// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/cpu.h" #include <stdlib.h> #include <string.h> #include <algorithm> #include "base/basictypes.h" #include "base/strings/string_piece.h" #include "build/build_config.h" #if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX)) #include "base/files/file_util.h" #include "base/lazy_instance.h" #endif #if defined(ARCH_CPU_X86_FAMILY) #if defined(_MSC_VER) #include <intrin.h> #include <immintrin.h> // For _xgetbv() #endif #endif namespace base { CPU::CPU() : signature_(0), type_(0), family_(0), model_(0), stepping_(0), ext_model_(0), ext_family_(0), has_mmx_(false), has_sse_(false), has_sse2_(false), has_sse3_(false), has_ssse3_(false), has_sse41_(false), has_sse42_(false), has_avx_(false), has_avx_hardware_(false), has_aesni_(false), has_non_stop_time_stamp_counter_(false), has_broken_neon_(false), cpu_vendor_("unknown") { Initialize(); } namespace { #if defined(ARCH_CPU_X86_FAMILY) #ifndef _MSC_VER #if defined(__pic__) && defined(__i386__) void __cpuid(int cpu_info[4], int info_type) { __asm__ volatile ( "mov %%ebx, %%edi\n" "cpuid\n" "xchg %%edi, %%ebx\n" : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3]) : "a"(info_type) ); } #else void __cpuid(int cpu_info[4], int info_type) { __asm__ volatile ( "cpuid \n\t" : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3]) : "a"(info_type) ); } #endif // _xgetbv returns the value of an Intel Extended Control Register (XCR). // Currently only XCR0 is defined by Intel so |xcr| should always be zero. uint64 _xgetbv(uint32 xcr) { uint32 eax, edx; __asm__ volatile ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (xcr)); return (static_cast<uint64>(edx) << 32) | eax; } #endif // !_MSC_VER #endif // ARCH_CPU_X86_FAMILY #if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX)) class LazyCpuInfoValue { public: LazyCpuInfoValue() : has_broken_neon_(false) { // This function finds the value from /proc/cpuinfo under the key "model // name" or "Processor". "model name" is used in Linux 3.8 and later (3.7 // and later for arm64) and is shown once per CPU. "Processor" is used in // earler versions and is shown only once at the top of /proc/cpuinfo // regardless of the number CPUs. const char kModelNamePrefix[] = "model name\t: "; const char kProcessorPrefix[] = "Processor\t: "; // This function also calculates whether we believe that this CPU has a // broken NEON unit based on these fields from cpuinfo: unsigned implementer = 0, architecture = 0, variant = 0, part = 0, revision = 0; const struct { const char key[17]; unsigned *result; } kUnsignedValues[] = { {"CPU implementer", &implementer}, {"CPU architecture", &architecture}, {"CPU variant", &variant}, {"CPU part", &part}, {"CPU revision", &revision}, }; std::string contents; ReadFileToString(FilePath("/proc/cpuinfo"), &contents); DCHECK(!contents.empty()); if (contents.empty()) { return; } std::istringstream iss(contents); std::string line; while (std::getline(iss, line)) { if (brand_.empty() && (line.compare(0, strlen(kModelNamePrefix), kModelNamePrefix) == 0 || line.compare(0, strlen(kProcessorPrefix), kProcessorPrefix) == 0)) { brand_.assign(line.substr(strlen(kModelNamePrefix))); } for (size_t i = 0; i < arraysize(kUnsignedValues); i++) { const char *key = kUnsignedValues[i].key; const size_t len = strlen(key); if (line.compare(0, len, key) == 0 && line.size() >= len + 1 && (line[len] == '\t' || line[len] == ' ' || line[len] == ':')) { size_t colon_pos = line.find(':', len); if (colon_pos == std::string::npos) { continue; } const StringPiece line_sp(line); StringPiece value_sp = line_sp.substr(colon_pos + 1); while (!value_sp.empty() && (value_sp[0] == ' ' || value_sp[0] == '\t')) { value_sp = value_sp.substr(1); } // The string may have leading "0x" or not, so we use strtoul to // handle that. char *endptr; std::string value(value_sp.as_string()); unsigned long int result = strtoul(value.c_str(), &endptr, 0); if (*endptr == 0 && result <= UINT_MAX) { *kUnsignedValues[i].result = result; } } } } has_broken_neon_ = implementer == 0x51 && architecture == 7 && variant == 1 && part == 0x4d && revision == 0; } const std::string& brand() const { return brand_; } bool has_broken_neon() const { return has_broken_neon_; } private: std::string brand_; bool has_broken_neon_; DISALLOW_COPY_AND_ASSIGN(LazyCpuInfoValue); }; base::LazyInstance<LazyCpuInfoValue>::Leaky g_lazy_cpuinfo = LAZY_INSTANCE_INITIALIZER; #endif // defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || // defined(OS_LINUX)) } // anonymous namespace void CPU::Initialize() { #if defined(ARCH_CPU_X86_FAMILY) int cpu_info[4] = {-1}; char cpu_string[48]; // __cpuid with an InfoType argument of 0 returns the number of // valid Ids in CPUInfo[0] and the CPU identification string in // the other three array elements. The CPU identification string is // not in linear order. The code below arranges the information // in a human readable form. The human readable order is CPUInfo[1] | // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped // before using memcpy to copy these three array elements to cpu_string. __cpuid(cpu_info, 0); int num_ids = cpu_info[0]; std::swap(cpu_info[2], cpu_info[3]); memcpy(cpu_string, &cpu_info[1], 3 * sizeof(cpu_info[1])); cpu_vendor_.assign(cpu_string, 3 * sizeof(cpu_info[1])); // Interpret CPU feature information. if (num_ids > 0) { __cpuid(cpu_info, 1); signature_ = cpu_info[0]; stepping_ = cpu_info[0] & 0xf; model_ = ((cpu_info[0] >> 4) & 0xf) + ((cpu_info[0] >> 12) & 0xf0); family_ = (cpu_info[0] >> 8) & 0xf; type_ = (cpu_info[0] >> 12) & 0x3; ext_model_ = (cpu_info[0] >> 16) & 0xf; ext_family_ = (cpu_info[0] >> 20) & 0xff; has_mmx_ = (cpu_info[3] & 0x00800000) != 0; has_sse_ = (cpu_info[3] & 0x02000000) != 0; has_sse2_ = (cpu_info[3] & 0x04000000) != 0; has_sse3_ = (cpu_info[2] & 0x00000001) != 0; has_ssse3_ = (cpu_info[2] & 0x00000200) != 0; has_sse41_ = (cpu_info[2] & 0x00080000) != 0; has_sse42_ = (cpu_info[2] & 0x00100000) != 0; has_avx_hardware_ = (cpu_info[2] & 0x10000000) != 0; // AVX instructions will generate an illegal instruction exception unless // a) they are supported by the CPU, // b) XSAVE is supported by the CPU and // c) XSAVE is enabled by the kernel. // See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled // // In addition, we have observed some crashes with the xgetbv instruction // even after following Intel's example code. (See crbug.com/375968.) // Because of that, we also test the XSAVE bit because its description in // the CPUID documentation suggests that it signals xgetbv support. has_avx_ = has_avx_hardware_ && (cpu_info[2] & 0x04000000) != 0 /* XSAVE */ && (cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ && (_xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */; has_aesni_ = (cpu_info[2] & 0x02000000) != 0; } // Get the brand string of the cpu. __cpuid(cpu_info, 0x80000000); const int parameter_end = 0x80000004; int max_parameter = cpu_info[0]; if (cpu_info[0] >= parameter_end) { char* cpu_string_ptr = cpu_string; for (int parameter = 0x80000002; parameter <= parameter_end && cpu_string_ptr < &cpu_string[sizeof(cpu_string)]; parameter++) { __cpuid(cpu_info, parameter); memcpy(cpu_string_ptr, cpu_info, sizeof(cpu_info)); cpu_string_ptr += sizeof(cpu_info); } cpu_brand_.assign(cpu_string, cpu_string_ptr - cpu_string); } const int parameter_containing_non_stop_time_stamp_counter = 0x80000007; if (max_parameter >= parameter_containing_non_stop_time_stamp_counter) { __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter); has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0; } #elif defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX)) cpu_brand_.assign(g_lazy_cpuinfo.Get().brand()); has_broken_neon_ = g_lazy_cpuinfo.Get().has_broken_neon(); #endif } CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const { if (has_avx()) return AVX; if (has_sse42()) return SSE42; if (has_sse41()) return SSE41; if (has_ssse3()) return SSSE3; if (has_sse3()) return SSE3; if (has_sse2()) return SSE2; if (has_sse()) return SSE; return PENTIUM; } } // namespace base