// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #define _USE_MATH_DEFINES #include <algorithm> #include <cmath> #include <limits> #include "skia/ext/image_operations.h" // TODO(pkasting): skia/ext should not depend on base/! #include "base/containers/stack_container.h" #include "base/debug/trace_event.h" #include "base/logging.h" #include "base/metrics/histogram.h" #include "base/time/time.h" #include "build/build_config.h" #include "skia/ext/convolver.h" #include "third_party/skia/include/core/SkColorPriv.h" #include "third_party/skia/include/core/SkFontHost.h" #include "third_party/skia/include/core/SkRect.h" namespace skia { namespace { // Returns the ceiling/floor as an integer. inline int CeilInt(float val) { return static_cast<int>(ceil(val)); } inline int FloorInt(float val) { return static_cast<int>(floor(val)); } // Filter function computation ------------------------------------------------- // Evaluates the box filter, which goes from -0.5 to +0.5. float EvalBox(float x) { return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f; } // Evaluates the Lanczos filter of the given filter size window for the given // position. // // |filter_size| is the width of the filter (the "window"), outside of which // the value of the function is 0. Inside of the window, the value is the // normalized sinc function: // lanczos(x) = sinc(x) * sinc(x / filter_size); // where // sinc(x) = sin(pi*x) / (pi*x); float EvalLanczos(int filter_size, float x) { if (x <= -filter_size || x >= filter_size) return 0.0f; // Outside of the window. if (x > -std::numeric_limits<float>::epsilon() && x < std::numeric_limits<float>::epsilon()) return 1.0f; // Special case the discontinuity at the origin. float xpi = x * static_cast<float>(M_PI); return (sin(xpi) / xpi) * // sinc(x) sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size) } // Evaluates the Hamming filter of the given filter size window for the given // position. // // The filter covers [-filter_size, +filter_size]. Outside of this window // the value of the function is 0. Inside of the window, the value is sinus // cardinal multiplied by a recentered Hamming function. The traditional // Hamming formula for a window of size N and n ranging in [0, N-1] is: // hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1))) // In our case we want the function centered for x == 0 and at its minimum // on both ends of the window (x == +/- filter_size), hence the adjusted // formula: // hamming(x) = (0.54 - // 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size))) // = 0.54 - 0.46 * cos(pi * x / filter_size - pi) // = 0.54 + 0.46 * cos(pi * x / filter_size) float EvalHamming(int filter_size, float x) { if (x <= -filter_size || x >= filter_size) return 0.0f; // Outside of the window. if (x > -std::numeric_limits<float>::epsilon() && x < std::numeric_limits<float>::epsilon()) return 1.0f; // Special case the sinc discontinuity at the origin. const float xpi = x * static_cast<float>(M_PI); return ((sin(xpi) / xpi) * // sinc(x) (0.54f + 0.46f * cos(xpi / filter_size))); // hamming(x) } // ResizeFilter ---------------------------------------------------------------- // Encapsulates computation and storage of the filters required for one complete // resize operation. class ResizeFilter { public: ResizeFilter(ImageOperations::ResizeMethod method, int src_full_width, int src_full_height, int dest_width, int dest_height, const SkIRect& dest_subset); // Returns the filled filter values. const ConvolutionFilter1D& x_filter() { return x_filter_; } const ConvolutionFilter1D& y_filter() { return y_filter_; } private: // Returns the number of pixels that the filer spans, in filter space (the // destination image). float GetFilterSupport(float scale) { switch (method_) { case ImageOperations::RESIZE_BOX: // The box filter just scales with the image scaling. return 0.5f; // Only want one side of the filter = /2. case ImageOperations::RESIZE_HAMMING1: // The Hamming filter takes as much space in the source image in // each direction as the size of the window = 1 for Hamming1. return 1.0f; case ImageOperations::RESIZE_LANCZOS2: // The Lanczos filter takes as much space in the source image in // each direction as the size of the window = 2 for Lanczos2. return 2.0f; case ImageOperations::RESIZE_LANCZOS3: // The Lanczos filter takes as much space in the source image in // each direction as the size of the window = 3 for Lanczos3. return 3.0f; default: NOTREACHED(); return 1.0f; } } // Computes one set of filters either horizontally or vertically. The caller // will specify the "min" and "max" rather than the bottom/top and // right/bottom so that the same code can be re-used in each dimension. // // |src_depend_lo| and |src_depend_size| gives the range for the source // depend rectangle (horizontally or vertically at the caller's discretion // -- see above for what this means). // // Likewise, the range of destination values to compute and the scale factor // for the transform is also specified. void ComputeFilters(int src_size, int dest_subset_lo, int dest_subset_size, float scale, ConvolutionFilter1D* output); // Computes the filter value given the coordinate in filter space. inline float ComputeFilter(float pos) { switch (method_) { case ImageOperations::RESIZE_BOX: return EvalBox(pos); case ImageOperations::RESIZE_HAMMING1: return EvalHamming(1, pos); case ImageOperations::RESIZE_LANCZOS2: return EvalLanczos(2, pos); case ImageOperations::RESIZE_LANCZOS3: return EvalLanczos(3, pos); default: NOTREACHED(); return 0; } } ImageOperations::ResizeMethod method_; // Size of the filter support on one side only in the destination space. // See GetFilterSupport. float x_filter_support_; float y_filter_support_; // Subset of scaled destination bitmap to compute. SkIRect out_bounds_; ConvolutionFilter1D x_filter_; ConvolutionFilter1D y_filter_; DISALLOW_COPY_AND_ASSIGN(ResizeFilter); }; ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method, int src_full_width, int src_full_height, int dest_width, int dest_height, const SkIRect& dest_subset) : method_(method), out_bounds_(dest_subset) { // method_ will only ever refer to an "algorithm method". SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) && (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD)); float scale_x = static_cast<float>(dest_width) / static_cast<float>(src_full_width); float scale_y = static_cast<float>(dest_height) / static_cast<float>(src_full_height); ComputeFilters(src_full_width, dest_subset.fLeft, dest_subset.width(), scale_x, &x_filter_); ComputeFilters(src_full_height, dest_subset.fTop, dest_subset.height(), scale_y, &y_filter_); } // TODO(egouriou): Take advantage of periods in the convolution. // Practical resizing filters are periodic outside of the border area. // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the // source become p pixels in the destination) will have a period of p. // A nice consequence is a period of 1 when downscaling by an integral // factor. Downscaling from typical display resolutions is also bound // to produce interesting periods as those are chosen to have multiple // small factors. // Small periods reduce computational load and improve cache usage if // the coefficients can be shared. For periods of 1 we can consider // loading the factors only once outside the borders. void ResizeFilter::ComputeFilters(int src_size, int dest_subset_lo, int dest_subset_size, float scale, ConvolutionFilter1D* output) { int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi) // When we're doing a magnification, the scale will be larger than one. This // means the destination pixels are much smaller than the source pixels, and // that the range covered by the filter won't necessarily cover any source // pixel boundaries. Therefore, we use these clamped values (max of 1) for // some computations. float clamped_scale = std::min(1.0f, scale); // This is how many source pixels from the center we need to count // to support the filtering function. float src_support = GetFilterSupport(clamped_scale) / clamped_scale; // Speed up the divisions below by turning them into multiplies. float inv_scale = 1.0f / scale; base::StackVector<float, 64> filter_values; base::StackVector<int16, 64> fixed_filter_values; // Loop over all pixels in the output range. We will generate one set of // filter values for each one. Those values will tell us how to blend the // source pixels to compute the destination pixel. for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi; dest_subset_i++) { // Reset the arrays. We don't declare them inside so they can re-use the // same malloc-ed buffer. filter_values->clear(); fixed_filter_values->clear(); // This is the pixel in the source directly under the pixel in the dest. // Note that we base computations on the "center" of the pixels. To see // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x // downscale should "cover" the pixels around the pixel with *its center* // at coordinates (2.5, 2.5) in the source, not those around (0, 0). // Hence we need to scale coordinates (0.5, 0.5), not (0, 0). float src_pixel = (static_cast<float>(dest_subset_i) + 0.5f) * inv_scale; // Compute the (inclusive) range of source pixels the filter covers. int src_begin = std::max(0, FloorInt(src_pixel - src_support)); int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support)); // Compute the unnormalized filter value at each location of the source // it covers. float filter_sum = 0.0f; // Sub of the filter values for normalizing. for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end; cur_filter_pixel++) { // Distance from the center of the filter, this is the filter coordinate // in source space. We also need to consider the center of the pixel // when comparing distance against 'src_pixel'. In the 5x downscale // example used above the distance from the center of the filter to // the pixel with coordinates (2, 2) should be 0, because its center // is at (2.5, 2.5). float src_filter_dist = ((static_cast<float>(cur_filter_pixel) + 0.5f) - src_pixel); // Since the filter really exists in dest space, map it there. float dest_filter_dist = src_filter_dist * clamped_scale; // Compute the filter value at that location. float filter_value = ComputeFilter(dest_filter_dist); filter_values->push_back(filter_value); filter_sum += filter_value; } DCHECK(!filter_values->empty()) << "We should always get a filter!"; // The filter must be normalized so that we don't affect the brightness of // the image. Convert to normalized fixed point. int16 fixed_sum = 0; for (size_t i = 0; i < filter_values->size(); i++) { int16 cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum); fixed_sum += cur_fixed; fixed_filter_values->push_back(cur_fixed); } // The conversion to fixed point will leave some rounding errors, which // we add back in to avoid affecting the brightness of the image. We // arbitrarily add this to the center of the filter array (this won't always // be the center of the filter function since it could get clipped on the // edges, but it doesn't matter enough to worry about that case). int16 leftovers = output->FloatToFixed(1.0f) - fixed_sum; fixed_filter_values[fixed_filter_values->size() / 2] += leftovers; // Now it's ready to go. output->AddFilter(src_begin, &fixed_filter_values[0], static_cast<int>(fixed_filter_values->size())); } output->PaddingForSIMD(); } ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod( ImageOperations::ResizeMethod method) { // Convert any "Quality Method" into an "Algorithm Method" if (method >= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD && method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD) { return method; } // The call to ImageOperationsGtv::Resize() above took care of // GPU-acceleration in the cases where it is possible. So now we just // pick the appropriate software method for each resize quality. switch (method) { // Users of RESIZE_GOOD are willing to trade a lot of quality to // get speed, allowing the use of linear resampling to get hardware // acceleration (SRB). Hence any of our "good" software filters // will be acceptable, and we use the fastest one, Hamming-1. case ImageOperations::RESIZE_GOOD: // Users of RESIZE_BETTER are willing to trade some quality in order // to improve performance, but are guaranteed not to devolve to a linear // resampling. In visual tests we see that Hamming-1 is not as good as // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed // an acceptable trade-off between quality and speed. case ImageOperations::RESIZE_BETTER: return ImageOperations::RESIZE_HAMMING1; default: return ImageOperations::RESIZE_LANCZOS3; } } } // namespace // Resize ---------------------------------------------------------------------- // static SkBitmap ImageOperations::Resize(const SkBitmap& source, ResizeMethod method, int dest_width, int dest_height, const SkIRect& dest_subset, SkBitmap::Allocator* allocator) { if (method == ImageOperations::RESIZE_SUBPIXEL) { return ResizeSubpixel(source, dest_width, dest_height, dest_subset, allocator); } else { return ResizeBasic(source, method, dest_width, dest_height, dest_subset, allocator); } } // static SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source, int dest_width, int dest_height, const SkIRect& dest_subset, SkBitmap::Allocator* allocator) { TRACE_EVENT2("skia", "ImageOperations::ResizeSubpixel", "src_pixels", source.width()*source.height(), "dst_pixels", dest_width*dest_height); // Currently only works on Linux/BSD because these are the only platforms // where SkFontHost::GetSubpixelOrder is defined. #if defined(OS_LINUX) && !defined(GTV) // Understand the display. const SkFontHost::LCDOrder order = SkFontHost::GetSubpixelOrder(); const SkFontHost::LCDOrientation orientation = SkFontHost::GetSubpixelOrientation(); // Decide on which dimension, if any, to deploy subpixel rendering. int w = 1; int h = 1; switch (orientation) { case SkFontHost::kHorizontal_LCDOrientation: w = dest_width < source.width() ? 3 : 1; break; case SkFontHost::kVertical_LCDOrientation: h = dest_height < source.height() ? 3 : 1; break; } // Resize the image. const int width = dest_width * w; const int height = dest_height * h; SkIRect subset = { dest_subset.fLeft, dest_subset.fTop, dest_subset.fLeft + dest_subset.width() * w, dest_subset.fTop + dest_subset.height() * h }; SkBitmap img = ResizeBasic(source, ImageOperations::RESIZE_LANCZOS3, width, height, subset, allocator); const int row_words = img.rowBytes() / 4; if (w == 1 && h == 1) return img; // Render into subpixels. SkBitmap result; result.setInfo(SkImageInfo::MakeN32(dest_subset.width(), dest_subset.height(), img.alphaType())); result.allocPixels(allocator, NULL); if (!result.readyToDraw()) return img; SkAutoLockPixels locker(img); if (!img.readyToDraw()) return img; uint32* src_row = img.getAddr32(0, 0); uint32* dst_row = result.getAddr32(0, 0); for (int y = 0; y < dest_subset.height(); y++) { uint32* src = src_row; uint32* dst = dst_row; for (int x = 0; x < dest_subset.width(); x++, src += w, dst++) { uint8 r = 0, g = 0, b = 0, a = 0; switch (order) { case SkFontHost::kRGB_LCDOrder: switch (orientation) { case SkFontHost::kHorizontal_LCDOrientation: r = SkGetPackedR32(src[0]); g = SkGetPackedG32(src[1]); b = SkGetPackedB32(src[2]); a = SkGetPackedA32(src[1]); break; case SkFontHost::kVertical_LCDOrientation: r = SkGetPackedR32(src[0 * row_words]); g = SkGetPackedG32(src[1 * row_words]); b = SkGetPackedB32(src[2 * row_words]); a = SkGetPackedA32(src[1 * row_words]); break; } break; case SkFontHost::kBGR_LCDOrder: switch (orientation) { case SkFontHost::kHorizontal_LCDOrientation: b = SkGetPackedB32(src[0]); g = SkGetPackedG32(src[1]); r = SkGetPackedR32(src[2]); a = SkGetPackedA32(src[1]); break; case SkFontHost::kVertical_LCDOrientation: b = SkGetPackedB32(src[0 * row_words]); g = SkGetPackedG32(src[1 * row_words]); r = SkGetPackedR32(src[2 * row_words]); a = SkGetPackedA32(src[1 * row_words]); break; } break; case SkFontHost::kNONE_LCDOrder: NOTREACHED(); } // Premultiplied alpha is very fragile. a = a > r ? a : r; a = a > g ? a : g; a = a > b ? a : b; *dst = SkPackARGB32(a, r, g, b); } src_row += h * row_words; dst_row += result.rowBytes() / 4; } return result; #else return SkBitmap(); #endif // OS_POSIX && !OS_MACOSX && !defined(OS_ANDROID) } // static SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source, ResizeMethod method, int dest_width, int dest_height, const SkIRect& dest_subset, SkBitmap::Allocator* allocator) { TRACE_EVENT2("skia", "ImageOperations::ResizeBasic", "src_pixels", source.width()*source.height(), "dst_pixels", dest_width*dest_height); // Ensure that the ResizeMethod enumeration is sound. SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) && (method <= RESIZE_LAST_QUALITY_METHOD)) || ((RESIZE_FIRST_ALGORITHM_METHOD <= method) && (method <= RESIZE_LAST_ALGORITHM_METHOD))); // Time how long this takes to see if it's a problem for users. base::TimeTicks resize_start = base::TimeTicks::Now(); SkIRect dest = { 0, 0, dest_width, dest_height }; DCHECK(dest.contains(dest_subset)) << "The supplied subset does not fall within the destination image."; // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just // return empty. if (source.width() < 1 || source.height() < 1 || dest_width < 1 || dest_height < 1) return SkBitmap(); method = ResizeMethodToAlgorithmMethod(method); // Check that we deal with an "algorithm methods" from this point onward. SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) && (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD)); SkAutoLockPixels locker(source); if (!source.readyToDraw() || source.colorType() != kN32_SkColorType) return SkBitmap(); ResizeFilter filter(method, source.width(), source.height(), dest_width, dest_height, dest_subset); // Get a source bitmap encompassing this touched area. We construct the // offsets and row strides such that it looks like a new bitmap, while // referring to the old data. const uint8* source_subset = reinterpret_cast<const uint8*>(source.getPixels()); // Convolve into the result. SkBitmap result; result.setInfo(SkImageInfo::MakeN32(dest_subset.width(), dest_subset.height(), source.alphaType())); result.allocPixels(allocator, NULL); if (!result.readyToDraw()) return SkBitmap(); BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()), !source.isOpaque(), filter.x_filter(), filter.y_filter(), static_cast<int>(result.rowBytes()), static_cast<unsigned char*>(result.getPixels()), true); base::TimeDelta delta = base::TimeTicks::Now() - resize_start; UMA_HISTOGRAM_TIMES("Image.ResampleMS", delta); return result; } // static SkBitmap ImageOperations::Resize(const SkBitmap& source, ResizeMethod method, int dest_width, int dest_height, SkBitmap::Allocator* allocator) { SkIRect dest_subset = { 0, 0, dest_width, dest_height }; return Resize(source, method, dest_width, dest_height, dest_subset, allocator); } } // namespace skia