// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/api.h" #include <string.h> // For memcpy, strlen. #ifdef V8_USE_ADDRESS_SANITIZER #include <sanitizer/asan_interface.h> #endif // V8_USE_ADDRESS_SANITIZER #include <cmath> // For isnan. #include "include/v8-debug.h" #include "include/v8-profiler.h" #include "include/v8-testing.h" #include "src/assert-scope.h" #include "src/background-parsing-task.h" #include "src/base/platform/platform.h" #include "src/base/platform/time.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/compiler.h" #include "src/conversions-inl.h" #include "src/counters.h" #include "src/cpu-profiler.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/execution.h" #include "src/global-handles.h" #include "src/heap-profiler.h" #include "src/heap-snapshot-generator-inl.h" #include "src/icu_util.h" #include "src/json-parser.h" #include "src/messages.h" #include "src/natives.h" #include "src/parser.h" #include "src/profile-generator-inl.h" #include "src/property.h" #include "src/property-details.h" #include "src/prototype.h" #include "src/runtime.h" #include "src/runtime-profiler.h" #include "src/scanner-character-streams.h" #include "src/simulator.h" #include "src/snapshot.h" #include "src/unicode-inl.h" #include "src/v8threads.h" #include "src/version.h" #include "src/vm-state-inl.h" #define LOG_API(isolate, expr) LOG(isolate, ApiEntryCall(expr)) #define ENTER_V8(isolate) \ DCHECK((isolate)->IsInitialized()); \ i::VMState<i::OTHER> __state__((isolate)) namespace v8 { #define ON_BAILOUT(isolate, location, code) \ if (IsExecutionTerminatingCheck(isolate)) { \ code; \ UNREACHABLE(); \ } #define EXCEPTION_PREAMBLE(isolate) \ (isolate)->handle_scope_implementer()->IncrementCallDepth(); \ DCHECK(!(isolate)->external_caught_exception()); \ bool has_pending_exception = false #define EXCEPTION_BAILOUT_CHECK_GENERIC(isolate, value, do_callback) \ do { \ i::HandleScopeImplementer* handle_scope_implementer = \ (isolate)->handle_scope_implementer(); \ handle_scope_implementer->DecrementCallDepth(); \ if (has_pending_exception) { \ bool call_depth_is_zero = handle_scope_implementer->CallDepthIsZero(); \ (isolate)->OptionalRescheduleException(call_depth_is_zero); \ do_callback \ return value; \ } \ do_callback \ } while (false) #define EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, value) \ EXCEPTION_BAILOUT_CHECK_GENERIC( \ isolate, value, isolate->FireCallCompletedCallback();) #define EXCEPTION_BAILOUT_CHECK(isolate, value) \ EXCEPTION_BAILOUT_CHECK_GENERIC(isolate, value, ;) // --- E x c e p t i o n B e h a v i o r --- void i::FatalProcessOutOfMemory(const char* location) { i::V8::FatalProcessOutOfMemory(location, false); } // When V8 cannot allocated memory FatalProcessOutOfMemory is called. // The default fatal error handler is called and execution is stopped. void i::V8::FatalProcessOutOfMemory(const char* location, bool take_snapshot) { i::HeapStats heap_stats; int start_marker; heap_stats.start_marker = &start_marker; int new_space_size; heap_stats.new_space_size = &new_space_size; int new_space_capacity; heap_stats.new_space_capacity = &new_space_capacity; intptr_t old_pointer_space_size; heap_stats.old_pointer_space_size = &old_pointer_space_size; intptr_t old_pointer_space_capacity; heap_stats.old_pointer_space_capacity = &old_pointer_space_capacity; intptr_t old_data_space_size; heap_stats.old_data_space_size = &old_data_space_size; intptr_t old_data_space_capacity; heap_stats.old_data_space_capacity = &old_data_space_capacity; intptr_t code_space_size; heap_stats.code_space_size = &code_space_size; intptr_t code_space_capacity; heap_stats.code_space_capacity = &code_space_capacity; intptr_t map_space_size; heap_stats.map_space_size = &map_space_size; intptr_t map_space_capacity; heap_stats.map_space_capacity = &map_space_capacity; intptr_t cell_space_size; heap_stats.cell_space_size = &cell_space_size; intptr_t cell_space_capacity; heap_stats.cell_space_capacity = &cell_space_capacity; intptr_t property_cell_space_size; heap_stats.property_cell_space_size = &property_cell_space_size; intptr_t property_cell_space_capacity; heap_stats.property_cell_space_capacity = &property_cell_space_capacity; intptr_t lo_space_size; heap_stats.lo_space_size = &lo_space_size; int global_handle_count; heap_stats.global_handle_count = &global_handle_count; int weak_global_handle_count; heap_stats.weak_global_handle_count = &weak_global_handle_count; int pending_global_handle_count; heap_stats.pending_global_handle_count = &pending_global_handle_count; int near_death_global_handle_count; heap_stats.near_death_global_handle_count = &near_death_global_handle_count; int free_global_handle_count; heap_stats.free_global_handle_count = &free_global_handle_count; intptr_t memory_allocator_size; heap_stats.memory_allocator_size = &memory_allocator_size; intptr_t memory_allocator_capacity; heap_stats.memory_allocator_capacity = &memory_allocator_capacity; int objects_per_type[LAST_TYPE + 1] = {0}; heap_stats.objects_per_type = objects_per_type; int size_per_type[LAST_TYPE + 1] = {0}; heap_stats.size_per_type = size_per_type; int os_error; heap_stats.os_error = &os_error; int end_marker; heap_stats.end_marker = &end_marker; i::Isolate* isolate = i::Isolate::Current(); if (isolate->heap()->HasBeenSetUp()) { // BUG(1718): Don't use the take_snapshot since we don't support // HeapIterator here without doing a special GC. isolate->heap()->RecordStats(&heap_stats, false); } Utils::ApiCheck(false, location, "Allocation failed - process out of memory"); // If the fatal error handler returns, we stop execution. FATAL("API fatal error handler returned after process out of memory"); } void Utils::ReportApiFailure(const char* location, const char* message) { i::Isolate* isolate = i::Isolate::Current(); FatalErrorCallback callback = isolate->exception_behavior(); if (callback == NULL) { base::OS::PrintError("\n#\n# Fatal error in %s\n# %s\n#\n\n", location, message); base::OS::Abort(); } else { callback(location, message); } isolate->SignalFatalError(); } bool V8::IsDead() { i::Isolate* isolate = i::Isolate::Current(); return isolate->IsDead(); } static inline bool IsExecutionTerminatingCheck(i::Isolate* isolate) { if (!isolate->IsInitialized()) return false; if (isolate->has_scheduled_exception()) { return isolate->scheduled_exception() == isolate->heap()->termination_exception(); } return false; } StartupDataDecompressor::StartupDataDecompressor() : raw_data(i::NewArray<char*>(V8::GetCompressedStartupDataCount())) { for (int i = 0; i < V8::GetCompressedStartupDataCount(); ++i) { raw_data[i] = NULL; } } StartupDataDecompressor::~StartupDataDecompressor() { for (int i = 0; i < V8::GetCompressedStartupDataCount(); ++i) { i::DeleteArray(raw_data[i]); } i::DeleteArray(raw_data); } int StartupDataDecompressor::Decompress() { int compressed_data_count = V8::GetCompressedStartupDataCount(); StartupData* compressed_data = i::NewArray<StartupData>(compressed_data_count); V8::GetCompressedStartupData(compressed_data); for (int i = 0; i < compressed_data_count; ++i) { char* decompressed = raw_data[i] = i::NewArray<char>(compressed_data[i].raw_size); if (compressed_data[i].compressed_size != 0) { int result = DecompressData(decompressed, &compressed_data[i].raw_size, compressed_data[i].data, compressed_data[i].compressed_size); if (result != 0) return result; } else { DCHECK_EQ(0, compressed_data[i].raw_size); } compressed_data[i].data = decompressed; } V8::SetDecompressedStartupData(compressed_data); i::DeleteArray(compressed_data); return 0; } StartupData::CompressionAlgorithm V8::GetCompressedStartupDataAlgorithm() { #ifdef COMPRESS_STARTUP_DATA_BZ2 return StartupData::kBZip2; #else return StartupData::kUncompressed; #endif } enum CompressedStartupDataItems { kSnapshot = 0, kSnapshotContext, kLibraries, kExperimentalLibraries, kCompressedStartupDataCount }; int V8::GetCompressedStartupDataCount() { #ifdef COMPRESS_STARTUP_DATA_BZ2 return kCompressedStartupDataCount; #else return 0; #endif } void V8::GetCompressedStartupData(StartupData* compressed_data) { #ifdef COMPRESS_STARTUP_DATA_BZ2 compressed_data[kSnapshot].data = reinterpret_cast<const char*>(i::Snapshot::data()); compressed_data[kSnapshot].compressed_size = i::Snapshot::size(); compressed_data[kSnapshot].raw_size = i::Snapshot::raw_size(); compressed_data[kSnapshotContext].data = reinterpret_cast<const char*>(i::Snapshot::context_data()); compressed_data[kSnapshotContext].compressed_size = i::Snapshot::context_size(); compressed_data[kSnapshotContext].raw_size = i::Snapshot::context_raw_size(); i::Vector<const i::byte> libraries_source = i::Natives::GetScriptsSource(); compressed_data[kLibraries].data = reinterpret_cast<const char*>(libraries_source.start()); compressed_data[kLibraries].compressed_size = libraries_source.length(); compressed_data[kLibraries].raw_size = i::Natives::GetRawScriptsSize(); i::Vector<const i::byte> exp_libraries_source = i::ExperimentalNatives::GetScriptsSource(); compressed_data[kExperimentalLibraries].data = reinterpret_cast<const char*>(exp_libraries_source.start()); compressed_data[kExperimentalLibraries].compressed_size = exp_libraries_source.length(); compressed_data[kExperimentalLibraries].raw_size = i::ExperimentalNatives::GetRawScriptsSize(); #endif } void V8::SetDecompressedStartupData(StartupData* decompressed_data) { #ifdef COMPRESS_STARTUP_DATA_BZ2 DCHECK_EQ(i::Snapshot::raw_size(), decompressed_data[kSnapshot].raw_size); i::Snapshot::set_raw_data( reinterpret_cast<const i::byte*>(decompressed_data[kSnapshot].data)); DCHECK_EQ(i::Snapshot::context_raw_size(), decompressed_data[kSnapshotContext].raw_size); i::Snapshot::set_context_raw_data( reinterpret_cast<const i::byte*>( decompressed_data[kSnapshotContext].data)); DCHECK_EQ(i::Natives::GetRawScriptsSize(), decompressed_data[kLibraries].raw_size); i::Vector<const char> libraries_source( decompressed_data[kLibraries].data, decompressed_data[kLibraries].raw_size); i::Natives::SetRawScriptsSource(libraries_source); DCHECK_EQ(i::ExperimentalNatives::GetRawScriptsSize(), decompressed_data[kExperimentalLibraries].raw_size); i::Vector<const char> exp_libraries_source( decompressed_data[kExperimentalLibraries].data, decompressed_data[kExperimentalLibraries].raw_size); i::ExperimentalNatives::SetRawScriptsSource(exp_libraries_source); #endif } void V8::SetNativesDataBlob(StartupData* natives_blob) { #ifdef V8_USE_EXTERNAL_STARTUP_DATA i::SetNativesFromFile(natives_blob); #else CHECK(false); #endif } void V8::SetSnapshotDataBlob(StartupData* snapshot_blob) { #ifdef V8_USE_EXTERNAL_STARTUP_DATA i::SetSnapshotFromFile(snapshot_blob); #else CHECK(false); #endif } void V8::SetFatalErrorHandler(FatalErrorCallback that) { i::Isolate* isolate = i::Isolate::Current(); isolate->set_exception_behavior(that); } void V8::SetAllowCodeGenerationFromStringsCallback( AllowCodeGenerationFromStringsCallback callback) { i::Isolate* isolate = i::Isolate::Current(); isolate->set_allow_code_gen_callback(callback); } void V8::SetFlagsFromString(const char* str, int length) { i::FlagList::SetFlagsFromString(str, length); } void V8::SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags) { i::FlagList::SetFlagsFromCommandLine(argc, argv, remove_flags); } RegisteredExtension* RegisteredExtension::first_extension_ = NULL; RegisteredExtension::RegisteredExtension(Extension* extension) : extension_(extension) { } void RegisteredExtension::Register(RegisteredExtension* that) { that->next_ = first_extension_; first_extension_ = that; } void RegisteredExtension::UnregisterAll() { RegisteredExtension* re = first_extension_; while (re != NULL) { RegisteredExtension* next = re->next(); delete re; re = next; } first_extension_ = NULL; } void RegisterExtension(Extension* that) { RegisteredExtension* extension = new RegisteredExtension(that); RegisteredExtension::Register(extension); } Extension::Extension(const char* name, const char* source, int dep_count, const char** deps, int source_length) : name_(name), source_length_(source_length >= 0 ? source_length : (source ? static_cast<int>(strlen(source)) : 0)), source_(source, source_length_), dep_count_(dep_count), deps_(deps), auto_enable_(false) { CHECK(source != NULL || source_length_ == 0); } ResourceConstraints::ResourceConstraints() : max_semi_space_size_(0), max_old_space_size_(0), max_executable_size_(0), stack_limit_(NULL), max_available_threads_(0), code_range_size_(0) { } void ResourceConstraints::ConfigureDefaults(uint64_t physical_memory, uint64_t virtual_memory_limit, uint32_t number_of_processors) { #if V8_OS_ANDROID // Android has higher physical memory requirements before raising the maximum // heap size limits since it has no swap space. const uint64_t low_limit = 512ul * i::MB; const uint64_t medium_limit = 1ul * i::GB; const uint64_t high_limit = 2ul * i::GB; #else const uint64_t low_limit = 512ul * i::MB; const uint64_t medium_limit = 768ul * i::MB; const uint64_t high_limit = 1ul * i::GB; #endif if (physical_memory <= low_limit) { set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeLowMemoryDevice); set_max_old_space_size(i::Heap::kMaxOldSpaceSizeLowMemoryDevice); set_max_executable_size(i::Heap::kMaxExecutableSizeLowMemoryDevice); } else if (physical_memory <= medium_limit) { set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeMediumMemoryDevice); set_max_old_space_size(i::Heap::kMaxOldSpaceSizeMediumMemoryDevice); set_max_executable_size(i::Heap::kMaxExecutableSizeMediumMemoryDevice); } else if (physical_memory <= high_limit) { set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeHighMemoryDevice); set_max_old_space_size(i::Heap::kMaxOldSpaceSizeHighMemoryDevice); set_max_executable_size(i::Heap::kMaxExecutableSizeHighMemoryDevice); } else { set_max_semi_space_size(i::Heap::kMaxSemiSpaceSizeHugeMemoryDevice); set_max_old_space_size(i::Heap::kMaxOldSpaceSizeHugeMemoryDevice); set_max_executable_size(i::Heap::kMaxExecutableSizeHugeMemoryDevice); } set_max_available_threads(i::Max(i::Min(number_of_processors, 4u), 1u)); if (virtual_memory_limit > 0 && i::kRequiresCodeRange) { // Reserve no more than 1/8 of the memory for the code range, but at most // kMaximalCodeRangeSize. set_code_range_size( i::Min(i::kMaximalCodeRangeSize / i::MB, static_cast<size_t>((virtual_memory_limit >> 3) / i::MB))); } } void SetResourceConstraints(i::Isolate* isolate, const ResourceConstraints& constraints) { int semi_space_size = constraints.max_semi_space_size(); int old_space_size = constraints.max_old_space_size(); int max_executable_size = constraints.max_executable_size(); size_t code_range_size = constraints.code_range_size(); if (semi_space_size != 0 || old_space_size != 0 || max_executable_size != 0 || code_range_size != 0) { isolate->heap()->ConfigureHeap(semi_space_size, old_space_size, max_executable_size, code_range_size); } if (constraints.stack_limit() != NULL) { uintptr_t limit = reinterpret_cast<uintptr_t>(constraints.stack_limit()); isolate->stack_guard()->SetStackLimit(limit); } isolate->set_max_available_threads(constraints.max_available_threads()); } i::Object** V8::GlobalizeReference(i::Isolate* isolate, i::Object** obj) { LOG_API(isolate, "Persistent::New"); i::Handle<i::Object> result = isolate->global_handles()->Create(*obj); #ifdef DEBUG (*obj)->ObjectVerify(); #endif // DEBUG return result.location(); } i::Object** V8::CopyPersistent(i::Object** obj) { i::Handle<i::Object> result = i::GlobalHandles::CopyGlobal(obj); #ifdef DEBUG (*obj)->ObjectVerify(); #endif // DEBUG return result.location(); } void V8::MakeWeak(i::Object** object, void* parameters, WeakCallback weak_callback) { i::GlobalHandles::MakeWeak(object, parameters, weak_callback); } void* V8::ClearWeak(i::Object** obj) { return i::GlobalHandles::ClearWeakness(obj); } void V8::DisposeGlobal(i::Object** obj) { i::GlobalHandles::Destroy(obj); } void V8::Eternalize(Isolate* v8_isolate, Value* value, int* index) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::Object* object = *Utils::OpenHandle(value); isolate->eternal_handles()->Create(isolate, object, index); } Local<Value> V8::GetEternal(Isolate* v8_isolate, int index) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); return Utils::ToLocal(isolate->eternal_handles()->Get(index)); } // --- H a n d l e s --- HandleScope::HandleScope(Isolate* isolate) { Initialize(isolate); } void HandleScope::Initialize(Isolate* isolate) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); // We do not want to check the correct usage of the Locker class all over the // place, so we do it only here: Without a HandleScope, an embedder can do // almost nothing, so it is enough to check in this central place. Utils::ApiCheck(!v8::Locker::IsActive() || internal_isolate->thread_manager()->IsLockedByCurrentThread(), "HandleScope::HandleScope", "Entering the V8 API without proper locking in place"); i::HandleScopeData* current = internal_isolate->handle_scope_data(); isolate_ = internal_isolate; prev_next_ = current->next; prev_limit_ = current->limit; current->level++; } HandleScope::~HandleScope() { i::HandleScope::CloseScope(isolate_, prev_next_, prev_limit_); } int HandleScope::NumberOfHandles(Isolate* isolate) { return i::HandleScope::NumberOfHandles( reinterpret_cast<i::Isolate*>(isolate)); } i::Object** HandleScope::CreateHandle(i::Isolate* isolate, i::Object* value) { return i::HandleScope::CreateHandle(isolate, value); } i::Object** HandleScope::CreateHandle(i::HeapObject* heap_object, i::Object* value) { DCHECK(heap_object->IsHeapObject()); return i::HandleScope::CreateHandle(heap_object->GetIsolate(), value); } EscapableHandleScope::EscapableHandleScope(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); escape_slot_ = CreateHandle(isolate, isolate->heap()->the_hole_value()); Initialize(v8_isolate); } i::Object** EscapableHandleScope::Escape(i::Object** escape_value) { i::Heap* heap = reinterpret_cast<i::Isolate*>(GetIsolate())->heap(); Utils::ApiCheck(*escape_slot_ == heap->the_hole_value(), "EscapeableHandleScope::Escape", "Escape value set twice"); if (escape_value == NULL) { *escape_slot_ = heap->undefined_value(); return NULL; } *escape_slot_ = *escape_value; return escape_slot_; } void Context::Enter() { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Isolate* isolate = env->GetIsolate(); ENTER_V8(isolate); i::HandleScopeImplementer* impl = isolate->handle_scope_implementer(); impl->EnterContext(env); impl->SaveContext(isolate->context()); isolate->set_context(*env); } void Context::Exit() { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Isolate* isolate = env->GetIsolate(); ENTER_V8(isolate); i::HandleScopeImplementer* impl = isolate->handle_scope_implementer(); if (!Utils::ApiCheck(impl->LastEnteredContextWas(env), "v8::Context::Exit()", "Cannot exit non-entered context")) { return; } impl->LeaveContext(); isolate->set_context(impl->RestoreContext()); } static void* DecodeSmiToAligned(i::Object* value, const char* location) { Utils::ApiCheck(value->IsSmi(), location, "Not a Smi"); return reinterpret_cast<void*>(value); } static i::Smi* EncodeAlignedAsSmi(void* value, const char* location) { i::Smi* smi = reinterpret_cast<i::Smi*>(value); Utils::ApiCheck(smi->IsSmi(), location, "Pointer is not aligned"); return smi; } static i::Handle<i::FixedArray> EmbedderDataFor(Context* context, int index, bool can_grow, const char* location) { i::Handle<i::Context> env = Utils::OpenHandle(context); bool ok = Utils::ApiCheck(env->IsNativeContext(), location, "Not a native context") && Utils::ApiCheck(index >= 0, location, "Negative index"); if (!ok) return i::Handle<i::FixedArray>(); i::Handle<i::FixedArray> data(env->embedder_data()); if (index < data->length()) return data; if (!Utils::ApiCheck(can_grow, location, "Index too large")) { return i::Handle<i::FixedArray>(); } int new_size = i::Max(index, data->length() << 1) + 1; data = i::FixedArray::CopySize(data, new_size); env->set_embedder_data(*data); return data; } v8::Local<v8::Value> Context::SlowGetEmbedderData(int index) { const char* location = "v8::Context::GetEmbedderData()"; i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, false, location); if (data.is_null()) return Local<Value>(); i::Handle<i::Object> result(data->get(index), data->GetIsolate()); return Utils::ToLocal(result); } void Context::SetEmbedderData(int index, v8::Handle<Value> value) { const char* location = "v8::Context::SetEmbedderData()"; i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, true, location); if (data.is_null()) return; i::Handle<i::Object> val = Utils::OpenHandle(*value); data->set(index, *val); DCHECK_EQ(*Utils::OpenHandle(*value), *Utils::OpenHandle(*GetEmbedderData(index))); } void* Context::SlowGetAlignedPointerFromEmbedderData(int index) { const char* location = "v8::Context::GetAlignedPointerFromEmbedderData()"; i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, false, location); if (data.is_null()) return NULL; return DecodeSmiToAligned(data->get(index), location); } void Context::SetAlignedPointerInEmbedderData(int index, void* value) { const char* location = "v8::Context::SetAlignedPointerInEmbedderData()"; i::Handle<i::FixedArray> data = EmbedderDataFor(this, index, true, location); data->set(index, EncodeAlignedAsSmi(value, location)); DCHECK_EQ(value, GetAlignedPointerFromEmbedderData(index)); } // --- N e a n d e r --- // A constructor cannot easily return an error value, therefore it is necessary // to check for a dead VM with ON_BAILOUT before constructing any Neander // objects. To remind you about this there is no HandleScope in the // NeanderObject constructor. When you add one to the site calling the // constructor you should check that you ensured the VM was not dead first. NeanderObject::NeanderObject(v8::internal::Isolate* isolate, int size) { ENTER_V8(isolate); value_ = isolate->factory()->NewNeanderObject(); i::Handle<i::FixedArray> elements = isolate->factory()->NewFixedArray(size); value_->set_elements(*elements); } int NeanderObject::size() { return i::FixedArray::cast(value_->elements())->length(); } NeanderArray::NeanderArray(v8::internal::Isolate* isolate) : obj_(isolate, 2) { obj_.set(0, i::Smi::FromInt(0)); } int NeanderArray::length() { return i::Smi::cast(obj_.get(0))->value(); } i::Object* NeanderArray::get(int offset) { DCHECK(0 <= offset); DCHECK(offset < length()); return obj_.get(offset + 1); } // This method cannot easily return an error value, therefore it is necessary // to check for a dead VM with ON_BAILOUT before calling it. To remind you // about this there is no HandleScope in this method. When you add one to the // site calling this method you should check that you ensured the VM was not // dead first. void NeanderArray::add(i::Handle<i::Object> value) { int length = this->length(); int size = obj_.size(); if (length == size - 1) { i::Factory* factory = i::Isolate::Current()->factory(); i::Handle<i::FixedArray> new_elms = factory->NewFixedArray(2 * size); for (int i = 0; i < length; i++) new_elms->set(i + 1, get(i)); obj_.value()->set_elements(*new_elms); } obj_.set(length + 1, *value); obj_.set(0, i::Smi::FromInt(length + 1)); } void NeanderArray::set(int index, i::Object* value) { if (index < 0 || index >= this->length()) return; obj_.set(index + 1, value); } // --- T e m p l a t e --- static void InitializeTemplate(i::Handle<i::TemplateInfo> that, int type) { that->set_tag(i::Smi::FromInt(type)); } static void TemplateSet(i::Isolate* isolate, v8::Template* templ, int length, v8::Handle<v8::Data>* data) { i::Handle<i::Object> list(Utils::OpenHandle(templ)->property_list(), isolate); if (list->IsUndefined()) { list = NeanderArray(isolate).value(); Utils::OpenHandle(templ)->set_property_list(*list); } NeanderArray array(list); array.add(isolate->factory()->NewNumberFromInt(length)); for (int i = 0; i < length; i++) { i::Handle<i::Object> value = data[i].IsEmpty() ? i::Handle<i::Object>(isolate->factory()->undefined_value()) : Utils::OpenHandle(*data[i]); array.add(value); } } void Template::Set(v8::Handle<Name> name, v8::Handle<Data> value, v8::PropertyAttribute attribute) { i::Isolate* isolate = i::Isolate::Current(); ENTER_V8(isolate); i::HandleScope scope(isolate); const int kSize = 3; v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate); v8::Handle<v8::Data> data[kSize] = { name, value, v8::Integer::New(v8_isolate, attribute)}; TemplateSet(isolate, this, kSize, data); } void Template::SetAccessorProperty( v8::Local<v8::Name> name, v8::Local<FunctionTemplate> getter, v8::Local<FunctionTemplate> setter, v8::PropertyAttribute attribute, v8::AccessControl access_control) { // TODO(verwaest): Remove |access_control|. DCHECK_EQ(v8::DEFAULT, access_control); i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); DCHECK(!name.IsEmpty()); DCHECK(!getter.IsEmpty() || !setter.IsEmpty()); i::HandleScope scope(isolate); const int kSize = 5; v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate); v8::Handle<v8::Data> data[kSize] = { name, getter, setter, v8::Integer::New(v8_isolate, attribute)}; TemplateSet(isolate, this, kSize, data); } // --- F u n c t i o n T e m p l a t e --- static void InitializeFunctionTemplate( i::Handle<i::FunctionTemplateInfo> info) { info->set_tag(i::Smi::FromInt(Consts::FUNCTION_TEMPLATE)); info->set_flag(0); } Local<ObjectTemplate> FunctionTemplate::PrototypeTemplate() { i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(i_isolate); i::Handle<i::Object> result(Utils::OpenHandle(this)->prototype_template(), i_isolate); if (result->IsUndefined()) { v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(i_isolate); result = Utils::OpenHandle(*ObjectTemplate::New(isolate)); Utils::OpenHandle(this)->set_prototype_template(*result); } return ToApiHandle<ObjectTemplate>(result); } void FunctionTemplate::Inherit(v8::Handle<FunctionTemplate> value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); Utils::OpenHandle(this)->set_parent_template(*Utils::OpenHandle(*value)); } static Local<FunctionTemplate> FunctionTemplateNew( i::Isolate* isolate, FunctionCallback callback, v8::Handle<Value> data, v8::Handle<Signature> signature, int length, bool do_not_cache) { i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::FUNCTION_TEMPLATE_INFO_TYPE); i::Handle<i::FunctionTemplateInfo> obj = i::Handle<i::FunctionTemplateInfo>::cast(struct_obj); InitializeFunctionTemplate(obj); obj->set_do_not_cache(do_not_cache); int next_serial_number = 0; if (!do_not_cache) { next_serial_number = isolate->next_serial_number() + 1; isolate->set_next_serial_number(next_serial_number); } obj->set_serial_number(i::Smi::FromInt(next_serial_number)); if (callback != 0) { if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } Utils::ToLocal(obj)->SetCallHandler(callback, data); } obj->set_length(length); obj->set_undetectable(false); obj->set_needs_access_check(false); if (!signature.IsEmpty()) obj->set_signature(*Utils::OpenHandle(*signature)); return Utils::ToLocal(obj); } Local<FunctionTemplate> FunctionTemplate::New( Isolate* isolate, FunctionCallback callback, v8::Handle<Value> data, v8::Handle<Signature> signature, int length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "FunctionTemplate::New"); ENTER_V8(i_isolate); return FunctionTemplateNew( i_isolate, callback, data, signature, length, false); } Local<Signature> Signature::New(Isolate* isolate, Handle<FunctionTemplate> receiver, int argc, Handle<FunctionTemplate> argv[]) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Signature::New"); ENTER_V8(i_isolate); i::Handle<i::Struct> struct_obj = i_isolate->factory()->NewStruct(i::SIGNATURE_INFO_TYPE); i::Handle<i::SignatureInfo> obj = i::Handle<i::SignatureInfo>::cast(struct_obj); if (!receiver.IsEmpty()) obj->set_receiver(*Utils::OpenHandle(*receiver)); if (argc > 0) { i::Handle<i::FixedArray> args = i_isolate->factory()->NewFixedArray(argc); for (int i = 0; i < argc; i++) { if (!argv[i].IsEmpty()) args->set(i, *Utils::OpenHandle(*argv[i])); } obj->set_args(*args); } return Utils::ToLocal(obj); } Local<AccessorSignature> AccessorSignature::New( Isolate* isolate, Handle<FunctionTemplate> receiver) { return Utils::AccessorSignatureToLocal(Utils::OpenHandle(*receiver)); } template<typename Operation> static Local<Operation> NewDescriptor( Isolate* isolate, const i::DeclaredAccessorDescriptorData& data, Data* previous_descriptor) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::DeclaredAccessorDescriptor> previous = i::Handle<i::DeclaredAccessorDescriptor>(); if (previous_descriptor != NULL) { previous = Utils::OpenHandle( static_cast<DeclaredAccessorDescriptor*>(previous_descriptor)); } i::Handle<i::DeclaredAccessorDescriptor> descriptor = i::DeclaredAccessorDescriptor::Create(internal_isolate, data, previous); return Utils::Convert<i::DeclaredAccessorDescriptor, Operation>(descriptor); } Local<RawOperationDescriptor> ObjectOperationDescriptor::NewInternalFieldDereference( Isolate* isolate, int internal_field) { i::DeclaredAccessorDescriptorData data; data.type = i::kDescriptorObjectDereference; data.object_dereference_descriptor.internal_field = internal_field; return NewDescriptor<RawOperationDescriptor>(isolate, data, NULL); } Local<RawOperationDescriptor> RawOperationDescriptor::NewRawShift( Isolate* isolate, int16_t byte_offset) { i::DeclaredAccessorDescriptorData data; data.type = i::kDescriptorPointerShift; data.pointer_shift_descriptor.byte_offset = byte_offset; return NewDescriptor<RawOperationDescriptor>(isolate, data, this); } Local<DeclaredAccessorDescriptor> RawOperationDescriptor::NewHandleDereference( Isolate* isolate) { i::DeclaredAccessorDescriptorData data; data.type = i::kDescriptorReturnObject; return NewDescriptor<DeclaredAccessorDescriptor>(isolate, data, this); } Local<RawOperationDescriptor> RawOperationDescriptor::NewRawDereference( Isolate* isolate) { i::DeclaredAccessorDescriptorData data; data.type = i::kDescriptorPointerDereference; return NewDescriptor<RawOperationDescriptor>(isolate, data, this); } Local<DeclaredAccessorDescriptor> RawOperationDescriptor::NewPointerCompare( Isolate* isolate, void* compare_value) { i::DeclaredAccessorDescriptorData data; data.type = i::kDescriptorPointerCompare; data.pointer_compare_descriptor.compare_value = compare_value; return NewDescriptor<DeclaredAccessorDescriptor>(isolate, data, this); } Local<DeclaredAccessorDescriptor> RawOperationDescriptor::NewPrimitiveValue( Isolate* isolate, DeclaredAccessorDescriptorDataType data_type, uint8_t bool_offset) { i::DeclaredAccessorDescriptorData data; data.type = i::kDescriptorPrimitiveValue; data.primitive_value_descriptor.data_type = data_type; data.primitive_value_descriptor.bool_offset = bool_offset; return NewDescriptor<DeclaredAccessorDescriptor>(isolate, data, this); } template<typename T> static Local<DeclaredAccessorDescriptor> NewBitmaskCompare( Isolate* isolate, T bitmask, T compare_value, RawOperationDescriptor* operation) { i::DeclaredAccessorDescriptorData data; data.type = i::kDescriptorBitmaskCompare; data.bitmask_compare_descriptor.bitmask = bitmask; data.bitmask_compare_descriptor.compare_value = compare_value; data.bitmask_compare_descriptor.size = sizeof(T); return NewDescriptor<DeclaredAccessorDescriptor>(isolate, data, operation); } Local<DeclaredAccessorDescriptor> RawOperationDescriptor::NewBitmaskCompare8( Isolate* isolate, uint8_t bitmask, uint8_t compare_value) { return NewBitmaskCompare(isolate, bitmask, compare_value, this); } Local<DeclaredAccessorDescriptor> RawOperationDescriptor::NewBitmaskCompare16( Isolate* isolate, uint16_t bitmask, uint16_t compare_value) { return NewBitmaskCompare(isolate, bitmask, compare_value, this); } Local<DeclaredAccessorDescriptor> RawOperationDescriptor::NewBitmaskCompare32( Isolate* isolate, uint32_t bitmask, uint32_t compare_value) { return NewBitmaskCompare(isolate, bitmask, compare_value, this); } Local<TypeSwitch> TypeSwitch::New(Handle<FunctionTemplate> type) { Handle<FunctionTemplate> types[1] = { type }; return TypeSwitch::New(1, types); } Local<TypeSwitch> TypeSwitch::New(int argc, Handle<FunctionTemplate> types[]) { i::Isolate* isolate = i::Isolate::Current(); LOG_API(isolate, "TypeSwitch::New"); ENTER_V8(isolate); i::Handle<i::FixedArray> vector = isolate->factory()->NewFixedArray(argc); for (int i = 0; i < argc; i++) vector->set(i, *Utils::OpenHandle(*types[i])); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::TYPE_SWITCH_INFO_TYPE); i::Handle<i::TypeSwitchInfo> obj = i::Handle<i::TypeSwitchInfo>::cast(struct_obj); obj->set_types(*vector); return Utils::ToLocal(obj); } int TypeSwitch::match(v8::Handle<Value> value) { i::Isolate* isolate = i::Isolate::Current(); LOG_API(isolate, "TypeSwitch::match"); USE(isolate); i::Handle<i::Object> obj = Utils::OpenHandle(*value); i::Handle<i::TypeSwitchInfo> info = Utils::OpenHandle(this); i::FixedArray* types = i::FixedArray::cast(info->types()); for (int i = 0; i < types->length(); i++) { if (i::FunctionTemplateInfo::cast(types->get(i))->IsTemplateFor(*obj)) return i + 1; } return 0; } #define SET_FIELD_WRAPPED(obj, setter, cdata) do { \ i::Handle<i::Object> foreign = FromCData(obj->GetIsolate(), cdata); \ (obj)->setter(*foreign); \ } while (false) void FunctionTemplate::SetCallHandler(FunctionCallback callback, v8::Handle<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE); i::Handle<i::CallHandlerInfo> obj = i::Handle<i::CallHandlerInfo>::cast(struct_obj); SET_FIELD_WRAPPED(obj, set_callback, callback); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); Utils::OpenHandle(this)->set_call_code(*obj); } static i::Handle<i::AccessorInfo> SetAccessorInfoProperties( i::Handle<i::AccessorInfo> obj, v8::Handle<Name> name, v8::AccessControl settings, v8::PropertyAttribute attributes, v8::Handle<AccessorSignature> signature) { obj->set_name(*Utils::OpenHandle(*name)); if (settings & ALL_CAN_READ) obj->set_all_can_read(true); if (settings & ALL_CAN_WRITE) obj->set_all_can_write(true); obj->set_property_attributes(static_cast<PropertyAttributes>(attributes)); if (!signature.IsEmpty()) { obj->set_expected_receiver_type(*Utils::OpenHandle(*signature)); } return obj; } template<typename Getter, typename Setter> static i::Handle<i::AccessorInfo> MakeAccessorInfo( v8::Handle<Name> name, Getter getter, Setter setter, v8::Handle<Value> data, v8::AccessControl settings, v8::PropertyAttribute attributes, v8::Handle<AccessorSignature> signature) { i::Isolate* isolate = Utils::OpenHandle(*name)->GetIsolate(); i::Handle<i::ExecutableAccessorInfo> obj = isolate->factory()->NewExecutableAccessorInfo(); SET_FIELD_WRAPPED(obj, set_getter, getter); SET_FIELD_WRAPPED(obj, set_setter, setter); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); return SetAccessorInfoProperties(obj, name, settings, attributes, signature); } static i::Handle<i::AccessorInfo> MakeAccessorInfo( v8::Handle<Name> name, v8::Handle<v8::DeclaredAccessorDescriptor> descriptor, void* setter_ignored, void* data_ignored, v8::AccessControl settings, v8::PropertyAttribute attributes, v8::Handle<AccessorSignature> signature) { i::Isolate* isolate = Utils::OpenHandle(*name)->GetIsolate(); if (descriptor.IsEmpty()) return i::Handle<i::DeclaredAccessorInfo>(); i::Handle<i::DeclaredAccessorInfo> obj = isolate->factory()->NewDeclaredAccessorInfo(); obj->set_descriptor(*Utils::OpenHandle(*descriptor)); return SetAccessorInfoProperties(obj, name, settings, attributes, signature); } Local<ObjectTemplate> FunctionTemplate::InstanceTemplate() { i::Handle<i::FunctionTemplateInfo> handle = Utils::OpenHandle(this, true); if (!Utils::ApiCheck(!handle.is_null(), "v8::FunctionTemplate::InstanceTemplate()", "Reading from empty handle")) { return Local<ObjectTemplate>(); } i::Isolate* isolate = handle->GetIsolate(); ENTER_V8(isolate); if (handle->instance_template()->IsUndefined()) { Local<ObjectTemplate> templ = ObjectTemplate::New(isolate, ToApiHandle<FunctionTemplate>(handle)); handle->set_instance_template(*Utils::OpenHandle(*templ)); } i::Handle<i::ObjectTemplateInfo> result( i::ObjectTemplateInfo::cast(handle->instance_template())); return Utils::ToLocal(result); } void FunctionTemplate::SetLength(int length) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); Utils::OpenHandle(this)->set_length(length); } void FunctionTemplate::SetClassName(Handle<String> name) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); Utils::OpenHandle(this)->set_class_name(*Utils::OpenHandle(*name)); } void FunctionTemplate::SetHiddenPrototype(bool value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); Utils::OpenHandle(this)->set_hidden_prototype(value); } void FunctionTemplate::ReadOnlyPrototype() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); Utils::OpenHandle(this)->set_read_only_prototype(true); } void FunctionTemplate::RemovePrototype() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); Utils::OpenHandle(this)->set_remove_prototype(true); } // --- O b j e c t T e m p l a t e --- Local<ObjectTemplate> ObjectTemplate::New(Isolate* isolate) { return New(reinterpret_cast<i::Isolate*>(isolate), Local<FunctionTemplate>()); } Local<ObjectTemplate> ObjectTemplate::New() { return New(i::Isolate::Current(), Local<FunctionTemplate>()); } Local<ObjectTemplate> ObjectTemplate::New( i::Isolate* isolate, v8::Handle<FunctionTemplate> constructor) { LOG_API(isolate, "ObjectTemplate::New"); ENTER_V8(isolate); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::OBJECT_TEMPLATE_INFO_TYPE); i::Handle<i::ObjectTemplateInfo> obj = i::Handle<i::ObjectTemplateInfo>::cast(struct_obj); InitializeTemplate(obj, Consts::OBJECT_TEMPLATE); if (!constructor.IsEmpty()) obj->set_constructor(*Utils::OpenHandle(*constructor)); obj->set_internal_field_count(i::Smi::FromInt(0)); return Utils::ToLocal(obj); } // Ensure that the object template has a constructor. If no // constructor is available we create one. static i::Handle<i::FunctionTemplateInfo> EnsureConstructor( i::Isolate* isolate, ObjectTemplate* object_template) { i::Object* obj = Utils::OpenHandle(object_template)->constructor(); if (!obj ->IsUndefined()) { i::FunctionTemplateInfo* info = i::FunctionTemplateInfo::cast(obj); return i::Handle<i::FunctionTemplateInfo>(info, isolate); } Local<FunctionTemplate> templ = FunctionTemplate::New(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::FunctionTemplateInfo> constructor = Utils::OpenHandle(*templ); constructor->set_instance_template(*Utils::OpenHandle(object_template)); Utils::OpenHandle(object_template)->set_constructor(*constructor); return constructor; } static inline void AddPropertyToTemplate( i::Handle<i::TemplateInfo> info, i::Handle<i::AccessorInfo> obj) { i::Isolate* isolate = info->GetIsolate(); i::Handle<i::Object> list(info->property_accessors(), isolate); if (list->IsUndefined()) { list = NeanderArray(isolate).value(); info->set_property_accessors(*list); } NeanderArray array(list); array.add(obj); } static inline i::Handle<i::TemplateInfo> GetTemplateInfo( i::Isolate* isolate, Template* template_obj) { return Utils::OpenHandle(template_obj); } // TODO(dcarney): remove this with ObjectTemplate::SetAccessor static inline i::Handle<i::TemplateInfo> GetTemplateInfo( i::Isolate* isolate, ObjectTemplate* object_template) { EnsureConstructor(isolate, object_template); return Utils::OpenHandle(object_template); } template<typename Getter, typename Setter, typename Data, typename Template> static bool TemplateSetAccessor( Template* template_obj, v8::Local<Name> name, Getter getter, Setter setter, Data data, AccessControl settings, PropertyAttribute attribute, v8::Local<AccessorSignature> signature) { i::Isolate* isolate = Utils::OpenHandle(template_obj)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::AccessorInfo> obj = MakeAccessorInfo( name, getter, setter, data, settings, attribute, signature); if (obj.is_null()) return false; i::Handle<i::TemplateInfo> info = GetTemplateInfo(isolate, template_obj); AddPropertyToTemplate(info, obj); return true; } bool Template::SetDeclaredAccessor( Local<Name> name, Local<DeclaredAccessorDescriptor> descriptor, PropertyAttribute attribute, Local<AccessorSignature> signature, AccessControl settings) { void* null = NULL; return TemplateSetAccessor( this, name, descriptor, null, null, settings, attribute, signature); } void Template::SetNativeDataProperty(v8::Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter, v8::Handle<Value> data, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, AccessControl settings) { TemplateSetAccessor( this, name, getter, setter, data, settings, attribute, signature); } void Template::SetNativeDataProperty(v8::Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, v8::Handle<Value> data, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, AccessControl settings) { TemplateSetAccessor( this, name, getter, setter, data, settings, attribute, signature); } void ObjectTemplate::SetAccessor(v8::Handle<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter, v8::Handle<Value> data, AccessControl settings, PropertyAttribute attribute, v8::Handle<AccessorSignature> signature) { TemplateSetAccessor( this, name, getter, setter, data, settings, attribute, signature); } void ObjectTemplate::SetAccessor(v8::Handle<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, v8::Handle<Value> data, AccessControl settings, PropertyAttribute attribute, v8::Handle<AccessorSignature> signature) { TemplateSetAccessor( this, name, getter, setter, data, settings, attribute, signature); } void ObjectTemplate::SetNamedPropertyHandler( NamedPropertyGetterCallback getter, NamedPropertySetterCallback setter, NamedPropertyQueryCallback query, NamedPropertyDeleterCallback remover, NamedPropertyEnumeratorCallback enumerator, Handle<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); EnsureConstructor(isolate, this); i::FunctionTemplateInfo* constructor = i::FunctionTemplateInfo::cast( Utils::OpenHandle(this)->constructor()); i::Handle<i::FunctionTemplateInfo> cons(constructor); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::INTERCEPTOR_INFO_TYPE); i::Handle<i::InterceptorInfo> obj = i::Handle<i::InterceptorInfo>::cast(struct_obj); if (getter != 0) SET_FIELD_WRAPPED(obj, set_getter, getter); if (setter != 0) SET_FIELD_WRAPPED(obj, set_setter, setter); if (query != 0) SET_FIELD_WRAPPED(obj, set_query, query); if (remover != 0) SET_FIELD_WRAPPED(obj, set_deleter, remover); if (enumerator != 0) SET_FIELD_WRAPPED(obj, set_enumerator, enumerator); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); cons->set_named_property_handler(*obj); } void ObjectTemplate::MarkAsUndetectable() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); EnsureConstructor(isolate, this); i::FunctionTemplateInfo* constructor = i::FunctionTemplateInfo::cast(Utils::OpenHandle(this)->constructor()); i::Handle<i::FunctionTemplateInfo> cons(constructor); cons->set_undetectable(true); } void ObjectTemplate::SetAccessCheckCallbacks( NamedSecurityCallback named_callback, IndexedSecurityCallback indexed_callback, Handle<Value> data, bool turned_on_by_default) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); EnsureConstructor(isolate, this); i::Handle<i::Struct> struct_info = isolate->factory()->NewStruct(i::ACCESS_CHECK_INFO_TYPE); i::Handle<i::AccessCheckInfo> info = i::Handle<i::AccessCheckInfo>::cast(struct_info); SET_FIELD_WRAPPED(info, set_named_callback, named_callback); SET_FIELD_WRAPPED(info, set_indexed_callback, indexed_callback); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } info->set_data(*Utils::OpenHandle(*data)); i::FunctionTemplateInfo* constructor = i::FunctionTemplateInfo::cast(Utils::OpenHandle(this)->constructor()); i::Handle<i::FunctionTemplateInfo> cons(constructor); cons->set_access_check_info(*info); cons->set_needs_access_check(turned_on_by_default); } void ObjectTemplate::SetIndexedPropertyHandler( IndexedPropertyGetterCallback getter, IndexedPropertySetterCallback setter, IndexedPropertyQueryCallback query, IndexedPropertyDeleterCallback remover, IndexedPropertyEnumeratorCallback enumerator, Handle<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); EnsureConstructor(isolate, this); i::FunctionTemplateInfo* constructor = i::FunctionTemplateInfo::cast( Utils::OpenHandle(this)->constructor()); i::Handle<i::FunctionTemplateInfo> cons(constructor); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::INTERCEPTOR_INFO_TYPE); i::Handle<i::InterceptorInfo> obj = i::Handle<i::InterceptorInfo>::cast(struct_obj); if (getter != 0) SET_FIELD_WRAPPED(obj, set_getter, getter); if (setter != 0) SET_FIELD_WRAPPED(obj, set_setter, setter); if (query != 0) SET_FIELD_WRAPPED(obj, set_query, query); if (remover != 0) SET_FIELD_WRAPPED(obj, set_deleter, remover); if (enumerator != 0) SET_FIELD_WRAPPED(obj, set_enumerator, enumerator); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); cons->set_indexed_property_handler(*obj); } void ObjectTemplate::SetCallAsFunctionHandler(FunctionCallback callback, Handle<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); EnsureConstructor(isolate, this); i::FunctionTemplateInfo* constructor = i::FunctionTemplateInfo::cast( Utils::OpenHandle(this)->constructor()); i::Handle<i::FunctionTemplateInfo> cons(constructor); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE); i::Handle<i::CallHandlerInfo> obj = i::Handle<i::CallHandlerInfo>::cast(struct_obj); SET_FIELD_WRAPPED(obj, set_callback, callback); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); cons->set_instance_call_handler(*obj); } int ObjectTemplate::InternalFieldCount() { return i::Smi::cast(Utils::OpenHandle(this)->internal_field_count())->value(); } void ObjectTemplate::SetInternalFieldCount(int value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); if (!Utils::ApiCheck(i::Smi::IsValid(value), "v8::ObjectTemplate::SetInternalFieldCount()", "Invalid internal field count")) { return; } ENTER_V8(isolate); if (value > 0) { // The internal field count is set by the constructor function's // construct code, so we ensure that there is a constructor // function to do the setting. EnsureConstructor(isolate, this); } Utils::OpenHandle(this)->set_internal_field_count(i::Smi::FromInt(value)); } // --- S c r i p t s --- // Internally, UnboundScript is a SharedFunctionInfo, and Script is a // JSFunction. ScriptCompiler::CachedData::CachedData(const uint8_t* data_, int length_, BufferPolicy buffer_policy_) : data(data_), length(length_), buffer_policy(buffer_policy_) {} ScriptCompiler::CachedData::~CachedData() { if (buffer_policy == BufferOwned) { delete[] data; } } ScriptCompiler::StreamedSource::StreamedSource(ExternalSourceStream* stream, Encoding encoding) : impl_(new i::StreamedSource(stream, encoding)) {} ScriptCompiler::StreamedSource::~StreamedSource() { delete impl_; } const ScriptCompiler::CachedData* ScriptCompiler::StreamedSource::GetCachedData() const { return impl_->cached_data.get(); } Local<Script> UnboundScript::BindToCurrentContext() { i::Handle<i::HeapObject> obj = i::Handle<i::HeapObject>::cast(Utils::OpenHandle(this)); i::Handle<i::SharedFunctionInfo> function_info(i::SharedFunctionInfo::cast(*obj), obj->GetIsolate()); i::Handle<i::JSFunction> function = obj->GetIsolate()->factory()->NewFunctionFromSharedFunctionInfo( function_info, obj->GetIsolate()->global_context()); return ToApiHandle<Script>(function); } int UnboundScript::GetId() { i::Handle<i::HeapObject> obj = i::Handle<i::HeapObject>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); ON_BAILOUT(isolate, "v8::UnboundScript::GetId()", return -1); LOG_API(isolate, "v8::UnboundScript::GetId"); { i::HandleScope scope(isolate); i::Handle<i::SharedFunctionInfo> function_info( i::SharedFunctionInfo::cast(*obj)); i::Handle<i::Script> script(i::Script::cast(function_info->script())); return script->id()->value(); } } int UnboundScript::GetLineNumber(int code_pos) { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); ON_BAILOUT(isolate, "v8::UnboundScript::GetLineNumber()", return -1); LOG_API(isolate, "UnboundScript::GetLineNumber"); if (obj->script()->IsScript()) { i::Handle<i::Script> script(i::Script::cast(obj->script())); return i::Script::GetLineNumber(script, code_pos); } else { return -1; } } Handle<Value> UnboundScript::GetScriptName() { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); ON_BAILOUT(isolate, "v8::UnboundScript::GetName()", return Handle<String>()); LOG_API(isolate, "UnboundScript::GetName"); if (obj->script()->IsScript()) { i::Object* name = i::Script::cast(obj->script())->name(); return Utils::ToLocal(i::Handle<i::Object>(name, isolate)); } else { return Handle<String>(); } } Handle<Value> UnboundScript::GetSourceURL() { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); ON_BAILOUT(isolate, "v8::UnboundScript::GetSourceURL()", return Handle<String>()); LOG_API(isolate, "UnboundScript::GetSourceURL"); if (obj->script()->IsScript()) { i::Object* url = i::Script::cast(obj->script())->source_url(); return Utils::ToLocal(i::Handle<i::Object>(url, isolate)); } else { return Handle<String>(); } } Handle<Value> UnboundScript::GetSourceMappingURL() { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); ON_BAILOUT(isolate, "v8::UnboundScript::GetSourceMappingURL()", return Handle<String>()); LOG_API(isolate, "UnboundScript::GetSourceMappingURL"); if (obj->script()->IsScript()) { i::Object* url = i::Script::cast(obj->script())->source_mapping_url(); return Utils::ToLocal(i::Handle<i::Object>(url, isolate)); } else { return Handle<String>(); } } Local<Value> Script::Run() { i::Handle<i::Object> obj = Utils::OpenHandle(this, true); // If execution is terminating, Compile(..)->Run() requires this // check. if (obj.is_null()) return Local<Value>(); i::Isolate* isolate = i::Handle<i::HeapObject>::cast(obj)->GetIsolate(); ON_BAILOUT(isolate, "v8::Script::Run()", return Local<Value>()); LOG_API(isolate, "Script::Run"); ENTER_V8(isolate); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); i::HandleScope scope(isolate); i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(obj); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> receiver(isolate->global_proxy(), isolate); i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call( isolate, fun, receiver, 0, NULL).ToHandle(&result); EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<Value>()); return Utils::ToLocal(scope.CloseAndEscape(result)); } Local<UnboundScript> Script::GetUnboundScript() { i::Handle<i::Object> obj = Utils::OpenHandle(this); return ToApiHandle<UnboundScript>( i::Handle<i::SharedFunctionInfo>(i::JSFunction::cast(*obj)->shared())); } Local<UnboundScript> ScriptCompiler::CompileUnbound( Isolate* v8_isolate, Source* source, CompileOptions options) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ON_BAILOUT(isolate, "v8::ScriptCompiler::CompileUnbound()", return Local<UnboundScript>()); // Support the old API for a transition period: // - kProduceToCache -> kProduceParserCache // - kNoCompileOptions + cached_data != NULL -> kConsumeParserCache if (options == kProduceDataToCache) { options = kProduceParserCache; } else if (options == kNoCompileOptions && source->cached_data) { options = kConsumeParserCache; } i::ScriptData* script_data = NULL; if (options == kConsumeParserCache || options == kConsumeCodeCache) { DCHECK(source->cached_data); // ScriptData takes care of pointer-aligning the data. script_data = new i::ScriptData(source->cached_data->data, source->cached_data->length); } i::Handle<i::String> str = Utils::OpenHandle(*(source->source_string)); LOG_API(isolate, "ScriptCompiler::CompileUnbound"); ENTER_V8(isolate); i::SharedFunctionInfo* raw_result = NULL; { i::HandleScope scope(isolate); i::Handle<i::Object> name_obj; int line_offset = 0; int column_offset = 0; bool is_shared_cross_origin = false; if (!source->resource_name.IsEmpty()) { name_obj = Utils::OpenHandle(*(source->resource_name)); } if (!source->resource_line_offset.IsEmpty()) { line_offset = static_cast<int>(source->resource_line_offset->Value()); } if (!source->resource_column_offset.IsEmpty()) { column_offset = static_cast<int>(source->resource_column_offset->Value()); } if (!source->resource_is_shared_cross_origin.IsEmpty()) { v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate); is_shared_cross_origin = source->resource_is_shared_cross_origin == v8::True(v8_isolate); } EXCEPTION_PREAMBLE(isolate); i::Handle<i::SharedFunctionInfo> result = i::Compiler::CompileScript( str, name_obj, line_offset, column_offset, is_shared_cross_origin, isolate->global_context(), NULL, &script_data, options, i::NOT_NATIVES_CODE); has_pending_exception = result.is_null(); if (has_pending_exception && script_data != NULL) { // This case won't happen during normal operation; we have compiled // successfully and produced cached data, and but the second compilation // of the same source code fails. delete script_data; script_data = NULL; } EXCEPTION_BAILOUT_CHECK(isolate, Local<UnboundScript>()); raw_result = *result; if ((options == kProduceParserCache || options == kProduceCodeCache) && script_data != NULL) { // script_data now contains the data that was generated. source will // take the ownership. source->cached_data = new CachedData( script_data->data(), script_data->length(), CachedData::BufferOwned); script_data->ReleaseDataOwnership(); } delete script_data; } i::Handle<i::SharedFunctionInfo> result(raw_result, isolate); return ToApiHandle<UnboundScript>(result); } Local<Script> ScriptCompiler::Compile( Isolate* v8_isolate, Source* source, CompileOptions options) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ON_BAILOUT(isolate, "v8::ScriptCompiler::Compile()", return Local<Script>()); LOG_API(isolate, "ScriptCompiler::CompiletBound()"); ENTER_V8(isolate); Local<UnboundScript> generic = CompileUnbound(v8_isolate, source, options); if (generic.IsEmpty()) return Local<Script>(); return generic->BindToCurrentContext(); } ScriptCompiler::ScriptStreamingTask* ScriptCompiler::StartStreamingScript( Isolate* v8_isolate, StreamedSource* source, CompileOptions options) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); if (!isolate->global_context().is_null() && !isolate->global_context()->IsNativeContext()) { // The context chain is non-trivial, and constructing the corresponding // non-trivial Scope chain outside the V8 heap is not implemented. Don't // stream the script. This will only occur if Harmony scoping is enabled and // a previous script has introduced "let" or "const" variables. TODO(marja): // Implement externalizing ScopeInfos and constructing non-trivial Scope // chains independent of the V8 heap so that we can stream also in this // case. return NULL; } return new i::BackgroundParsingTask(source->impl(), options, i::FLAG_stack_size, isolate); } Local<Script> ScriptCompiler::Compile(Isolate* v8_isolate, StreamedSource* v8_source, Handle<String> full_source_string, const ScriptOrigin& origin) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::StreamedSource* source = v8_source->impl(); ON_BAILOUT(isolate, "v8::ScriptCompiler::Compile()", return Local<Script>()); LOG_API(isolate, "ScriptCompiler::Compile()"); ENTER_V8(isolate); i::SharedFunctionInfo* raw_result = NULL; { i::HandleScope scope(isolate); i::Handle<i::String> str = Utils::OpenHandle(*(full_source_string)); i::Handle<i::Script> script = isolate->factory()->NewScript(str); if (!origin.ResourceName().IsEmpty()) { script->set_name(*Utils::OpenHandle(*(origin.ResourceName()))); } if (!origin.ResourceLineOffset().IsEmpty()) { script->set_line_offset(i::Smi::FromInt( static_cast<int>(origin.ResourceLineOffset()->Value()))); } if (!origin.ResourceColumnOffset().IsEmpty()) { script->set_column_offset(i::Smi::FromInt( static_cast<int>(origin.ResourceColumnOffset()->Value()))); } if (!origin.ResourceIsSharedCrossOrigin().IsEmpty()) { script->set_is_shared_cross_origin(origin.ResourceIsSharedCrossOrigin() == v8::True(v8_isolate)); } source->info->set_script(script); source->info->SetContext(isolate->global_context()); EXCEPTION_PREAMBLE(isolate); // Do the parsing tasks which need to be done on the main thread. This will // also handle parse errors. source->parser->Internalize(); i::Handle<i::SharedFunctionInfo> result = i::Handle<i::SharedFunctionInfo>::null(); if (source->info->function() != NULL) { // Parsing has succeeded. result = i::Compiler::CompileStreamedScript(source->info.get(), str->length()); } has_pending_exception = result.is_null(); if (has_pending_exception) isolate->ReportPendingMessages(); EXCEPTION_BAILOUT_CHECK(isolate, Local<Script>()); raw_result = *result; // The Handle<Script> will go out of scope soon; make sure CompilationInfo // doesn't point to it. source->info->set_script(i::Handle<i::Script>()); } // HandleScope goes out of scope. i::Handle<i::SharedFunctionInfo> result(raw_result, isolate); Local<UnboundScript> generic = ToApiHandle<UnboundScript>(result); if (generic.IsEmpty()) { return Local<Script>(); } return generic->BindToCurrentContext(); } Local<Script> Script::Compile(v8::Handle<String> source, v8::ScriptOrigin* origin) { i::Handle<i::String> str = Utils::OpenHandle(*source); if (origin) { ScriptCompiler::Source script_source(source, *origin); return ScriptCompiler::Compile( reinterpret_cast<v8::Isolate*>(str->GetIsolate()), &script_source); } ScriptCompiler::Source script_source(source); return ScriptCompiler::Compile( reinterpret_cast<v8::Isolate*>(str->GetIsolate()), &script_source); } Local<Script> Script::Compile(v8::Handle<String> source, v8::Handle<String> file_name) { ScriptOrigin origin(file_name); return Compile(source, &origin); } // --- E x c e p t i o n s --- v8::TryCatch::TryCatch() : isolate_(i::Isolate::Current()), next_(isolate_->try_catch_handler()), is_verbose_(false), can_continue_(true), capture_message_(true), rethrow_(false), has_terminated_(false) { ResetInternal(); // Special handling for simulators which have a separate JS stack. js_stack_comparable_address_ = reinterpret_cast<void*>(v8::internal::SimulatorStack::RegisterCTryCatch( v8::internal::GetCurrentStackPosition())); isolate_->RegisterTryCatchHandler(this); } v8::TryCatch::~TryCatch() { DCHECK(isolate_ == i::Isolate::Current()); if (rethrow_) { v8::Isolate* isolate = reinterpret_cast<Isolate*>(isolate_); v8::HandleScope scope(isolate); v8::Local<v8::Value> exc = v8::Local<v8::Value>::New(isolate, Exception()); if (HasCaught() && capture_message_) { // If an exception was caught and rethrow_ is indicated, the saved // message, script, and location need to be restored to Isolate TLS // for reuse. capture_message_ needs to be disabled so that DoThrow() // does not create a new message. isolate_->thread_local_top()->rethrowing_message_ = true; isolate_->RestorePendingMessageFromTryCatch(this); } isolate_->UnregisterTryCatchHandler(this); v8::internal::SimulatorStack::UnregisterCTryCatch(); reinterpret_cast<Isolate*>(isolate_)->ThrowException(exc); DCHECK(!isolate_->thread_local_top()->rethrowing_message_); } else { if (HasCaught() && isolate_->has_scheduled_exception()) { // If an exception was caught but is still scheduled because no API call // promoted it, then it is canceled to prevent it from being propagated. // Note that this will not cancel termination exceptions. isolate_->CancelScheduledExceptionFromTryCatch(this); } isolate_->UnregisterTryCatchHandler(this); v8::internal::SimulatorStack::UnregisterCTryCatch(); } } bool v8::TryCatch::HasCaught() const { return !reinterpret_cast<i::Object*>(exception_)->IsTheHole(); } bool v8::TryCatch::CanContinue() const { return can_continue_; } bool v8::TryCatch::HasTerminated() const { return has_terminated_; } v8::Handle<v8::Value> v8::TryCatch::ReThrow() { if (!HasCaught()) return v8::Local<v8::Value>(); rethrow_ = true; return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate_)); } v8::Local<Value> v8::TryCatch::Exception() const { DCHECK(isolate_ == i::Isolate::Current()); if (HasCaught()) { // Check for out of memory exception. i::Object* exception = reinterpret_cast<i::Object*>(exception_); return v8::Utils::ToLocal(i::Handle<i::Object>(exception, isolate_)); } else { return v8::Local<Value>(); } } v8::Local<Value> v8::TryCatch::StackTrace() const { DCHECK(isolate_ == i::Isolate::Current()); if (HasCaught()) { i::Object* raw_obj = reinterpret_cast<i::Object*>(exception_); if (!raw_obj->IsJSObject()) return v8::Local<Value>(); i::HandleScope scope(isolate_); i::Handle<i::JSObject> obj(i::JSObject::cast(raw_obj), isolate_); i::Handle<i::String> name = isolate_->factory()->stack_string(); EXCEPTION_PREAMBLE(isolate_); Maybe<bool> maybe = i::JSReceiver::HasProperty(obj, name); has_pending_exception = !maybe.has_value; EXCEPTION_BAILOUT_CHECK(isolate_, v8::Local<Value>()); if (!maybe.value) return v8::Local<Value>(); i::Handle<i::Object> value; if (!i::Object::GetProperty(obj, name).ToHandle(&value)) { return v8::Local<Value>(); } return v8::Utils::ToLocal(scope.CloseAndEscape(value)); } else { return v8::Local<Value>(); } } v8::Local<v8::Message> v8::TryCatch::Message() const { DCHECK(isolate_ == i::Isolate::Current()); i::Object* message = reinterpret_cast<i::Object*>(message_obj_); DCHECK(message->IsJSMessageObject() || message->IsTheHole()); if (HasCaught() && !message->IsTheHole()) { return v8::Utils::MessageToLocal(i::Handle<i::Object>(message, isolate_)); } else { return v8::Local<v8::Message>(); } } void v8::TryCatch::Reset() { DCHECK(isolate_ == i::Isolate::Current()); if (!rethrow_ && HasCaught() && isolate_->has_scheduled_exception()) { // If an exception was caught but is still scheduled because no API call // promoted it, then it is canceled to prevent it from being propagated. // Note that this will not cancel termination exceptions. isolate_->CancelScheduledExceptionFromTryCatch(this); } ResetInternal(); } void v8::TryCatch::ResetInternal() { i::Object* the_hole = isolate_->heap()->the_hole_value(); exception_ = the_hole; message_obj_ = the_hole; message_script_ = the_hole; message_start_pos_ = 0; message_end_pos_ = 0; } void v8::TryCatch::SetVerbose(bool value) { is_verbose_ = value; } void v8::TryCatch::SetCaptureMessage(bool value) { capture_message_ = value; } // --- M e s s a g e --- Local<String> Message::Get() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Message::Get()", return Local<String>()); ENTER_V8(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::String> raw_result = i::MessageHandler::GetMessage(isolate, obj); Local<String> result = Utils::ToLocal(raw_result); return scope.Escape(result); } ScriptOrigin Message::GetScriptOrigin() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); i::Handle<i::JSMessageObject> message = i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this)); i::Handle<i::Object> script_wraper = i::Handle<i::Object>(message->script(), isolate); i::Handle<i::JSValue> script_value = i::Handle<i::JSValue>::cast(script_wraper); i::Handle<i::Script> script(i::Script::cast(script_value->value())); i::Handle<i::Object> scriptName(i::Script::GetNameOrSourceURL(script)); v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(script->GetIsolate()); v8::ScriptOrigin origin( Utils::ToLocal(scriptName), v8::Integer::New(v8_isolate, script->line_offset()->value()), v8::Integer::New(v8_isolate, script->column_offset()->value()), Handle<Boolean>(), v8::Integer::New(v8_isolate, script->id()->value())); return origin; } v8::Handle<Value> Message::GetScriptResourceName() const { return GetScriptOrigin().ResourceName(); } v8::Handle<v8::StackTrace> Message::GetStackTrace() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::JSMessageObject> message = i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this)); i::Handle<i::Object> stackFramesObj(message->stack_frames(), isolate); if (!stackFramesObj->IsJSArray()) return v8::Handle<v8::StackTrace>(); i::Handle<i::JSArray> stackTrace = i::Handle<i::JSArray>::cast(stackFramesObj); return scope.Escape(Utils::StackTraceToLocal(stackTrace)); } MUST_USE_RESULT static i::MaybeHandle<i::Object> CallV8HeapFunction( const char* name, i::Handle<i::Object> recv, int argc, i::Handle<i::Object> argv[]) { i::Isolate* isolate = i::Isolate::Current(); i::Handle<i::Object> object_fun = i::Object::GetProperty( isolate, isolate->js_builtins_object(), name).ToHandleChecked(); i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(object_fun); return i::Execution::Call(isolate, fun, recv, argc, argv); } MUST_USE_RESULT static i::MaybeHandle<i::Object> CallV8HeapFunction( const char* name, i::Handle<i::Object> data) { i::Handle<i::Object> argv[] = { data }; return CallV8HeapFunction(name, i::Isolate::Current()->js_builtins_object(), arraysize(argv), argv); } int Message::GetLineNumber() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Message::GetLineNumber()", return kNoLineNumberInfo); ENTER_V8(isolate); i::HandleScope scope(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> result; has_pending_exception = !CallV8HeapFunction( "GetLineNumber", Utils::OpenHandle(this)).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, 0); return static_cast<int>(result->Number()); } int Message::GetStartPosition() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSMessageObject> message = i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this)); return message->start_position(); } int Message::GetEndPosition() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSMessageObject> message = i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this)); return message->end_position(); } int Message::GetStartColumn() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Message::GetStartColumn()", return kNoColumnInfo); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> data_obj = Utils::OpenHandle(this); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> start_col_obj; has_pending_exception = !CallV8HeapFunction( "GetPositionInLine", data_obj).ToHandle(&start_col_obj); EXCEPTION_BAILOUT_CHECK(isolate, 0); return static_cast<int>(start_col_obj->Number()); } int Message::GetEndColumn() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Message::GetEndColumn()", return kNoColumnInfo); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> data_obj = Utils::OpenHandle(this); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> start_col_obj; has_pending_exception = !CallV8HeapFunction( "GetPositionInLine", data_obj).ToHandle(&start_col_obj); EXCEPTION_BAILOUT_CHECK(isolate, 0); i::Handle<i::JSMessageObject> message = i::Handle<i::JSMessageObject>::cast(data_obj); int start = message->start_position(); int end = message->end_position(); return static_cast<int>(start_col_obj->Number()) + (end - start); } bool Message::IsSharedCrossOrigin() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSMessageObject> message = i::Handle<i::JSMessageObject>::cast(Utils::OpenHandle(this)); i::Handle<i::JSValue> script = i::Handle<i::JSValue>::cast(i::Handle<i::Object>(message->script(), isolate)); return i::Script::cast(script->value())->is_shared_cross_origin(); } Local<String> Message::GetSourceLine() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Message::GetSourceLine()", return Local<String>()); ENTER_V8(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> result; has_pending_exception = !CallV8HeapFunction( "GetSourceLine", Utils::OpenHandle(this)).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::String>()); if (result->IsString()) { return scope.Escape(Utils::ToLocal(i::Handle<i::String>::cast(result))); } else { return Local<String>(); } } void Message::PrintCurrentStackTrace(Isolate* isolate, FILE* out) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); i_isolate->PrintCurrentStackTrace(out); } // --- S t a c k T r a c e --- Local<StackFrame> StackTrace::GetFrame(uint32_t index) const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::JSArray> self = Utils::OpenHandle(this); i::Handle<i::Object> obj = i::Object::GetElement(isolate, self, index).ToHandleChecked(); i::Handle<i::JSObject> jsobj = i::Handle<i::JSObject>::cast(obj); return scope.Escape(Utils::StackFrameToLocal(jsobj)); } int StackTrace::GetFrameCount() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); return i::Smi::cast(Utils::OpenHandle(this)->length())->value(); } Local<Array> StackTrace::AsArray() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); return Utils::ToLocal(Utils::OpenHandle(this)); } Local<StackTrace> StackTrace::CurrentStackTrace( Isolate* isolate, int frame_limit, StackTraceOptions options) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8(i_isolate); // TODO(dcarney): remove when ScriptDebugServer is fixed. options = static_cast<StackTraceOptions>( static_cast<int>(options) | kExposeFramesAcrossSecurityOrigins); i::Handle<i::JSArray> stackTrace = i_isolate->CaptureCurrentStackTrace(frame_limit, options); return Utils::StackTraceToLocal(stackTrace); } // --- S t a c k F r a m e --- static int getIntProperty(const StackFrame* f, const char* propertyName, int defaultValue) { i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(f); i::Handle<i::Object> obj = i::Object::GetProperty(isolate, self, propertyName).ToHandleChecked(); return obj->IsSmi() ? i::Smi::cast(*obj)->value() : defaultValue; } int StackFrame::GetLineNumber() const { return getIntProperty(this, "lineNumber", Message::kNoLineNumberInfo); } int StackFrame::GetColumn() const { return getIntProperty(this, "column", Message::kNoColumnInfo); } int StackFrame::GetScriptId() const { return getIntProperty(this, "scriptId", Message::kNoScriptIdInfo); } static Local<String> getStringProperty(const StackFrame* f, const char* propertyName) { i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate(); ENTER_V8(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::JSObject> self = Utils::OpenHandle(f); i::Handle<i::Object> obj = i::Object::GetProperty(isolate, self, propertyName).ToHandleChecked(); return obj->IsString() ? scope.Escape(Local<String>::Cast(Utils::ToLocal(obj))) : Local<String>(); } Local<String> StackFrame::GetScriptName() const { return getStringProperty(this, "scriptName"); } Local<String> StackFrame::GetScriptNameOrSourceURL() const { return getStringProperty(this, "scriptNameOrSourceURL"); } Local<String> StackFrame::GetFunctionName() const { return getStringProperty(this, "functionName"); } static bool getBoolProperty(const StackFrame* f, const char* propertyName) { i::Isolate* isolate = Utils::OpenHandle(f)->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(f); i::Handle<i::Object> obj = i::Object::GetProperty(isolate, self, propertyName).ToHandleChecked(); return obj->IsTrue(); } bool StackFrame::IsEval() const { return getBoolProperty(this, "isEval"); } bool StackFrame::IsConstructor() const { return getBoolProperty(this, "isConstructor"); } // --- J S O N --- Local<Value> JSON::Parse(Local<String> json_string) { i::Handle<i::String> string = Utils::OpenHandle(*json_string); i::Isolate* isolate = string->GetIsolate(); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::String> source = i::String::Flatten(string); EXCEPTION_PREAMBLE(isolate); i::MaybeHandle<i::Object> maybe_result = source->IsSeqOneByteString() ? i::JsonParser<true>::Parse(source) : i::JsonParser<false>::Parse(source); i::Handle<i::Object> result; has_pending_exception = !maybe_result.ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<Object>()); return Utils::ToLocal( i::Handle<i::Object>::cast(scope.CloseAndEscape(result))); } // --- D a t a --- bool Value::FullIsUndefined() const { bool result = Utils::OpenHandle(this)->IsUndefined(); DCHECK_EQ(result, QuickIsUndefined()); return result; } bool Value::FullIsNull() const { bool result = Utils::OpenHandle(this)->IsNull(); DCHECK_EQ(result, QuickIsNull()); return result; } bool Value::IsTrue() const { return Utils::OpenHandle(this)->IsTrue(); } bool Value::IsFalse() const { return Utils::OpenHandle(this)->IsFalse(); } bool Value::IsFunction() const { return Utils::OpenHandle(this)->IsJSFunction(); } bool Value::IsName() const { return Utils::OpenHandle(this)->IsName(); } bool Value::FullIsString() const { bool result = Utils::OpenHandle(this)->IsString(); DCHECK_EQ(result, QuickIsString()); return result; } bool Value::IsSymbol() const { return Utils::OpenHandle(this)->IsSymbol(); } bool Value::IsArray() const { return Utils::OpenHandle(this)->IsJSArray(); } bool Value::IsArrayBuffer() const { return Utils::OpenHandle(this)->IsJSArrayBuffer(); } bool Value::IsArrayBufferView() const { return Utils::OpenHandle(this)->IsJSArrayBufferView(); } bool Value::IsTypedArray() const { return Utils::OpenHandle(this)->IsJSTypedArray(); } #define VALUE_IS_TYPED_ARRAY(Type, typeName, TYPE, ctype, size) \ bool Value::Is##Type##Array() const { \ i::Handle<i::Object> obj = Utils::OpenHandle(this); \ return obj->IsJSTypedArray() && \ i::JSTypedArray::cast(*obj)->type() == kExternal##Type##Array; \ } TYPED_ARRAYS(VALUE_IS_TYPED_ARRAY) #undef VALUE_IS_TYPED_ARRAY bool Value::IsDataView() const { return Utils::OpenHandle(this)->IsJSDataView(); } bool Value::IsObject() const { return Utils::OpenHandle(this)->IsJSObject(); } bool Value::IsNumber() const { return Utils::OpenHandle(this)->IsNumber(); } #define VALUE_IS_SPECIFIC_TYPE(Type, Class) \ bool Value::Is##Type() const { \ i::Handle<i::Object> obj = Utils::OpenHandle(this); \ if (!obj->IsHeapObject()) return false; \ i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); \ return obj->HasSpecificClassOf(isolate->heap()->Class##_string()); \ } VALUE_IS_SPECIFIC_TYPE(ArgumentsObject, Arguments) VALUE_IS_SPECIFIC_TYPE(BooleanObject, Boolean) VALUE_IS_SPECIFIC_TYPE(NumberObject, Number) VALUE_IS_SPECIFIC_TYPE(StringObject, String) VALUE_IS_SPECIFIC_TYPE(SymbolObject, Symbol) VALUE_IS_SPECIFIC_TYPE(Date, Date) VALUE_IS_SPECIFIC_TYPE(Map, Map) VALUE_IS_SPECIFIC_TYPE(Set, Set) VALUE_IS_SPECIFIC_TYPE(WeakMap, WeakMap) VALUE_IS_SPECIFIC_TYPE(WeakSet, WeakSet) #undef VALUE_IS_SPECIFIC_TYPE bool Value::IsBoolean() const { return Utils::OpenHandle(this)->IsBoolean(); } bool Value::IsExternal() const { return Utils::OpenHandle(this)->IsExternal(); } bool Value::IsInt32() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) return true; if (obj->IsNumber()) { return i::IsInt32Double(obj->Number()); } return false; } bool Value::IsUint32() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) return i::Smi::cast(*obj)->value() >= 0; if (obj->IsNumber()) { double value = obj->Number(); return !i::IsMinusZero(value) && value >= 0 && value <= i::kMaxUInt32 && value == i::FastUI2D(i::FastD2UI(value)); } return false; } static bool CheckConstructor(i::Isolate* isolate, i::Handle<i::JSObject> obj, const char* class_name) { i::Handle<i::Object> constr(obj->map()->constructor(), isolate); if (!constr->IsJSFunction()) return false; i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(constr); return func->shared()->native() && constr.is_identical_to( i::Object::GetProperty(isolate, isolate->js_builtins_object(), class_name).ToHandleChecked()); } bool Value::IsNativeError() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsJSObject()) { i::Handle<i::JSObject> js_obj(i::JSObject::cast(*obj)); i::Isolate* isolate = js_obj->GetIsolate(); return CheckConstructor(isolate, js_obj, "$Error") || CheckConstructor(isolate, js_obj, "$EvalError") || CheckConstructor(isolate, js_obj, "$RangeError") || CheckConstructor(isolate, js_obj, "$ReferenceError") || CheckConstructor(isolate, js_obj, "$SyntaxError") || CheckConstructor(isolate, js_obj, "$TypeError") || CheckConstructor(isolate, js_obj, "$URIError"); } else { return false; } } bool Value::IsRegExp() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsJSRegExp(); } Local<String> Value::ToString() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::Object> str; if (obj->IsString()) { str = obj; } else { i::Isolate* isolate = i::Isolate::Current(); LOG_API(isolate, "ToString"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToString( isolate, obj).ToHandle(&str); EXCEPTION_BAILOUT_CHECK(isolate, Local<String>()); } return ToApiHandle<String>(str); } Local<String> Value::ToDetailString() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::Object> str; if (obj->IsString()) { str = obj; } else { i::Isolate* isolate = i::Isolate::Current(); LOG_API(isolate, "ToDetailString"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToDetailString( isolate, obj).ToHandle(&str); EXCEPTION_BAILOUT_CHECK(isolate, Local<String>()); } return ToApiHandle<String>(str); } Local<v8::Object> Value::ToObject() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::Object> val; if (obj->IsJSObject()) { val = obj; } else { i::Isolate* isolate = i::Isolate::Current(); LOG_API(isolate, "ToObject"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToObject( isolate, obj).ToHandle(&val); EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Object>()); } return ToApiHandle<Object>(val); } Local<Boolean> Value::ToBoolean() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsBoolean()) { return ToApiHandle<Boolean>(obj); } else { i::Isolate* isolate = i::Isolate::Current(); LOG_API(isolate, "ToBoolean"); ENTER_V8(isolate); i::Handle<i::Object> val = isolate->factory()->ToBoolean(obj->BooleanValue()); return ToApiHandle<Boolean>(val); } } Local<Number> Value::ToNumber() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::Object> num; if (obj->IsNumber()) { num = obj; } else { i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); LOG_API(isolate, "ToNumber"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToNumber( isolate, obj).ToHandle(&num); EXCEPTION_BAILOUT_CHECK(isolate, Local<Number>()); } return ToApiHandle<Number>(num); } Local<Integer> Value::ToInteger() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::Object> num; if (obj->IsSmi()) { num = obj; } else { i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); LOG_API(isolate, "ToInteger"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToInteger( isolate, obj).ToHandle(&num); EXCEPTION_BAILOUT_CHECK(isolate, Local<Integer>()); } return ToApiHandle<Integer>(num); } void i::Internals::CheckInitializedImpl(v8::Isolate* external_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate); Utils::ApiCheck(isolate != NULL && isolate->IsInitialized() && !isolate->IsDead(), "v8::internal::Internals::CheckInitialized()", "Isolate is not initialized or V8 has died"); } void External::CheckCast(v8::Value* that) { Utils::ApiCheck(Utils::OpenHandle(that)->IsExternal(), "v8::External::Cast()", "Could not convert to external"); } void v8::Object::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSObject(), "v8::Object::Cast()", "Could not convert to object"); } void v8::Function::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSFunction(), "v8::Function::Cast()", "Could not convert to function"); } void v8::Name::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsName(), "v8::Name::Cast()", "Could not convert to name"); } void v8::String::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsString(), "v8::String::Cast()", "Could not convert to string"); } void v8::Symbol::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsSymbol(), "v8::Symbol::Cast()", "Could not convert to symbol"); } void v8::Number::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsNumber(), "v8::Number::Cast()", "Could not convert to number"); } void v8::Integer::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsNumber(), "v8::Integer::Cast()", "Could not convert to number"); } void v8::Array::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSArray(), "v8::Array::Cast()", "Could not convert to array"); } void v8::Promise::CheckCast(Value* that) { Utils::ApiCheck(that->IsPromise(), "v8::Promise::Cast()", "Could not convert to promise"); } void v8::Promise::Resolver::CheckCast(Value* that) { Utils::ApiCheck(that->IsPromise(), "v8::Promise::Resolver::Cast()", "Could not convert to promise resolver"); } void v8::ArrayBuffer::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSArrayBuffer(), "v8::ArrayBuffer::Cast()", "Could not convert to ArrayBuffer"); } void v8::ArrayBufferView::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSArrayBufferView(), "v8::ArrayBufferView::Cast()", "Could not convert to ArrayBufferView"); } void v8::TypedArray::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSTypedArray(), "v8::TypedArray::Cast()", "Could not convert to TypedArray"); } #define CHECK_TYPED_ARRAY_CAST(Type, typeName, TYPE, ctype, size) \ void v8::Type##Array::CheckCast(Value* that) { \ i::Handle<i::Object> obj = Utils::OpenHandle(that); \ Utils::ApiCheck(obj->IsJSTypedArray() && \ i::JSTypedArray::cast(*obj)->type() == \ kExternal##Type##Array, \ "v8::" #Type "Array::Cast()", \ "Could not convert to " #Type "Array"); \ } TYPED_ARRAYS(CHECK_TYPED_ARRAY_CAST) #undef CHECK_TYPED_ARRAY_CAST void v8::DataView::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSDataView(), "v8::DataView::Cast()", "Could not convert to DataView"); } void v8::Date::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->Date_string()), "v8::Date::Cast()", "Could not convert to date"); } void v8::StringObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->String_string()), "v8::StringObject::Cast()", "Could not convert to StringObject"); } void v8::SymbolObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->Symbol_string()), "v8::SymbolObject::Cast()", "Could not convert to SymbolObject"); } void v8::NumberObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->Number_string()), "v8::NumberObject::Cast()", "Could not convert to NumberObject"); } void v8::BooleanObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); i::Isolate* isolate = NULL; if (obj->IsHeapObject()) isolate = i::HeapObject::cast(*obj)->GetIsolate(); Utils::ApiCheck(isolate != NULL && obj->HasSpecificClassOf(isolate->heap()->Boolean_string()), "v8::BooleanObject::Cast()", "Could not convert to BooleanObject"); } void v8::RegExp::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSRegExp(), "v8::RegExp::Cast()", "Could not convert to regular expression"); } bool Value::BooleanValue() const { return Utils::OpenHandle(this)->BooleanValue(); } double Value::NumberValue() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::Object> num; if (obj->IsNumber()) { num = obj; } else { i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); LOG_API(isolate, "NumberValue"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToNumber( isolate, obj).ToHandle(&num); EXCEPTION_BAILOUT_CHECK(isolate, base::OS::nan_value()); } return num->Number(); } int64_t Value::IntegerValue() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::Object> num; if (obj->IsNumber()) { num = obj; } else { i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); LOG_API(isolate, "IntegerValue"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToInteger( isolate, obj).ToHandle(&num); EXCEPTION_BAILOUT_CHECK(isolate, 0); } if (num->IsSmi()) { return i::Smi::cast(*num)->value(); } else { return static_cast<int64_t>(num->Number()); } } Local<Int32> Value::ToInt32() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::Object> num; if (obj->IsSmi()) { num = obj; } else { i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); LOG_API(isolate, "ToInt32"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToInt32(isolate, obj).ToHandle(&num); EXCEPTION_BAILOUT_CHECK(isolate, Local<Int32>()); } return ToApiHandle<Int32>(num); } Local<Uint32> Value::ToUint32() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::Object> num; if (obj->IsSmi()) { num = obj; } else { i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); LOG_API(isolate, "ToUInt32"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToUint32( isolate, obj).ToHandle(&num); EXCEPTION_BAILOUT_CHECK(isolate, Local<Uint32>()); } return ToApiHandle<Uint32>(num); } Local<Uint32> Value::ToArrayIndex() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { if (i::Smi::cast(*obj)->value() >= 0) return Utils::Uint32ToLocal(obj); return Local<Uint32>(); } i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); LOG_API(isolate, "ToArrayIndex"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> string_obj; has_pending_exception = !i::Execution::ToString( isolate, obj).ToHandle(&string_obj); EXCEPTION_BAILOUT_CHECK(isolate, Local<Uint32>()); i::Handle<i::String> str = i::Handle<i::String>::cast(string_obj); uint32_t index; if (str->AsArrayIndex(&index)) { i::Handle<i::Object> value; if (index <= static_cast<uint32_t>(i::Smi::kMaxValue)) { value = i::Handle<i::Object>(i::Smi::FromInt(index), isolate); } else { value = isolate->factory()->NewNumber(index); } return Utils::Uint32ToLocal(value); } return Local<Uint32>(); } int32_t Value::Int32Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::cast(*obj)->value(); } else { i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); LOG_API(isolate, "Int32Value (slow)"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> num; has_pending_exception = !i::Execution::ToInt32(isolate, obj).ToHandle(&num); EXCEPTION_BAILOUT_CHECK(isolate, 0); if (num->IsSmi()) { return i::Smi::cast(*num)->value(); } else { return static_cast<int32_t>(num->Number()); } } } bool Value::Equals(Handle<Value> that) const { i::Isolate* isolate = i::Isolate::Current(); i::Handle<i::Object> obj = Utils::OpenHandle(this, true); if (!Utils::ApiCheck(!obj.is_null() && !that.IsEmpty(), "v8::Value::Equals()", "Reading from empty handle")) { return false; } LOG_API(isolate, "Equals"); ENTER_V8(isolate); i::Handle<i::Object> other = Utils::OpenHandle(*that); // If both obj and other are JSObjects, we'd better compare by identity // immediately when going into JS builtin. The reason is Invoke // would overwrite global object receiver with global proxy. if (obj->IsJSObject() && other->IsJSObject()) { return *obj == *other; } i::Handle<i::Object> args[] = { other }; EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> result; has_pending_exception = !CallV8HeapFunction( "EQUALS", obj, arraysize(args), args).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, false); return *result == i::Smi::FromInt(i::EQUAL); } bool Value::StrictEquals(Handle<Value> that) const { i::Isolate* isolate = i::Isolate::Current(); i::Handle<i::Object> obj = Utils::OpenHandle(this, true); if (!Utils::ApiCheck(!obj.is_null() && !that.IsEmpty(), "v8::Value::StrictEquals()", "Reading from empty handle")) { return false; } LOG_API(isolate, "StrictEquals"); i::Handle<i::Object> other = Utils::OpenHandle(*that); // Must check HeapNumber first, since NaN !== NaN. if (obj->IsHeapNumber()) { if (!other->IsNumber()) return false; double x = obj->Number(); double y = other->Number(); // Must check explicitly for NaN:s on Windows, but -0 works fine. return x == y && !std::isnan(x) && !std::isnan(y); } else if (*obj == *other) { // Also covers Booleans. return true; } else if (obj->IsSmi()) { return other->IsNumber() && obj->Number() == other->Number(); } else if (obj->IsString()) { return other->IsString() && i::String::Equals(i::Handle<i::String>::cast(obj), i::Handle<i::String>::cast(other)); } else if (obj->IsUndefined() || obj->IsUndetectableObject()) { return other->IsUndefined() || other->IsUndetectableObject(); } else { return false; } } bool Value::SameValue(Handle<Value> that) const { i::Handle<i::Object> obj = Utils::OpenHandle(this, true); if (!Utils::ApiCheck(!obj.is_null() && !that.IsEmpty(), "v8::Value::SameValue()", "Reading from empty handle")) { return false; } i::Handle<i::Object> other = Utils::OpenHandle(*that); return obj->SameValue(*other); } uint32_t Value::Uint32Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::cast(*obj)->value(); } else { i::Isolate* isolate = i::HeapObject::cast(*obj)->GetIsolate(); LOG_API(isolate, "Uint32Value"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> num; has_pending_exception = !i::Execution::ToUint32( isolate, obj).ToHandle(&num); EXCEPTION_BAILOUT_CHECK(isolate, 0); if (num->IsSmi()) { return i::Smi::cast(*num)->value(); } else { return static_cast<uint32_t>(num->Number()); } } } bool v8::Object::Set(v8::Handle<Value> key, v8::Handle<Value> value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::Set()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::Object> self = Utils::OpenHandle(this); i::Handle<i::Object> key_obj = Utils::OpenHandle(*key); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); EXCEPTION_PREAMBLE(isolate); has_pending_exception = i::Runtime::SetObjectProperty(isolate, self, key_obj, value_obj, i::SLOPPY).is_null(); EXCEPTION_BAILOUT_CHECK(isolate, false); return true; } bool v8::Object::Set(uint32_t index, v8::Handle<Value> value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::Set()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); EXCEPTION_PREAMBLE(isolate); has_pending_exception = i::JSObject::SetElement( self, index, value_obj, NONE, i::SLOPPY).is_null(); EXCEPTION_BAILOUT_CHECK(isolate, false); return true; } bool v8::Object::ForceSet(v8::Handle<Value> key, v8::Handle<Value> value, v8::PropertyAttribute attribs) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::ForceSet()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::Object> key_obj = Utils::OpenHandle(*key); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); EXCEPTION_PREAMBLE(isolate); has_pending_exception = i::Runtime::DefineObjectProperty( self, key_obj, value_obj, static_cast<PropertyAttributes>(attribs)).is_null(); EXCEPTION_BAILOUT_CHECK(isolate, false); return true; } bool v8::Object::SetPrivate(v8::Handle<Private> key, v8::Handle<Value> value) { return ForceSet(v8::Handle<Value>(reinterpret_cast<Value*>(*key)), value, DontEnum); } bool v8::Object::ForceDelete(v8::Handle<Value> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::ForceDelete()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::Object> key_obj = Utils::OpenHandle(*key); // When deleting a property on the global object using ForceDelete // deoptimize all functions as optimized code does not check for the hole // value with DontDelete properties. We have to deoptimize all contexts // because of possible cross-context inlined functions. if (self->IsJSGlobalProxy() || self->IsGlobalObject()) { i::Deoptimizer::DeoptimizeAll(isolate); } EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> obj; has_pending_exception = !i::Runtime::DeleteObjectProperty( isolate, self, key_obj, i::JSReceiver::FORCE_DELETION).ToHandle(&obj); EXCEPTION_BAILOUT_CHECK(isolate, false); return obj->IsTrue(); } Local<Value> v8::Object::Get(v8::Handle<Value> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::Get()", return Local<v8::Value>()); ENTER_V8(isolate); i::Handle<i::Object> self = Utils::OpenHandle(this); i::Handle<i::Object> key_obj = Utils::OpenHandle(*key); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> result; has_pending_exception = !i::Runtime::GetObjectProperty(isolate, self, key_obj).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>()); return Utils::ToLocal(result); } Local<Value> v8::Object::Get(uint32_t index) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::Get()", return Local<v8::Value>()); ENTER_V8(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> result; has_pending_exception = !i::Object::GetElement(isolate, self, index).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>()); return Utils::ToLocal(result); } Local<Value> v8::Object::GetPrivate(v8::Handle<Private> key) { return Get(v8::Handle<Value>(reinterpret_cast<Value*>(*key))); } PropertyAttribute v8::Object::GetPropertyAttributes(v8::Handle<Value> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetPropertyAttributes()", return static_cast<PropertyAttribute>(NONE)); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::Object> key_obj = Utils::OpenHandle(*key); if (!key_obj->IsName()) { EXCEPTION_PREAMBLE(isolate); has_pending_exception = !i::Execution::ToString( isolate, key_obj).ToHandle(&key_obj); EXCEPTION_BAILOUT_CHECK(isolate, static_cast<PropertyAttribute>(NONE)); } i::Handle<i::Name> key_name = i::Handle<i::Name>::cast(key_obj); EXCEPTION_PREAMBLE(isolate); Maybe<PropertyAttributes> result = i::JSReceiver::GetPropertyAttributes(self, key_name); has_pending_exception = !result.has_value; EXCEPTION_BAILOUT_CHECK(isolate, static_cast<PropertyAttribute>(NONE)); if (result.value == ABSENT) return static_cast<PropertyAttribute>(NONE); return static_cast<PropertyAttribute>(result.value); } Local<Value> v8::Object::GetOwnPropertyDescriptor(Local<String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetOwnPropertyDescriptor()", return Local<Value>()); ENTER_V8(isolate); i::Handle<i::JSObject> obj = Utils::OpenHandle(this); i::Handle<i::Name> key_name = Utils::OpenHandle(*key); i::Handle<i::Object> args[] = { obj, key_name }; EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> result; has_pending_exception = !CallV8HeapFunction( "ObjectGetOwnPropertyDescriptor", isolate->factory()->undefined_value(), arraysize(args), args).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>()); return Utils::ToLocal(result); } Local<Value> v8::Object::GetPrototype() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetPrototype()", return Local<v8::Value>()); ENTER_V8(isolate); i::Handle<i::Object> self = Utils::OpenHandle(this); i::PrototypeIterator iter(isolate, self); return Utils::ToLocal(i::PrototypeIterator::GetCurrent(iter)); } bool v8::Object::SetPrototype(Handle<Value> value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::SetPrototype()", return false); ENTER_V8(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); // We do not allow exceptions thrown while setting the prototype // to propagate outside. TryCatch try_catch; EXCEPTION_PREAMBLE(isolate); i::MaybeHandle<i::Object> result = i::JSObject::SetPrototype(self, value_obj, false); has_pending_exception = result.is_null(); EXCEPTION_BAILOUT_CHECK(isolate, false); return true; } Local<Object> v8::Object::FindInstanceInPrototypeChain( v8::Handle<FunctionTemplate> tmpl) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::FindInstanceInPrototypeChain()", return Local<v8::Object>()); ENTER_V8(isolate); i::PrototypeIterator iter(isolate, *Utils::OpenHandle(this), i::PrototypeIterator::START_AT_RECEIVER); i::FunctionTemplateInfo* tmpl_info = *Utils::OpenHandle(*tmpl); while (!tmpl_info->IsTemplateFor(iter.GetCurrent())) { iter.Advance(); if (iter.IsAtEnd()) { return Local<Object>(); } } return Utils::ToLocal( i::handle(i::JSObject::cast(iter.GetCurrent()), isolate)); } Local<Array> v8::Object::GetPropertyNames() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetPropertyNames()", return Local<v8::Array>()); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); EXCEPTION_PREAMBLE(isolate); i::Handle<i::FixedArray> value; has_pending_exception = !i::JSReceiver::GetKeys( self, i::JSReceiver::INCLUDE_PROTOS).ToHandle(&value); EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Array>()); // Because we use caching to speed up enumeration it is important // to never change the result of the basic enumeration function so // we clone the result. i::Handle<i::FixedArray> elms = isolate->factory()->CopyFixedArray(value); i::Handle<i::JSArray> result = isolate->factory()->NewJSArrayWithElements(elms); return Utils::ToLocal(scope.CloseAndEscape(result)); } Local<Array> v8::Object::GetOwnPropertyNames() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetOwnPropertyNames()", return Local<v8::Array>()); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); EXCEPTION_PREAMBLE(isolate); i::Handle<i::FixedArray> value; has_pending_exception = !i::JSReceiver::GetKeys( self, i::JSReceiver::OWN_ONLY).ToHandle(&value); EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Array>()); // Because we use caching to speed up enumeration it is important // to never change the result of the basic enumeration function so // we clone the result. i::Handle<i::FixedArray> elms = isolate->factory()->CopyFixedArray(value); i::Handle<i::JSArray> result = isolate->factory()->NewJSArrayWithElements(elms); return Utils::ToLocal(scope.CloseAndEscape(result)); } Local<String> v8::Object::ObjectProtoToString() { i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate(); Isolate* isolate = reinterpret_cast<Isolate*>(i_isolate); ON_BAILOUT(i_isolate, "v8::Object::ObjectProtoToString()", return Local<v8::String>()); ENTER_V8(i_isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::Object> name(self->class_name(), i_isolate); // Native implementation of Object.prototype.toString (v8natives.js): // var c = %_ClassOf(this); // if (c === 'Arguments') c = 'Object'; // return "[object " + c + "]"; if (!name->IsString()) { return v8::String::NewFromUtf8(isolate, "[object ]"); } else { i::Handle<i::String> class_name = i::Handle<i::String>::cast(name); if (i::String::Equals(class_name, i_isolate->factory()->Arguments_string())) { return v8::String::NewFromUtf8(isolate, "[object Object]"); } else { const char* prefix = "[object "; Local<String> str = Utils::ToLocal(class_name); const char* postfix = "]"; int prefix_len = i::StrLength(prefix); int str_len = str->Utf8Length(); int postfix_len = i::StrLength(postfix); int buf_len = prefix_len + str_len + postfix_len; i::ScopedVector<char> buf(buf_len); // Write prefix. char* ptr = buf.start(); i::MemCopy(ptr, prefix, prefix_len * v8::internal::kCharSize); ptr += prefix_len; // Write real content. str->WriteUtf8(ptr, str_len); ptr += str_len; // Write postfix. i::MemCopy(ptr, postfix, postfix_len * v8::internal::kCharSize); // Copy the buffer into a heap-allocated string and return it. Local<String> result = v8::String::NewFromUtf8( isolate, buf.start(), String::kNormalString, buf_len); return result; } } } Local<String> v8::Object::GetConstructorName() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetConstructorName()", return Local<v8::String>()); ENTER_V8(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::String> name(self->constructor_name()); return Utils::ToLocal(name); } bool v8::Object::Delete(v8::Handle<Value> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::Delete()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::Object> key_obj = Utils::OpenHandle(*key); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> obj; has_pending_exception = !i::Runtime::DeleteObjectProperty( isolate, self, key_obj, i::JSReceiver::NORMAL_DELETION).ToHandle(&obj); EXCEPTION_BAILOUT_CHECK(isolate, false); return obj->IsTrue(); } bool v8::Object::DeletePrivate(v8::Handle<Private> key) { return Delete(v8::Handle<Value>(reinterpret_cast<Value*>(*key))); } bool v8::Object::Has(v8::Handle<Value> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::Has()", return false); ENTER_V8(isolate); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Object> key_obj = Utils::OpenHandle(*key); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> obj; has_pending_exception = !i::Runtime::HasObjectProperty( isolate, self, key_obj).ToHandle(&obj); EXCEPTION_BAILOUT_CHECK(isolate, false); return obj->IsTrue(); } bool v8::Object::HasPrivate(v8::Handle<Private> key) { // TODO(rossberg): this should use HasOwnProperty, but we'd need to // generalise that to a (noy yet existant) Name argument first. return Has(v8::Handle<Value>(reinterpret_cast<Value*>(*key))); } bool v8::Object::Delete(uint32_t index) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::DeleteProperty()", return false); ENTER_V8(isolate); HandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::JSObject> self = Utils::OpenHandle(this); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> obj; has_pending_exception = !i::JSReceiver::DeleteElement(self, index).ToHandle(&obj); EXCEPTION_BAILOUT_CHECK(isolate, false); return obj->IsTrue(); } bool v8::Object::Has(uint32_t index) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::HasProperty()", return false); i::Handle<i::JSObject> self = Utils::OpenHandle(this); EXCEPTION_PREAMBLE(isolate); Maybe<bool> maybe = i::JSReceiver::HasElement(self, index); has_pending_exception = !maybe.has_value; EXCEPTION_BAILOUT_CHECK(isolate, false); return maybe.value; } template<typename Getter, typename Setter, typename Data> static inline bool ObjectSetAccessor(Object* obj, Handle<Name> name, Getter getter, Setter setter, Data data, AccessControl settings, PropertyAttribute attributes) { i::Isolate* isolate = Utils::OpenHandle(obj)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::SetAccessor()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); v8::Handle<AccessorSignature> signature; i::Handle<i::AccessorInfo> info = MakeAccessorInfo( name, getter, setter, data, settings, attributes, signature); if (info.is_null()) return false; bool fast = Utils::OpenHandle(obj)->HasFastProperties(); i::Handle<i::Object> result; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, result, i::JSObject::SetAccessor(Utils::OpenHandle(obj), info), false); if (result->IsUndefined()) return false; if (fast) i::JSObject::MigrateSlowToFast(Utils::OpenHandle(obj), 0); return true; } bool Object::SetAccessor(Handle<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter, v8::Handle<Value> data, AccessControl settings, PropertyAttribute attributes) { return ObjectSetAccessor( this, name, getter, setter, data, settings, attributes); } bool Object::SetAccessor(Handle<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, v8::Handle<Value> data, AccessControl settings, PropertyAttribute attributes) { return ObjectSetAccessor( this, name, getter, setter, data, settings, attributes); } bool Object::SetDeclaredAccessor(Local<Name> name, Local<DeclaredAccessorDescriptor> descriptor, PropertyAttribute attributes, AccessControl settings) { void* null = NULL; return ObjectSetAccessor( this, name, descriptor, null, null, settings, attributes); } void Object::SetAccessorProperty(Local<Name> name, Local<Function> getter, Handle<Function> setter, PropertyAttribute attribute, AccessControl settings) { // TODO(verwaest): Remove |settings|. DCHECK_EQ(v8::DEFAULT, settings); i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::SetAccessorProperty()", return); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::Object> getter_i = v8::Utils::OpenHandle(*getter); i::Handle<i::Object> setter_i = v8::Utils::OpenHandle(*setter, true); if (setter_i.is_null()) setter_i = isolate->factory()->null_value(); i::JSObject::DefineAccessor(v8::Utils::OpenHandle(this), v8::Utils::OpenHandle(*name), getter_i, setter_i, static_cast<PropertyAttributes>(attribute)); } bool v8::Object::HasOwnProperty(Handle<String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::HasOwnProperty()", return false); EXCEPTION_PREAMBLE(isolate); Maybe<bool> maybe = i::JSReceiver::HasOwnProperty(Utils::OpenHandle(this), Utils::OpenHandle(*key)); has_pending_exception = !maybe.has_value; EXCEPTION_BAILOUT_CHECK(isolate, false); return maybe.value; } bool v8::Object::HasRealNamedProperty(Handle<String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::HasRealNamedProperty()", return false); EXCEPTION_PREAMBLE(isolate); Maybe<bool> maybe = i::JSObject::HasRealNamedProperty( Utils::OpenHandle(this), Utils::OpenHandle(*key)); has_pending_exception = !maybe.has_value; EXCEPTION_BAILOUT_CHECK(isolate, false); return maybe.value; } bool v8::Object::HasRealIndexedProperty(uint32_t index) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::HasRealIndexedProperty()", return false); EXCEPTION_PREAMBLE(isolate); Maybe<bool> maybe = i::JSObject::HasRealElementProperty(Utils::OpenHandle(this), index); has_pending_exception = !maybe.has_value; EXCEPTION_BAILOUT_CHECK(isolate, false); return maybe.value; } bool v8::Object::HasRealNamedCallbackProperty(Handle<String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::HasRealNamedCallbackProperty()", return false); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); Maybe<bool> maybe = i::JSObject::HasRealNamedCallbackProperty( Utils::OpenHandle(this), Utils::OpenHandle(*key)); has_pending_exception = !maybe.has_value; EXCEPTION_BAILOUT_CHECK(isolate, false); return maybe.value; } bool v8::Object::HasNamedLookupInterceptor() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::HasNamedLookupInterceptor()", return false); return Utils::OpenHandle(this)->HasNamedInterceptor(); } bool v8::Object::HasIndexedLookupInterceptor() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::HasIndexedLookupInterceptor()", return false); return Utils::OpenHandle(this)->HasIndexedInterceptor(); } static Local<Value> GetPropertyByLookup(i::LookupIterator* it) { // If the property being looked up is a callback, it can throw an exception. EXCEPTION_PREAMBLE(it->isolate()); i::Handle<i::Object> result; has_pending_exception = !i::Object::GetProperty(it).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(it->isolate(), Local<Value>()); if (it->IsFound()) return Utils::ToLocal(result); return Local<Value>(); } Local<Value> v8::Object::GetRealNamedPropertyInPrototypeChain( Handle<String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetRealNamedPropertyInPrototypeChain()", return Local<Value>()); ENTER_V8(isolate); i::Handle<i::JSObject> self_obj = Utils::OpenHandle(this); i::Handle<i::String> key_obj = Utils::OpenHandle(*key); i::PrototypeIterator iter(isolate, self_obj); if (iter.IsAtEnd()) return Local<Value>(); i::Handle<i::Object> proto = i::PrototypeIterator::GetCurrent(iter); i::LookupIterator it(self_obj, key_obj, i::Handle<i::JSReceiver>::cast(proto), i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); return GetPropertyByLookup(&it); } Local<Value> v8::Object::GetRealNamedProperty(Handle<String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetRealNamedProperty()", return Local<Value>()); ENTER_V8(isolate); i::Handle<i::JSObject> self_obj = Utils::OpenHandle(this); i::Handle<i::String> key_obj = Utils::OpenHandle(*key); i::LookupIterator it(self_obj, key_obj, i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); return GetPropertyByLookup(&it); } // Turns on access checks by copying the map and setting the check flag. // Because the object gets a new map, existing inline cache caching // the old map of this object will fail. void v8::Object::TurnOnAccessCheck() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::TurnOnAccessCheck()", return); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> obj = Utils::OpenHandle(this); // When turning on access checks for a global object deoptimize all functions // as optimized code does not always handle access checks. i::Deoptimizer::DeoptimizeGlobalObject(*obj); i::Handle<i::Map> new_map = i::Map::Copy(i::Handle<i::Map>(obj->map())); new_map->set_is_access_check_needed(true); i::JSObject::MigrateToMap(obj, new_map); } bool v8::Object::IsDirty() { return Utils::OpenHandle(this)->IsDirty(); } Local<v8::Object> v8::Object::Clone() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::Clone()", return Local<Object>()); ENTER_V8(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); EXCEPTION_PREAMBLE(isolate); i::Handle<i::JSObject> result = isolate->factory()->CopyJSObject(self); has_pending_exception = result.is_null(); EXCEPTION_BAILOUT_CHECK(isolate, Local<Object>()); return Utils::ToLocal(result); } Local<v8::Context> v8::Object::CreationContext() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::CreationContext()", return Local<v8::Context>()); ENTER_V8(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Context* context = self->GetCreationContext(); return Utils::ToLocal(i::Handle<i::Context>(context)); } int v8::Object::GetIdentityHash() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetIdentityHash()", return 0); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); return i::JSReceiver::GetOrCreateIdentityHash(self)->value(); } bool v8::Object::SetHiddenValue(v8::Handle<v8::String> key, v8::Handle<v8::Value> value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::SetHiddenValue()", return false); if (value.IsEmpty()) return DeleteHiddenValue(key); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::String> key_obj = Utils::OpenHandle(*key); i::Handle<i::String> key_string = isolate->factory()->InternalizeString(key_obj); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); i::Handle<i::Object> result = i::JSObject::SetHiddenProperty(self, key_string, value_obj); return *result == *self; } v8::Local<v8::Value> v8::Object::GetHiddenValue(v8::Handle<v8::String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::GetHiddenValue()", return Local<v8::Value>()); ENTER_V8(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::String> key_obj = Utils::OpenHandle(*key); i::Handle<i::String> key_string = isolate->factory()->InternalizeString(key_obj); i::Handle<i::Object> result(self->GetHiddenProperty(key_string), isolate); if (result->IsTheHole()) return v8::Local<v8::Value>(); return Utils::ToLocal(result); } bool v8::Object::DeleteHiddenValue(v8::Handle<v8::String> key) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::DeleteHiddenValue()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> self = Utils::OpenHandle(this); i::Handle<i::String> key_obj = Utils::OpenHandle(*key); i::Handle<i::String> key_string = isolate->factory()->InternalizeString(key_obj); i::JSObject::DeleteHiddenProperty(self, key_string); return true; } namespace { static i::ElementsKind GetElementsKindFromExternalArrayType( ExternalArrayType array_type) { switch (array_type) { #define ARRAY_TYPE_TO_ELEMENTS_KIND(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ return i::EXTERNAL_##TYPE##_ELEMENTS; TYPED_ARRAYS(ARRAY_TYPE_TO_ELEMENTS_KIND) #undef ARRAY_TYPE_TO_ELEMENTS_KIND } UNREACHABLE(); return i::DICTIONARY_ELEMENTS; } void PrepareExternalArrayElements(i::Handle<i::JSObject> object, void* data, ExternalArrayType array_type, int length) { i::Isolate* isolate = object->GetIsolate(); i::Handle<i::ExternalArray> array = isolate->factory()->NewExternalArray(length, array_type, data); i::Handle<i::Map> external_array_map = i::JSObject::GetElementsTransitionMap( object, GetElementsKindFromExternalArrayType(array_type)); i::JSObject::SetMapAndElements(object, external_array_map, array); } } // namespace void v8::Object::SetIndexedPropertiesToPixelData(uint8_t* data, int length) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::SetElementsToPixelData()", return); ENTER_V8(isolate); i::HandleScope scope(isolate); if (!Utils::ApiCheck(length >= 0 && length <= i::ExternalUint8ClampedArray::kMaxLength, "v8::Object::SetIndexedPropertiesToPixelData()", "length exceeds max acceptable value")) { return; } i::Handle<i::JSObject> self = Utils::OpenHandle(this); if (!Utils::ApiCheck(!self->IsJSArray(), "v8::Object::SetIndexedPropertiesToPixelData()", "JSArray is not supported")) { return; } PrepareExternalArrayElements(self, data, kExternalUint8ClampedArray, length); } bool v8::Object::HasIndexedPropertiesInPixelData() { i::Handle<i::JSObject> self = Utils::OpenHandle(this); ON_BAILOUT(self->GetIsolate(), "v8::HasIndexedPropertiesInPixelData()", return false); return self->HasExternalUint8ClampedElements(); } uint8_t* v8::Object::GetIndexedPropertiesPixelData() { i::Handle<i::JSObject> self = Utils::OpenHandle(this); ON_BAILOUT(self->GetIsolate(), "v8::GetIndexedPropertiesPixelData()", return NULL); if (self->HasExternalUint8ClampedElements()) { return i::ExternalUint8ClampedArray::cast(self->elements())-> external_uint8_clamped_pointer(); } else { return NULL; } } int v8::Object::GetIndexedPropertiesPixelDataLength() { i::Handle<i::JSObject> self = Utils::OpenHandle(this); ON_BAILOUT(self->GetIsolate(), "v8::GetIndexedPropertiesPixelDataLength()", return -1); if (self->HasExternalUint8ClampedElements()) { return i::ExternalUint8ClampedArray::cast(self->elements())->length(); } else { return -1; } } void v8::Object::SetIndexedPropertiesToExternalArrayData( void* data, ExternalArrayType array_type, int length) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::SetIndexedPropertiesToExternalArrayData()", return); ENTER_V8(isolate); i::HandleScope scope(isolate); if (!Utils::ApiCheck(length >= 0 && length <= i::ExternalArray::kMaxLength, "v8::Object::SetIndexedPropertiesToExternalArrayData()", "length exceeds max acceptable value")) { return; } i::Handle<i::JSObject> self = Utils::OpenHandle(this); if (!Utils::ApiCheck(!self->IsJSArray(), "v8::Object::SetIndexedPropertiesToExternalArrayData()", "JSArray is not supported")) { return; } PrepareExternalArrayElements(self, data, array_type, length); } bool v8::Object::HasIndexedPropertiesInExternalArrayData() { i::Handle<i::JSObject> self = Utils::OpenHandle(this); ON_BAILOUT(self->GetIsolate(), "v8::HasIndexedPropertiesInExternalArrayData()", return false); return self->HasExternalArrayElements(); } void* v8::Object::GetIndexedPropertiesExternalArrayData() { i::Handle<i::JSObject> self = Utils::OpenHandle(this); ON_BAILOUT(self->GetIsolate(), "v8::GetIndexedPropertiesExternalArrayData()", return NULL); if (self->HasExternalArrayElements()) { return i::ExternalArray::cast(self->elements())->external_pointer(); } else { return NULL; } } ExternalArrayType v8::Object::GetIndexedPropertiesExternalArrayDataType() { i::Handle<i::JSObject> self = Utils::OpenHandle(this); ON_BAILOUT(self->GetIsolate(), "v8::GetIndexedPropertiesExternalArrayDataType()", return static_cast<ExternalArrayType>(-1)); switch (self->elements()->map()->instance_type()) { #define INSTANCE_TYPE_TO_ARRAY_TYPE(Type, type, TYPE, ctype, size) \ case i::EXTERNAL_##TYPE##_ARRAY_TYPE: \ return kExternal##Type##Array; TYPED_ARRAYS(INSTANCE_TYPE_TO_ARRAY_TYPE) #undef INSTANCE_TYPE_TO_ARRAY_TYPE default: return static_cast<ExternalArrayType>(-1); } } int v8::Object::GetIndexedPropertiesExternalArrayDataLength() { i::Handle<i::JSObject> self = Utils::OpenHandle(this); ON_BAILOUT(self->GetIsolate(), "v8::GetIndexedPropertiesExternalArrayDataLength()", return 0); if (self->HasExternalArrayElements()) { return i::ExternalArray::cast(self->elements())->length(); } else { return -1; } } bool v8::Object::IsCallable() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::IsCallable()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> obj = Utils::OpenHandle(this); return obj->IsCallable(); } Local<v8::Value> Object::CallAsFunction(v8::Handle<v8::Value> recv, int argc, v8::Handle<v8::Value> argv[]) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::CallAsFunction()", return Local<v8::Value>()); LOG_API(isolate, "Object::CallAsFunction"); ENTER_V8(isolate); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> obj = Utils::OpenHandle(this); i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv); STATIC_ASSERT(sizeof(v8::Handle<v8::Value>) == sizeof(i::Object**)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>(); if (obj->IsJSFunction()) { fun = i::Handle<i::JSFunction>::cast(obj); } else { EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> delegate; has_pending_exception = !i::Execution::TryGetFunctionDelegate( isolate, obj).ToHandle(&delegate); EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>()); fun = i::Handle<i::JSFunction>::cast(delegate); recv_obj = obj; } EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> returned; has_pending_exception = !i::Execution::Call( isolate, fun, recv_obj, argc, args, true).ToHandle(&returned); EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<Value>()); return Utils::ToLocal(scope.CloseAndEscape(returned)); } Local<v8::Value> Object::CallAsConstructor(int argc, v8::Handle<v8::Value> argv[]) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Object::CallAsConstructor()", return Local<v8::Object>()); LOG_API(isolate, "Object::CallAsConstructor"); ENTER_V8(isolate); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); i::HandleScope scope(isolate); i::Handle<i::JSObject> obj = Utils::OpenHandle(this); STATIC_ASSERT(sizeof(v8::Handle<v8::Value>) == sizeof(i::Object**)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); if (obj->IsJSFunction()) { i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(obj); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> returned; has_pending_exception = !i::Execution::New( fun, argc, args).ToHandle(&returned); EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<v8::Object>()); return Utils::ToLocal(scope.CloseAndEscape( i::Handle<i::JSObject>::cast(returned))); } EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> delegate; has_pending_exception = !i::Execution::TryGetConstructorDelegate( isolate, obj).ToHandle(&delegate); EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Object>()); if (!delegate->IsUndefined()) { i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(delegate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> returned; has_pending_exception = !i::Execution::Call( isolate, fun, obj, argc, args).ToHandle(&returned); EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<v8::Object>()); DCHECK(!delegate->IsUndefined()); return Utils::ToLocal(scope.CloseAndEscape(returned)); } return Local<v8::Object>(); } Local<Function> Function::New(Isolate* v8_isolate, FunctionCallback callback, Local<Value> data, int length) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); LOG_API(isolate, "Function::New"); ENTER_V8(isolate); return FunctionTemplateNew( isolate, callback, data, Local<Signature>(), length, true)-> GetFunction(); } Local<v8::Object> Function::NewInstance() const { return NewInstance(0, NULL); } Local<v8::Object> Function::NewInstance(int argc, v8::Handle<v8::Value> argv[]) const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Function::NewInstance()", return Local<v8::Object>()); LOG_API(isolate, "Function::NewInstance"); ENTER_V8(isolate); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::JSFunction> function = Utils::OpenHandle(this); STATIC_ASSERT(sizeof(v8::Handle<v8::Value>) == sizeof(i::Object**)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> returned; has_pending_exception = !i::Execution::New( function, argc, args).ToHandle(&returned); EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<v8::Object>()); return scope.Escape(Utils::ToLocal(i::Handle<i::JSObject>::cast(returned))); } Local<v8::Value> Function::Call(v8::Handle<v8::Value> recv, int argc, v8::Handle<v8::Value> argv[]) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Function::Call()", return Local<v8::Value>()); LOG_API(isolate, "Function::Call"); ENTER_V8(isolate); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); i::HandleScope scope(isolate); i::Handle<i::JSFunction> fun = Utils::OpenHandle(this); i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv); STATIC_ASSERT(sizeof(v8::Handle<v8::Value>) == sizeof(i::Object**)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> returned; has_pending_exception = !i::Execution::Call( isolate, fun, recv_obj, argc, args, true).ToHandle(&returned); EXCEPTION_BAILOUT_CHECK_DO_CALLBACK(isolate, Local<Object>()); return Utils::ToLocal(scope.CloseAndEscape(returned)); } void Function::SetName(v8::Handle<v8::String> name) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8(isolate); USE(isolate); i::Handle<i::JSFunction> func = Utils::OpenHandle(this); func->shared()->set_name(*Utils::OpenHandle(*name)); } Handle<Value> Function::GetName() const { i::Handle<i::JSFunction> func = Utils::OpenHandle(this); return Utils::ToLocal(i::Handle<i::Object>(func->shared()->name(), func->GetIsolate())); } Handle<Value> Function::GetInferredName() const { i::Handle<i::JSFunction> func = Utils::OpenHandle(this); return Utils::ToLocal(i::Handle<i::Object>(func->shared()->inferred_name(), func->GetIsolate())); } Handle<Value> Function::GetDisplayName() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Function::GetDisplayName()", return ToApiHandle<Primitive>( isolate->factory()->undefined_value())); ENTER_V8(isolate); i::Handle<i::JSFunction> func = Utils::OpenHandle(this); i::Handle<i::String> property_name = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("displayName")); i::Handle<i::Object> value = i::JSObject::GetDataProperty(func, property_name); if (value->IsString()) { i::Handle<i::String> name = i::Handle<i::String>::cast(value); if (name->length() > 0) return Utils::ToLocal(name); } return ToApiHandle<Primitive>(isolate->factory()->undefined_value()); } ScriptOrigin Function::GetScriptOrigin() const { i::Handle<i::JSFunction> func = Utils::OpenHandle(this); if (func->shared()->script()->IsScript()) { i::Handle<i::Script> script(i::Script::cast(func->shared()->script())); i::Handle<i::Object> scriptName = i::Script::GetNameOrSourceURL(script); v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(func->GetIsolate()); v8::ScriptOrigin origin( Utils::ToLocal(scriptName), v8::Integer::New(isolate, script->line_offset()->value()), v8::Integer::New(isolate, script->column_offset()->value())); return origin; } return v8::ScriptOrigin(Handle<Value>()); } const int Function::kLineOffsetNotFound = -1; int Function::GetScriptLineNumber() const { i::Handle<i::JSFunction> func = Utils::OpenHandle(this); if (func->shared()->script()->IsScript()) { i::Handle<i::Script> script(i::Script::cast(func->shared()->script())); return i::Script::GetLineNumber(script, func->shared()->start_position()); } return kLineOffsetNotFound; } int Function::GetScriptColumnNumber() const { i::Handle<i::JSFunction> func = Utils::OpenHandle(this); if (func->shared()->script()->IsScript()) { i::Handle<i::Script> script(i::Script::cast(func->shared()->script())); return i::Script::GetColumnNumber(script, func->shared()->start_position()); } return kLineOffsetNotFound; } bool Function::IsBuiltin() const { i::Handle<i::JSFunction> func = Utils::OpenHandle(this); return func->IsBuiltin(); } int Function::ScriptId() const { i::Handle<i::JSFunction> func = Utils::OpenHandle(this); if (!func->shared()->script()->IsScript()) { return v8::UnboundScript::kNoScriptId; } i::Handle<i::Script> script(i::Script::cast(func->shared()->script())); return script->id()->value(); } Local<v8::Value> Function::GetBoundFunction() const { i::Handle<i::JSFunction> func = Utils::OpenHandle(this); if (!func->shared()->bound()) { return v8::Undefined(reinterpret_cast<v8::Isolate*>(func->GetIsolate())); } i::Handle<i::FixedArray> bound_args = i::Handle<i::FixedArray>( i::FixedArray::cast(func->function_bindings())); i::Handle<i::Object> original( bound_args->get(i::JSFunction::kBoundFunctionIndex), func->GetIsolate()); return Utils::ToLocal(i::Handle<i::JSFunction>::cast(original)); } int String::Length() const { i::Handle<i::String> str = Utils::OpenHandle(this); return str->length(); } bool String::IsOneByte() const { i::Handle<i::String> str = Utils::OpenHandle(this); return str->HasOnlyOneByteChars(); } // Helpers for ContainsOnlyOneByteHelper template<size_t size> struct OneByteMask; template<> struct OneByteMask<4> { static const uint32_t value = 0xFF00FF00; }; template<> struct OneByteMask<8> { static const uint64_t value = V8_2PART_UINT64_C(0xFF00FF00, FF00FF00); }; static const uintptr_t kOneByteMask = OneByteMask<sizeof(uintptr_t)>::value; static const uintptr_t kAlignmentMask = sizeof(uintptr_t) - 1; static inline bool Unaligned(const uint16_t* chars) { return reinterpret_cast<const uintptr_t>(chars) & kAlignmentMask; } static inline const uint16_t* Align(const uint16_t* chars) { return reinterpret_cast<uint16_t*>( reinterpret_cast<uintptr_t>(chars) & ~kAlignmentMask); } class ContainsOnlyOneByteHelper { public: ContainsOnlyOneByteHelper() : is_one_byte_(true) {} bool Check(i::String* string) { i::ConsString* cons_string = i::String::VisitFlat(this, string, 0); if (cons_string == NULL) return is_one_byte_; return CheckCons(cons_string); } void VisitOneByteString(const uint8_t* chars, int length) { // Nothing to do. } void VisitTwoByteString(const uint16_t* chars, int length) { // Accumulated bits. uintptr_t acc = 0; // Align to uintptr_t. const uint16_t* end = chars + length; while (Unaligned(chars) && chars != end) { acc |= *chars++; } // Read word aligned in blocks, // checking the return value at the end of each block. const uint16_t* aligned_end = Align(end); const int increment = sizeof(uintptr_t)/sizeof(uint16_t); const int inner_loops = 16; while (chars + inner_loops*increment < aligned_end) { for (int i = 0; i < inner_loops; i++) { acc |= *reinterpret_cast<const uintptr_t*>(chars); chars += increment; } // Check for early return. if ((acc & kOneByteMask) != 0) { is_one_byte_ = false; return; } } // Read the rest. while (chars != end) { acc |= *chars++; } // Check result. if ((acc & kOneByteMask) != 0) is_one_byte_ = false; } private: bool CheckCons(i::ConsString* cons_string) { while (true) { // Check left side if flat. i::String* left = cons_string->first(); i::ConsString* left_as_cons = i::String::VisitFlat(this, left, 0); if (!is_one_byte_) return false; // Check right side if flat. i::String* right = cons_string->second(); i::ConsString* right_as_cons = i::String::VisitFlat(this, right, 0); if (!is_one_byte_) return false; // Standard recurse/iterate trick. if (left_as_cons != NULL && right_as_cons != NULL) { if (left->length() < right->length()) { CheckCons(left_as_cons); cons_string = right_as_cons; } else { CheckCons(right_as_cons); cons_string = left_as_cons; } // Check fast return. if (!is_one_byte_) return false; continue; } // Descend left in place. if (left_as_cons != NULL) { cons_string = left_as_cons; continue; } // Descend right in place. if (right_as_cons != NULL) { cons_string = right_as_cons; continue; } // Terminate. break; } return is_one_byte_; } bool is_one_byte_; DISALLOW_COPY_AND_ASSIGN(ContainsOnlyOneByteHelper); }; bool String::ContainsOnlyOneByte() const { i::Handle<i::String> str = Utils::OpenHandle(this); if (str->HasOnlyOneByteChars()) return true; ContainsOnlyOneByteHelper helper; return helper.Check(*str); } class Utf8LengthHelper : public i::AllStatic { public: enum State { kEndsWithLeadingSurrogate = 1 << 0, kStartsWithTrailingSurrogate = 1 << 1, kLeftmostEdgeIsCalculated = 1 << 2, kRightmostEdgeIsCalculated = 1 << 3, kLeftmostEdgeIsSurrogate = 1 << 4, kRightmostEdgeIsSurrogate = 1 << 5 }; static const uint8_t kInitialState = 0; static inline bool EndsWithSurrogate(uint8_t state) { return state & kEndsWithLeadingSurrogate; } static inline bool StartsWithSurrogate(uint8_t state) { return state & kStartsWithTrailingSurrogate; } class Visitor { public: Visitor() : utf8_length_(0), state_(kInitialState) {} void VisitOneByteString(const uint8_t* chars, int length) { int utf8_length = 0; // Add in length 1 for each non-Latin1 character. for (int i = 0; i < length; i++) { utf8_length += *chars++ >> 7; } // Add in length 1 for each character. utf8_length_ = utf8_length + length; state_ = kInitialState; } void VisitTwoByteString(const uint16_t* chars, int length) { int utf8_length = 0; int last_character = unibrow::Utf16::kNoPreviousCharacter; for (int i = 0; i < length; i++) { uint16_t c = chars[i]; utf8_length += unibrow::Utf8::Length(c, last_character); last_character = c; } utf8_length_ = utf8_length; uint8_t state = 0; if (unibrow::Utf16::IsTrailSurrogate(chars[0])) { state |= kStartsWithTrailingSurrogate; } if (unibrow::Utf16::IsLeadSurrogate(chars[length-1])) { state |= kEndsWithLeadingSurrogate; } state_ = state; } static i::ConsString* VisitFlat(i::String* string, int* length, uint8_t* state) { Visitor visitor; i::ConsString* cons_string = i::String::VisitFlat(&visitor, string); *length = visitor.utf8_length_; *state = visitor.state_; return cons_string; } private: int utf8_length_; uint8_t state_; DISALLOW_COPY_AND_ASSIGN(Visitor); }; static inline void MergeLeafLeft(int* length, uint8_t* state, uint8_t leaf_state) { bool edge_surrogate = StartsWithSurrogate(leaf_state); if (!(*state & kLeftmostEdgeIsCalculated)) { DCHECK(!(*state & kLeftmostEdgeIsSurrogate)); *state |= kLeftmostEdgeIsCalculated | (edge_surrogate ? kLeftmostEdgeIsSurrogate : 0); } else if (EndsWithSurrogate(*state) && edge_surrogate) { *length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates; } if (EndsWithSurrogate(leaf_state)) { *state |= kEndsWithLeadingSurrogate; } else { *state &= ~kEndsWithLeadingSurrogate; } } static inline void MergeLeafRight(int* length, uint8_t* state, uint8_t leaf_state) { bool edge_surrogate = EndsWithSurrogate(leaf_state); if (!(*state & kRightmostEdgeIsCalculated)) { DCHECK(!(*state & kRightmostEdgeIsSurrogate)); *state |= (kRightmostEdgeIsCalculated | (edge_surrogate ? kRightmostEdgeIsSurrogate : 0)); } else if (edge_surrogate && StartsWithSurrogate(*state)) { *length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates; } if (StartsWithSurrogate(leaf_state)) { *state |= kStartsWithTrailingSurrogate; } else { *state &= ~kStartsWithTrailingSurrogate; } } static inline void MergeTerminal(int* length, uint8_t state, uint8_t* state_out) { DCHECK((state & kLeftmostEdgeIsCalculated) && (state & kRightmostEdgeIsCalculated)); if (EndsWithSurrogate(state) && StartsWithSurrogate(state)) { *length -= unibrow::Utf8::kBytesSavedByCombiningSurrogates; } *state_out = kInitialState | (state & kLeftmostEdgeIsSurrogate ? kStartsWithTrailingSurrogate : 0) | (state & kRightmostEdgeIsSurrogate ? kEndsWithLeadingSurrogate : 0); } static int Calculate(i::ConsString* current, uint8_t* state_out) { using namespace internal; int total_length = 0; uint8_t state = kInitialState; while (true) { i::String* left = current->first(); i::String* right = current->second(); uint8_t right_leaf_state; uint8_t left_leaf_state; int leaf_length; ConsString* left_as_cons = Visitor::VisitFlat(left, &leaf_length, &left_leaf_state); if (left_as_cons == NULL) { total_length += leaf_length; MergeLeafLeft(&total_length, &state, left_leaf_state); } ConsString* right_as_cons = Visitor::VisitFlat(right, &leaf_length, &right_leaf_state); if (right_as_cons == NULL) { total_length += leaf_length; MergeLeafRight(&total_length, &state, right_leaf_state); if (left_as_cons != NULL) { // 1 Leaf node. Descend in place. current = left_as_cons; continue; } else { // Terminal node. MergeTerminal(&total_length, state, state_out); return total_length; } } else if (left_as_cons == NULL) { // 1 Leaf node. Descend in place. current = right_as_cons; continue; } // Both strings are ConsStrings. // Recurse on smallest. if (left->length() < right->length()) { total_length += Calculate(left_as_cons, &left_leaf_state); MergeLeafLeft(&total_length, &state, left_leaf_state); current = right_as_cons; } else { total_length += Calculate(right_as_cons, &right_leaf_state); MergeLeafRight(&total_length, &state, right_leaf_state); current = left_as_cons; } } UNREACHABLE(); return 0; } static inline int Calculate(i::ConsString* current) { uint8_t state = kInitialState; return Calculate(current, &state); } private: DISALLOW_IMPLICIT_CONSTRUCTORS(Utf8LengthHelper); }; static int Utf8Length(i::String* str, i::Isolate* isolate) { int length = str->length(); if (length == 0) return 0; uint8_t state; i::ConsString* cons_string = Utf8LengthHelper::Visitor::VisitFlat(str, &length, &state); if (cons_string == NULL) return length; return Utf8LengthHelper::Calculate(cons_string); } int String::Utf8Length() const { i::Handle<i::String> str = Utils::OpenHandle(this); i::Isolate* isolate = str->GetIsolate(); return v8::Utf8Length(*str, isolate); } class Utf8WriterVisitor { public: Utf8WriterVisitor( char* buffer, int capacity, bool skip_capacity_check, bool replace_invalid_utf8) : early_termination_(false), last_character_(unibrow::Utf16::kNoPreviousCharacter), buffer_(buffer), start_(buffer), capacity_(capacity), skip_capacity_check_(capacity == -1 || skip_capacity_check), replace_invalid_utf8_(replace_invalid_utf8), utf16_chars_read_(0) { } static int WriteEndCharacter(uint16_t character, int last_character, int remaining, char* const buffer, bool replace_invalid_utf8) { using namespace unibrow; DCHECK(remaining > 0); // We can't use a local buffer here because Encode needs to modify // previous characters in the stream. We know, however, that // exactly one character will be advanced. if (Utf16::IsSurrogatePair(last_character, character)) { int written = Utf8::Encode(buffer, character, last_character, replace_invalid_utf8); DCHECK(written == 1); return written; } // Use a scratch buffer to check the required characters. char temp_buffer[Utf8::kMaxEncodedSize]; // Can't encode using last_character as gcc has array bounds issues. int written = Utf8::Encode(temp_buffer, character, Utf16::kNoPreviousCharacter, replace_invalid_utf8); // Won't fit. if (written > remaining) return 0; // Copy over the character from temp_buffer. for (int j = 0; j < written; j++) { buffer[j] = temp_buffer[j]; } return written; } // Visit writes out a group of code units (chars) of a v8::String to the // internal buffer_. This is done in two phases. The first phase calculates a // pesimistic estimate (writable_length) on how many code units can be safely // written without exceeding the buffer capacity and without writing the last // code unit (it could be a lead surrogate). The estimated number of code // units is then written out in one go, and the reported byte usage is used // to correct the estimate. This is repeated until the estimate becomes <= 0 // or all code units have been written out. The second phase writes out code // units until the buffer capacity is reached, would be exceeded by the next // unit, or all units have been written out. template<typename Char> void Visit(const Char* chars, const int length) { using namespace unibrow; DCHECK(!early_termination_); if (length == 0) return; // Copy state to stack. char* buffer = buffer_; int last_character = sizeof(Char) == 1 ? Utf16::kNoPreviousCharacter : last_character_; int i = 0; // Do a fast loop where there is no exit capacity check. while (true) { int fast_length; if (skip_capacity_check_) { fast_length = length; } else { int remaining_capacity = capacity_ - static_cast<int>(buffer - start_); // Need enough space to write everything but one character. STATIC_ASSERT(Utf16::kMaxExtraUtf8BytesForOneUtf16CodeUnit == 3); int max_size_per_char = sizeof(Char) == 1 ? 2 : 3; int writable_length = (remaining_capacity - max_size_per_char)/max_size_per_char; // Need to drop into slow loop. if (writable_length <= 0) break; fast_length = i + writable_length; if (fast_length > length) fast_length = length; } // Write the characters to the stream. if (sizeof(Char) == 1) { for (; i < fast_length; i++) { buffer += Utf8::EncodeOneByte(buffer, static_cast<uint8_t>(*chars++)); DCHECK(capacity_ == -1 || (buffer - start_) <= capacity_); } } else { for (; i < fast_length; i++) { uint16_t character = *chars++; buffer += Utf8::Encode(buffer, character, last_character, replace_invalid_utf8_); last_character = character; DCHECK(capacity_ == -1 || (buffer - start_) <= capacity_); } } // Array is fully written. Exit. if (fast_length == length) { // Write state back out to object. last_character_ = last_character; buffer_ = buffer; utf16_chars_read_ += length; return; } } DCHECK(!skip_capacity_check_); // Slow loop. Must check capacity on each iteration. int remaining_capacity = capacity_ - static_cast<int>(buffer - start_); DCHECK(remaining_capacity >= 0); for (; i < length && remaining_capacity > 0; i++) { uint16_t character = *chars++; // remaining_capacity is <= 3 bytes at this point, so we do not write out // an umatched lead surrogate. if (replace_invalid_utf8_ && Utf16::IsLeadSurrogate(character)) { early_termination_ = true; break; } int written = WriteEndCharacter(character, last_character, remaining_capacity, buffer, replace_invalid_utf8_); if (written == 0) { early_termination_ = true; break; } buffer += written; remaining_capacity -= written; last_character = character; } // Write state back out to object. last_character_ = last_character; buffer_ = buffer; utf16_chars_read_ += i; } inline bool IsDone() { return early_termination_; } inline void VisitOneByteString(const uint8_t* chars, int length) { Visit(chars, length); } inline void VisitTwoByteString(const uint16_t* chars, int length) { Visit(chars, length); } int CompleteWrite(bool write_null, int* utf16_chars_read_out) { // Write out number of utf16 characters written to the stream. if (utf16_chars_read_out != NULL) { *utf16_chars_read_out = utf16_chars_read_; } // Only null terminate if all of the string was written and there's space. if (write_null && !early_termination_ && (capacity_ == -1 || (buffer_ - start_) < capacity_)) { *buffer_++ = '\0'; } return static_cast<int>(buffer_ - start_); } private: bool early_termination_; int last_character_; char* buffer_; char* const start_; int capacity_; bool const skip_capacity_check_; bool const replace_invalid_utf8_; int utf16_chars_read_; DISALLOW_IMPLICIT_CONSTRUCTORS(Utf8WriterVisitor); }; static bool RecursivelySerializeToUtf8(i::String* current, Utf8WriterVisitor* writer, int recursion_budget) { while (!writer->IsDone()) { i::ConsString* cons_string = i::String::VisitFlat(writer, current); if (cons_string == NULL) return true; // Leaf node. if (recursion_budget <= 0) return false; // Must write the left branch first. i::String* first = cons_string->first(); bool success = RecursivelySerializeToUtf8(first, writer, recursion_budget - 1); if (!success) return false; // Inline tail recurse for right branch. current = cons_string->second(); } return true; } int String::WriteUtf8(char* buffer, int capacity, int* nchars_ref, int options) const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); LOG_API(isolate, "String::WriteUtf8"); ENTER_V8(isolate); i::Handle<i::String> str = Utils::OpenHandle(this); if (options & HINT_MANY_WRITES_EXPECTED) { str = i::String::Flatten(str); // Flatten the string for efficiency. } const int string_length = str->length(); bool write_null = !(options & NO_NULL_TERMINATION); bool replace_invalid_utf8 = (options & REPLACE_INVALID_UTF8); int max16BitCodeUnitSize = unibrow::Utf8::kMax16BitCodeUnitSize; // First check if we can just write the string without checking capacity. if (capacity == -1 || capacity / max16BitCodeUnitSize >= string_length) { Utf8WriterVisitor writer(buffer, capacity, true, replace_invalid_utf8); const int kMaxRecursion = 100; bool success = RecursivelySerializeToUtf8(*str, &writer, kMaxRecursion); if (success) return writer.CompleteWrite(write_null, nchars_ref); } else if (capacity >= string_length) { // First check that the buffer is large enough. int utf8_bytes = v8::Utf8Length(*str, str->GetIsolate()); if (utf8_bytes <= capacity) { // one-byte fast path. if (utf8_bytes == string_length) { WriteOneByte(reinterpret_cast<uint8_t*>(buffer), 0, capacity, options); if (nchars_ref != NULL) *nchars_ref = string_length; if (write_null && (utf8_bytes+1 <= capacity)) { return string_length + 1; } return string_length; } if (write_null && (utf8_bytes+1 > capacity)) { options |= NO_NULL_TERMINATION; } // Recurse once without a capacity limit. // This will get into the first branch above. // TODO(dcarney) Check max left rec. in Utf8Length and fall through. return WriteUtf8(buffer, -1, nchars_ref, options); } } // Recursive slow path can potentially be unreasonable slow. Flatten. str = i::String::Flatten(str); Utf8WriterVisitor writer(buffer, capacity, false, replace_invalid_utf8); i::String::VisitFlat(&writer, *str); return writer.CompleteWrite(write_null, nchars_ref); } template<typename CharType> static inline int WriteHelper(const String* string, CharType* buffer, int start, int length, int options) { i::Isolate* isolate = Utils::OpenHandle(string)->GetIsolate(); LOG_API(isolate, "String::Write"); ENTER_V8(isolate); DCHECK(start >= 0 && length >= -1); i::Handle<i::String> str = Utils::OpenHandle(string); isolate->string_tracker()->RecordWrite(str); if (options & String::HINT_MANY_WRITES_EXPECTED) { // Flatten the string for efficiency. This applies whether we are // using StringCharacterStream or Get(i) to access the characters. str = i::String::Flatten(str); } int end = start + length; if ((length == -1) || (length > str->length() - start) ) end = str->length(); if (end < 0) return 0; i::String::WriteToFlat(*str, buffer, start, end); if (!(options & String::NO_NULL_TERMINATION) && (length == -1 || end - start < length)) { buffer[end - start] = '\0'; } return end - start; } int String::WriteOneByte(uint8_t* buffer, int start, int length, int options) const { return WriteHelper(this, buffer, start, length, options); } int String::Write(uint16_t* buffer, int start, int length, int options) const { return WriteHelper(this, buffer, start, length, options); } bool v8::String::IsExternal() const { i::Handle<i::String> str = Utils::OpenHandle(this); return i::StringShape(*str).IsExternalTwoByte(); } bool v8::String::IsExternalOneByte() const { i::Handle<i::String> str = Utils::OpenHandle(this); return i::StringShape(*str).IsExternalOneByte(); } void v8::String::VerifyExternalStringResource( v8::String::ExternalStringResource* value) const { i::Handle<i::String> str = Utils::OpenHandle(this); const v8::String::ExternalStringResource* expected; if (i::StringShape(*str).IsExternalTwoByte()) { const void* resource = i::Handle<i::ExternalTwoByteString>::cast(str)->resource(); expected = reinterpret_cast<const ExternalStringResource*>(resource); } else { expected = NULL; } CHECK_EQ(expected, value); } void v8::String::VerifyExternalStringResourceBase( v8::String::ExternalStringResourceBase* value, Encoding encoding) const { i::Handle<i::String> str = Utils::OpenHandle(this); const v8::String::ExternalStringResourceBase* expected; Encoding expectedEncoding; if (i::StringShape(*str).IsExternalOneByte()) { const void* resource = i::Handle<i::ExternalOneByteString>::cast(str)->resource(); expected = reinterpret_cast<const ExternalStringResourceBase*>(resource); expectedEncoding = ONE_BYTE_ENCODING; } else if (i::StringShape(*str).IsExternalTwoByte()) { const void* resource = i::Handle<i::ExternalTwoByteString>::cast(str)->resource(); expected = reinterpret_cast<const ExternalStringResourceBase*>(resource); expectedEncoding = TWO_BYTE_ENCODING; } else { expected = NULL; expectedEncoding = str->IsOneByteRepresentation() ? ONE_BYTE_ENCODING : TWO_BYTE_ENCODING; } CHECK_EQ(expected, value); CHECK_EQ(expectedEncoding, encoding); } const v8::String::ExternalOneByteStringResource* v8::String::GetExternalOneByteStringResource() const { i::Handle<i::String> str = Utils::OpenHandle(this); if (i::StringShape(*str).IsExternalOneByte()) { const void* resource = i::Handle<i::ExternalOneByteString>::cast(str)->resource(); return reinterpret_cast<const ExternalOneByteStringResource*>(resource); } else { return NULL; } } Local<Value> Symbol::Name() const { i::Handle<i::Symbol> sym = Utils::OpenHandle(this); i::Handle<i::Object> name(sym->name(), sym->GetIsolate()); return Utils::ToLocal(name); } Local<Value> Private::Name() const { return reinterpret_cast<const Symbol*>(this)->Name(); } double Number::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->Number(); } bool Boolean::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsTrue(); } int64_t Integer::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::cast(*obj)->value(); } else { return static_cast<int64_t>(obj->Number()); } } int32_t Int32::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::cast(*obj)->value(); } else { return static_cast<int32_t>(obj->Number()); } } uint32_t Uint32::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::cast(*obj)->value(); } else { return static_cast<uint32_t>(obj->Number()); } } int v8::Object::InternalFieldCount() { i::Handle<i::JSObject> obj = Utils::OpenHandle(this); return obj->GetInternalFieldCount(); } static bool InternalFieldOK(i::Handle<i::JSObject> obj, int index, const char* location) { return Utils::ApiCheck(index < obj->GetInternalFieldCount(), location, "Internal field out of bounds"); } Local<Value> v8::Object::SlowGetInternalField(int index) { i::Handle<i::JSObject> obj = Utils::OpenHandle(this); const char* location = "v8::Object::GetInternalField()"; if (!InternalFieldOK(obj, index, location)) return Local<Value>(); i::Handle<i::Object> value(obj->GetInternalField(index), obj->GetIsolate()); return Utils::ToLocal(value); } void v8::Object::SetInternalField(int index, v8::Handle<Value> value) { i::Handle<i::JSObject> obj = Utils::OpenHandle(this); const char* location = "v8::Object::SetInternalField()"; if (!InternalFieldOK(obj, index, location)) return; i::Handle<i::Object> val = Utils::OpenHandle(*value); obj->SetInternalField(index, *val); DCHECK_EQ(value, GetInternalField(index)); } void* v8::Object::SlowGetAlignedPointerFromInternalField(int index) { i::Handle<i::JSObject> obj = Utils::OpenHandle(this); const char* location = "v8::Object::GetAlignedPointerFromInternalField()"; if (!InternalFieldOK(obj, index, location)) return NULL; return DecodeSmiToAligned(obj->GetInternalField(index), location); } void v8::Object::SetAlignedPointerInInternalField(int index, void* value) { i::Handle<i::JSObject> obj = Utils::OpenHandle(this); const char* location = "v8::Object::SetAlignedPointerInInternalField()"; if (!InternalFieldOK(obj, index, location)) return; obj->SetInternalField(index, EncodeAlignedAsSmi(value, location)); DCHECK_EQ(value, GetAlignedPointerFromInternalField(index)); } static void* ExternalValue(i::Object* obj) { // Obscure semantics for undefined, but somehow checked in our unit tests... if (obj->IsUndefined()) return NULL; i::Object* foreign = i::JSObject::cast(obj)->GetInternalField(0); return i::Foreign::cast(foreign)->foreign_address(); } // --- E n v i r o n m e n t --- void v8::V8::InitializePlatform(Platform* platform) { i::V8::InitializePlatform(platform); } void v8::V8::ShutdownPlatform() { i::V8::ShutdownPlatform(); } bool v8::V8::Initialize() { i::V8::Initialize(); return true; } void v8::V8::SetEntropySource(EntropySource entropy_source) { base::RandomNumberGenerator::SetEntropySource(entropy_source); } void v8::V8::SetReturnAddressLocationResolver( ReturnAddressLocationResolver return_address_resolver) { i::V8::SetReturnAddressLocationResolver(return_address_resolver); } void v8::V8::SetArrayBufferAllocator( ArrayBuffer::Allocator* allocator) { if (!Utils::ApiCheck(i::V8::ArrayBufferAllocator() == NULL, "v8::V8::SetArrayBufferAllocator", "ArrayBufferAllocator might only be set once")) return; i::V8::SetArrayBufferAllocator(allocator); } bool v8::V8::Dispose() { i::V8::TearDown(); return true; } HeapStatistics::HeapStatistics(): total_heap_size_(0), total_heap_size_executable_(0), total_physical_size_(0), used_heap_size_(0), heap_size_limit_(0) { } void v8::V8::VisitExternalResources(ExternalResourceVisitor* visitor) { i::Isolate* isolate = i::Isolate::Current(); isolate->heap()->VisitExternalResources(visitor); } class VisitorAdapter : public i::ObjectVisitor { public: explicit VisitorAdapter(PersistentHandleVisitor* visitor) : visitor_(visitor) {} virtual void VisitPointers(i::Object** start, i::Object** end) { UNREACHABLE(); } virtual void VisitEmbedderReference(i::Object** p, uint16_t class_id) { Value* value = ToApi<Value>(i::Handle<i::Object>(p)); visitor_->VisitPersistentHandle( reinterpret_cast<Persistent<Value>*>(&value), class_id); } private: PersistentHandleVisitor* visitor_; }; void v8::V8::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) { i::Isolate* isolate = i::Isolate::Current(); i::DisallowHeapAllocation no_allocation; VisitorAdapter visitor_adapter(visitor); isolate->global_handles()->IterateAllRootsWithClassIds(&visitor_adapter); } void v8::V8::VisitHandlesForPartialDependence( Isolate* exported_isolate, PersistentHandleVisitor* visitor) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(exported_isolate); DCHECK(isolate == i::Isolate::Current()); i::DisallowHeapAllocation no_allocation; VisitorAdapter visitor_adapter(visitor); isolate->global_handles()->IterateAllRootsInNewSpaceWithClassIds( &visitor_adapter); } bool v8::V8::InitializeICU(const char* icu_data_file) { return i::InitializeICU(icu_data_file); } const char* v8::V8::GetVersion() { return i::Version::GetVersion(); } static i::Handle<i::Context> CreateEnvironment( i::Isolate* isolate, v8::ExtensionConfiguration* extensions, v8::Handle<ObjectTemplate> global_template, v8::Handle<Value> maybe_global_proxy) { i::Handle<i::Context> env; // Enter V8 via an ENTER_V8 scope. { ENTER_V8(isolate); v8::Handle<ObjectTemplate> proxy_template = global_template; i::Handle<i::FunctionTemplateInfo> proxy_constructor; i::Handle<i::FunctionTemplateInfo> global_constructor; if (!global_template.IsEmpty()) { // Make sure that the global_template has a constructor. global_constructor = EnsureConstructor(isolate, *global_template); // Create a fresh template for the global proxy object. proxy_template = ObjectTemplate::New( reinterpret_cast<v8::Isolate*>(isolate)); proxy_constructor = EnsureConstructor(isolate, *proxy_template); // Set the global template to be the prototype template of // global proxy template. proxy_constructor->set_prototype_template( *Utils::OpenHandle(*global_template)); // Migrate security handlers from global_template to // proxy_template. Temporarily removing access check // information from the global template. if (!global_constructor->access_check_info()->IsUndefined()) { proxy_constructor->set_access_check_info( global_constructor->access_check_info()); proxy_constructor->set_needs_access_check( global_constructor->needs_access_check()); global_constructor->set_needs_access_check(false); global_constructor->set_access_check_info( isolate->heap()->undefined_value()); } } i::Handle<i::Object> proxy = Utils::OpenHandle(*maybe_global_proxy, true); i::MaybeHandle<i::JSGlobalProxy> maybe_proxy; if (!proxy.is_null()) { maybe_proxy = i::Handle<i::JSGlobalProxy>::cast(proxy); } // Create the environment. env = isolate->bootstrapper()->CreateEnvironment( maybe_proxy, proxy_template, extensions); // Restore the access check info on the global template. if (!global_template.IsEmpty()) { DCHECK(!global_constructor.is_null()); DCHECK(!proxy_constructor.is_null()); global_constructor->set_access_check_info( proxy_constructor->access_check_info()); global_constructor->set_needs_access_check( proxy_constructor->needs_access_check()); } } // Leave V8. return env; } Local<Context> v8::Context::New( v8::Isolate* external_isolate, v8::ExtensionConfiguration* extensions, v8::Handle<ObjectTemplate> global_template, v8::Handle<Value> global_object) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate); LOG_API(isolate, "Context::New"); ON_BAILOUT(isolate, "v8::Context::New()", return Local<Context>()); i::HandleScope scope(isolate); ExtensionConfiguration no_extensions; if (extensions == NULL) extensions = &no_extensions; i::Handle<i::Context> env = CreateEnvironment(isolate, extensions, global_template, global_object); if (env.is_null()) return Local<Context>(); return Utils::ToLocal(scope.CloseAndEscape(env)); } void v8::Context::SetSecurityToken(Handle<Value> token) { i::Isolate* isolate = i::Isolate::Current(); ENTER_V8(isolate); i::Handle<i::Context> env = Utils::OpenHandle(this); i::Handle<i::Object> token_handle = Utils::OpenHandle(*token); env->set_security_token(*token_handle); } void v8::Context::UseDefaultSecurityToken() { i::Isolate* isolate = i::Isolate::Current(); ENTER_V8(isolate); i::Handle<i::Context> env = Utils::OpenHandle(this); env->set_security_token(env->global_object()); } Handle<Value> v8::Context::GetSecurityToken() { i::Isolate* isolate = i::Isolate::Current(); i::Handle<i::Context> env = Utils::OpenHandle(this); i::Object* security_token = env->security_token(); i::Handle<i::Object> token_handle(security_token, isolate); return Utils::ToLocal(token_handle); } v8::Isolate* Context::GetIsolate() { i::Handle<i::Context> env = Utils::OpenHandle(this); return reinterpret_cast<Isolate*>(env->GetIsolate()); } v8::Local<v8::Object> Context::Global() { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); i::Handle<i::Object> global(context->global_proxy(), isolate); // TODO(dcarney): This should always return the global proxy // but can't presently as calls to GetProtoype will return the wrong result. if (i::Handle<i::JSGlobalProxy>::cast( global)->IsDetachedFrom(context->global_object())) { global = i::Handle<i::Object>(context->global_object(), isolate); } return Utils::ToLocal(i::Handle<i::JSObject>::cast(global)); } void Context::DetachGlobal() { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); ENTER_V8(isolate); isolate->bootstrapper()->DetachGlobal(context); } void Context::AllowCodeGenerationFromStrings(bool allow) { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); ENTER_V8(isolate); context->set_allow_code_gen_from_strings( allow ? isolate->heap()->true_value() : isolate->heap()->false_value()); } bool Context::IsCodeGenerationFromStringsAllowed() { i::Handle<i::Context> context = Utils::OpenHandle(this); return !context->allow_code_gen_from_strings()->IsFalse(); } void Context::SetErrorMessageForCodeGenerationFromStrings( Handle<String> error) { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Handle<i::String> error_handle = Utils::OpenHandle(*error); context->set_error_message_for_code_gen_from_strings(*error_handle); } Local<v8::Object> ObjectTemplate::NewInstance() { i::Isolate* isolate = i::Isolate::Current(); ON_BAILOUT(isolate, "v8::ObjectTemplate::NewInstance()", return Local<v8::Object>()); LOG_API(isolate, "ObjectTemplate::NewInstance"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> obj; has_pending_exception = !i::Execution::InstantiateObject( Utils::OpenHandle(this)).ToHandle(&obj); EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Object>()); return Utils::ToLocal(i::Handle<i::JSObject>::cast(obj)); } Local<v8::Function> FunctionTemplate::GetFunction() { i::Isolate* isolate = i::Isolate::Current(); ON_BAILOUT(isolate, "v8::FunctionTemplate::GetFunction()", return Local<v8::Function>()); LOG_API(isolate, "FunctionTemplate::GetFunction"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> obj; has_pending_exception = !i::Execution::InstantiateFunction( Utils::OpenHandle(this)).ToHandle(&obj); EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::Function>()); return Utils::ToLocal(i::Handle<i::JSFunction>::cast(obj)); } bool FunctionTemplate::HasInstance(v8::Handle<v8::Value> value) { ON_BAILOUT(i::Isolate::Current(), "v8::FunctionTemplate::HasInstanceOf()", return false); i::Object* obj = *Utils::OpenHandle(*value); return Utils::OpenHandle(this)->IsTemplateFor(obj); } Local<External> v8::External::New(Isolate* isolate, void* value) { STATIC_ASSERT(sizeof(value) == sizeof(i::Address)); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "External::New"); ENTER_V8(i_isolate); i::Handle<i::JSObject> external = i_isolate->factory()->NewExternal(value); return Utils::ExternalToLocal(external); } void* External::Value() const { return ExternalValue(*Utils::OpenHandle(this)); } // anonymous namespace for string creation helper functions namespace { inline int StringLength(const char* string) { return i::StrLength(string); } inline int StringLength(const uint8_t* string) { return i::StrLength(reinterpret_cast<const char*>(string)); } inline int StringLength(const uint16_t* string) { int length = 0; while (string[length] != '\0') length++; return length; } MUST_USE_RESULT inline i::MaybeHandle<i::String> NewString(i::Factory* factory, String::NewStringType type, i::Vector<const char> string) { if (type == String::kInternalizedString) { return factory->InternalizeUtf8String(string); } return factory->NewStringFromUtf8(string); } MUST_USE_RESULT inline i::MaybeHandle<i::String> NewString(i::Factory* factory, String::NewStringType type, i::Vector<const uint8_t> string) { if (type == String::kInternalizedString) { return factory->InternalizeOneByteString(string); } return factory->NewStringFromOneByte(string); } MUST_USE_RESULT inline i::MaybeHandle<i::String> NewString(i::Factory* factory, String::NewStringType type, i::Vector<const uint16_t> string) { if (type == String::kInternalizedString) { return factory->InternalizeTwoByteString(string); } return factory->NewStringFromTwoByte(string); } template<typename Char> inline Local<String> NewString(Isolate* v8_isolate, const char* location, const char* env, const Char* data, String::NewStringType type, int length) { i::Isolate* isolate = reinterpret_cast<internal::Isolate*>(v8_isolate); LOG_API(isolate, env); if (length == 0 && type != String::kUndetectableString) { return String::Empty(v8_isolate); } ENTER_V8(isolate); if (length == -1) length = StringLength(data); // We do not expect this to fail. Change this if it does. i::Handle<i::String> result = NewString( isolate->factory(), type, i::Vector<const Char>(data, length)).ToHandleChecked(); if (type == String::kUndetectableString) { result->MarkAsUndetectable(); } return Utils::ToLocal(result); } } // anonymous namespace Local<String> String::NewFromUtf8(Isolate* isolate, const char* data, NewStringType type, int length) { return NewString(isolate, "v8::String::NewFromUtf8()", "String::NewFromUtf8", data, type, length); } Local<String> String::NewFromOneByte(Isolate* isolate, const uint8_t* data, NewStringType type, int length) { return NewString(isolate, "v8::String::NewFromOneByte()", "String::NewFromOneByte", data, type, length); } Local<String> String::NewFromTwoByte(Isolate* isolate, const uint16_t* data, NewStringType type, int length) { return NewString(isolate, "v8::String::NewFromTwoByte()", "String::NewFromTwoByte", data, type, length); } Local<String> v8::String::Concat(Handle<String> left, Handle<String> right) { i::Handle<i::String> left_string = Utils::OpenHandle(*left); i::Isolate* isolate = left_string->GetIsolate(); LOG_API(isolate, "String::New(char)"); ENTER_V8(isolate); i::Handle<i::String> right_string = Utils::OpenHandle(*right); // We do not expect this to fail. Change this if it does. i::Handle<i::String> result = isolate->factory()->NewConsString( left_string, right_string).ToHandleChecked(); return Utils::ToLocal(result); } static i::Handle<i::String> NewExternalStringHandle( i::Isolate* isolate, v8::String::ExternalStringResource* resource) { // We do not expect this to fail. Change this if it does. return isolate->factory()->NewExternalStringFromTwoByte( resource).ToHandleChecked(); } static i::Handle<i::String> NewExternalOneByteStringHandle( i::Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) { // We do not expect this to fail. Change this if it does. return isolate->factory() ->NewExternalStringFromOneByte(resource) .ToHandleChecked(); } Local<String> v8::String::NewExternal( Isolate* isolate, v8::String::ExternalStringResource* resource) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "String::NewExternal"); ENTER_V8(i_isolate); CHECK(resource && resource->data()); i::Handle<i::String> result = NewExternalStringHandle(i_isolate, resource); i_isolate->heap()->external_string_table()->AddString(*result); return Utils::ToLocal(result); } bool v8::String::MakeExternal(v8::String::ExternalStringResource* resource) { i::Handle<i::String> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); if (i::StringShape(*obj).IsExternal()) { return false; // Already an external string. } ENTER_V8(isolate); if (isolate->string_tracker()->IsFreshUnusedString(obj)) { return false; } if (isolate->heap()->IsInGCPostProcessing()) { return false; } CHECK(resource && resource->data()); bool result = obj->MakeExternal(resource); // Assert that if CanMakeExternal(), then externalizing actually succeeds. DCHECK(!CanMakeExternal() || result); if (result) { DCHECK(obj->IsExternalString()); isolate->heap()->external_string_table()->AddString(*obj); } return result; } Local<String> v8::String::NewExternal( Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "String::NewExternal"); ENTER_V8(i_isolate); CHECK(resource && resource->data()); i::Handle<i::String> result = NewExternalOneByteStringHandle(i_isolate, resource); i_isolate->heap()->external_string_table()->AddString(*result); return Utils::ToLocal(result); } bool v8::String::MakeExternal( v8::String::ExternalOneByteStringResource* resource) { i::Handle<i::String> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); if (i::StringShape(*obj).IsExternal()) { return false; // Already an external string. } ENTER_V8(isolate); if (isolate->string_tracker()->IsFreshUnusedString(obj)) { return false; } if (isolate->heap()->IsInGCPostProcessing()) { return false; } CHECK(resource && resource->data()); bool result = obj->MakeExternal(resource); // Assert that if CanMakeExternal(), then externalizing actually succeeds. DCHECK(!CanMakeExternal() || result); if (result) { DCHECK(obj->IsExternalString()); isolate->heap()->external_string_table()->AddString(*obj); } return result; } bool v8::String::CanMakeExternal() { if (!internal::FLAG_clever_optimizations) return false; i::Handle<i::String> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); if (isolate->string_tracker()->IsFreshUnusedString(obj)) return false; int size = obj->Size(); // Byte size of the original string. if (size < i::ExternalString::kShortSize) return false; i::StringShape shape(*obj); return !shape.IsExternal(); } Local<v8::Object> v8::Object::New(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Object::New"); ENTER_V8(i_isolate); i::Handle<i::JSObject> obj = i_isolate->factory()->NewJSObject(i_isolate->object_function()); return Utils::ToLocal(obj); } Local<v8::Value> v8::NumberObject::New(Isolate* isolate, double value) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "NumberObject::New"); ENTER_V8(i_isolate); i::Handle<i::Object> number = i_isolate->factory()->NewNumber(value); i::Handle<i::Object> obj = i::Object::ToObject(i_isolate, number).ToHandleChecked(); return Utils::ToLocal(obj); } double v8::NumberObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj); i::Isolate* isolate = jsvalue->GetIsolate(); LOG_API(isolate, "NumberObject::NumberValue"); return jsvalue->value()->Number(); } Local<v8::Value> v8::BooleanObject::New(bool value) { i::Isolate* isolate = i::Isolate::Current(); LOG_API(isolate, "BooleanObject::New"); ENTER_V8(isolate); i::Handle<i::Object> boolean(value ? isolate->heap()->true_value() : isolate->heap()->false_value(), isolate); i::Handle<i::Object> obj = i::Object::ToObject(isolate, boolean).ToHandleChecked(); return Utils::ToLocal(obj); } bool v8::BooleanObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj); i::Isolate* isolate = jsvalue->GetIsolate(); LOG_API(isolate, "BooleanObject::BooleanValue"); return jsvalue->value()->IsTrue(); } Local<v8::Value> v8::StringObject::New(Handle<String> value) { i::Handle<i::String> string = Utils::OpenHandle(*value); i::Isolate* isolate = string->GetIsolate(); LOG_API(isolate, "StringObject::New"); ENTER_V8(isolate); i::Handle<i::Object> obj = i::Object::ToObject(isolate, string).ToHandleChecked(); return Utils::ToLocal(obj); } Local<v8::String> v8::StringObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj); i::Isolate* isolate = jsvalue->GetIsolate(); LOG_API(isolate, "StringObject::StringValue"); return Utils::ToLocal( i::Handle<i::String>(i::String::cast(jsvalue->value()))); } Local<v8::Value> v8::SymbolObject::New(Isolate* isolate, Handle<Symbol> value) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "SymbolObject::New"); ENTER_V8(i_isolate); i::Handle<i::Object> obj = i::Object::ToObject( i_isolate, Utils::OpenHandle(*value)).ToHandleChecked(); return Utils::ToLocal(obj); } Local<v8::Symbol> v8::SymbolObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSValue> jsvalue = i::Handle<i::JSValue>::cast(obj); i::Isolate* isolate = jsvalue->GetIsolate(); LOG_API(isolate, "SymbolObject::SymbolValue"); return Utils::ToLocal( i::Handle<i::Symbol>(i::Symbol::cast(jsvalue->value()))); } Local<v8::Value> v8::Date::New(Isolate* isolate, double time) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Date::New"); if (std::isnan(time)) { // Introduce only canonical NaN value into the VM, to avoid signaling NaNs. time = base::OS::nan_value(); } ENTER_V8(i_isolate); EXCEPTION_PREAMBLE(i_isolate); i::Handle<i::Object> obj; has_pending_exception = !i::Execution::NewDate( i_isolate, time).ToHandle(&obj); EXCEPTION_BAILOUT_CHECK(i_isolate, Local<v8::Value>()); return Utils::ToLocal(obj); } double v8::Date::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSDate> jsdate = i::Handle<i::JSDate>::cast(obj); i::Isolate* isolate = jsdate->GetIsolate(); LOG_API(isolate, "Date::NumberValue"); return jsdate->value()->Number(); } void v8::Date::DateTimeConfigurationChangeNotification(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); if (!i_isolate->IsInitialized()) return; ON_BAILOUT(i_isolate, "v8::Date::DateTimeConfigurationChangeNotification()", return); LOG_API(i_isolate, "Date::DateTimeConfigurationChangeNotification"); ENTER_V8(i_isolate); i_isolate->date_cache()->ResetDateCache(); if (!i_isolate->eternal_handles()->Exists( i::EternalHandles::DATE_CACHE_VERSION)) { return; } i::Handle<i::FixedArray> date_cache_version = i::Handle<i::FixedArray>::cast(i_isolate->eternal_handles()->GetSingleton( i::EternalHandles::DATE_CACHE_VERSION)); DCHECK_EQ(1, date_cache_version->length()); CHECK(date_cache_version->get(0)->IsSmi()); date_cache_version->set( 0, i::Smi::FromInt(i::Smi::cast(date_cache_version->get(0))->value() + 1)); } static i::Handle<i::String> RegExpFlagsToString(RegExp::Flags flags) { i::Isolate* isolate = i::Isolate::Current(); uint8_t flags_buf[3]; int num_flags = 0; if ((flags & RegExp::kGlobal) != 0) flags_buf[num_flags++] = 'g'; if ((flags & RegExp::kMultiline) != 0) flags_buf[num_flags++] = 'm'; if ((flags & RegExp::kIgnoreCase) != 0) flags_buf[num_flags++] = 'i'; DCHECK(num_flags <= static_cast<int>(arraysize(flags_buf))); return isolate->factory()->InternalizeOneByteString( i::Vector<const uint8_t>(flags_buf, num_flags)); } Local<v8::RegExp> v8::RegExp::New(Handle<String> pattern, Flags flags) { i::Isolate* isolate = Utils::OpenHandle(*pattern)->GetIsolate(); LOG_API(isolate, "RegExp::New"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::JSRegExp> obj; has_pending_exception = !i::Execution::NewJSRegExp( Utils::OpenHandle(*pattern), RegExpFlagsToString(flags)).ToHandle(&obj); EXCEPTION_BAILOUT_CHECK(isolate, Local<v8::RegExp>()); return Utils::ToLocal(i::Handle<i::JSRegExp>::cast(obj)); } Local<v8::String> v8::RegExp::GetSource() const { i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this); return Utils::ToLocal(i::Handle<i::String>(obj->Pattern())); } // Assert that the static flags cast in GetFlags is valid. #define REGEXP_FLAG_ASSERT_EQ(api_flag, internal_flag) \ STATIC_ASSERT(static_cast<int>(v8::RegExp::api_flag) == \ static_cast<int>(i::JSRegExp::internal_flag)) REGEXP_FLAG_ASSERT_EQ(kNone, NONE); REGEXP_FLAG_ASSERT_EQ(kGlobal, GLOBAL); REGEXP_FLAG_ASSERT_EQ(kIgnoreCase, IGNORE_CASE); REGEXP_FLAG_ASSERT_EQ(kMultiline, MULTILINE); #undef REGEXP_FLAG_ASSERT_EQ v8::RegExp::Flags v8::RegExp::GetFlags() const { i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this); return static_cast<RegExp::Flags>(obj->GetFlags().value()); } Local<v8::Array> v8::Array::New(Isolate* isolate, int length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Array::New"); ENTER_V8(i_isolate); int real_length = length > 0 ? length : 0; i::Handle<i::JSArray> obj = i_isolate->factory()->NewJSArray(real_length); i::Handle<i::Object> length_obj = i_isolate->factory()->NewNumberFromInt(real_length); obj->set_length(*length_obj); return Utils::ToLocal(obj); } uint32_t v8::Array::Length() const { i::Handle<i::JSArray> obj = Utils::OpenHandle(this); i::Object* length = obj->length(); if (length->IsSmi()) { return i::Smi::cast(length)->value(); } else { return static_cast<uint32_t>(length->Number()); } } Local<Object> Array::CloneElementAt(uint32_t index) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ON_BAILOUT(isolate, "v8::Array::CloneElementAt()", return Local<Object>()); i::Handle<i::JSObject> self = Utils::OpenHandle(this); if (!self->HasFastObjectElements()) { return Local<Object>(); } i::FixedArray* elms = i::FixedArray::cast(self->elements()); i::Object* paragon = elms->get(index); if (!paragon->IsJSObject()) { return Local<Object>(); } i::Handle<i::JSObject> paragon_handle(i::JSObject::cast(paragon)); EXCEPTION_PREAMBLE(isolate); ENTER_V8(isolate); i::Handle<i::JSObject> result = isolate->factory()->CopyJSObject(paragon_handle); has_pending_exception = result.is_null(); EXCEPTION_BAILOUT_CHECK(isolate, Local<Object>()); return Utils::ToLocal(result); } bool Value::IsPromise() const { i::Handle<i::Object> val = Utils::OpenHandle(this); if (!val->IsJSObject()) return false; i::Handle<i::JSObject> obj = i::Handle<i::JSObject>::cast(val); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, "IsPromise"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> argv[] = { obj }; i::Handle<i::Object> b; has_pending_exception = !i::Execution::Call( isolate, isolate->is_promise(), isolate->factory()->undefined_value(), arraysize(argv), argv, false).ToHandle(&b); EXCEPTION_BAILOUT_CHECK(isolate, false); return b->BooleanValue(); } Local<Promise::Resolver> Promise::Resolver::New(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); LOG_API(isolate, "Promise::Resolver::New"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call( isolate, isolate->promise_create(), isolate->factory()->undefined_value(), 0, NULL, false).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<Promise::Resolver>()); return Local<Promise::Resolver>::Cast(Utils::ToLocal(result)); } Local<Promise> Promise::Resolver::GetPromise() { i::Handle<i::JSObject> promise = Utils::OpenHandle(this); return Local<Promise>::Cast(Utils::ToLocal(promise)); } void Promise::Resolver::Resolve(Handle<Value> value) { i::Handle<i::JSObject> promise = Utils::OpenHandle(this); i::Isolate* isolate = promise->GetIsolate(); LOG_API(isolate, "Promise::Resolver::Resolve"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> argv[] = { promise, Utils::OpenHandle(*value) }; has_pending_exception = i::Execution::Call( isolate, isolate->promise_resolve(), isolate->factory()->undefined_value(), arraysize(argv), argv, false).is_null(); EXCEPTION_BAILOUT_CHECK(isolate, /* void */ ;); } void Promise::Resolver::Reject(Handle<Value> value) { i::Handle<i::JSObject> promise = Utils::OpenHandle(this); i::Isolate* isolate = promise->GetIsolate(); LOG_API(isolate, "Promise::Resolver::Reject"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> argv[] = { promise, Utils::OpenHandle(*value) }; has_pending_exception = i::Execution::Call( isolate, isolate->promise_reject(), isolate->factory()->undefined_value(), arraysize(argv), argv, false).is_null(); EXCEPTION_BAILOUT_CHECK(isolate, /* void */ ;); } Local<Promise> Promise::Chain(Handle<Function> handler) { i::Handle<i::JSObject> promise = Utils::OpenHandle(this); i::Isolate* isolate = promise->GetIsolate(); LOG_API(isolate, "Promise::Chain"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) }; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call( isolate, isolate->promise_chain(), promise, arraysize(argv), argv, false).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<Promise>()); return Local<Promise>::Cast(Utils::ToLocal(result)); } Local<Promise> Promise::Catch(Handle<Function> handler) { i::Handle<i::JSObject> promise = Utils::OpenHandle(this); i::Isolate* isolate = promise->GetIsolate(); LOG_API(isolate, "Promise::Catch"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) }; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call( isolate, isolate->promise_catch(), promise, arraysize(argv), argv, false).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<Promise>()); return Local<Promise>::Cast(Utils::ToLocal(result)); } Local<Promise> Promise::Then(Handle<Function> handler) { i::Handle<i::JSObject> promise = Utils::OpenHandle(this); i::Isolate* isolate = promise->GetIsolate(); LOG_API(isolate, "Promise::Then"); ENTER_V8(isolate); EXCEPTION_PREAMBLE(isolate); i::Handle<i::Object> argv[] = { Utils::OpenHandle(*handler) }; i::Handle<i::Object> result; has_pending_exception = !i::Execution::Call( isolate, isolate->promise_then(), promise, arraysize(argv), argv, false).ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<Promise>()); return Local<Promise>::Cast(Utils::ToLocal(result)); } bool v8::ArrayBuffer::IsExternal() const { return Utils::OpenHandle(this)->is_external(); } v8::ArrayBuffer::Contents v8::ArrayBuffer::Externalize() { i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this); Utils::ApiCheck(!obj->is_external(), "v8::ArrayBuffer::Externalize", "ArrayBuffer already externalized"); obj->set_is_external(true); size_t byte_length = static_cast<size_t>(obj->byte_length()->Number()); Contents contents; contents.data_ = obj->backing_store(); contents.byte_length_ = byte_length; return contents; } void v8::ArrayBuffer::Neuter() { i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); Utils::ApiCheck(obj->is_external(), "v8::ArrayBuffer::Neuter", "Only externalized ArrayBuffers can be neutered"); LOG_API(obj->GetIsolate(), "v8::ArrayBuffer::Neuter()"); ENTER_V8(isolate); i::Runtime::NeuterArrayBuffer(obj); } size_t v8::ArrayBuffer::ByteLength() const { i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this); return static_cast<size_t>(obj->byte_length()->Number()); } Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, size_t byte_length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "v8::ArrayBuffer::New(size_t)"); ENTER_V8(i_isolate); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSArrayBuffer(); i::Runtime::SetupArrayBufferAllocatingData(i_isolate, obj, byte_length); return Utils::ToLocal(obj); } Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, void* data, size_t byte_length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "v8::ArrayBuffer::New(void*, size_t)"); ENTER_V8(i_isolate); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSArrayBuffer(); i::Runtime::SetupArrayBuffer(i_isolate, obj, true, data, byte_length); return Utils::ToLocal(obj); } Local<ArrayBuffer> v8::ArrayBufferView::Buffer() { i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this); i::Handle<i::JSArrayBuffer> buffer; if (obj->IsJSDataView()) { i::Handle<i::JSDataView> data_view(i::JSDataView::cast(*obj)); DCHECK(data_view->buffer()->IsJSArrayBuffer()); buffer = i::handle(i::JSArrayBuffer::cast(data_view->buffer())); } else { DCHECK(obj->IsJSTypedArray()); buffer = i::JSTypedArray::cast(*obj)->GetBuffer(); } return Utils::ToLocal(buffer); } size_t v8::ArrayBufferView::ByteOffset() { i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this); return static_cast<size_t>(obj->byte_offset()->Number()); } size_t v8::ArrayBufferView::ByteLength() { i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this); return static_cast<size_t>(obj->byte_length()->Number()); } size_t v8::TypedArray::Length() { i::Handle<i::JSTypedArray> obj = Utils::OpenHandle(this); return static_cast<size_t>(obj->length()->Number()); } static inline void SetupArrayBufferView( i::Isolate* isolate, i::Handle<i::JSArrayBufferView> obj, i::Handle<i::JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length) { DCHECK(byte_offset + byte_length <= static_cast<size_t>(buffer->byte_length()->Number())); obj->set_buffer(*buffer); obj->set_weak_next(buffer->weak_first_view()); buffer->set_weak_first_view(*obj); i::Handle<i::Object> byte_offset_object = isolate->factory()->NewNumberFromSize(byte_offset); obj->set_byte_offset(*byte_offset_object); i::Handle<i::Object> byte_length_object = isolate->factory()->NewNumberFromSize(byte_length); obj->set_byte_length(*byte_length_object); } template<typename ElementType, ExternalArrayType array_type, i::ElementsKind elements_kind> i::Handle<i::JSTypedArray> NewTypedArray( i::Isolate* isolate, Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t length) { i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray(array_type); i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); DCHECK(byte_offset % sizeof(ElementType) == 0); CHECK(length <= (std::numeric_limits<size_t>::max() / sizeof(ElementType))); CHECK(length <= static_cast<size_t>(i::Smi::kMaxValue)); size_t byte_length = length * sizeof(ElementType); SetupArrayBufferView( isolate, obj, buffer, byte_offset, byte_length); i::Handle<i::Object> length_object = isolate->factory()->NewNumberFromSize(length); obj->set_length(*length_object); i::Handle<i::ExternalArray> elements = isolate->factory()->NewExternalArray( static_cast<int>(length), array_type, static_cast<uint8_t*>(buffer->backing_store()) + byte_offset); i::Handle<i::Map> map = i::JSObject::GetElementsTransitionMap(obj, elements_kind); i::JSObject::SetMapAndElements(obj, map, elements); return obj; } #define TYPED_ARRAY_NEW(Type, type, TYPE, ctype, size) \ Local<Type##Array> Type##Array::New(Handle<ArrayBuffer> array_buffer, \ size_t byte_offset, size_t length) { \ i::Isolate* isolate = Utils::OpenHandle(*array_buffer)->GetIsolate(); \ LOG_API(isolate, \ "v8::" #Type "Array::New(Handle<ArrayBuffer>, size_t, size_t)"); \ ENTER_V8(isolate); \ if (!Utils::ApiCheck(length <= static_cast<size_t>(i::Smi::kMaxValue), \ "v8::" #Type "Array::New(Handle<ArrayBuffer>, size_t, size_t)", \ "length exceeds max allowed value")) { \ return Local<Type##Array>(); \ } \ i::Handle<i::JSTypedArray> obj = \ NewTypedArray<ctype, v8::kExternal##Type##Array, \ i::EXTERNAL_##TYPE##_ELEMENTS>( \ isolate, array_buffer, byte_offset, length); \ return Utils::ToLocal##Type##Array(obj); \ } TYPED_ARRAYS(TYPED_ARRAY_NEW) #undef TYPED_ARRAY_NEW Local<DataView> DataView::New(Handle<ArrayBuffer> array_buffer, size_t byte_offset, size_t byte_length) { i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); i::Isolate* isolate = buffer->GetIsolate(); LOG_API(isolate, "v8::DataView::New(void*, size_t, size_t)"); ENTER_V8(isolate); i::Handle<i::JSDataView> obj = isolate->factory()->NewJSDataView(); SetupArrayBufferView( isolate, obj, buffer, byte_offset, byte_length); return Utils::ToLocal(obj); } Local<Symbol> v8::Symbol::New(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Symbol::New()"); ENTER_V8(i_isolate); i::Handle<i::Symbol> result = i_isolate->factory()->NewSymbol(); if (!name.IsEmpty()) result->set_name(*Utils::OpenHandle(*name)); return Utils::ToLocal(result); } static i::Handle<i::Symbol> SymbolFor(i::Isolate* isolate, i::Handle<i::String> name, i::Handle<i::String> part) { i::Handle<i::JSObject> registry = isolate->GetSymbolRegistry(); i::Handle<i::JSObject> symbols = i::Handle<i::JSObject>::cast( i::Object::GetPropertyOrElement(registry, part).ToHandleChecked()); i::Handle<i::Object> symbol = i::Object::GetPropertyOrElement(symbols, name).ToHandleChecked(); if (!symbol->IsSymbol()) { DCHECK(symbol->IsUndefined()); symbol = isolate->factory()->NewSymbol(); i::Handle<i::Symbol>::cast(symbol)->set_name(*name); i::JSObject::SetProperty(symbols, name, symbol, i::STRICT).Assert(); } return i::Handle<i::Symbol>::cast(symbol); } Local<Symbol> v8::Symbol::For(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*name); i::Handle<i::String> part = i_isolate->factory()->for_string(); return Utils::ToLocal(SymbolFor(i_isolate, i_name, part)); } Local<Symbol> v8::Symbol::ForApi(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*name); i::Handle<i::String> part = i_isolate->factory()->for_api_string(); return Utils::ToLocal(SymbolFor(i_isolate, i_name, part)); } static Local<Symbol> GetWellKnownSymbol(Isolate* isolate, const char* name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*String::NewFromUtf8(isolate, name)); i::Handle<i::String> part = i_isolate->factory()->for_intern_string(); return Utils::ToLocal(SymbolFor(i_isolate, i_name, part)); } Local<Symbol> v8::Symbol::GetIterator(Isolate* isolate) { return GetWellKnownSymbol(isolate, "Symbol.iterator"); } Local<Symbol> v8::Symbol::GetUnscopables(Isolate* isolate) { return GetWellKnownSymbol(isolate, "Symbol.unscopables"); } Local<Private> v8::Private::New(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, "Private::New()"); ENTER_V8(i_isolate); i::Handle<i::Symbol> symbol = i_isolate->factory()->NewPrivateSymbol(); if (!name.IsEmpty()) symbol->set_name(*Utils::OpenHandle(*name)); Local<Symbol> result = Utils::ToLocal(symbol); return v8::Handle<Private>(reinterpret_cast<Private*>(*result)); } Local<Private> v8::Private::ForApi(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*name); i::Handle<i::JSObject> registry = i_isolate->GetSymbolRegistry(); i::Handle<i::String> part = i_isolate->factory()->private_api_string(); i::Handle<i::JSObject> privates = i::Handle<i::JSObject>::cast( i::Object::GetPropertyOrElement(registry, part).ToHandleChecked()); i::Handle<i::Object> symbol = i::Object::GetPropertyOrElement(privates, i_name).ToHandleChecked(); if (!symbol->IsSymbol()) { DCHECK(symbol->IsUndefined()); symbol = i_isolate->factory()->NewPrivateSymbol(); i::Handle<i::Symbol>::cast(symbol)->set_name(*i_name); i::JSObject::SetProperty(privates, i_name, symbol, i::STRICT).Assert(); } Local<Symbol> result = Utils::ToLocal(i::Handle<i::Symbol>::cast(symbol)); return v8::Handle<Private>(reinterpret_cast<Private*>(*result)); } Local<Number> v8::Number::New(Isolate* isolate, double value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); DCHECK(internal_isolate->IsInitialized()); if (std::isnan(value)) { // Introduce only canonical NaN value into the VM, to avoid signaling NaNs. value = base::OS::nan_value(); } ENTER_V8(internal_isolate); i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value); return Utils::NumberToLocal(result); } Local<Integer> v8::Integer::New(Isolate* isolate, int32_t value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); DCHECK(internal_isolate->IsInitialized()); if (i::Smi::IsValid(value)) { return Utils::IntegerToLocal(i::Handle<i::Object>(i::Smi::FromInt(value), internal_isolate)); } ENTER_V8(internal_isolate); i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value); return Utils::IntegerToLocal(result); } Local<Integer> v8::Integer::NewFromUnsigned(Isolate* isolate, uint32_t value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); DCHECK(internal_isolate->IsInitialized()); bool fits_into_int32_t = (value & (1 << 31)) == 0; if (fits_into_int32_t) { return Integer::New(isolate, static_cast<int32_t>(value)); } ENTER_V8(internal_isolate); i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value); return Utils::IntegerToLocal(result); } bool V8::AddMessageListener(MessageCallback that, Handle<Value> data) { i::Isolate* isolate = i::Isolate::Current(); ON_BAILOUT(isolate, "v8::V8::AddMessageListener()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); NeanderArray listeners(isolate->factory()->message_listeners()); NeanderObject obj(isolate, 2); obj.set(0, *isolate->factory()->NewForeign(FUNCTION_ADDR(that))); obj.set(1, data.IsEmpty() ? isolate->heap()->undefined_value() : *Utils::OpenHandle(*data)); listeners.add(obj.value()); return true; } void V8::RemoveMessageListeners(MessageCallback that) { i::Isolate* isolate = i::Isolate::Current(); ON_BAILOUT(isolate, "v8::V8::RemoveMessageListeners()", return); ENTER_V8(isolate); i::HandleScope scope(isolate); NeanderArray listeners(isolate->factory()->message_listeners()); for (int i = 0; i < listeners.length(); i++) { if (listeners.get(i)->IsUndefined()) continue; // skip deleted ones NeanderObject listener(i::JSObject::cast(listeners.get(i))); i::Handle<i::Foreign> callback_obj(i::Foreign::cast(listener.get(0))); if (callback_obj->foreign_address() == FUNCTION_ADDR(that)) { listeners.set(i, isolate->heap()->undefined_value()); } } } void V8::SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options) { i::Isolate::Current()->SetCaptureStackTraceForUncaughtExceptions( capture, frame_limit, options); } void V8::SetFailedAccessCheckCallbackFunction( FailedAccessCheckCallback callback) { i::Isolate* isolate = i::Isolate::Current(); isolate->SetFailedAccessCheckCallback(callback); } void Isolate::CollectAllGarbage(const char* gc_reason) { reinterpret_cast<i::Isolate*>(this)->heap()->CollectAllGarbage( i::Heap::kNoGCFlags, gc_reason); } HeapProfiler* Isolate::GetHeapProfiler() { i::HeapProfiler* heap_profiler = reinterpret_cast<i::Isolate*>(this)->heap_profiler(); return reinterpret_cast<HeapProfiler*>(heap_profiler); } CpuProfiler* Isolate::GetCpuProfiler() { i::CpuProfiler* cpu_profiler = reinterpret_cast<i::Isolate*>(this)->cpu_profiler(); return reinterpret_cast<CpuProfiler*>(cpu_profiler); } bool Isolate::InContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->context() != NULL; } v8::Local<v8::Context> Isolate::GetCurrentContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Context* context = isolate->context(); if (context == NULL) return Local<Context>(); i::Context* native_context = context->native_context(); if (native_context == NULL) return Local<Context>(); return Utils::ToLocal(i::Handle<i::Context>(native_context)); } v8::Local<v8::Context> Isolate::GetCallingContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Handle<i::Object> calling = isolate->GetCallingNativeContext(); if (calling.is_null()) return Local<Context>(); return Utils::ToLocal(i::Handle<i::Context>::cast(calling)); } v8::Local<v8::Context> Isolate::GetEnteredContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Handle<i::Object> last = isolate->handle_scope_implementer()->LastEnteredContext(); if (last.is_null()) return Local<Context>(); return Utils::ToLocal(i::Handle<i::Context>::cast(last)); } v8::Local<Value> Isolate::ThrowException(v8::Local<v8::Value> value) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); ENTER_V8(isolate); // If we're passed an empty handle, we throw an undefined exception // to deal more gracefully with out of memory situations. if (value.IsEmpty()) { isolate->ScheduleThrow(isolate->heap()->undefined_value()); } else { isolate->ScheduleThrow(*Utils::OpenHandle(*value)); } return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } void Isolate::SetObjectGroupId(internal::Object** object, UniqueId id) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this); internal_isolate->global_handles()->SetObjectGroupId( v8::internal::Handle<v8::internal::Object>(object).location(), id); } void Isolate::SetReferenceFromGroup(UniqueId id, internal::Object** object) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this); internal_isolate->global_handles()->SetReferenceFromGroup( id, v8::internal::Handle<v8::internal::Object>(object).location()); } void Isolate::SetReference(internal::Object** parent, internal::Object** child) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(this); i::Object** parent_location = v8::internal::Handle<v8::internal::Object>(parent).location(); internal_isolate->global_handles()->SetReference( reinterpret_cast<i::HeapObject**>(parent_location), v8::internal::Handle<v8::internal::Object>(child).location()); } void Isolate::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->AddGCPrologueCallback(callback, gc_type); } void Isolate::RemoveGCPrologueCallback(GCPrologueCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->RemoveGCPrologueCallback(callback); } void Isolate::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->AddGCEpilogueCallback(callback, gc_type); } void Isolate::RemoveGCEpilogueCallback(GCEpilogueCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->RemoveGCEpilogueCallback(callback); } void V8::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) { i::Isolate* isolate = i::Isolate::Current(); isolate->heap()->AddGCPrologueCallback( reinterpret_cast<v8::Isolate::GCPrologueCallback>(callback), gc_type, false); } void V8::RemoveGCPrologueCallback(GCPrologueCallback callback) { i::Isolate* isolate = i::Isolate::Current(); isolate->heap()->RemoveGCPrologueCallback( reinterpret_cast<v8::Isolate::GCPrologueCallback>(callback)); } void V8::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) { i::Isolate* isolate = i::Isolate::Current(); isolate->heap()->AddGCEpilogueCallback( reinterpret_cast<v8::Isolate::GCEpilogueCallback>(callback), gc_type, false); } void V8::RemoveGCEpilogueCallback(GCEpilogueCallback callback) { i::Isolate* isolate = i::Isolate::Current(); isolate->heap()->RemoveGCEpilogueCallback( reinterpret_cast<v8::Isolate::GCEpilogueCallback>(callback)); } void V8::AddMemoryAllocationCallback(MemoryAllocationCallback callback, ObjectSpace space, AllocationAction action) { i::Isolate* isolate = i::Isolate::Current(); isolate->memory_allocator()->AddMemoryAllocationCallback( callback, space, action); } void V8::RemoveMemoryAllocationCallback(MemoryAllocationCallback callback) { i::Isolate* isolate = i::Isolate::Current(); isolate->memory_allocator()->RemoveMemoryAllocationCallback( callback); } void V8::TerminateExecution(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i_isolate->stack_guard()->RequestTerminateExecution(); } bool V8::IsExecutionTerminating(Isolate* isolate) { i::Isolate* i_isolate = isolate != NULL ? reinterpret_cast<i::Isolate*>(isolate) : i::Isolate::Current(); return IsExecutionTerminatingCheck(i_isolate); } void V8::CancelTerminateExecution(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i_isolate->stack_guard()->ClearTerminateExecution(); i_isolate->CancelTerminateExecution(); } void Isolate::RequestInterrupt(InterruptCallback callback, void* data) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this); i_isolate->set_api_interrupt_callback(callback); i_isolate->set_api_interrupt_callback_data(data); i_isolate->stack_guard()->RequestApiInterrupt(); } void Isolate::ClearInterrupt() { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this); i_isolate->stack_guard()->ClearApiInterrupt(); i_isolate->set_api_interrupt_callback(NULL); i_isolate->set_api_interrupt_callback_data(NULL); } void Isolate::RequestGarbageCollectionForTesting(GarbageCollectionType type) { CHECK(i::FLAG_expose_gc); if (type == kMinorGarbageCollection) { reinterpret_cast<i::Isolate*>(this)->heap()->CollectGarbage( i::NEW_SPACE, "Isolate::RequestGarbageCollection", kGCCallbackFlagForced); } else { DCHECK_EQ(kFullGarbageCollection, type); reinterpret_cast<i::Isolate*>(this)->heap()->CollectAllGarbage( i::Heap::kAbortIncrementalMarkingMask, "Isolate::RequestGarbageCollection", kGCCallbackFlagForced); } } Isolate* Isolate::GetCurrent() { i::Isolate* isolate = i::Isolate::Current(); return reinterpret_cast<Isolate*>(isolate); } Isolate* Isolate::New(const Isolate::CreateParams& params) { i::Isolate* isolate = new i::Isolate(); Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate); if (params.entry_hook) { isolate->set_function_entry_hook(params.entry_hook); } if (params.code_event_handler) { isolate->InitializeLoggingAndCounters(); isolate->logger()->SetCodeEventHandler(kJitCodeEventDefault, params.code_event_handler); } SetResourceConstraints(isolate, params.constraints); if (params.enable_serializer) { isolate->enable_serializer(); } // TODO(jochen): Once we got rid of Isolate::Current(), we can remove this. Isolate::Scope isolate_scope(v8_isolate); if (params.entry_hook || !i::Snapshot::Initialize(isolate)) { // If the isolate has a function entry hook, it needs to re-build all its // code stubs with entry hooks embedded, so don't deserialize a snapshot. isolate->Init(NULL); } return v8_isolate; } void Isolate::Dispose() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (!Utils::ApiCheck(!isolate->IsInUse(), "v8::Isolate::Dispose()", "Disposing the isolate that is entered by a thread.")) { return; } isolate->TearDown(); } void Isolate::Enter() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->Enter(); } void Isolate::Exit() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->Exit(); } Isolate::DisallowJavascriptExecutionScope::DisallowJavascriptExecutionScope( Isolate* isolate, Isolate::DisallowJavascriptExecutionScope::OnFailure on_failure) : on_failure_(on_failure) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); if (on_failure_ == CRASH_ON_FAILURE) { internal_ = reinterpret_cast<void*>( new i::DisallowJavascriptExecution(i_isolate)); } else { DCHECK_EQ(THROW_ON_FAILURE, on_failure); internal_ = reinterpret_cast<void*>( new i::ThrowOnJavascriptExecution(i_isolate)); } } Isolate::DisallowJavascriptExecutionScope::~DisallowJavascriptExecutionScope() { if (on_failure_ == CRASH_ON_FAILURE) { delete reinterpret_cast<i::DisallowJavascriptExecution*>(internal_); } else { delete reinterpret_cast<i::ThrowOnJavascriptExecution*>(internal_); } } Isolate::AllowJavascriptExecutionScope::AllowJavascriptExecutionScope( Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_assert_ = reinterpret_cast<void*>( new i::AllowJavascriptExecution(i_isolate)); internal_throws_ = reinterpret_cast<void*>( new i::NoThrowOnJavascriptExecution(i_isolate)); } Isolate::AllowJavascriptExecutionScope::~AllowJavascriptExecutionScope() { delete reinterpret_cast<i::AllowJavascriptExecution*>(internal_assert_); delete reinterpret_cast<i::NoThrowOnJavascriptExecution*>(internal_throws_); } Isolate::SuppressMicrotaskExecutionScope::SuppressMicrotaskExecutionScope( Isolate* isolate) : isolate_(reinterpret_cast<i::Isolate*>(isolate)) { isolate_->handle_scope_implementer()->IncrementCallDepth(); } Isolate::SuppressMicrotaskExecutionScope::~SuppressMicrotaskExecutionScope() { isolate_->handle_scope_implementer()->DecrementCallDepth(); } void Isolate::GetHeapStatistics(HeapStatistics* heap_statistics) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (!isolate->IsInitialized()) { heap_statistics->total_heap_size_ = 0; heap_statistics->total_heap_size_executable_ = 0; heap_statistics->total_physical_size_ = 0; heap_statistics->used_heap_size_ = 0; heap_statistics->heap_size_limit_ = 0; return; } i::Heap* heap = isolate->heap(); heap_statistics->total_heap_size_ = heap->CommittedMemory(); heap_statistics->total_heap_size_executable_ = heap->CommittedMemoryExecutable(); heap_statistics->total_physical_size_ = heap->CommittedPhysicalMemory(); heap_statistics->used_heap_size_ = heap->SizeOfObjects(); heap_statistics->heap_size_limit_ = heap->MaxReserved(); } void Isolate::SetEventLogger(LogEventCallback that) { // Do not overwrite the event logger if we want to log explicitly. if (i::FLAG_log_timer_events) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->set_event_logger(that); } void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) { if (callback == NULL) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->AddCallCompletedCallback(callback); } void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->RemoveCallCompletedCallback(callback); } void Isolate::RunMicrotasks() { reinterpret_cast<i::Isolate*>(this)->RunMicrotasks(); } void Isolate::EnqueueMicrotask(Handle<Function> microtask) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->EnqueueMicrotask(Utils::OpenHandle(*microtask)); } void Isolate::EnqueueMicrotask(MicrotaskCallback microtask, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::HandleScope scope(isolate); i::Handle<i::CallHandlerInfo> callback_info = i::Handle<i::CallHandlerInfo>::cast( isolate->factory()->NewStruct(i::CALL_HANDLER_INFO_TYPE)); SET_FIELD_WRAPPED(callback_info, set_callback, microtask); SET_FIELD_WRAPPED(callback_info, set_data, data); isolate->EnqueueMicrotask(callback_info); } void Isolate::SetAutorunMicrotasks(bool autorun) { reinterpret_cast<i::Isolate*>(this)->set_autorun_microtasks(autorun); } bool Isolate::WillAutorunMicrotasks() const { return reinterpret_cast<const i::Isolate*>(this)->autorun_microtasks(); } void Isolate::SetUseCounterCallback(UseCounterCallback callback) { reinterpret_cast<i::Isolate*>(this)->SetUseCounterCallback(callback); } void Isolate::SetCounterFunction(CounterLookupCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->stats_table()->SetCounterFunction(callback); isolate->InitializeLoggingAndCounters(); isolate->counters()->ResetCounters(); } void Isolate::SetCreateHistogramFunction(CreateHistogramCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->stats_table()->SetCreateHistogramFunction(callback); isolate->InitializeLoggingAndCounters(); isolate->counters()->ResetHistograms(); } void Isolate::SetAddHistogramSampleFunction( AddHistogramSampleCallback callback) { reinterpret_cast<i::Isolate*>(this) ->stats_table() ->SetAddHistogramSampleFunction(callback); } bool v8::Isolate::IdleNotification(int idle_time_in_ms) { // Returning true tells the caller that it need not // continue to call IdleNotification. i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (!i::FLAG_use_idle_notification) return true; return isolate->heap()->IdleNotification(idle_time_in_ms); } void v8::Isolate::LowMemoryNotification() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); { i::HistogramTimerScope idle_notification_scope( isolate->counters()->gc_low_memory_notification()); isolate->heap()->CollectAllAvailableGarbage("low memory notification"); } } int v8::Isolate::ContextDisposedNotification() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->heap()->NotifyContextDisposed(); } void v8::Isolate::SetJitCodeEventHandler(JitCodeEventOptions options, JitCodeEventHandler event_handler) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); // Ensure that logging is initialized for our isolate. isolate->InitializeLoggingAndCounters(); isolate->logger()->SetCodeEventHandler(options, event_handler); } void v8::Isolate::SetStackLimit(uintptr_t stack_limit) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); CHECK(stack_limit); isolate->stack_guard()->SetStackLimit(stack_limit); } String::Utf8Value::Utf8Value(v8::Handle<v8::Value> obj) : str_(NULL), length_(0) { i::Isolate* isolate = i::Isolate::Current(); if (obj.IsEmpty()) return; ENTER_V8(isolate); i::HandleScope scope(isolate); TryCatch try_catch; Handle<String> str = obj->ToString(); if (str.IsEmpty()) return; i::Handle<i::String> i_str = Utils::OpenHandle(*str); length_ = v8::Utf8Length(*i_str, isolate); str_ = i::NewArray<char>(length_ + 1); str->WriteUtf8(str_); } String::Utf8Value::~Utf8Value() { i::DeleteArray(str_); } String::Value::Value(v8::Handle<v8::Value> obj) : str_(NULL), length_(0) { i::Isolate* isolate = i::Isolate::Current(); if (obj.IsEmpty()) return; ENTER_V8(isolate); i::HandleScope scope(isolate); TryCatch try_catch; Handle<String> str = obj->ToString(); if (str.IsEmpty()) return; length_ = str->Length(); str_ = i::NewArray<uint16_t>(length_ + 1); str->Write(str_); } String::Value::~Value() { i::DeleteArray(str_); } #define DEFINE_ERROR(NAME) \ Local<Value> Exception::NAME(v8::Handle<v8::String> raw_message) { \ i::Isolate* isolate = i::Isolate::Current(); \ LOG_API(isolate, #NAME); \ ON_BAILOUT(isolate, "v8::Exception::" #NAME "()", return Local<Value>()); \ ENTER_V8(isolate); \ i::Object* error; \ { \ i::HandleScope scope(isolate); \ i::Handle<i::String> message = Utils::OpenHandle(*raw_message); \ i::Handle<i::Object> result; \ EXCEPTION_PREAMBLE(isolate); \ i::MaybeHandle<i::Object> maybe_result = \ isolate->factory()->New##NAME(message); \ has_pending_exception = !maybe_result.ToHandle(&result); \ /* TODO(yangguo): crbug/403509. Return empty handle instead. */ \ EXCEPTION_BAILOUT_CHECK( \ isolate, v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate))); \ error = *result; \ } \ i::Handle<i::Object> result(error, isolate); \ return Utils::ToLocal(result); \ } DEFINE_ERROR(RangeError) DEFINE_ERROR(ReferenceError) DEFINE_ERROR(SyntaxError) DEFINE_ERROR(TypeError) DEFINE_ERROR(Error) #undef DEFINE_ERROR // --- D e b u g S u p p o r t --- bool Debug::SetDebugEventListener(EventCallback that, Handle<Value> data) { i::Isolate* isolate = i::Isolate::Current(); ON_BAILOUT(isolate, "v8::Debug::SetDebugEventListener()", return false); ENTER_V8(isolate); i::HandleScope scope(isolate); i::Handle<i::Object> foreign = isolate->factory()->undefined_value(); if (that != NULL) { foreign = isolate->factory()->NewForeign(FUNCTION_ADDR(that)); } isolate->debug()->SetEventListener(foreign, Utils::OpenHandle(*data, true)); return true; } void Debug::DebugBreak(Isolate* isolate) { reinterpret_cast<i::Isolate*>(isolate)->stack_guard()->RequestDebugBreak(); } void Debug::CancelDebugBreak(Isolate* isolate) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->stack_guard()->ClearDebugBreak(); } bool Debug::CheckDebugBreak(Isolate* isolate) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); return internal_isolate->stack_guard()->CheckDebugBreak(); } void Debug::DebugBreakForCommand(Isolate* isolate, ClientData* data) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->debug()->EnqueueDebugCommand(data); } void Debug::SetMessageHandler(v8::Debug::MessageHandler handler) { i::Isolate* isolate = i::Isolate::Current(); ENTER_V8(isolate); isolate->debug()->SetMessageHandler(handler); } void Debug::SendCommand(Isolate* isolate, const uint16_t* command, int length, ClientData* client_data) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->debug()->EnqueueCommandMessage( i::Vector<const uint16_t>(command, length), client_data); } Local<Value> Debug::Call(v8::Handle<v8::Function> fun, v8::Handle<v8::Value> data) { i::Isolate* isolate = i::Isolate::Current(); if (!isolate->IsInitialized()) return Local<Value>(); ON_BAILOUT(isolate, "v8::Debug::Call()", return Local<Value>()); ENTER_V8(isolate); i::MaybeHandle<i::Object> maybe_result; EXCEPTION_PREAMBLE(isolate); if (data.IsEmpty()) { maybe_result = isolate->debug()->Call( Utils::OpenHandle(*fun), isolate->factory()->undefined_value()); } else { maybe_result = isolate->debug()->Call( Utils::OpenHandle(*fun), Utils::OpenHandle(*data)); } i::Handle<i::Object> result; has_pending_exception = !maybe_result.ToHandle(&result); EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>()); return Utils::ToLocal(result); } Local<Value> Debug::GetMirror(v8::Handle<v8::Value> obj) { i::Isolate* isolate = i::Isolate::Current(); if (!isolate->IsInitialized()) return Local<Value>(); ON_BAILOUT(isolate, "v8::Debug::GetMirror()", return Local<Value>()); ENTER_V8(isolate); v8::EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Debug* isolate_debug = isolate->debug(); EXCEPTION_PREAMBLE(isolate); has_pending_exception = !isolate_debug->Load(); v8::Local<v8::Value> result; if (!has_pending_exception) { i::Handle<i::JSObject> debug( isolate_debug->debug_context()->global_object()); i::Handle<i::String> name = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("MakeMirror")); i::Handle<i::Object> fun_obj = i::Object::GetProperty(debug, name).ToHandleChecked(); i::Handle<i::JSFunction> fun = i::Handle<i::JSFunction>::cast(fun_obj); v8::Handle<v8::Function> v8_fun = Utils::ToLocal(fun); const int kArgc = 1; v8::Handle<v8::Value> argv[kArgc] = { obj }; result = v8_fun->Call(Utils::ToLocal(debug), kArgc, argv); has_pending_exception = result.IsEmpty(); } EXCEPTION_BAILOUT_CHECK(isolate, Local<Value>()); return scope.Escape(result); } void Debug::ProcessDebugMessages() { i::Isolate::Current()->debug()->ProcessDebugMessages(true); } Local<Context> Debug::GetDebugContext() { i::Isolate* isolate = i::Isolate::Current(); ENTER_V8(isolate); return Utils::ToLocal(i::Isolate::Current()->debug()->GetDebugContext()); } void Debug::SetLiveEditEnabled(Isolate* isolate, bool enable) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->debug()->set_live_edit_enabled(enable); } Handle<String> CpuProfileNode::GetFunctionName() const { i::Isolate* isolate = i::Isolate::Current(); const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); const i::CodeEntry* entry = node->entry(); i::Handle<i::String> name = isolate->factory()->InternalizeUtf8String(entry->name()); if (!entry->has_name_prefix()) { return ToApiHandle<String>(name); } else { // We do not expect this to fail. Change this if it does. i::Handle<i::String> cons = isolate->factory()->NewConsString( isolate->factory()->InternalizeUtf8String(entry->name_prefix()), name).ToHandleChecked(); return ToApiHandle<String>(cons); } } int CpuProfileNode::GetScriptId() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); const i::CodeEntry* entry = node->entry(); return entry->script_id(); } Handle<String> CpuProfileNode::GetScriptResourceName() const { i::Isolate* isolate = i::Isolate::Current(); const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String( node->entry()->resource_name())); } int CpuProfileNode::GetLineNumber() const { return reinterpret_cast<const i::ProfileNode*>(this)->entry()->line_number(); } int CpuProfileNode::GetColumnNumber() const { return reinterpret_cast<const i::ProfileNode*>(this)-> entry()->column_number(); } const char* CpuProfileNode::GetBailoutReason() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->entry()->bailout_reason(); } unsigned CpuProfileNode::GetHitCount() const { return reinterpret_cast<const i::ProfileNode*>(this)->self_ticks(); } unsigned CpuProfileNode::GetCallUid() const { return reinterpret_cast<const i::ProfileNode*>(this)->entry()->GetCallUid(); } unsigned CpuProfileNode::GetNodeId() const { return reinterpret_cast<const i::ProfileNode*>(this)->id(); } int CpuProfileNode::GetChildrenCount() const { return reinterpret_cast<const i::ProfileNode*>(this)->children()->length(); } const CpuProfileNode* CpuProfileNode::GetChild(int index) const { const i::ProfileNode* child = reinterpret_cast<const i::ProfileNode*>(this)->children()->at(index); return reinterpret_cast<const CpuProfileNode*>(child); } void CpuProfile::Delete() { i::Isolate* isolate = i::Isolate::Current(); i::CpuProfiler* profiler = isolate->cpu_profiler(); DCHECK(profiler != NULL); profiler->DeleteProfile(reinterpret_cast<i::CpuProfile*>(this)); } Handle<String> CpuProfile::GetTitle() const { i::Isolate* isolate = i::Isolate::Current(); const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String( profile->title())); } const CpuProfileNode* CpuProfile::GetTopDownRoot() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return reinterpret_cast<const CpuProfileNode*>(profile->top_down()->root()); } const CpuProfileNode* CpuProfile::GetSample(int index) const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return reinterpret_cast<const CpuProfileNode*>(profile->sample(index)); } int64_t CpuProfile::GetSampleTimestamp(int index) const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return (profile->sample_timestamp(index) - base::TimeTicks()) .InMicroseconds(); } int64_t CpuProfile::GetStartTime() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return (profile->start_time() - base::TimeTicks()).InMicroseconds(); } int64_t CpuProfile::GetEndTime() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return (profile->end_time() - base::TimeTicks()).InMicroseconds(); } int CpuProfile::GetSamplesCount() const { return reinterpret_cast<const i::CpuProfile*>(this)->samples_count(); } void CpuProfiler::SetSamplingInterval(int us) { DCHECK(us >= 0); return reinterpret_cast<i::CpuProfiler*>(this)->set_sampling_interval( base::TimeDelta::FromMicroseconds(us)); } void CpuProfiler::StartProfiling(Handle<String> title, bool record_samples) { reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling( *Utils::OpenHandle(*title), record_samples); } void CpuProfiler::StartCpuProfiling(Handle<String> title, bool record_samples) { StartProfiling(title, record_samples); } CpuProfile* CpuProfiler::StopProfiling(Handle<String> title) { return reinterpret_cast<CpuProfile*>( reinterpret_cast<i::CpuProfiler*>(this)->StopProfiling( *Utils::OpenHandle(*title))); } const CpuProfile* CpuProfiler::StopCpuProfiling(Handle<String> title) { return StopProfiling(title); } void CpuProfiler::SetIdle(bool is_idle) { i::Isolate* isolate = reinterpret_cast<i::CpuProfiler*>(this)->isolate(); i::StateTag state = isolate->current_vm_state(); DCHECK(state == i::EXTERNAL || state == i::IDLE); if (isolate->js_entry_sp() != NULL) return; if (is_idle) { isolate->set_current_vm_state(i::IDLE); } else if (state == i::IDLE) { isolate->set_current_vm_state(i::EXTERNAL); } } static i::HeapGraphEdge* ToInternal(const HeapGraphEdge* edge) { return const_cast<i::HeapGraphEdge*>( reinterpret_cast<const i::HeapGraphEdge*>(edge)); } HeapGraphEdge::Type HeapGraphEdge::GetType() const { return static_cast<HeapGraphEdge::Type>(ToInternal(this)->type()); } Handle<Value> HeapGraphEdge::GetName() const { i::Isolate* isolate = i::Isolate::Current(); i::HeapGraphEdge* edge = ToInternal(this); switch (edge->type()) { case i::HeapGraphEdge::kContextVariable: case i::HeapGraphEdge::kInternal: case i::HeapGraphEdge::kProperty: case i::HeapGraphEdge::kShortcut: case i::HeapGraphEdge::kWeak: return ToApiHandle<String>( isolate->factory()->InternalizeUtf8String(edge->name())); case i::HeapGraphEdge::kElement: case i::HeapGraphEdge::kHidden: return ToApiHandle<Number>( isolate->factory()->NewNumberFromInt(edge->index())); default: UNREACHABLE(); } return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } const HeapGraphNode* HeapGraphEdge::GetFromNode() const { const i::HeapEntry* from = ToInternal(this)->from(); return reinterpret_cast<const HeapGraphNode*>(from); } const HeapGraphNode* HeapGraphEdge::GetToNode() const { const i::HeapEntry* to = ToInternal(this)->to(); return reinterpret_cast<const HeapGraphNode*>(to); } static i::HeapEntry* ToInternal(const HeapGraphNode* entry) { return const_cast<i::HeapEntry*>( reinterpret_cast<const i::HeapEntry*>(entry)); } HeapGraphNode::Type HeapGraphNode::GetType() const { return static_cast<HeapGraphNode::Type>(ToInternal(this)->type()); } Handle<String> HeapGraphNode::GetName() const { i::Isolate* isolate = i::Isolate::Current(); return ToApiHandle<String>( isolate->factory()->InternalizeUtf8String(ToInternal(this)->name())); } SnapshotObjectId HeapGraphNode::GetId() const { return ToInternal(this)->id(); } int HeapGraphNode::GetSelfSize() const { size_t size = ToInternal(this)->self_size(); CHECK(size <= static_cast<size_t>(internal::kMaxInt)); return static_cast<int>(size); } size_t HeapGraphNode::GetShallowSize() const { return ToInternal(this)->self_size(); } int HeapGraphNode::GetChildrenCount() const { return ToInternal(this)->children().length(); } const HeapGraphEdge* HeapGraphNode::GetChild(int index) const { return reinterpret_cast<const HeapGraphEdge*>( ToInternal(this)->children()[index]); } static i::HeapSnapshot* ToInternal(const HeapSnapshot* snapshot) { return const_cast<i::HeapSnapshot*>( reinterpret_cast<const i::HeapSnapshot*>(snapshot)); } void HeapSnapshot::Delete() { i::Isolate* isolate = i::Isolate::Current(); if (isolate->heap_profiler()->GetSnapshotsCount() > 1) { ToInternal(this)->Delete(); } else { // If this is the last snapshot, clean up all accessory data as well. isolate->heap_profiler()->DeleteAllSnapshots(); } } unsigned HeapSnapshot::GetUid() const { return ToInternal(this)->uid(); } Handle<String> HeapSnapshot::GetTitle() const { i::Isolate* isolate = i::Isolate::Current(); return ToApiHandle<String>( isolate->factory()->InternalizeUtf8String(ToInternal(this)->title())); } const HeapGraphNode* HeapSnapshot::GetRoot() const { return reinterpret_cast<const HeapGraphNode*>(ToInternal(this)->root()); } const HeapGraphNode* HeapSnapshot::GetNodeById(SnapshotObjectId id) const { return reinterpret_cast<const HeapGraphNode*>( ToInternal(this)->GetEntryById(id)); } int HeapSnapshot::GetNodesCount() const { return ToInternal(this)->entries().length(); } const HeapGraphNode* HeapSnapshot::GetNode(int index) const { return reinterpret_cast<const HeapGraphNode*>( &ToInternal(this)->entries().at(index)); } SnapshotObjectId HeapSnapshot::GetMaxSnapshotJSObjectId() const { return ToInternal(this)->max_snapshot_js_object_id(); } void HeapSnapshot::Serialize(OutputStream* stream, HeapSnapshot::SerializationFormat format) const { Utils::ApiCheck(format == kJSON, "v8::HeapSnapshot::Serialize", "Unknown serialization format"); Utils::ApiCheck(stream->GetChunkSize() > 0, "v8::HeapSnapshot::Serialize", "Invalid stream chunk size"); i::HeapSnapshotJSONSerializer serializer(ToInternal(this)); serializer.Serialize(stream); } int HeapProfiler::GetSnapshotCount() { return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotsCount(); } const HeapSnapshot* HeapProfiler::GetHeapSnapshot(int index) { return reinterpret_cast<const HeapSnapshot*>( reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshot(index)); } SnapshotObjectId HeapProfiler::GetObjectId(Handle<Value> value) { i::Handle<i::Object> obj = Utils::OpenHandle(*value); return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(obj); } Handle<Value> HeapProfiler::FindObjectById(SnapshotObjectId id) { i::Handle<i::Object> obj = reinterpret_cast<i::HeapProfiler*>(this)->FindHeapObjectById(id); if (obj.is_null()) return Local<Value>(); return Utils::ToLocal(obj); } void HeapProfiler::ClearObjectIds() { reinterpret_cast<i::HeapProfiler*>(this)->ClearHeapObjectMap(); } const HeapSnapshot* HeapProfiler::TakeHeapSnapshot( Handle<String> title, ActivityControl* control, ObjectNameResolver* resolver) { return reinterpret_cast<const HeapSnapshot*>( reinterpret_cast<i::HeapProfiler*>(this)->TakeSnapshot( *Utils::OpenHandle(*title), control, resolver)); } void HeapProfiler::StartTrackingHeapObjects(bool track_allocations) { reinterpret_cast<i::HeapProfiler*>(this)->StartHeapObjectsTracking( track_allocations); } void HeapProfiler::StopTrackingHeapObjects() { reinterpret_cast<i::HeapProfiler*>(this)->StopHeapObjectsTracking(); } SnapshotObjectId HeapProfiler::GetHeapStats(OutputStream* stream) { return reinterpret_cast<i::HeapProfiler*>(this)->PushHeapObjectsStats(stream); } void HeapProfiler::DeleteAllHeapSnapshots() { reinterpret_cast<i::HeapProfiler*>(this)->DeleteAllSnapshots(); } void HeapProfiler::SetWrapperClassInfoProvider(uint16_t class_id, WrapperInfoCallback callback) { reinterpret_cast<i::HeapProfiler*>(this)->DefineWrapperClass(class_id, callback); } size_t HeapProfiler::GetProfilerMemorySize() { return reinterpret_cast<i::HeapProfiler*>(this)-> GetMemorySizeUsedByProfiler(); } void HeapProfiler::SetRetainedObjectInfo(UniqueId id, RetainedObjectInfo* info) { reinterpret_cast<i::HeapProfiler*>(this)->SetRetainedObjectInfo(id, info); } v8::Testing::StressType internal::Testing::stress_type_ = v8::Testing::kStressTypeOpt; void Testing::SetStressRunType(Testing::StressType type) { internal::Testing::set_stress_type(type); } int Testing::GetStressRuns() { if (internal::FLAG_stress_runs != 0) return internal::FLAG_stress_runs; #ifdef DEBUG // In debug mode the code runs much slower so stressing will only make two // runs. return 2; #else return 5; #endif } static void SetFlagsFromString(const char* flags) { V8::SetFlagsFromString(flags, i::StrLength(flags)); } void Testing::PrepareStressRun(int run) { static const char* kLazyOptimizations = "--prepare-always-opt " "--max-inlined-source-size=999999 " "--max-inlined-nodes=999999 " "--max-inlined-nodes-cumulative=999999 " "--noalways-opt"; static const char* kForcedOptimizations = "--always-opt"; // If deoptimization stressed turn on frequent deoptimization. If no value // is spefified through --deopt-every-n-times use a default default value. static const char* kDeoptEvery13Times = "--deopt-every-n-times=13"; if (internal::Testing::stress_type() == Testing::kStressTypeDeopt && internal::FLAG_deopt_every_n_times == 0) { SetFlagsFromString(kDeoptEvery13Times); } #ifdef DEBUG // As stressing in debug mode only make two runs skip the deopt stressing // here. if (run == GetStressRuns() - 1) { SetFlagsFromString(kForcedOptimizations); } else { SetFlagsFromString(kLazyOptimizations); } #else if (run == GetStressRuns() - 1) { SetFlagsFromString(kForcedOptimizations); } else if (run != GetStressRuns() - 2) { SetFlagsFromString(kLazyOptimizations); } #endif } // TODO(svenpanne) Deprecate this. void Testing::DeoptimizeAll() { i::Isolate* isolate = i::Isolate::Current(); i::HandleScope scope(isolate); internal::Deoptimizer::DeoptimizeAll(isolate); } namespace internal { void HandleScopeImplementer::FreeThreadResources() { Free(); } char* HandleScopeImplementer::ArchiveThread(char* storage) { HandleScopeData* current = isolate_->handle_scope_data(); handle_scope_data_ = *current; MemCopy(storage, this, sizeof(*this)); ResetAfterArchive(); current->Initialize(); return storage + ArchiveSpacePerThread(); } int HandleScopeImplementer::ArchiveSpacePerThread() { return sizeof(HandleScopeImplementer); } char* HandleScopeImplementer::RestoreThread(char* storage) { MemCopy(this, storage, sizeof(*this)); *isolate_->handle_scope_data() = handle_scope_data_; return storage + ArchiveSpacePerThread(); } void HandleScopeImplementer::IterateThis(ObjectVisitor* v) { #ifdef DEBUG bool found_block_before_deferred = false; #endif // Iterate over all handles in the blocks except for the last. for (int i = blocks()->length() - 2; i >= 0; --i) { Object** block = blocks()->at(i); if (last_handle_before_deferred_block_ != NULL && (last_handle_before_deferred_block_ <= &block[kHandleBlockSize]) && (last_handle_before_deferred_block_ >= block)) { v->VisitPointers(block, last_handle_before_deferred_block_); DCHECK(!found_block_before_deferred); #ifdef DEBUG found_block_before_deferred = true; #endif } else { v->VisitPointers(block, &block[kHandleBlockSize]); } } DCHECK(last_handle_before_deferred_block_ == NULL || found_block_before_deferred); // Iterate over live handles in the last block (if any). if (!blocks()->is_empty()) { v->VisitPointers(blocks()->last(), handle_scope_data_.next); } List<Context*>* context_lists[2] = { &saved_contexts_, &entered_contexts_}; for (unsigned i = 0; i < arraysize(context_lists); i++) { if (context_lists[i]->is_empty()) continue; Object** start = reinterpret_cast<Object**>(&context_lists[i]->first()); v->VisitPointers(start, start + context_lists[i]->length()); } } void HandleScopeImplementer::Iterate(ObjectVisitor* v) { HandleScopeData* current = isolate_->handle_scope_data(); handle_scope_data_ = *current; IterateThis(v); } char* HandleScopeImplementer::Iterate(ObjectVisitor* v, char* storage) { HandleScopeImplementer* scope_implementer = reinterpret_cast<HandleScopeImplementer*>(storage); scope_implementer->IterateThis(v); return storage + ArchiveSpacePerThread(); } DeferredHandles* HandleScopeImplementer::Detach(Object** prev_limit) { DeferredHandles* deferred = new DeferredHandles(isolate()->handle_scope_data()->next, isolate()); while (!blocks_.is_empty()) { Object** block_start = blocks_.last(); Object** block_limit = &block_start[kHandleBlockSize]; // We should not need to check for SealHandleScope here. Assert this. DCHECK(prev_limit == block_limit || !(block_start <= prev_limit && prev_limit <= block_limit)); if (prev_limit == block_limit) break; deferred->blocks_.Add(blocks_.last()); blocks_.RemoveLast(); } // deferred->blocks_ now contains the blocks installed on the // HandleScope stack since BeginDeferredScope was called, but in // reverse order. DCHECK(prev_limit == NULL || !blocks_.is_empty()); DCHECK(!blocks_.is_empty() && prev_limit != NULL); DCHECK(last_handle_before_deferred_block_ != NULL); last_handle_before_deferred_block_ = NULL; return deferred; } void HandleScopeImplementer::BeginDeferredScope() { DCHECK(last_handle_before_deferred_block_ == NULL); last_handle_before_deferred_block_ = isolate()->handle_scope_data()->next; } DeferredHandles::~DeferredHandles() { isolate_->UnlinkDeferredHandles(this); for (int i = 0; i < blocks_.length(); i++) { #ifdef ENABLE_HANDLE_ZAPPING HandleScope::ZapRange(blocks_[i], &blocks_[i][kHandleBlockSize]); #endif isolate_->handle_scope_implementer()->ReturnBlock(blocks_[i]); } } void DeferredHandles::Iterate(ObjectVisitor* v) { DCHECK(!blocks_.is_empty()); DCHECK((first_block_limit_ >= blocks_.first()) && (first_block_limit_ <= &(blocks_.first())[kHandleBlockSize])); v->VisitPointers(blocks_.first(), first_block_limit_); for (int i = 1; i < blocks_.length(); i++) { v->VisitPointers(blocks_[i], &blocks_[i][kHandleBlockSize]); } } void InvokeAccessorGetterCallback( v8::Local<v8::Name> property, const v8::PropertyCallbackInfo<v8::Value>& info, v8::AccessorNameGetterCallback getter) { // Leaving JavaScript. Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate()); Address getter_address = reinterpret_cast<Address>(reinterpret_cast<intptr_t>( getter)); VMState<EXTERNAL> state(isolate); ExternalCallbackScope call_scope(isolate, getter_address); getter(property, info); } void InvokeFunctionCallback(const v8::FunctionCallbackInfo<v8::Value>& info, v8::FunctionCallback callback) { Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate()); Address callback_address = reinterpret_cast<Address>(reinterpret_cast<intptr_t>(callback)); VMState<EXTERNAL> state(isolate); ExternalCallbackScope call_scope(isolate, callback_address); callback(info); } } } // namespace v8::internal