SHUTDOWN_EVT)); #if ( FALSE == GKI_PTHREAD_JOINABLE ) i = 0; while ((gki_cb.com.OSWaitEvt[task_id] != 0) && (++i < 10)) usleep(100 * 1000); #else result = pthread_join( gki_cb.os.thread_id[task_id], NULL ); if ( result < 0 ) { ALOGE( "pthread_join() FAILED: result: %d", result ); } #endif GKI_exit_task(task_id); ALOGI( "GKI_shutdown(): task [%s] terminated\n", gki_cb.com.OSTName[task_id]); } } /******************************************************************************* ** ** Function GKI_task_self_cleanup ** ** Description This function is used in the case when the calling thread ** is exiting itself. The GKI_destroy_task function can not be ** used in this case due to the pthread_join call. The function ** cleans up GKI control block associated to the terminating ** thread. ** ** Parameters: task_id - (input) Task id is used for sanity check to ** make sure the calling thread is in the right ** context. ** ** Returns None ** *******************************************************************************/ void GKI_task_self_cleanup(UINT8 task_id) { UINT8 my_task_id = GKI_get_taskid(); if (task_id != my_task_id) { ALOGE("%s: Wrong context - current task %d is not the given task id %d",\ __FUNCTION__, my_task_id, task_id); return; } if (gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD) { /* paranoi settings, make sure that we do not execute any mailbox events */ gki_cb.com.OSWaitEvt[task_id] &= ~(TASK_MBOX_0_EVT_MASK|TASK_MBOX_1_EVT_MASK| TASK_MBOX_2_EVT_MASK|TASK_MBOX_3_EVT_MASK); #if (GKI_NUM_TIMERS > 0) gki_cb.com.OSTaskTmr0R[task_id] = 0; gki_cb.com.OSTaskTmr0 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 1) gki_cb.com.OSTaskTmr1R[task_id] = 0; gki_cb.com.OSTaskTmr1 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 2) gki_cb.com.OSTaskTmr2R[task_id] = 0; gki_cb.com.OSTaskTmr2 [task_id] = 0; #endif #if (GKI_NUM_TIMERS > 3) gki_cb.com.OSTaskTmr3R[task_id] = 0; gki_cb.com.OSTaskTmr3 [task_id] = 0; #endif GKI_exit_task(task_id); /* Calling pthread_detach here to mark the thread as detached. Once the thread terminates, the system can reclaim its resources without waiting for another thread to join with. */ pthread_detach(gki_cb.os.thread_id[task_id]); } } /******************************************************************************* ** ** Function GKI_shutdown ** ** Description shutdowns the GKI tasks/threads in from max task id to 0 and frees ** pthread resources! ** IMPORTANT: in case of join method, GKI_shutdown must be called outside ** a GKI thread context! ** ** Returns void ** *******************************************************************************/ void GKI_shutdown(void) { UINT8 task_id; #if ( FALSE == GKI_PTHREAD_JOINABLE ) int i = 0; #else int result; #endif #ifdef GKI_USE_DEFERED_ALLOC_BUF_POOLS gki_dealloc_free_queue(); #endif /* release threads and set as TASK_DEAD. going from low to high priority fixes * GKI_exception problem due to btu->hci sleep request events */ for (task_id = GKI_MAX_TASKS; task_id > 0; task_id--) { if (gki_cb.com.OSRdyTbl[task_id - 1] != TASK_DEAD) { gki_cb.com.OSRdyTbl[task_id - 1] = TASK_DEAD; /* paranoi settings, make sure that we do not execute any mailbox events */ gki_cb.com.OSWaitEvt[task_id-1] &= ~(TASK_MBOX_0_EVT_MASK|TASK_MBOX_1_EVT_MASK| TASK_MBOX_2_EVT_MASK|TASK_MBOX_3_EVT_MASK); GKI_send_event(task_id - 1, EVENT_MASK(GKI_SHUTDOWN_EVT)); #if ( FALSE == GKI_PTHREAD_JOINABLE ) i = 0; while ((gki_cb.com.OSWaitEvt[task_id - 1] != 0) && (++i < 10)) usleep(100 * 1000); #else result = pthread_join( gki_cb.os.thread_id[task_id-1], NULL ); if ( result < 0 ) { ALOGE( "pthread_join() FAILED: result: %d", result ); } #endif GKI_exit_task(task_id - 1); } } /* Destroy mutex and condition variable objects */ pthread_mutex_destroy(&gki_cb.os.GKI_mutex); /* pthread_mutex_destroy(&GKI_sched_mutex); */ #if (GKI_DEBUG == TRUE) pthread_mutex_destroy(&gki_cb.os.GKI_trace_mutex); #endif /* pthread_mutex_destroy(&thread_delay_mutex); pthread_cond_destroy (&thread_delay_cond); */ #if ( FALSE == GKI_PTHREAD_JOINABLE ) i = 0; #endif if (timer_created) { timer_delete(posix_timer); timer_created = false; } } /***************************************************************************** ** ** Function gki_set_timer_scheduling ** ** Description helper function to set scheduling policy and priority of btdl ** ** Returns void ** *******************************************************************************/ static void gki_set_timer_scheduling( void ) { pid_t main_pid = getpid(); struct sched_param param; int policy; policy = sched_getscheduler(main_pid); if ( policy != -1 ) { GKI_TRACE("gki_set_timer_scheduling(()::scheduler current policy: %d", policy); /* ensure highest priority in the system + 2 to allow space for read threads */ param.sched_priority = GKI_LINUX_TIMER_TICK_PRIORITY; if ( 0!=sched_setscheduler(main_pid, GKI_LINUX_TIMER_POLICY, ¶m ) ) { GKI_TRACE("sched_setscheduler() failed with error: %d", errno); } } else { GKI_TRACE( "getscheduler failed: %d", errno); } } /***************************************************************************** ** ** Function GKI_run ** ** Description Main GKI loop ** ** Returns ** *******************************************************************************/ void GKI_run(void) { /* adjust btld scheduling scheme now */ gki_set_timer_scheduling(); GKI_TRACE( "GKI_run(): Start/Stop GKI_timer_update_registered!" ); } /******************************************************************************* ** ** Function GKI_stop ** ** Description This function is called to stop ** the tasks and timers when the system is being stopped ** ** Returns void ** ** NOTE This function is NOT called by the Broadcom stack and ** profiles. If you want to use it in your own implementation, ** put specific code here. ** *******************************************************************************/ void GKI_stop (void) { UINT8 task_id; /* gki_queue_timer_cback(FALSE); */ /* TODO - add code here if needed*/ for(task_id = 0; task_id<GKI_MAX_TASKS; task_id++) { if(gki_cb.com.OSRdyTbl[task_id] != TASK_DEAD) { GKI_exit_task(task_id); } } } /******************************************************************************* ** ** Function GKI_wait ** ** Description This function is called by tasks to wait for a specific ** event or set of events. The task may specify the duration ** that it wants to wait for, or 0 if infinite. ** ** Parameters: flag - (input) the event or set of events to wait for ** timeout - (input) the duration that the task wants to wait ** for the specific events (in system ticks) ** ** ** Returns the event mask of received events or zero if timeout ** *******************************************************************************/ UINT16 GKI_wait (UINT16 flag, UINT32 timeout) { UINT16 evt; UINT8 rtask; struct timespec abstime = { 0, 0 }; int sec; int nano_sec; rtask = GKI_get_taskid(); GKI_TRACE("GKI_wait %d %x %d", (int)rtask, (int)flag, (int)timeout); gki_cb.com.OSWaitForEvt[rtask] = flag; /* protect OSWaitEvt[rtask] from modification from an other thread */ pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[rtask]); if (!(gki_cb.com.OSWaitEvt[rtask] & flag)) { if (timeout) { clock_gettime(CLOCK_MONOTONIC, &abstime); /* add timeout */ sec = timeout / 1000; nano_sec = (timeout % 1000) * NANOSEC_PER_MILLISEC; abstime.tv_nsec += nano_sec; if (abstime.tv_nsec > NSEC_PER_SEC) { abstime.tv_sec += (abstime.tv_nsec / NSEC_PER_SEC); abstime.tv_nsec = abstime.tv_nsec % NSEC_PER_SEC; } abstime.tv_sec += sec; pthread_cond_timedwait(&gki_cb.os.thread_evt_cond[rtask], &gki_cb.os.thread_evt_mutex[rtask], &abstime); } else { pthread_cond_wait(&gki_cb.os.thread_evt_cond[rtask], &gki_cb.os.thread_evt_mutex[rtask]); } /* TODO: check, this is probably neither not needed depending on phtread_cond_wait() implmentation, e.g. it looks like it is implemented as a counter in which case multiple cond_signal should NOT be lost! */ /* we are waking up after waiting for some events, so refresh variables no need to call GKI_disable() here as we know that we will have some events as we've been waking up after condition pending or timeout */ if (gki_cb.com.OSTaskQFirst[rtask][0]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][1]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][2]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK; if (gki_cb.com.OSTaskQFirst[rtask][3]) gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK; if (gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD) { gki_cb.com.OSWaitEvt[rtask] = 0; /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock when cond is met */ pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]); return (EVENT_MASK(GKI_SHUTDOWN_EVT)); } } /* Clear the wait for event mask */ gki_cb.com.OSWaitForEvt[rtask] = 0; /* Return only those bits which user wants... */ evt = gki_cb.com.OSWaitEvt[rtask] & flag; /* Clear only those bits which user wants... */ gki_cb.com.OSWaitEvt[rtask] &= ~flag; /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock mutex when cond is met */ pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]); GKI_TRACE("GKI_wait %d %x %d %x done", (int)rtask, (int)flag, (int)timeout, (int)evt); return (evt); } /******************************************************************************* ** ** Function GKI_delay ** ** Description This function is called by tasks to sleep unconditionally ** for a specified amount of time. The duration is in milliseconds ** ** Parameters: timeout - (input) the duration in milliseconds ** ** Returns void ** *******************************************************************************/ void GKI_delay (UINT32 timeout) { UINT8 rtask = GKI_get_taskid(); struct timespec delay; int err; GKI_TRACE("GKI_delay %d %d", (int)rtask, (int)timeout); delay.tv_sec = timeout / 1000; delay.tv_nsec = 1000 * 1000 * (timeout%1000); /* [u]sleep can't be used because it uses SIGALRM */ do { err = nanosleep(&delay, &delay); } while (err < 0 && errno ==EINTR); /* Check if task was killed while sleeping */ /* NOTE : if you do not implement task killing, you do not need this check */ if (rtask && gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD) { } GKI_TRACE("GKI_delay %d %d done", (int)rtask, (int)timeout); return; } /******************************************************************************* ** ** Function GKI_send_event ** ** Description This function is called by tasks to send events to other ** tasks. Tasks can also send events to themselves. ** ** Parameters: task_id - (input) The id of the task to which the event has to ** be sent ** event - (input) The event that has to be sent ** ** ** Returns GKI_SUCCESS if all OK, else GKI_FAILURE ** *******************************************************************************/ UINT8 GKI_send_event (UINT8 task_id, UINT16 event) { GKI_TRACE("GKI_send_event %d %x", task_id, event); if (task_id < GKI_MAX_TASKS) { /* protect OSWaitEvt[task_id] from manipulation in GKI_wait() */ pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[task_id]); /* Set the event bit */ gki_cb.com.OSWaitEvt[task_id] |= event; pthread_cond_signal(&gki_cb.os.thread_evt_cond[task_id]); pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[task_id]); GKI_TRACE("GKI_send_event %d %x done", task_id, event); return ( GKI_SUCCESS ); } GKI_TRACE("############## GKI_send_event FAILED!! ##################"); return (GKI_FAILURE); } /******************************************************************************* ** ** Function GKI_get_taskid ** ** Description This function gets the currently running task ID. ** ** Returns task ID ** ** NOTE The Broadcom upper stack and profiles may run as a single task. ** If you only have one GKI task, then you can hard-code this ** function to return a '1'. Otherwise, you should have some ** OS-specific method to determine the current task. ** *******************************************************************************/ UINT8 GKI_get_taskid (void) { int i; pthread_t thread_id = pthread_self( ); GKI_TRACE("GKI_get_taskid %x", (int)thread_id); for (i = 0; i < GKI_MAX_TASKS; i++) { if (gki_cb.os.thread_id[i] == thread_id) { //GKI_TRACE("GKI_get_taskid %x %d done", thread_id, i); return(i); } } GKI_TRACE("GKI_get_taskid: task id = -1"); return(-1); } /******************************************************************************* ** ** Function GKI_map_taskname ** ** Description This function gets the task name of the taskid passed as arg. ** If GKI_MAX_TASKS is passed as arg the currently running task ** name is returned ** ** Parameters: task_id - (input) The id of the task whose name is being ** sought. GKI_MAX_TASKS is passed to get the name of the ** currently running task. ** ** Returns pointer to task name ** ** NOTE this function needs no customization ** *******************************************************************************/ INT8 *GKI_map_taskname (UINT8 task_id) { GKI_TRACE("GKI_map_taskname %d", task_id); if (task_id < GKI_MAX_TASKS) { GKI_TRACE("GKI_map_taskname %d %s done", task_id, gki_cb.com.OSTName[task_id]); return (gki_cb.com.OSTName[task_id]); } else if (task_id == GKI_MAX_TASKS ) { return (gki_cb.com.OSTName[GKI_get_taskid()]); } else { return (INT8*)"BAD"; } } /******************************************************************************* ** ** Function GKI_enable ** ** Description This function enables interrupts. ** ** Returns void ** *******************************************************************************/ void GKI_enable (void) { pthread_mutex_unlock(&gki_cb.os.GKI_mutex); } /******************************************************************************* ** ** Function GKI_disable ** ** Description This function disables interrupts. ** ** Returns void ** *******************************************************************************/ void GKI_disable (void) { pthread_mutex_lock(&gki_cb.os.GKI_mutex); } /******************************************************************************* ** ** Function GKI_exception ** ** Description This function throws an exception. ** This is normally only called for a nonrecoverable error. ** ** Parameters: code - (input) The code for the error ** msg - (input) The message that has to be logged ** ** Returns void ** *******************************************************************************/ void GKI_exception (UINT16 code, char *msg) { UINT8 task_id; int i = 0; ALOGE( "GKI_exception(): Task State Table"); for(task_id = 0; task_id < GKI_MAX_TASKS; task_id++) { ALOGE( "TASK ID [%d] task name [%s] state [%d]", task_id, gki_cb.com.OSTName[task_id], gki_cb.com.OSRdyTbl[task_id]); } ALOGE("GKI_exception %d %s", code, msg); ALOGE( "********************************************************************"); ALOGE( "* GKI_exception(): %d %s", code, msg); ALOGE( "********************************************************************"); #if 0//(GKI_DEBUG == TRUE) GKI_disable(); if (gki_cb.com.ExceptionCnt < GKI_MAX_EXCEPTION) { EXCEPTION_T *pExp; pExp = &gki_cb.com.Exception[gki_cb.com.ExceptionCnt++]; pExp->type = code; pExp->taskid = GKI_get_taskid(); strncpy((char *)pExp->msg, msg, GKI_MAX_EXCEPTION_MSGLEN - 1); } GKI_enable(); #endif GKI_TRACE("GKI_exception %d %s done", code, msg); return; } /******************************************************************************* ** ** Function GKI_os_malloc ** ** Description This function allocates memory ** ** Parameters: size - (input) The size of the memory that has to be ** allocated ** ** Returns the address of the memory allocated, or NULL if failed ** ** NOTE This function is called by the Broadcom stack when ** dynamic memory allocation is used. (see dyn_mem.h) ** *******************************************************************************/ void *GKI_os_malloc (UINT32 size) { return malloc(size); } /******************************************************************************* ** ** Function GKI_os_free ** ** Description This function frees memory ** ** Parameters: size - (input) The address of the memory that has to be ** freed ** ** Returns void ** ** NOTE This function is NOT called by the Broadcom stack and ** profiles. It is only called from within GKI if dynamic ** *******************************************************************************/ void GKI_os_free (void *p_mem) { free(p_mem); } /******************************************************************************* ** ** Function GKI_exit_task ** ** Description This function is called to stop a GKI task. ** ** Parameters: task_id - (input) the id of the task that has to be stopped ** ** Returns void ** ** NOTE This function is NOT called by the Broadcom stack and ** profiles. If you want to use it in your own implementation, ** put specific code here to kill a task. ** *******************************************************************************/ void GKI_exit_task (UINT8 task_id) { GKI_disable(); gki_cb.com.OSRdyTbl[task_id] = TASK_DEAD; /* Destroy mutex and condition variable objects */ pthread_mutex_destroy(&gki_cb.os.thread_evt_mutex[task_id]); pthread_cond_destroy (&gki_cb.os.thread_evt_cond[task_id]); pthread_mutex_destroy(&gki_cb.os.thread_timeout_mutex[task_id]); pthread_cond_destroy (&gki_cb.os.thread_timeout_cond[task_id]); GKI_enable(); ALOGI("GKI_exit_task %d done", task_id); return; }