// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2014 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Copyright (c) 2014 libmv authors. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. // // Author: sergey.vfx@gmail.com (Sergey Sharybin) // // This file demonstrates solving for a homography between two sets of points. // A homography describes a transformation between a sets of points on a plane, // perspectively projected into two images. The first step is to solve a // homogeneous system of equations via singular value decompposition, giving an // algebraic solution for the homography, then solving for a final solution by // minimizing the symmetric transfer error in image space with Ceres (called the // Gold Standard Solution in "Multiple View Geometry"). The routines are based on // the routines from the Libmv library. // // This example demonstrates custom exit criterion by having a callback check // for image-space error. #include "ceres/ceres.h" #include "glog/logging.h" typedef Eigen::NumTraits<double> EigenDouble; typedef Eigen::MatrixXd Mat; typedef Eigen::VectorXd Vec; typedef Eigen::Matrix<double, 3, 3> Mat3; typedef Eigen::Matrix<double, 2, 1> Vec2; typedef Eigen::Matrix<double, Eigen::Dynamic, 8> MatX8; typedef Eigen::Vector3d Vec3; namespace { // This structure contains options that controls how the homography // estimation operates. // // Defaults should be suitable for a wide range of use cases, but // better performance and accuracy might require tweaking. struct EstimateHomographyOptions { // Default settings for homography estimation which should be suitable // for a wide range of use cases. EstimateHomographyOptions() : max_num_iterations(50), expected_average_symmetric_distance(1e-16) {} // Maximal number of iterations for the refinement step. int max_num_iterations; // Expected average of symmetric geometric distance between // actual destination points and original ones transformed by // estimated homography matrix. // // Refinement will finish as soon as average of symmetric // geometric distance is less or equal to this value. // // This distance is measured in the same units as input points are. double expected_average_symmetric_distance; }; // Calculate symmetric geometric cost terms: // // forward_error = D(H * x1, x2) // backward_error = D(H^-1 * x2, x1) // // Templated to be used with autodifferenciation. template <typename T> void SymmetricGeometricDistanceTerms(const Eigen::Matrix<T, 3, 3> &H, const Eigen::Matrix<T, 2, 1> &x1, const Eigen::Matrix<T, 2, 1> &x2, T forward_error[2], T backward_error[2]) { typedef Eigen::Matrix<T, 3, 1> Vec3; Vec3 x(x1(0), x1(1), T(1.0)); Vec3 y(x2(0), x2(1), T(1.0)); Vec3 H_x = H * x; Vec3 Hinv_y = H.inverse() * y; H_x /= H_x(2); Hinv_y /= Hinv_y(2); forward_error[0] = H_x(0) - y(0); forward_error[1] = H_x(1) - y(1); backward_error[0] = Hinv_y(0) - x(0); backward_error[1] = Hinv_y(1) - x(1); } // Calculate symmetric geometric cost: // // D(H * x1, x2)^2 + D(H^-1 * x2, x1)^2 // double SymmetricGeometricDistance(const Mat3 &H, const Vec2 &x1, const Vec2 &x2) { Vec2 forward_error, backward_error; SymmetricGeometricDistanceTerms<double>(H, x1, x2, forward_error.data(), backward_error.data()); return forward_error.squaredNorm() + backward_error.squaredNorm(); } // A parameterization of the 2D homography matrix that uses 8 parameters so // that the matrix is normalized (H(2,2) == 1). // The homography matrix H is built from a list of 8 parameters (a, b,...g, h) // as follows // // |a b c| // H = |d e f| // |g h 1| // template<typename T = double> class Homography2DNormalizedParameterization { public: typedef Eigen::Matrix<T, 8, 1> Parameters; // a, b, ... g, h typedef Eigen::Matrix<T, 3, 3> Parameterized; // H // Convert from the 8 parameters to a H matrix. static void To(const Parameters &p, Parameterized *h) { *h << p(0), p(1), p(2), p(3), p(4), p(5), p(6), p(7), 1.0; } // Convert from a H matrix to the 8 parameters. static void From(const Parameterized &h, Parameters *p) { *p << h(0, 0), h(0, 1), h(0, 2), h(1, 0), h(1, 1), h(1, 2), h(2, 0), h(2, 1); } }; // 2D Homography transformation estimation in the case that points are in // euclidean coordinates. // // x = H y // // x and y vector must have the same direction, we could write // // crossproduct(|x|, * H * |y| ) = |0| // // | 0 -1 x2| |a b c| |y1| |0| // | 1 0 -x1| * |d e f| * |y2| = |0| // |-x2 x1 0| |g h 1| |1 | |0| // // That gives: // // (-d+x2*g)*y1 + (-e+x2*h)*y2 + -f+x2 |0| // (a-x1*g)*y1 + (b-x1*h)*y2 + c-x1 = |0| // (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f |0| // bool Homography2DFromCorrespondencesLinearEuc( const Mat &x1, const Mat &x2, Mat3 *H, double expected_precision) { assert(2 == x1.rows()); assert(4 <= x1.cols()); assert(x1.rows() == x2.rows()); assert(x1.cols() == x2.cols()); int n = x1.cols(); MatX8 L = Mat::Zero(n * 3, 8); Mat b = Mat::Zero(n * 3, 1); for (int i = 0; i < n; ++i) { int j = 3 * i; L(j, 0) = x1(0, i); // a L(j, 1) = x1(1, i); // b L(j, 2) = 1.0; // c L(j, 6) = -x2(0, i) * x1(0, i); // g L(j, 7) = -x2(0, i) * x1(1, i); // h b(j, 0) = x2(0, i); // i ++j; L(j, 3) = x1(0, i); // d L(j, 4) = x1(1, i); // e L(j, 5) = 1.0; // f L(j, 6) = -x2(1, i) * x1(0, i); // g L(j, 7) = -x2(1, i) * x1(1, i); // h b(j, 0) = x2(1, i); // i // This ensures better stability // TODO(julien) make a lite version without this 3rd set ++j; L(j, 0) = x2(1, i) * x1(0, i); // a L(j, 1) = x2(1, i) * x1(1, i); // b L(j, 2) = x2(1, i); // c L(j, 3) = -x2(0, i) * x1(0, i); // d L(j, 4) = -x2(0, i) * x1(1, i); // e L(j, 5) = -x2(0, i); // f } // Solve Lx=B const Vec h = L.fullPivLu().solve(b); Homography2DNormalizedParameterization<double>::To(h, H); return (L * h).isApprox(b, expected_precision); } // Cost functor which computes symmetric geometric distance // used for homography matrix refinement. class HomographySymmetricGeometricCostFunctor { public: HomographySymmetricGeometricCostFunctor(const Vec2 &x, const Vec2 &y) : x_(x), y_(y) { } template<typename T> bool operator()(const T* homography_parameters, T* residuals) const { typedef Eigen::Matrix<T, 3, 3> Mat3; typedef Eigen::Matrix<T, 2, 1> Vec2; Mat3 H(homography_parameters); Vec2 x(T(x_(0)), T(x_(1))); Vec2 y(T(y_(0)), T(y_(1))); SymmetricGeometricDistanceTerms<T>(H, x, y, &residuals[0], &residuals[2]); return true; } const Vec2 x_; const Vec2 y_; }; // Termination checking callback. This is needed to finish the // optimization when an absolute error threshold is met, as opposed // to Ceres's function_tolerance, which provides for finishing when // successful steps reduce the cost function by a fractional amount. // In this case, the callback checks for the absolute average reprojection // error and terminates when it's below a threshold (for example all // points < 0.5px error). class TerminationCheckingCallback : public ceres::IterationCallback { public: TerminationCheckingCallback(const Mat &x1, const Mat &x2, const EstimateHomographyOptions &options, Mat3 *H) : options_(options), x1_(x1), x2_(x2), H_(H) {} virtual ceres::CallbackReturnType operator()( const ceres::IterationSummary& summary) { // If the step wasn't successful, there's nothing to do. if (!summary.step_is_successful) { return ceres::SOLVER_CONTINUE; } // Calculate average of symmetric geometric distance. double average_distance = 0.0; for (int i = 0; i < x1_.cols(); i++) { average_distance += SymmetricGeometricDistance(*H_, x1_.col(i), x2_.col(i)); } average_distance /= x1_.cols(); if (average_distance <= options_.expected_average_symmetric_distance) { return ceres::SOLVER_TERMINATE_SUCCESSFULLY; } return ceres::SOLVER_CONTINUE; } private: const EstimateHomographyOptions &options_; const Mat &x1_; const Mat &x2_; Mat3 *H_; }; bool EstimateHomography2DFromCorrespondences( const Mat &x1, const Mat &x2, const EstimateHomographyOptions &options, Mat3 *H) { assert(2 == x1.rows()); assert(4 <= x1.cols()); assert(x1.rows() == x2.rows()); assert(x1.cols() == x2.cols()); // Step 1: Algebraic homography estimation. // Assume algebraic estimation always succeeds. Homography2DFromCorrespondencesLinearEuc(x1, x2, H, EigenDouble::dummy_precision()); LOG(INFO) << "Estimated matrix after algebraic estimation:\n" << *H; // Step 2: Refine matrix using Ceres minimizer. ceres::Problem problem; for (int i = 0; i < x1.cols(); i++) { HomographySymmetricGeometricCostFunctor *homography_symmetric_geometric_cost_function = new HomographySymmetricGeometricCostFunctor(x1.col(i), x2.col(i)); problem.AddResidualBlock( new ceres::AutoDiffCostFunction< HomographySymmetricGeometricCostFunctor, 4, // num_residuals 9>(homography_symmetric_geometric_cost_function), NULL, H->data()); } // Configure the solve. ceres::Solver::Options solver_options; solver_options.linear_solver_type = ceres::DENSE_QR; solver_options.max_num_iterations = options.max_num_iterations; solver_options.update_state_every_iteration = true; // Terminate if the average symmetric distance is good enough. TerminationCheckingCallback callback(x1, x2, options, H); solver_options.callbacks.push_back(&callback); // Run the solve. ceres::Solver::Summary summary; ceres::Solve(solver_options, &problem, &summary); LOG(INFO) << "Summary:\n" << summary.FullReport(); LOG(INFO) << "Final refined matrix:\n" << *H; return summary.IsSolutionUsable(); } } // namespace libmv int main(int argc, char **argv) { google::InitGoogleLogging(argv[0]); Mat x1(2, 100); for (int i = 0; i < x1.cols(); ++i) { x1(0, i) = rand() % 1024; x1(1, i) = rand() % 1024; } Mat3 homography_matrix; // This matrix has been dumped from a Blender test file of plane tracking. homography_matrix << 1.243715, -0.461057, -111.964454, 0.0, 0.617589, -192.379252, 0.0, -0.000983, 1.0; Mat x2 = x1; for (int i = 0; i < x2.cols(); ++i) { Vec3 homogenous_x1 = Vec3(x1(0, i), x1(1, i), 1.0); Vec3 homogenous_x2 = homography_matrix * homogenous_x1; x2(0, i) = homogenous_x2(0) / homogenous_x2(2); x2(1, i) = homogenous_x2(1) / homogenous_x2(2); // Apply some noise so algebraic estimation is not good enough. x2(0, i) += static_cast<double>(rand() % 1000) / 5000.0; x2(1, i) += static_cast<double>(rand() % 1000) / 5000.0; } Mat3 estimated_matrix; EstimateHomographyOptions options; options.expected_average_symmetric_distance = 0.02; EstimateHomography2DFromCorrespondences(x1, x2, options, &estimated_matrix); // Normalize the matrix for easier comparison. estimated_matrix /= estimated_matrix(2 ,2); std::cout << "Original matrix:\n" << homography_matrix << "\n"; std::cout << "Estimated matrix:\n" << estimated_matrix << "\n"; return EXIT_SUCCESS; }