// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "components/component_updater/component_unpacker.h" #include <stdint.h> #include <string> #include <vector> #include "base/bind.h" #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/files/scoped_file.h" #include "base/json/json_file_value_serializer.h" #include "base/location.h" #include "base/logging.h" #include "base/numerics/safe_conversions.h" #include "base/strings/string_number_conversions.h" #include "base/strings/stringprintf.h" #include "base/values.h" #include "components/component_updater/component_patcher.h" #include "components/component_updater/component_patcher_operation.h" #include "components/component_updater/component_updater_service.h" #include "components/crx_file/constants.h" #include "components/crx_file/crx_file.h" #include "crypto/secure_hash.h" #include "crypto/signature_verifier.h" #include "third_party/zlib/google/zip.h" using crypto::SecureHash; namespace component_updater { namespace { // This class makes sure that the CRX digital signature is valid // and well formed. class CRXValidator { public: explicit CRXValidator(FILE* crx_file) : valid_(false), is_delta_(false) { crx_file::CrxFile::Header header; size_t len = fread(&header, 1, sizeof(header), crx_file); if (len < sizeof(header)) return; crx_file::CrxFile::Error error; scoped_ptr<crx_file::CrxFile> crx( crx_file::CrxFile::Parse(header, &error)); if (!crx.get()) return; is_delta_ = crx_file::CrxFile::HeaderIsDelta(header); std::vector<uint8_t> key(header.key_size); len = fread(&key[0], sizeof(uint8_t), header.key_size, crx_file); if (len < header.key_size) return; std::vector<uint8_t> signature(header.signature_size); len = fread(&signature[0], sizeof(uint8_t), header.signature_size, crx_file); if (len < header.signature_size) return; crypto::SignatureVerifier verifier; if (!verifier.VerifyInit(crx_file::kSignatureAlgorithm, base::checked_cast<int>( sizeof(crx_file::kSignatureAlgorithm)), &signature[0], base::checked_cast<int>(signature.size()), &key[0], base::checked_cast<int>(key.size()))) { // Signature verification initialization failed. This is most likely // caused by a public key in the wrong format (should encode algorithm). return; } const size_t kBufSize = 8 * 1024; scoped_ptr<uint8_t[]> buf(new uint8_t[kBufSize]); while ((len = fread(buf.get(), 1, kBufSize, crx_file)) > 0) verifier.VerifyUpdate(buf.get(), base::checked_cast<int>(len)); if (!verifier.VerifyFinal()) return; public_key_.swap(key); valid_ = true; } bool valid() const { return valid_; } bool is_delta() const { return is_delta_; } const std::vector<uint8_t>& public_key() const { return public_key_; } private: bool valid_; bool is_delta_; std::vector<uint8_t> public_key_; }; } // namespace ComponentUnpacker::ComponentUnpacker( const std::vector<uint8_t>& pk_hash, const base::FilePath& path, const std::string& fingerprint, ComponentInstaller* installer, scoped_refptr<OutOfProcessPatcher> out_of_process_patcher, scoped_refptr<base::SequencedTaskRunner> task_runner) : pk_hash_(pk_hash), path_(path), is_delta_(false), fingerprint_(fingerprint), installer_(installer), out_of_process_patcher_(out_of_process_patcher), error_(kNone), extended_error_(0), task_runner_(task_runner) { } // TODO(cpu): add a specific attribute check to a component json that the // extension unpacker will reject, so that a component cannot be installed // as an extension. scoped_ptr<base::DictionaryValue> ReadManifest( const base::FilePath& unpack_path) { base::FilePath manifest = unpack_path.Append(FILE_PATH_LITERAL("manifest.json")); if (!base::PathExists(manifest)) return scoped_ptr<base::DictionaryValue>(); JSONFileValueSerializer serializer(manifest); std::string error; scoped_ptr<base::Value> root(serializer.Deserialize(NULL, &error)); if (!root.get()) return scoped_ptr<base::DictionaryValue>(); if (!root->IsType(base::Value::TYPE_DICTIONARY)) return scoped_ptr<base::DictionaryValue>(); return scoped_ptr<base::DictionaryValue>( static_cast<base::DictionaryValue*>(root.release())).Pass(); } bool ComponentUnpacker::UnpackInternal() { return Verify() && Unzip() && BeginPatching(); } void ComponentUnpacker::Unpack(const Callback& callback) { callback_ = callback; if (!UnpackInternal()) Finish(); } bool ComponentUnpacker::Verify() { VLOG(1) << "Verifying component: " << path_.value(); if (pk_hash_.empty() || path_.empty()) { error_ = kInvalidParams; return false; } // First, validate the CRX header and signature. As of today // this is SHA1 with RSA 1024. base::ScopedFILE file(base::OpenFile(path_, "rb")); if (!file.get()) { error_ = kInvalidFile; return false; } CRXValidator validator(file.get()); file.reset(); if (!validator.valid()) { error_ = kInvalidFile; return false; } is_delta_ = validator.is_delta(); // File is valid and the digital signature matches. Now make sure // the public key hash matches the expected hash. If they do we fully // trust this CRX. uint8_t hash[32] = {}; scoped_ptr<SecureHash> sha256(SecureHash::Create(SecureHash::SHA256)); sha256->Update(&(validator.public_key()[0]), validator.public_key().size()); sha256->Finish(hash, arraysize(hash)); if (!std::equal(pk_hash_.begin(), pk_hash_.end(), hash)) { VLOG(1) << "Hash mismatch: " << path_.value(); error_ = kInvalidId; return false; } VLOG(1) << "Verification successful: " << path_.value(); return true; } bool ComponentUnpacker::Unzip() { base::FilePath& destination = is_delta_ ? unpack_diff_path_ : unpack_path_; VLOG(1) << "Unpacking in: " << destination.value(); if (!base::CreateNewTempDirectory(base::FilePath::StringType(), &destination)) { VLOG(1) << "Unable to create temporary directory for unpacking."; error_ = kUnzipPathError; return false; } if (!zip::Unzip(path_, destination)) { VLOG(1) << "Unzipping failed."; error_ = kUnzipFailed; return false; } VLOG(1) << "Unpacked successfully"; return true; } bool ComponentUnpacker::BeginPatching() { if (is_delta_) { // Package is a diff package. // Use a different temp directory for the patch output files. if (!base::CreateNewTempDirectory(base::FilePath::StringType(), &unpack_path_)) { error_ = kUnzipPathError; return false; } patcher_ = new ComponentPatcher(unpack_diff_path_, unpack_path_, installer_, out_of_process_patcher_, task_runner_); task_runner_->PostTask( FROM_HERE, base::Bind(&ComponentPatcher::Start, patcher_, base::Bind(&ComponentUnpacker::EndPatching, scoped_refptr<ComponentUnpacker>(this)))); } else { task_runner_->PostTask(FROM_HERE, base::Bind(&ComponentUnpacker::EndPatching, scoped_refptr<ComponentUnpacker>(this), kNone, 0)); } return true; } void ComponentUnpacker::EndPatching(Error error, int extended_error) { error_ = error; extended_error_ = extended_error; patcher_ = NULL; if (error_ != kNone) { Finish(); return; } // Optimization: clean up patch files early, in case disk space is too low to // install otherwise. if (!unpack_diff_path_.empty()) { base::DeleteFile(unpack_diff_path_, true); unpack_diff_path_.clear(); } Install(); Finish(); } void ComponentUnpacker::Install() { // Write the fingerprint to disk. if (static_cast<int>(fingerprint_.size()) != base::WriteFile( unpack_path_.Append(FILE_PATH_LITERAL("manifest.fingerprint")), fingerprint_.c_str(), base::checked_cast<int>(fingerprint_.size()))) { error_ = kFingerprintWriteFailed; return; } scoped_ptr<base::DictionaryValue> manifest(ReadManifest(unpack_path_)); if (!manifest.get()) { error_ = kBadManifest; return; } DCHECK(error_ == kNone); if (!installer_->Install(*manifest, unpack_path_)) { error_ = kInstallerError; return; } } void ComponentUnpacker::Finish() { if (!unpack_diff_path_.empty()) base::DeleteFile(unpack_diff_path_, true); if (!unpack_path_.empty()) base::DeleteFile(unpack_path_, true); callback_.Run(error_, extended_error_); } ComponentUnpacker::~ComponentUnpacker() { } } // namespace component_updater