// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/resources/picture_layer_tiling.h" #include <algorithm> #include <cmath> #include <limits> #include <set> #include "base/debug/trace_event.h" #include "base/debug/trace_event_argument.h" #include "base/logging.h" #include "cc/base/math_util.h" #include "cc/resources/tile.h" #include "cc/resources/tile_priority.h" #include "ui/gfx/point_conversions.h" #include "ui/gfx/rect_conversions.h" #include "ui/gfx/safe_integer_conversions.h" #include "ui/gfx/size_conversions.h" namespace cc { namespace { const float kSoonBorderDistanceInScreenPixels = 312.f; class TileEvictionOrder { public: explicit TileEvictionOrder(TreePriority tree_priority) : tree_priority_(tree_priority) {} ~TileEvictionOrder() {} bool operator()(const Tile* a, const Tile* b) { const TilePriority& a_priority = a->priority_for_tree_priority(tree_priority_); const TilePriority& b_priority = b->priority_for_tree_priority(tree_priority_); DCHECK(a_priority.priority_bin == b_priority.priority_bin); DCHECK(a->required_for_activation() == b->required_for_activation()); // Or if a is occluded and b is unoccluded. bool a_is_occluded = a->is_occluded_for_tree_priority(tree_priority_); bool b_is_occluded = b->is_occluded_for_tree_priority(tree_priority_); if (a_is_occluded != b_is_occluded) return a_is_occluded; // Or if a is farther away from visible. return a_priority.distance_to_visible > b_priority.distance_to_visible; } private: TreePriority tree_priority_; }; void ReleaseTile(Tile* tile, WhichTree tree) { // Reset priority as tile is ref-counted and might still be used // even though we no longer hold a reference to it here anymore. tile->SetPriority(tree, TilePriority()); tile->set_shared(false); } } // namespace scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create( float contents_scale, const gfx::Size& layer_bounds, PictureLayerTilingClient* client) { return make_scoped_ptr(new PictureLayerTiling(contents_scale, layer_bounds, client)); } PictureLayerTiling::PictureLayerTiling(float contents_scale, const gfx::Size& layer_bounds, PictureLayerTilingClient* client) : contents_scale_(contents_scale), layer_bounds_(layer_bounds), resolution_(NON_IDEAL_RESOLUTION), client_(client), tiling_data_(gfx::Size(), gfx::Size(), true), last_impl_frame_time_in_seconds_(0.0), has_visible_rect_tiles_(false), has_skewport_rect_tiles_(false), has_soon_border_rect_tiles_(false), has_eventually_rect_tiles_(false), eviction_tiles_cache_valid_(false), eviction_cache_tree_priority_(SAME_PRIORITY_FOR_BOTH_TREES) { gfx::Size content_bounds = gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale)); gfx::Size tile_size = client_->CalculateTileSize(content_bounds); if (tile_size.IsEmpty()) { layer_bounds_ = gfx::Size(); content_bounds = gfx::Size(); } DCHECK(!gfx::ToFlooredSize( gfx::ScaleSize(layer_bounds, contents_scale)).IsEmpty()) << "Tiling created with scale too small as contents become empty." << " Layer bounds: " << layer_bounds.ToString() << " Contents scale: " << contents_scale; tiling_data_.SetTilingSize(content_bounds); tiling_data_.SetMaxTextureSize(tile_size); } PictureLayerTiling::~PictureLayerTiling() { for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) ReleaseTile(it->second.get(), client_->GetTree()); } void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) { client_ = client; } Tile* PictureLayerTiling::CreateTile(int i, int j, const PictureLayerTiling* twin_tiling) { TileMapKey key(i, j); DCHECK(tiles_.find(key) == tiles_.end()); gfx::Rect paint_rect = tiling_data_.TileBoundsWithBorder(i, j); gfx::Rect tile_rect = paint_rect; tile_rect.set_size(tiling_data_.max_texture_size()); // Check our twin for a valid tile. if (twin_tiling && tiling_data_.max_texture_size() == twin_tiling->tiling_data_.max_texture_size()) { if (Tile* candidate_tile = twin_tiling->TileAt(i, j)) { gfx::Rect rect = gfx::ScaleToEnclosingRect(paint_rect, 1.0f / contents_scale_); if (!client_->GetInvalidation()->Intersects(rect)) { DCHECK(!candidate_tile->is_shared()); candidate_tile->set_shared(true); tiles_[key] = candidate_tile; return candidate_tile; } } } // Create a new tile because our twin didn't have a valid one. scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect); if (tile.get()) { DCHECK(!tile->is_shared()); tiles_[key] = tile; } return tile.get(); } void PictureLayerTiling::CreateMissingTilesInLiveTilesRect() { const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this); bool include_borders = false; for (TilingData::Iterator iter( &tiling_data_, live_tiles_rect_, include_borders); iter; ++iter) { TileMapKey key = iter.index(); TileMap::iterator find = tiles_.find(key); if (find != tiles_.end()) continue; CreateTile(key.first, key.second, twin_tiling); } VerifyLiveTilesRect(); } void PictureLayerTiling::UpdateTilesToCurrentPile( const Region& layer_invalidation, const gfx::Size& new_layer_bounds) { DCHECK(!new_layer_bounds.IsEmpty()); gfx::Size tile_size = tiling_data_.max_texture_size(); if (new_layer_bounds != layer_bounds_) { gfx::Size content_bounds = gfx::ToCeiledSize(gfx::ScaleSize(new_layer_bounds, contents_scale_)); tile_size = client_->CalculateTileSize(content_bounds); if (tile_size.IsEmpty()) { layer_bounds_ = gfx::Size(); content_bounds = gfx::Size(); } else { layer_bounds_ = new_layer_bounds; } // The SetLiveTilesRect() method would drop tiles outside the new bounds, // but may do so incorrectly if resizing the tiling causes the number of // tiles in the tiling_data_ to change. gfx::Rect content_rect(content_bounds); int before_left = tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.x()); int before_top = tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.y()); int before_right = tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.right() - 1); int before_bottom = tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.bottom() - 1); // The live_tiles_rect_ is clamped to stay within the tiling size as we // change it. live_tiles_rect_.Intersect(content_rect); tiling_data_.SetTilingSize(content_bounds); int after_right = -1; int after_bottom = -1; if (!live_tiles_rect_.IsEmpty()) { after_right = tiling_data_.TileXIndexFromSrcCoord(live_tiles_rect_.right() - 1); after_bottom = tiling_data_.TileYIndexFromSrcCoord(live_tiles_rect_.bottom() - 1); } // There is no recycled twin since this is run on the pending tiling. PictureLayerTiling* recycled_twin = NULL; DCHECK_EQ(recycled_twin, client_->GetRecycledTwinTiling(this)); DCHECK_EQ(PENDING_TREE, client_->GetTree()); // Drop tiles outside the new layer bounds if the layer shrank. for (int i = after_right + 1; i <= before_right; ++i) { for (int j = before_top; j <= before_bottom; ++j) RemoveTileAt(i, j, recycled_twin); } for (int i = before_left; i <= after_right; ++i) { for (int j = after_bottom + 1; j <= before_bottom; ++j) RemoveTileAt(i, j, recycled_twin); } // If the layer grew, the live_tiles_rect_ is not changed, but a new row // and/or column of tiles may now exist inside the same live_tiles_rect_. const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this); if (after_right > before_right) { DCHECK_EQ(after_right, before_right + 1); for (int j = before_top; j <= after_bottom; ++j) CreateTile(after_right, j, twin_tiling); } if (after_bottom > before_bottom) { DCHECK_EQ(after_bottom, before_bottom + 1); for (int i = before_left; i <= before_right; ++i) CreateTile(i, after_bottom, twin_tiling); } } if (tile_size != tiling_data_.max_texture_size()) { tiling_data_.SetMaxTextureSize(tile_size); // When the tile size changes, the TilingData positions no longer work // as valid keys to the TileMap, so just drop all tiles. Reset(); } else { Invalidate(layer_invalidation); } PicturePileImpl* pile = client_->GetPile(); for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) it->second->set_picture_pile(pile); VerifyLiveTilesRect(); } void PictureLayerTiling::RemoveTilesInRegion(const Region& layer_region) { bool recreate_invalidated_tiles = false; DoInvalidate(layer_region, recreate_invalidated_tiles); } void PictureLayerTiling::Invalidate(const Region& layer_region) { bool recreate_invalidated_tiles = true; DoInvalidate(layer_region, recreate_invalidated_tiles); } void PictureLayerTiling::DoInvalidate(const Region& layer_region, bool recreate_invalidated_tiles) { std::vector<TileMapKey> new_tile_keys; gfx::Rect expanded_live_tiles_rect = tiling_data_.ExpandRectIgnoringBordersToTileBounds(live_tiles_rect_); for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) { gfx::Rect layer_rect = iter.rect(); gfx::Rect content_rect = gfx::ScaleToEnclosingRect(layer_rect, contents_scale_); // Consider tiles inside the live tiles rect even if only their border // pixels intersect the invalidation. But don't consider tiles outside // the live tiles rect with the same conditions, as they won't exist. int border_pixels = tiling_data_.border_texels(); content_rect.Inset(-border_pixels, -border_pixels); // Avoid needless work by not bothering to invalidate where there aren't // tiles. content_rect.Intersect(expanded_live_tiles_rect); if (content_rect.IsEmpty()) continue; // Since the content_rect includes border pixels already, don't include // borders when iterating to avoid double counting them. bool include_borders = false; for (TilingData::Iterator iter( &tiling_data_, content_rect, include_borders); iter; ++iter) { // There is no recycled twin since this is run on the pending tiling. PictureLayerTiling* recycled_twin = NULL; DCHECK_EQ(recycled_twin, client_->GetRecycledTwinTiling(this)); DCHECK_EQ(PENDING_TREE, client_->GetTree()); if (RemoveTileAt(iter.index_x(), iter.index_y(), recycled_twin)) new_tile_keys.push_back(iter.index()); } } if (recreate_invalidated_tiles && !new_tile_keys.empty()) { for (size_t i = 0; i < new_tile_keys.size(); ++i) { // Don't try to share a tile with the twin layer, it's been invalidated so // we have to make our own tile here. const PictureLayerTiling* twin_tiling = NULL; CreateTile(new_tile_keys[i].first, new_tile_keys[i].second, twin_tiling); } } } PictureLayerTiling::CoverageIterator::CoverageIterator() : tiling_(NULL), current_tile_(NULL), tile_i_(0), tile_j_(0), left_(0), top_(0), right_(-1), bottom_(-1) { } PictureLayerTiling::CoverageIterator::CoverageIterator( const PictureLayerTiling* tiling, float dest_scale, const gfx::Rect& dest_rect) : tiling_(tiling), dest_rect_(dest_rect), dest_to_content_scale_(0), current_tile_(NULL), tile_i_(0), tile_j_(0), left_(0), top_(0), right_(-1), bottom_(-1) { DCHECK(tiling_); if (dest_rect_.IsEmpty()) return; dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale; gfx::Rect content_rect = gfx::ScaleToEnclosingRect(dest_rect_, dest_to_content_scale_, dest_to_content_scale_); // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to // check for non-intersection first. content_rect.Intersect(gfx::Rect(tiling_->tiling_size())); if (content_rect.IsEmpty()) return; left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x()); top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y()); right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord( content_rect.right() - 1); bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord( content_rect.bottom() - 1); tile_i_ = left_ - 1; tile_j_ = top_; ++(*this); } PictureLayerTiling::CoverageIterator::~CoverageIterator() { } PictureLayerTiling::CoverageIterator& PictureLayerTiling::CoverageIterator::operator++() { if (tile_j_ > bottom_) return *this; bool first_time = tile_i_ < left_; bool new_row = false; tile_i_++; if (tile_i_ > right_) { tile_i_ = left_; tile_j_++; new_row = true; if (tile_j_ > bottom_) { current_tile_ = NULL; return *this; } } current_tile_ = tiling_->TileAt(tile_i_, tile_j_); // Calculate the current geometry rect. Due to floating point rounding // and ToEnclosingRect, tiles might overlap in destination space on the // edges. gfx::Rect last_geometry_rect = current_geometry_rect_; gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_); current_geometry_rect_ = gfx::ScaleToEnclosingRect(content_rect, 1 / dest_to_content_scale_, 1 / dest_to_content_scale_); current_geometry_rect_.Intersect(dest_rect_); if (first_time) return *this; // Iteration happens left->right, top->bottom. Running off the bottom-right // edge is handled by the intersection above with dest_rect_. Here we make // sure that the new current geometry rect doesn't overlap with the last. int min_left; int min_top; if (new_row) { min_left = dest_rect_.x(); min_top = last_geometry_rect.bottom(); } else { min_left = last_geometry_rect.right(); min_top = last_geometry_rect.y(); } int inset_left = std::max(0, min_left - current_geometry_rect_.x()); int inset_top = std::max(0, min_top - current_geometry_rect_.y()); current_geometry_rect_.Inset(inset_left, inset_top, 0, 0); if (!new_row) { DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x()); DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom()); DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y()); } return *this; } gfx::Rect PictureLayerTiling::CoverageIterator::geometry_rect() const { return current_geometry_rect_; } gfx::Rect PictureLayerTiling::CoverageIterator::full_tile_geometry_rect() const { gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_); rect.set_size(tiling_->tiling_data_.max_texture_size()); return rect; } gfx::RectF PictureLayerTiling::CoverageIterator::texture_rect() const { gfx::PointF tex_origin = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin(); // Convert from dest space => content space => texture space. gfx::RectF texture_rect(current_geometry_rect_); texture_rect.Scale(dest_to_content_scale_, dest_to_content_scale_); texture_rect.Intersect(gfx::Rect(tiling_->tiling_size())); if (texture_rect.IsEmpty()) return texture_rect; texture_rect.Offset(-tex_origin.OffsetFromOrigin()); return texture_rect; } gfx::Size PictureLayerTiling::CoverageIterator::texture_size() const { return tiling_->tiling_data_.max_texture_size(); } bool PictureLayerTiling::RemoveTileAt(int i, int j, PictureLayerTiling* recycled_twin) { TileMap::iterator found = tiles_.find(TileMapKey(i, j)); if (found == tiles_.end()) return false; ReleaseTile(found->second.get(), client_->GetTree()); tiles_.erase(found); if (recycled_twin) { // Recycled twin does not also have a recycled twin, so pass NULL. recycled_twin->RemoveTileAt(i, j, NULL); } return true; } void PictureLayerTiling::Reset() { live_tiles_rect_ = gfx::Rect(); PictureLayerTiling* recycled_twin = client_->GetRecycledTwinTiling(this); for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { ReleaseTile(it->second.get(), client_->GetTree()); if (recycled_twin) recycled_twin->RemoveTileAt(it->first.first, it->first.second, NULL); } tiles_.clear(); } gfx::Rect PictureLayerTiling::ComputeSkewport( double current_frame_time_in_seconds, const gfx::Rect& visible_rect_in_content_space) const { gfx::Rect skewport = visible_rect_in_content_space; if (last_impl_frame_time_in_seconds_ == 0.0) return skewport; double time_delta = current_frame_time_in_seconds - last_impl_frame_time_in_seconds_; if (time_delta == 0.0) return skewport; float skewport_target_time_in_seconds = client_->GetSkewportTargetTimeInSeconds(); double extrapolation_multiplier = skewport_target_time_in_seconds / time_delta; int old_x = last_visible_rect_in_content_space_.x(); int old_y = last_visible_rect_in_content_space_.y(); int old_right = last_visible_rect_in_content_space_.right(); int old_bottom = last_visible_rect_in_content_space_.bottom(); int new_x = visible_rect_in_content_space.x(); int new_y = visible_rect_in_content_space.y(); int new_right = visible_rect_in_content_space.right(); int new_bottom = visible_rect_in_content_space.bottom(); int skewport_limit = client_->GetSkewportExtrapolationLimitInContentPixels(); // Compute the maximum skewport based on |skewport_limit|. gfx::Rect max_skewport = skewport; max_skewport.Inset( -skewport_limit, -skewport_limit, -skewport_limit, -skewport_limit); // Inset the skewport by the needed adjustment. skewport.Inset(extrapolation_multiplier * (new_x - old_x), extrapolation_multiplier * (new_y - old_y), extrapolation_multiplier * (old_right - new_right), extrapolation_multiplier * (old_bottom - new_bottom)); // Clip the skewport to |max_skewport|. skewport.Intersect(max_skewport); // Finally, ensure that visible rect is contained in the skewport. skewport.Union(visible_rect_in_content_space); return skewport; } void PictureLayerTiling::UpdateTilePriorities( WhichTree tree, const gfx::Rect& viewport_in_layer_space, float ideal_contents_scale, double current_frame_time_in_seconds, const Occlusion& occlusion_in_layer_space) { if (!NeedsUpdateForFrameAtTimeAndViewport(current_frame_time_in_seconds, viewport_in_layer_space)) { // This should never be zero for the purposes of has_ever_been_updated(). DCHECK_NE(current_frame_time_in_seconds, 0.0); return; } gfx::Rect visible_rect_in_content_space = gfx::ScaleToEnclosingRect(viewport_in_layer_space, contents_scale_); if (tiling_size().IsEmpty()) { last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds; last_viewport_in_layer_space_ = viewport_in_layer_space; last_visible_rect_in_content_space_ = visible_rect_in_content_space; return; } size_t max_tiles_for_interest_area = client_->GetMaxTilesForInterestArea(); gfx::Size tile_size = tiling_data_.max_texture_size(); int64 eventually_rect_area = max_tiles_for_interest_area * tile_size.width() * tile_size.height(); gfx::Rect skewport = ComputeSkewport(current_frame_time_in_seconds, visible_rect_in_content_space); DCHECK(skewport.Contains(visible_rect_in_content_space)); gfx::Rect eventually_rect = ExpandRectEquallyToAreaBoundedBy(visible_rect_in_content_space, eventually_rect_area, gfx::Rect(tiling_size()), &expansion_cache_); DCHECK(eventually_rect.IsEmpty() || gfx::Rect(tiling_size()).Contains(eventually_rect)) << "tiling_size: " << tiling_size().ToString() << " eventually_rect: " << eventually_rect.ToString(); SetLiveTilesRect(eventually_rect); last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds; last_viewport_in_layer_space_ = viewport_in_layer_space; last_visible_rect_in_content_space_ = visible_rect_in_content_space; eviction_tiles_cache_valid_ = false; TilePriority now_priority(resolution_, TilePriority::NOW, 0); float content_to_screen_scale = ideal_contents_scale / contents_scale_; // Assign now priority to all visible tiles. bool include_borders = false; has_visible_rect_tiles_ = false; for (TilingData::Iterator iter( &tiling_data_, visible_rect_in_content_space, include_borders); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; has_visible_rect_tiles_ = true; Tile* tile = find->second.get(); tile->SetPriority(tree, now_priority); // Set whether tile is occluded or not. gfx::Rect tile_query_rect = ScaleToEnclosingRect( IntersectRects(tile->content_rect(), visible_rect_in_content_space), 1.0f / contents_scale_); bool is_occluded = occlusion_in_layer_space.IsOccluded(tile_query_rect); tile->set_is_occluded(tree, is_occluded); } // Assign soon priority to skewport tiles. has_skewport_rect_tiles_ = false; for (TilingData::DifferenceIterator iter( &tiling_data_, skewport, visible_rect_in_content_space); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; has_skewport_rect_tiles_ = true; Tile* tile = find->second.get(); gfx::Rect tile_bounds = tiling_data_.TileBounds(iter.index_x(), iter.index_y()); float distance_to_visible = visible_rect_in_content_space.ManhattanInternalDistance(tile_bounds) * content_to_screen_scale; TilePriority priority(resolution_, TilePriority::SOON, distance_to_visible); tile->SetPriority(tree, priority); } // Assign eventually priority to interest rect tiles. has_eventually_rect_tiles_ = false; for (TilingData::DifferenceIterator iter( &tiling_data_, eventually_rect, skewport); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; has_eventually_rect_tiles_ = true; Tile* tile = find->second.get(); gfx::Rect tile_bounds = tiling_data_.TileBounds(iter.index_x(), iter.index_y()); float distance_to_visible = visible_rect_in_content_space.ManhattanInternalDistance(tile_bounds) * content_to_screen_scale; TilePriority priority( resolution_, TilePriority::EVENTUALLY, distance_to_visible); tile->SetPriority(tree, priority); } // Upgrade the priority on border tiles to be SOON. gfx::Rect soon_border_rect = visible_rect_in_content_space; float border = kSoonBorderDistanceInScreenPixels / content_to_screen_scale; soon_border_rect.Inset(-border, -border, -border, -border); has_soon_border_rect_tiles_ = false; for (TilingData::DifferenceIterator iter( &tiling_data_, soon_border_rect, skewport); iter; ++iter) { TileMap::iterator find = tiles_.find(iter.index()); if (find == tiles_.end()) continue; has_soon_border_rect_tiles_ = true; Tile* tile = find->second.get(); TilePriority priority(resolution_, TilePriority::SOON, tile->priority(tree).distance_to_visible); tile->SetPriority(tree, priority); } // Update iteration rects. current_visible_rect_ = visible_rect_in_content_space; current_skewport_rect_ = skewport; current_soon_border_rect_ = soon_border_rect; current_eventually_rect_ = eventually_rect; } void PictureLayerTiling::SetLiveTilesRect( const gfx::Rect& new_live_tiles_rect) { DCHECK(new_live_tiles_rect.IsEmpty() || gfx::Rect(tiling_size()).Contains(new_live_tiles_rect)) << "tiling_size: " << tiling_size().ToString() << " new_live_tiles_rect: " << new_live_tiles_rect.ToString(); if (live_tiles_rect_ == new_live_tiles_rect) return; // Iterate to delete all tiles outside of our new live_tiles rect. PictureLayerTiling* recycled_twin = client_->GetRecycledTwinTiling(this); for (TilingData::DifferenceIterator iter(&tiling_data_, live_tiles_rect_, new_live_tiles_rect); iter; ++iter) { RemoveTileAt(iter.index_x(), iter.index_y(), recycled_twin); } const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this); // Iterate to allocate new tiles for all regions with newly exposed area. for (TilingData::DifferenceIterator iter(&tiling_data_, new_live_tiles_rect, live_tiles_rect_); iter; ++iter) { TileMapKey key(iter.index()); CreateTile(key.first, key.second, twin_tiling); } live_tiles_rect_ = new_live_tiles_rect; VerifyLiveTilesRect(); } void PictureLayerTiling::VerifyLiveTilesRect() { #if DCHECK_IS_ON for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) { if (!it->second.get()) continue; DCHECK(it->first.first < tiling_data_.num_tiles_x()) << this << " " << it->first.first << "," << it->first.second << " num_tiles_x " << tiling_data_.num_tiles_x() << " live_tiles_rect " << live_tiles_rect_.ToString(); DCHECK(it->first.second < tiling_data_.num_tiles_y()) << this << " " << it->first.first << "," << it->first.second << " num_tiles_y " << tiling_data_.num_tiles_y() << " live_tiles_rect " << live_tiles_rect_.ToString(); DCHECK(tiling_data_.TileBounds(it->first.first, it->first.second) .Intersects(live_tiles_rect_)) << this << " " << it->first.first << "," << it->first.second << " tile bounds " << tiling_data_.TileBounds(it->first.first, it->first.second).ToString() << " live_tiles_rect " << live_tiles_rect_.ToString(); } #endif } void PictureLayerTiling::DidBecomeRecycled() { // DidBecomeActive below will set the active priority for tiles that are // still in the tree. Calling this first on an active tiling that is becoming // recycled takes care of tiles that are no longer in the active tree (eg. // due to a pending invalidation). for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { it->second->SetPriority(ACTIVE_TREE, TilePriority()); } } void PictureLayerTiling::DidBecomeActive() { PicturePileImpl* active_pile = client_->GetPile(); for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE)); it->second->SetPriority(PENDING_TREE, TilePriority()); // Tile holds a ref onto a picture pile. If the tile never gets invalidated // and recreated, then that picture pile ref could exist indefinitely. To // prevent this, ask the client to update the pile to its own ref. This // will cause PicturePileImpls to get deleted once the corresponding // PictureLayerImpl and any in flight raster jobs go out of scope. it->second->set_picture_pile(active_pile); } } void PictureLayerTiling::GetAllTilesForTracing( std::set<const Tile*>* tiles) const { for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) tiles->insert(it->second.get()); } void PictureLayerTiling::AsValueInto(base::debug::TracedValue* state) const { state->SetInteger("num_tiles", tiles_.size()); state->SetDouble("content_scale", contents_scale_); state->BeginDictionary("tiling_size"); MathUtil::AddToTracedValue(tiling_size(), state); state->EndDictionary(); } size_t PictureLayerTiling::GPUMemoryUsageInBytes() const { size_t amount = 0; for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { const Tile* tile = it->second.get(); amount += tile->GPUMemoryUsageInBytes(); } return amount; } PictureLayerTiling::RectExpansionCache::RectExpansionCache() : previous_target(0) { } namespace { // This struct represents an event at which the expending rect intersects // one of its boundaries. 4 intersection events will occur during expansion. struct EdgeEvent { enum { BOTTOM, TOP, LEFT, RIGHT } edge; int* num_edges; int distance; }; // Compute the delta to expand from edges to cover target_area. int ComputeExpansionDelta(int num_x_edges, int num_y_edges, int width, int height, int64 target_area) { // Compute coefficients for the quadratic equation: // a*x^2 + b*x + c = 0 int a = num_y_edges * num_x_edges; int b = num_y_edges * width + num_x_edges * height; int64 c = static_cast<int64>(width) * height - target_area; // Compute the delta for our edges using the quadratic equation. int delta = (a == 0) ? -c / b : (-b + static_cast<int>(std::sqrt( static_cast<int64>(b) * b - 4.0 * a * c))) / (2 * a); return std::max(0, delta); } } // namespace gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy( const gfx::Rect& starting_rect, int64 target_area, const gfx::Rect& bounding_rect, RectExpansionCache* cache) { if (starting_rect.IsEmpty()) return starting_rect; if (cache && cache->previous_start == starting_rect && cache->previous_bounds == bounding_rect && cache->previous_target == target_area) return cache->previous_result; if (cache) { cache->previous_start = starting_rect; cache->previous_bounds = bounding_rect; cache->previous_target = target_area; } DCHECK(!bounding_rect.IsEmpty()); DCHECK_GT(target_area, 0); // Expand the starting rect to cover target_area, if it is smaller than it. int delta = ComputeExpansionDelta( 2, 2, starting_rect.width(), starting_rect.height(), target_area); gfx::Rect expanded_starting_rect = starting_rect; if (delta > 0) expanded_starting_rect.Inset(-delta, -delta); gfx::Rect rect = IntersectRects(expanded_starting_rect, bounding_rect); if (rect.IsEmpty()) { // The starting_rect and bounding_rect are far away. if (cache) cache->previous_result = rect; return rect; } if (delta >= 0 && rect == expanded_starting_rect) { // The starting rect already covers the entire bounding_rect and isn't too // large for the target_area. if (cache) cache->previous_result = rect; return rect; } // Continue to expand/shrink rect to let it cover target_area. // These values will be updated by the loop and uses as the output. int origin_x = rect.x(); int origin_y = rect.y(); int width = rect.width(); int height = rect.height(); // In the beginning we will consider 2 edges in each dimension. int num_y_edges = 2; int num_x_edges = 2; // Create an event list. EdgeEvent events[] = { { EdgeEvent::BOTTOM, &num_y_edges, rect.y() - bounding_rect.y() }, { EdgeEvent::TOP, &num_y_edges, bounding_rect.bottom() - rect.bottom() }, { EdgeEvent::LEFT, &num_x_edges, rect.x() - bounding_rect.x() }, { EdgeEvent::RIGHT, &num_x_edges, bounding_rect.right() - rect.right() } }; // Sort the events by distance (closest first). if (events[0].distance > events[1].distance) std::swap(events[0], events[1]); if (events[2].distance > events[3].distance) std::swap(events[2], events[3]); if (events[0].distance > events[2].distance) std::swap(events[0], events[2]); if (events[1].distance > events[3].distance) std::swap(events[1], events[3]); if (events[1].distance > events[2].distance) std::swap(events[1], events[2]); for (int event_index = 0; event_index < 4; event_index++) { const EdgeEvent& event = events[event_index]; int delta = ComputeExpansionDelta( num_x_edges, num_y_edges, width, height, target_area); // Clamp delta to our event distance. if (delta > event.distance) delta = event.distance; // Adjust the edge count for this kind of edge. --*event.num_edges; // Apply the delta to the edges and edge events. for (int i = event_index; i < 4; i++) { switch (events[i].edge) { case EdgeEvent::BOTTOM: origin_y -= delta; height += delta; break; case EdgeEvent::TOP: height += delta; break; case EdgeEvent::LEFT: origin_x -= delta; width += delta; break; case EdgeEvent::RIGHT: width += delta; break; } events[i].distance -= delta; } // If our delta is less then our event distance, we're done. if (delta < event.distance) break; } gfx::Rect result(origin_x, origin_y, width, height); if (cache) cache->previous_result = result; return result; } void PictureLayerTiling::UpdateEvictionCacheIfNeeded( TreePriority tree_priority) { if (eviction_tiles_cache_valid_ && eviction_cache_tree_priority_ == tree_priority) return; eviction_tiles_now_.clear(); eviction_tiles_now_and_required_for_activation_.clear(); eviction_tiles_soon_.clear(); eviction_tiles_soon_and_required_for_activation_.clear(); eviction_tiles_eventually_.clear(); eviction_tiles_eventually_and_required_for_activation_.clear(); for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) { // TODO(vmpstr): This should update the priority if UpdateTilePriorities // changes not to do this. Tile* tile = it->second.get(); const TilePriority& priority = tile->priority_for_tree_priority(tree_priority); switch (priority.priority_bin) { case TilePriority::EVENTUALLY: if (tile->required_for_activation()) eviction_tiles_eventually_and_required_for_activation_.push_back( tile); else eviction_tiles_eventually_.push_back(tile); break; case TilePriority::SOON: if (tile->required_for_activation()) eviction_tiles_soon_and_required_for_activation_.push_back(tile); else eviction_tiles_soon_.push_back(tile); break; case TilePriority::NOW: if (tile->required_for_activation()) eviction_tiles_now_and_required_for_activation_.push_back(tile); else eviction_tiles_now_.push_back(tile); break; } } // TODO(vmpstr): Do this lazily. One option is to have a "sorted" flag that // can be updated for each of the queues. TileEvictionOrder sort_order(tree_priority); std::sort(eviction_tiles_now_.begin(), eviction_tiles_now_.end(), sort_order); std::sort(eviction_tiles_now_and_required_for_activation_.begin(), eviction_tiles_now_and_required_for_activation_.end(), sort_order); std::sort( eviction_tiles_soon_.begin(), eviction_tiles_soon_.end(), sort_order); std::sort(eviction_tiles_soon_and_required_for_activation_.begin(), eviction_tiles_soon_and_required_for_activation_.end(), sort_order); std::sort(eviction_tiles_eventually_.begin(), eviction_tiles_eventually_.end(), sort_order); std::sort(eviction_tiles_eventually_and_required_for_activation_.begin(), eviction_tiles_eventually_and_required_for_activation_.end(), sort_order); eviction_tiles_cache_valid_ = true; eviction_cache_tree_priority_ = tree_priority; } const std::vector<Tile*>* PictureLayerTiling::GetEvictionTiles( TreePriority tree_priority, EvictionCategory category) { UpdateEvictionCacheIfNeeded(tree_priority); switch (category) { case EVENTUALLY: return &eviction_tiles_eventually_; case EVENTUALLY_AND_REQUIRED_FOR_ACTIVATION: return &eviction_tiles_eventually_and_required_for_activation_; case SOON: return &eviction_tiles_soon_; case SOON_AND_REQUIRED_FOR_ACTIVATION: return &eviction_tiles_soon_and_required_for_activation_; case NOW: return &eviction_tiles_now_; case NOW_AND_REQUIRED_FOR_ACTIVATION: return &eviction_tiles_now_and_required_for_activation_; } NOTREACHED(); return &eviction_tiles_eventually_; } PictureLayerTiling::TilingRasterTileIterator::TilingRasterTileIterator() : tiling_(NULL), current_tile_(NULL) {} PictureLayerTiling::TilingRasterTileIterator::TilingRasterTileIterator( PictureLayerTiling* tiling, WhichTree tree) : tiling_(tiling), phase_(VISIBLE_RECT), tree_(tree), current_tile_(NULL) { if (!tiling_->has_visible_rect_tiles_) { AdvancePhase(); return; } visible_iterator_ = TilingData::Iterator(&tiling_->tiling_data_, tiling_->current_visible_rect_, false /* include_borders */); if (!visible_iterator_) { AdvancePhase(); return; } current_tile_ = tiling_->TileAt(visible_iterator_.index_x(), visible_iterator_.index_y()); if (!current_tile_ || !TileNeedsRaster(current_tile_)) ++(*this); } PictureLayerTiling::TilingRasterTileIterator::~TilingRasterTileIterator() {} void PictureLayerTiling::TilingRasterTileIterator::AdvancePhase() { DCHECK_LT(phase_, EVENTUALLY_RECT); do { phase_ = static_cast<Phase>(phase_ + 1); switch (phase_) { case VISIBLE_RECT: NOTREACHED(); return; case SKEWPORT_RECT: if (!tiling_->has_skewport_rect_tiles_) continue; spiral_iterator_ = TilingData::SpiralDifferenceIterator( &tiling_->tiling_data_, tiling_->current_skewport_rect_, tiling_->current_visible_rect_, tiling_->current_visible_rect_); break; case SOON_BORDER_RECT: if (!tiling_->has_soon_border_rect_tiles_) continue; spiral_iterator_ = TilingData::SpiralDifferenceIterator( &tiling_->tiling_data_, tiling_->current_soon_border_rect_, tiling_->current_skewport_rect_, tiling_->current_visible_rect_); break; case EVENTUALLY_RECT: if (!tiling_->has_eventually_rect_tiles_) { current_tile_ = NULL; return; } spiral_iterator_ = TilingData::SpiralDifferenceIterator( &tiling_->tiling_data_, tiling_->current_eventually_rect_, tiling_->current_skewport_rect_, tiling_->current_soon_border_rect_); break; } while (spiral_iterator_) { current_tile_ = tiling_->TileAt(spiral_iterator_.index_x(), spiral_iterator_.index_y()); if (current_tile_ && TileNeedsRaster(current_tile_)) break; ++spiral_iterator_; } if (!spiral_iterator_ && phase_ == EVENTUALLY_RECT) { current_tile_ = NULL; break; } } while (!spiral_iterator_); } PictureLayerTiling::TilingRasterTileIterator& PictureLayerTiling::TilingRasterTileIterator:: operator++() { current_tile_ = NULL; while (!current_tile_ || !TileNeedsRaster(current_tile_)) { std::pair<int, int> next_index; switch (phase_) { case VISIBLE_RECT: ++visible_iterator_; if (!visible_iterator_) { AdvancePhase(); return *this; } next_index = visible_iterator_.index(); break; case SKEWPORT_RECT: case SOON_BORDER_RECT: ++spiral_iterator_; if (!spiral_iterator_) { AdvancePhase(); return *this; } next_index = spiral_iterator_.index(); break; case EVENTUALLY_RECT: ++spiral_iterator_; if (!spiral_iterator_) { current_tile_ = NULL; return *this; } next_index = spiral_iterator_.index(); break; } current_tile_ = tiling_->TileAt(next_index.first, next_index.second); } return *this; } PictureLayerTiling::TilingEvictionTileIterator::TilingEvictionTileIterator() : eviction_tiles_(NULL), current_eviction_tiles_index_(0u) { } PictureLayerTiling::TilingEvictionTileIterator::TilingEvictionTileIterator( PictureLayerTiling* tiling, TreePriority tree_priority, EvictionCategory category) : eviction_tiles_(tiling->GetEvictionTiles(tree_priority, category)), // Note: initializing to "0 - 1" works as overflow is well defined for // unsigned integers. current_eviction_tiles_index_(static_cast<size_t>(0) - 1) { DCHECK(eviction_tiles_); ++(*this); } PictureLayerTiling::TilingEvictionTileIterator::~TilingEvictionTileIterator() { } PictureLayerTiling::TilingEvictionTileIterator::operator bool() const { return eviction_tiles_ && current_eviction_tiles_index_ != eviction_tiles_->size(); } Tile* PictureLayerTiling::TilingEvictionTileIterator::operator*() { DCHECK(*this); return (*eviction_tiles_)[current_eviction_tiles_index_]; } const Tile* PictureLayerTiling::TilingEvictionTileIterator::operator*() const { DCHECK(*this); return (*eviction_tiles_)[current_eviction_tiles_index_]; } PictureLayerTiling::TilingEvictionTileIterator& PictureLayerTiling::TilingEvictionTileIterator:: operator++() { DCHECK(*this); do { ++current_eviction_tiles_index_; } while (current_eviction_tiles_index_ != eviction_tiles_->size() && !(*eviction_tiles_)[current_eviction_tiles_index_]->HasResources()); return *this; } } // namespace cc