// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/api.h" #include "src/arguments.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/compiler.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/execution.h" #include "src/full-codegen.h" #include "src/global-handles.h" #include "src/isolate-inl.h" #include "src/list.h" #include "src/log.h" #include "src/messages.h" #include "src/natives.h" #include "include/v8-debug.h" namespace v8 { namespace internal { Debug::Debug(Isolate* isolate) : debug_context_(Handle<Context>()), event_listener_(Handle<Object>()), event_listener_data_(Handle<Object>()), message_handler_(NULL), command_received_(0), command_queue_(isolate->logger(), kQueueInitialSize), event_command_queue_(isolate->logger(), kQueueInitialSize), is_active_(false), is_suppressed_(false), live_edit_enabled_(true), // TODO(yangguo): set to false by default. has_break_points_(false), break_disabled_(false), break_on_exception_(false), break_on_uncaught_exception_(false), script_cache_(NULL), debug_info_list_(NULL), isolate_(isolate) { ThreadInit(); } static v8::Handle<v8::Context> GetDebugEventContext(Isolate* isolate) { Handle<Context> context = isolate->debug()->debugger_entry()->GetContext(); // Isolate::context() may have been NULL when "script collected" event // occured. if (context.is_null()) return v8::Local<v8::Context>(); Handle<Context> native_context(context->native_context()); return v8::Utils::ToLocal(native_context); } BreakLocationIterator::BreakLocationIterator(Handle<DebugInfo> debug_info, BreakLocatorType type) { debug_info_ = debug_info; type_ = type; reloc_iterator_ = NULL; reloc_iterator_original_ = NULL; Reset(); // Initialize the rest of the member variables. } BreakLocationIterator::~BreakLocationIterator() { DCHECK(reloc_iterator_ != NULL); DCHECK(reloc_iterator_original_ != NULL); delete reloc_iterator_; delete reloc_iterator_original_; } // Check whether a code stub with the specified major key is a possible break // point location when looking for source break locations. static bool IsSourceBreakStub(Code* code) { CodeStub::Major major_key = CodeStub::GetMajorKey(code); return major_key == CodeStub::CallFunction; } // Check whether a code stub with the specified major key is a possible break // location. static bool IsBreakStub(Code* code) { CodeStub::Major major_key = CodeStub::GetMajorKey(code); return major_key == CodeStub::CallFunction; } void BreakLocationIterator::Next() { DisallowHeapAllocation no_gc; DCHECK(!RinfoDone()); // Iterate through reloc info for code and original code stopping at each // breakable code target. bool first = break_point_ == -1; while (!RinfoDone()) { if (!first) RinfoNext(); first = false; if (RinfoDone()) return; // Whenever a statement position or (plain) position is passed update the // current value of these. if (RelocInfo::IsPosition(rmode())) { if (RelocInfo::IsStatementPosition(rmode())) { statement_position_ = static_cast<int>( rinfo()->data() - debug_info_->shared()->start_position()); } // Always update the position as we don't want that to be before the // statement position. position_ = static_cast<int>( rinfo()->data() - debug_info_->shared()->start_position()); DCHECK(position_ >= 0); DCHECK(statement_position_ >= 0); } if (IsDebugBreakSlot()) { // There is always a possible break point at a debug break slot. break_point_++; return; } else if (RelocInfo::IsCodeTarget(rmode())) { // Check for breakable code target. Look in the original code as setting // break points can cause the code targets in the running (debugged) code // to be of a different kind than in the original code. Address target = original_rinfo()->target_address(); Code* code = Code::GetCodeFromTargetAddress(target); if ((code->is_inline_cache_stub() && !code->is_binary_op_stub() && !code->is_compare_ic_stub() && !code->is_to_boolean_ic_stub()) || RelocInfo::IsConstructCall(rmode())) { break_point_++; return; } if (code->kind() == Code::STUB) { if (IsDebuggerStatement()) { break_point_++; return; } else if (type_ == ALL_BREAK_LOCATIONS) { if (IsBreakStub(code)) { break_point_++; return; } } else { DCHECK(type_ == SOURCE_BREAK_LOCATIONS); if (IsSourceBreakStub(code)) { break_point_++; return; } } } } // Check for break at return. if (RelocInfo::IsJSReturn(rmode())) { // Set the positions to the end of the function. if (debug_info_->shared()->HasSourceCode()) { position_ = debug_info_->shared()->end_position() - debug_info_->shared()->start_position() - 1; } else { position_ = 0; } statement_position_ = position_; break_point_++; return; } } } void BreakLocationIterator::Next(int count) { while (count > 0) { Next(); count--; } } // Find the break point at the supplied address, or the closest one before // the address. void BreakLocationIterator::FindBreakLocationFromAddress(Address pc) { // Run through all break points to locate the one closest to the address. int closest_break_point = 0; int distance = kMaxInt; while (!Done()) { // Check if this break point is closer that what was previously found. if (this->pc() <= pc && pc - this->pc() < distance) { closest_break_point = break_point(); distance = static_cast<int>(pc - this->pc()); // Check whether we can't get any closer. if (distance == 0) break; } Next(); } // Move to the break point found. Reset(); Next(closest_break_point); } // Find the break point closest to the supplied source position. void BreakLocationIterator::FindBreakLocationFromPosition(int position, BreakPositionAlignment alignment) { // Run through all break points to locate the one closest to the source // position. int closest_break_point = 0; int distance = kMaxInt; while (!Done()) { int next_position; switch (alignment) { case STATEMENT_ALIGNED: next_position = this->statement_position(); break; case BREAK_POSITION_ALIGNED: next_position = this->position(); break; default: UNREACHABLE(); next_position = this->statement_position(); } // Check if this break point is closer that what was previously found. if (position <= next_position && next_position - position < distance) { closest_break_point = break_point(); distance = next_position - position; // Check whether we can't get any closer. if (distance == 0) break; } Next(); } // Move to the break point found. Reset(); Next(closest_break_point); } void BreakLocationIterator::Reset() { // Create relocation iterators for the two code objects. if (reloc_iterator_ != NULL) delete reloc_iterator_; if (reloc_iterator_original_ != NULL) delete reloc_iterator_original_; reloc_iterator_ = new RelocIterator( debug_info_->code(), ~RelocInfo::ModeMask(RelocInfo::CODE_AGE_SEQUENCE)); reloc_iterator_original_ = new RelocIterator( debug_info_->original_code(), ~RelocInfo::ModeMask(RelocInfo::CODE_AGE_SEQUENCE)); // Position at the first break point. break_point_ = -1; position_ = 1; statement_position_ = 1; Next(); } bool BreakLocationIterator::Done() const { return RinfoDone(); } void BreakLocationIterator::SetBreakPoint(Handle<Object> break_point_object) { // If there is not already a real break point here patch code with debug // break. if (!HasBreakPoint()) SetDebugBreak(); DCHECK(IsDebugBreak() || IsDebuggerStatement()); // Set the break point information. DebugInfo::SetBreakPoint(debug_info_, code_position(), position(), statement_position(), break_point_object); } void BreakLocationIterator::ClearBreakPoint(Handle<Object> break_point_object) { // Clear the break point information. DebugInfo::ClearBreakPoint(debug_info_, code_position(), break_point_object); // If there are no more break points here remove the debug break. if (!HasBreakPoint()) { ClearDebugBreak(); DCHECK(!IsDebugBreak()); } } void BreakLocationIterator::SetOneShot() { // Debugger statement always calls debugger. No need to modify it. if (IsDebuggerStatement()) return; // If there is a real break point here no more to do. if (HasBreakPoint()) { DCHECK(IsDebugBreak()); return; } // Patch code with debug break. SetDebugBreak(); } void BreakLocationIterator::ClearOneShot() { // Debugger statement always calls debugger. No need to modify it. if (IsDebuggerStatement()) return; // If there is a real break point here no more to do. if (HasBreakPoint()) { DCHECK(IsDebugBreak()); return; } // Patch code removing debug break. ClearDebugBreak(); DCHECK(!IsDebugBreak()); } void BreakLocationIterator::SetDebugBreak() { // Debugger statement always calls debugger. No need to modify it. if (IsDebuggerStatement()) return; // If there is already a break point here just return. This might happen if // the same code is flooded with break points twice. Flooding the same // function twice might happen when stepping in a function with an exception // handler as the handler and the function is the same. if (IsDebugBreak()) return; if (RelocInfo::IsJSReturn(rmode())) { // Patch the frame exit code with a break point. SetDebugBreakAtReturn(); } else if (IsDebugBreakSlot()) { // Patch the code in the break slot. SetDebugBreakAtSlot(); } else { // Patch the IC call. SetDebugBreakAtIC(); } DCHECK(IsDebugBreak()); } void BreakLocationIterator::ClearDebugBreak() { // Debugger statement always calls debugger. No need to modify it. if (IsDebuggerStatement()) return; if (RelocInfo::IsJSReturn(rmode())) { // Restore the frame exit code. ClearDebugBreakAtReturn(); } else if (IsDebugBreakSlot()) { // Restore the code in the break slot. ClearDebugBreakAtSlot(); } else { // Patch the IC call. ClearDebugBreakAtIC(); } DCHECK(!IsDebugBreak()); } bool BreakLocationIterator::IsStepInLocation(Isolate* isolate) { if (RelocInfo::IsConstructCall(original_rmode())) { return true; } else if (RelocInfo::IsCodeTarget(rmode())) { HandleScope scope(debug_info_->GetIsolate()); Address target = original_rinfo()->target_address(); Handle<Code> target_code(Code::GetCodeFromTargetAddress(target)); if (target_code->kind() == Code::STUB) { return CodeStub::GetMajorKey(*target_code) == CodeStub::CallFunction; } return target_code->is_call_stub(); } return false; } void BreakLocationIterator::PrepareStepIn(Isolate* isolate) { #ifdef DEBUG HandleScope scope(isolate); // Step in can only be prepared if currently positioned on an IC call, // construct call or CallFunction stub call. Address target = rinfo()->target_address(); Handle<Code> target_code(Code::GetCodeFromTargetAddress(target)); // All the following stuff is needed only for assertion checks so the code // is wrapped in ifdef. Handle<Code> maybe_call_function_stub = target_code; if (IsDebugBreak()) { Address original_target = original_rinfo()->target_address(); maybe_call_function_stub = Handle<Code>(Code::GetCodeFromTargetAddress(original_target)); } bool is_call_function_stub = (maybe_call_function_stub->kind() == Code::STUB && CodeStub::GetMajorKey(*maybe_call_function_stub) == CodeStub::CallFunction); // Step in through construct call requires no changes to the running code. // Step in through getters/setters should already be prepared as well // because caller of this function (Debug::PrepareStep) is expected to // flood the top frame's function with one shot breakpoints. // Step in through CallFunction stub should also be prepared by caller of // this function (Debug::PrepareStep) which should flood target function // with breakpoints. DCHECK(RelocInfo::IsConstructCall(rmode()) || target_code->is_inline_cache_stub() || is_call_function_stub); #endif } // Check whether the break point is at a position which will exit the function. bool BreakLocationIterator::IsExit() const { return (RelocInfo::IsJSReturn(rmode())); } bool BreakLocationIterator::HasBreakPoint() { return debug_info_->HasBreakPoint(code_position()); } // Check whether there is a debug break at the current position. bool BreakLocationIterator::IsDebugBreak() { if (RelocInfo::IsJSReturn(rmode())) { return IsDebugBreakAtReturn(); } else if (IsDebugBreakSlot()) { return IsDebugBreakAtSlot(); } else { return Debug::IsDebugBreak(rinfo()->target_address()); } } // Find the builtin to use for invoking the debug break static Handle<Code> DebugBreakForIC(Handle<Code> code, RelocInfo::Mode mode) { Isolate* isolate = code->GetIsolate(); // Find the builtin debug break function matching the calling convention // used by the call site. if (code->is_inline_cache_stub()) { switch (code->kind()) { case Code::CALL_IC: return isolate->builtins()->CallICStub_DebugBreak(); case Code::LOAD_IC: return isolate->builtins()->LoadIC_DebugBreak(); case Code::STORE_IC: return isolate->builtins()->StoreIC_DebugBreak(); case Code::KEYED_LOAD_IC: return isolate->builtins()->KeyedLoadIC_DebugBreak(); case Code::KEYED_STORE_IC: return isolate->builtins()->KeyedStoreIC_DebugBreak(); case Code::COMPARE_NIL_IC: return isolate->builtins()->CompareNilIC_DebugBreak(); default: UNREACHABLE(); } } if (RelocInfo::IsConstructCall(mode)) { if (code->has_function_cache()) { return isolate->builtins()->CallConstructStub_Recording_DebugBreak(); } else { return isolate->builtins()->CallConstructStub_DebugBreak(); } } if (code->kind() == Code::STUB) { DCHECK(CodeStub::GetMajorKey(*code) == CodeStub::CallFunction); return isolate->builtins()->CallFunctionStub_DebugBreak(); } UNREACHABLE(); return Handle<Code>::null(); } void BreakLocationIterator::SetDebugBreakAtIC() { // Patch the original code with the current address as the current address // might have changed by the inline caching since the code was copied. original_rinfo()->set_target_address(rinfo()->target_address()); RelocInfo::Mode mode = rmode(); if (RelocInfo::IsCodeTarget(mode)) { Address target = rinfo()->target_address(); Handle<Code> target_code(Code::GetCodeFromTargetAddress(target)); // Patch the code to invoke the builtin debug break function matching the // calling convention used by the call site. Handle<Code> dbgbrk_code = DebugBreakForIC(target_code, mode); rinfo()->set_target_address(dbgbrk_code->entry()); } } void BreakLocationIterator::ClearDebugBreakAtIC() { // Patch the code to the original invoke. rinfo()->set_target_address(original_rinfo()->target_address()); } bool BreakLocationIterator::IsDebuggerStatement() { return RelocInfo::DEBUG_BREAK == rmode(); } bool BreakLocationIterator::IsDebugBreakSlot() { return RelocInfo::DEBUG_BREAK_SLOT == rmode(); } Object* BreakLocationIterator::BreakPointObjects() { return debug_info_->GetBreakPointObjects(code_position()); } // Clear out all the debug break code. This is ONLY supposed to be used when // shutting down the debugger as it will leave the break point information in // DebugInfo even though the code is patched back to the non break point state. void BreakLocationIterator::ClearAllDebugBreak() { while (!Done()) { ClearDebugBreak(); Next(); } } bool BreakLocationIterator::RinfoDone() const { DCHECK(reloc_iterator_->done() == reloc_iterator_original_->done()); return reloc_iterator_->done(); } void BreakLocationIterator::RinfoNext() { reloc_iterator_->next(); reloc_iterator_original_->next(); #ifdef DEBUG DCHECK(reloc_iterator_->done() == reloc_iterator_original_->done()); if (!reloc_iterator_->done()) { DCHECK(rmode() == original_rmode()); } #endif } // Threading support. void Debug::ThreadInit() { thread_local_.break_count_ = 0; thread_local_.break_id_ = 0; thread_local_.break_frame_id_ = StackFrame::NO_ID; thread_local_.last_step_action_ = StepNone; thread_local_.last_statement_position_ = RelocInfo::kNoPosition; thread_local_.step_count_ = 0; thread_local_.last_fp_ = 0; thread_local_.queued_step_count_ = 0; thread_local_.step_into_fp_ = 0; thread_local_.step_out_fp_ = 0; // TODO(isolates): frames_are_dropped_? thread_local_.current_debug_scope_ = NULL; thread_local_.restarter_frame_function_pointer_ = NULL; } char* Debug::ArchiveDebug(char* storage) { char* to = storage; MemCopy(to, reinterpret_cast<char*>(&thread_local_), sizeof(ThreadLocal)); ThreadInit(); return storage + ArchiveSpacePerThread(); } char* Debug::RestoreDebug(char* storage) { char* from = storage; MemCopy(reinterpret_cast<char*>(&thread_local_), from, sizeof(ThreadLocal)); return storage + ArchiveSpacePerThread(); } int Debug::ArchiveSpacePerThread() { return sizeof(ThreadLocal); } ScriptCache::ScriptCache(Isolate* isolate) : HashMap(HashMap::PointersMatch), isolate_(isolate) { Heap* heap = isolate_->heap(); HandleScope scope(isolate_); // Perform two GCs to get rid of all unreferenced scripts. The first GC gets // rid of all the cached script wrappers and the second gets rid of the // scripts which are no longer referenced. heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "ScriptCache"); heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "ScriptCache"); // Scan heap for Script objects. HeapIterator iterator(heap); DisallowHeapAllocation no_allocation; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsScript() && Script::cast(obj)->HasValidSource()) { Add(Handle<Script>(Script::cast(obj))); } } } void ScriptCache::Add(Handle<Script> script) { GlobalHandles* global_handles = isolate_->global_handles(); // Create an entry in the hash map for the script. int id = script->id()->value(); HashMap::Entry* entry = HashMap::Lookup(reinterpret_cast<void*>(id), Hash(id), true); if (entry->value != NULL) { #ifdef DEBUG // The code deserializer may introduce duplicate Script objects. // Assert that the Script objects with the same id have the same name. Handle<Script> found(reinterpret_cast<Script**>(entry->value)); DCHECK(script->id() == found->id()); DCHECK(!script->name()->IsString() || String::cast(script->name())->Equals(String::cast(found->name()))); #endif return; } // Globalize the script object, make it weak and use the location of the // global handle as the value in the hash map. Handle<Script> script_ = Handle<Script>::cast(global_handles->Create(*script)); GlobalHandles::MakeWeak(reinterpret_cast<Object**>(script_.location()), this, ScriptCache::HandleWeakScript); entry->value = script_.location(); } Handle<FixedArray> ScriptCache::GetScripts() { Factory* factory = isolate_->factory(); Handle<FixedArray> instances = factory->NewFixedArray(occupancy()); int count = 0; for (HashMap::Entry* entry = Start(); entry != NULL; entry = Next(entry)) { DCHECK(entry->value != NULL); if (entry->value != NULL) { instances->set(count, *reinterpret_cast<Script**>(entry->value)); count++; } } return instances; } void ScriptCache::Clear() { // Iterate the script cache to get rid of all the weak handles. for (HashMap::Entry* entry = Start(); entry != NULL; entry = Next(entry)) { DCHECK(entry != NULL); Object** location = reinterpret_cast<Object**>(entry->value); DCHECK((*location)->IsScript()); GlobalHandles::ClearWeakness(location); GlobalHandles::Destroy(location); } // Clear the content of the hash map. HashMap::Clear(); } void ScriptCache::HandleWeakScript( const v8::WeakCallbackData<v8::Value, void>& data) { // Retrieve the script identifier. Handle<Object> object = Utils::OpenHandle(*data.GetValue()); int id = Handle<Script>::cast(object)->id()->value(); void* key = reinterpret_cast<void*>(id); uint32_t hash = Hash(id); // Remove the corresponding entry from the cache. ScriptCache* script_cache = reinterpret_cast<ScriptCache*>(data.GetParameter()); HashMap::Entry* entry = script_cache->Lookup(key, hash, false); Object** location = reinterpret_cast<Object**>(entry->value); script_cache->Remove(key, hash); // Clear the weak handle. GlobalHandles::Destroy(location); } void Debug::HandleWeakDebugInfo( const v8::WeakCallbackData<v8::Value, void>& data) { Debug* debug = reinterpret_cast<Isolate*>(data.GetIsolate())->debug(); DebugInfoListNode* node = reinterpret_cast<DebugInfoListNode*>(data.GetParameter()); // We need to clear all breakpoints associated with the function to restore // original code and avoid patching the code twice later because // the function will live in the heap until next gc, and can be found by // Debug::FindSharedFunctionInfoInScript. BreakLocationIterator it(node->debug_info(), ALL_BREAK_LOCATIONS); it.ClearAllDebugBreak(); debug->RemoveDebugInfo(node->debug_info()); #ifdef DEBUG for (DebugInfoListNode* n = debug->debug_info_list_; n != NULL; n = n->next()) { DCHECK(n != node); } #endif } DebugInfoListNode::DebugInfoListNode(DebugInfo* debug_info): next_(NULL) { // Globalize the request debug info object and make it weak. GlobalHandles* global_handles = debug_info->GetIsolate()->global_handles(); debug_info_ = Handle<DebugInfo>::cast(global_handles->Create(debug_info)); GlobalHandles::MakeWeak(reinterpret_cast<Object**>(debug_info_.location()), this, Debug::HandleWeakDebugInfo); } DebugInfoListNode::~DebugInfoListNode() { GlobalHandles::Destroy(reinterpret_cast<Object**>(debug_info_.location())); } bool Debug::CompileDebuggerScript(Isolate* isolate, int index) { Factory* factory = isolate->factory(); HandleScope scope(isolate); // Bail out if the index is invalid. if (index == -1) return false; // Find source and name for the requested script. Handle<String> source_code = isolate->bootstrapper()->NativesSourceLookup(index); Vector<const char> name = Natives::GetScriptName(index); Handle<String> script_name = factory->NewStringFromAscii(name).ToHandleChecked(); Handle<Context> context = isolate->native_context(); // Compile the script. Handle<SharedFunctionInfo> function_info; function_info = Compiler::CompileScript( source_code, script_name, 0, 0, false, context, NULL, NULL, ScriptCompiler::kNoCompileOptions, NATIVES_CODE); // Silently ignore stack overflows during compilation. if (function_info.is_null()) { DCHECK(isolate->has_pending_exception()); isolate->clear_pending_exception(); return false; } // Execute the shared function in the debugger context. Handle<JSFunction> function = factory->NewFunctionFromSharedFunctionInfo(function_info, context); MaybeHandle<Object> maybe_exception; MaybeHandle<Object> result = Execution::TryCall( function, handle(context->global_proxy()), 0, NULL, &maybe_exception); // Check for caught exceptions. if (result.is_null()) { DCHECK(!isolate->has_pending_exception()); MessageLocation computed_location; isolate->ComputeLocation(&computed_location); Handle<Object> message = MessageHandler::MakeMessageObject( isolate, "error_loading_debugger", &computed_location, Vector<Handle<Object> >::empty(), Handle<JSArray>()); DCHECK(!isolate->has_pending_exception()); Handle<Object> exception; if (maybe_exception.ToHandle(&exception)) { isolate->set_pending_exception(*exception); MessageHandler::ReportMessage(isolate, NULL, message); isolate->clear_pending_exception(); } return false; } // Mark this script as native and return successfully. Handle<Script> script(Script::cast(function->shared()->script())); script->set_type(Smi::FromInt(Script::TYPE_NATIVE)); return true; } bool Debug::Load() { // Return if debugger is already loaded. if (is_loaded()) return true; // Bail out if we're already in the process of compiling the native // JavaScript source code for the debugger. if (is_suppressed_) return false; SuppressDebug while_loading(this); // Disable breakpoints and interrupts while compiling and running the // debugger scripts including the context creation code. DisableBreak disable(this, true); PostponeInterruptsScope postpone(isolate_); // Create the debugger context. HandleScope scope(isolate_); ExtensionConfiguration no_extensions; Handle<Context> context = isolate_->bootstrapper()->CreateEnvironment( MaybeHandle<JSGlobalProxy>(), v8::Handle<ObjectTemplate>(), &no_extensions); // Fail if no context could be created. if (context.is_null()) return false; // Use the debugger context. SaveContext save(isolate_); isolate_->set_context(*context); // Expose the builtins object in the debugger context. Handle<String> key = isolate_->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("builtins")); Handle<GlobalObject> global = Handle<GlobalObject>(context->global_object(), isolate_); Handle<JSBuiltinsObject> builtin = Handle<JSBuiltinsObject>(global->builtins(), isolate_); RETURN_ON_EXCEPTION_VALUE( isolate_, Object::SetProperty(global, key, builtin, SLOPPY), false); // Compile the JavaScript for the debugger in the debugger context. bool caught_exception = !CompileDebuggerScript(isolate_, Natives::GetIndex("mirror")) || !CompileDebuggerScript(isolate_, Natives::GetIndex("debug")); if (FLAG_enable_liveedit) { caught_exception = caught_exception || !CompileDebuggerScript(isolate_, Natives::GetIndex("liveedit")); } // Check for caught exceptions. if (caught_exception) return false; debug_context_ = Handle<Context>::cast( isolate_->global_handles()->Create(*context)); return true; } void Debug::Unload() { ClearAllBreakPoints(); ClearStepping(); // Return debugger is not loaded. if (!is_loaded()) return; // Clear the script cache. if (script_cache_ != NULL) { delete script_cache_; script_cache_ = NULL; } // Clear debugger context global handle. GlobalHandles::Destroy(Handle<Object>::cast(debug_context_).location()); debug_context_ = Handle<Context>(); } void Debug::Break(Arguments args, JavaScriptFrame* frame) { Heap* heap = isolate_->heap(); HandleScope scope(isolate_); DCHECK(args.length() == 0); // Initialize LiveEdit. LiveEdit::InitializeThreadLocal(this); // Just continue if breaks are disabled or debugger cannot be loaded. if (break_disabled_) return; // Enter the debugger. DebugScope debug_scope(this); if (debug_scope.failed()) return; // Postpone interrupt during breakpoint processing. PostponeInterruptsScope postpone(isolate_); // Get the debug info (create it if it does not exist). Handle<SharedFunctionInfo> shared = Handle<SharedFunctionInfo>(frame->function()->shared()); Handle<DebugInfo> debug_info = GetDebugInfo(shared); // Find the break point where execution has stopped. BreakLocationIterator break_location_iterator(debug_info, ALL_BREAK_LOCATIONS); // pc points to the instruction after the current one, possibly a break // location as well. So the "- 1" to exclude it from the search. break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1); // Check whether step next reached a new statement. if (!StepNextContinue(&break_location_iterator, frame)) { // Decrease steps left if performing multiple steps. if (thread_local_.step_count_ > 0) { thread_local_.step_count_--; } } // If there is one or more real break points check whether any of these are // triggered. Handle<Object> break_points_hit(heap->undefined_value(), isolate_); if (break_location_iterator.HasBreakPoint()) { Handle<Object> break_point_objects = Handle<Object>(break_location_iterator.BreakPointObjects(), isolate_); break_points_hit = CheckBreakPoints(break_point_objects); } // If step out is active skip everything until the frame where we need to step // out to is reached, unless real breakpoint is hit. if (StepOutActive() && frame->fp() != thread_local_.step_out_fp_ && break_points_hit->IsUndefined() ) { // Step count should always be 0 for StepOut. DCHECK(thread_local_.step_count_ == 0); } else if (!break_points_hit->IsUndefined() || (thread_local_.last_step_action_ != StepNone && thread_local_.step_count_ == 0)) { // Notify debugger if a real break point is triggered or if performing // single stepping with no more steps to perform. Otherwise do another step. // Clear all current stepping setup. ClearStepping(); if (thread_local_.queued_step_count_ > 0) { // Perform queued steps int step_count = thread_local_.queued_step_count_; // Clear queue thread_local_.queued_step_count_ = 0; PrepareStep(StepNext, step_count, StackFrame::NO_ID); } else { // Notify the debug event listeners. OnDebugBreak(break_points_hit, false); } } else if (thread_local_.last_step_action_ != StepNone) { // Hold on to last step action as it is cleared by the call to // ClearStepping. StepAction step_action = thread_local_.last_step_action_; int step_count = thread_local_.step_count_; // If StepNext goes deeper in code, StepOut until original frame // and keep step count queued up in the meantime. if (step_action == StepNext && frame->fp() < thread_local_.last_fp_) { // Count frames until target frame int count = 0; JavaScriptFrameIterator it(isolate_); while (!it.done() && it.frame()->fp() < thread_local_.last_fp_) { count++; it.Advance(); } // Check that we indeed found the frame we are looking for. CHECK(!it.done() && (it.frame()->fp() == thread_local_.last_fp_)); if (step_count > 1) { // Save old count and action to continue stepping after StepOut. thread_local_.queued_step_count_ = step_count - 1; } // Set up for StepOut to reach target frame. step_action = StepOut; step_count = count; } // Clear all current stepping setup. ClearStepping(); // Set up for the remaining steps. PrepareStep(step_action, step_count, StackFrame::NO_ID); } } RUNTIME_FUNCTION(Debug_Break) { // Get the top-most JavaScript frame. JavaScriptFrameIterator it(isolate); isolate->debug()->Break(args, it.frame()); isolate->debug()->SetAfterBreakTarget(it.frame()); return isolate->heap()->undefined_value(); } // Check the break point objects for whether one or more are actually // triggered. This function returns a JSArray with the break point objects // which is triggered. Handle<Object> Debug::CheckBreakPoints(Handle<Object> break_point_objects) { Factory* factory = isolate_->factory(); // Count the number of break points hit. If there are multiple break points // they are in a FixedArray. Handle<FixedArray> break_points_hit; int break_points_hit_count = 0; DCHECK(!break_point_objects->IsUndefined()); if (break_point_objects->IsFixedArray()) { Handle<FixedArray> array(FixedArray::cast(*break_point_objects)); break_points_hit = factory->NewFixedArray(array->length()); for (int i = 0; i < array->length(); i++) { Handle<Object> o(array->get(i), isolate_); if (CheckBreakPoint(o)) { break_points_hit->set(break_points_hit_count++, *o); } } } else { break_points_hit = factory->NewFixedArray(1); if (CheckBreakPoint(break_point_objects)) { break_points_hit->set(break_points_hit_count++, *break_point_objects); } } // Return undefined if no break points were triggered. if (break_points_hit_count == 0) { return factory->undefined_value(); } // Return break points hit as a JSArray. Handle<JSArray> result = factory->NewJSArrayWithElements(break_points_hit); result->set_length(Smi::FromInt(break_points_hit_count)); return result; } // Check whether a single break point object is triggered. bool Debug::CheckBreakPoint(Handle<Object> break_point_object) { Factory* factory = isolate_->factory(); HandleScope scope(isolate_); // Ignore check if break point object is not a JSObject. if (!break_point_object->IsJSObject()) return true; // Get the function IsBreakPointTriggered (defined in debug-debugger.js). Handle<String> is_break_point_triggered_string = factory->InternalizeOneByteString( STATIC_CHAR_VECTOR("IsBreakPointTriggered")); Handle<GlobalObject> debug_global(debug_context()->global_object()); Handle<JSFunction> check_break_point = Handle<JSFunction>::cast(Object::GetProperty( debug_global, is_break_point_triggered_string).ToHandleChecked()); // Get the break id as an object. Handle<Object> break_id = factory->NewNumberFromInt(Debug::break_id()); // Call HandleBreakPointx. Handle<Object> argv[] = { break_id, break_point_object }; Handle<Object> result; if (!Execution::TryCall(check_break_point, isolate_->js_builtins_object(), arraysize(argv), argv).ToHandle(&result)) { return false; } // Return whether the break point is triggered. return result->IsTrue(); } // Check whether the function has debug information. bool Debug::HasDebugInfo(Handle<SharedFunctionInfo> shared) { return !shared->debug_info()->IsUndefined(); } // Return the debug info for this function. EnsureDebugInfo must be called // prior to ensure the debug info has been generated for shared. Handle<DebugInfo> Debug::GetDebugInfo(Handle<SharedFunctionInfo> shared) { DCHECK(HasDebugInfo(shared)); return Handle<DebugInfo>(DebugInfo::cast(shared->debug_info())); } bool Debug::SetBreakPoint(Handle<JSFunction> function, Handle<Object> break_point_object, int* source_position) { HandleScope scope(isolate_); PrepareForBreakPoints(); // Make sure the function is compiled and has set up the debug info. Handle<SharedFunctionInfo> shared(function->shared()); if (!EnsureDebugInfo(shared, function)) { // Return if retrieving debug info failed. return true; } Handle<DebugInfo> debug_info = GetDebugInfo(shared); // Source positions starts with zero. DCHECK(*source_position >= 0); // Find the break point and change it. BreakLocationIterator it(debug_info, SOURCE_BREAK_LOCATIONS); it.FindBreakLocationFromPosition(*source_position, STATEMENT_ALIGNED); it.SetBreakPoint(break_point_object); *source_position = it.position(); // At least one active break point now. return debug_info->GetBreakPointCount() > 0; } bool Debug::SetBreakPointForScript(Handle<Script> script, Handle<Object> break_point_object, int* source_position, BreakPositionAlignment alignment) { HandleScope scope(isolate_); PrepareForBreakPoints(); // Obtain shared function info for the function. Object* result = FindSharedFunctionInfoInScript(script, *source_position); if (result->IsUndefined()) return false; // Make sure the function has set up the debug info. Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result)); if (!EnsureDebugInfo(shared, Handle<JSFunction>::null())) { // Return if retrieving debug info failed. return false; } // Find position within function. The script position might be before the // source position of the first function. int position; if (shared->start_position() > *source_position) { position = 0; } else { position = *source_position - shared->start_position(); } Handle<DebugInfo> debug_info = GetDebugInfo(shared); // Source positions starts with zero. DCHECK(position >= 0); // Find the break point and change it. BreakLocationIterator it(debug_info, SOURCE_BREAK_LOCATIONS); it.FindBreakLocationFromPosition(position, alignment); it.SetBreakPoint(break_point_object); *source_position = it.position() + shared->start_position(); // At least one active break point now. DCHECK(debug_info->GetBreakPointCount() > 0); return true; } void Debug::ClearBreakPoint(Handle<Object> break_point_object) { HandleScope scope(isolate_); DebugInfoListNode* node = debug_info_list_; while (node != NULL) { Object* result = DebugInfo::FindBreakPointInfo(node->debug_info(), break_point_object); if (!result->IsUndefined()) { // Get information in the break point. BreakPointInfo* break_point_info = BreakPointInfo::cast(result); Handle<DebugInfo> debug_info = node->debug_info(); // Find the break point and clear it. BreakLocationIterator it(debug_info, SOURCE_BREAK_LOCATIONS); it.FindBreakLocationFromAddress(debug_info->code()->entry() + break_point_info->code_position()->value()); it.ClearBreakPoint(break_point_object); // If there are no more break points left remove the debug info for this // function. if (debug_info->GetBreakPointCount() == 0) { RemoveDebugInfo(debug_info); } return; } node = node->next(); } } void Debug::ClearAllBreakPoints() { DebugInfoListNode* node = debug_info_list_; while (node != NULL) { // Remove all debug break code. BreakLocationIterator it(node->debug_info(), ALL_BREAK_LOCATIONS); it.ClearAllDebugBreak(); node = node->next(); } // Remove all debug info. while (debug_info_list_ != NULL) { RemoveDebugInfo(debug_info_list_->debug_info()); } } void Debug::FloodWithOneShot(Handle<JSFunction> function) { PrepareForBreakPoints(); // Make sure the function is compiled and has set up the debug info. Handle<SharedFunctionInfo> shared(function->shared()); if (!EnsureDebugInfo(shared, function)) { // Return if we failed to retrieve the debug info. return; } // Flood the function with break points. BreakLocationIterator it(GetDebugInfo(shared), ALL_BREAK_LOCATIONS); while (!it.Done()) { it.SetOneShot(); it.Next(); } } void Debug::FloodBoundFunctionWithOneShot(Handle<JSFunction> function) { Handle<FixedArray> new_bindings(function->function_bindings()); Handle<Object> bindee(new_bindings->get(JSFunction::kBoundFunctionIndex), isolate_); if (!bindee.is_null() && bindee->IsJSFunction() && !JSFunction::cast(*bindee)->IsFromNativeScript()) { Handle<JSFunction> bindee_function(JSFunction::cast(*bindee)); Debug::FloodWithOneShot(bindee_function); } } void Debug::FloodHandlerWithOneShot() { // Iterate through the JavaScript stack looking for handlers. StackFrame::Id id = break_frame_id(); if (id == StackFrame::NO_ID) { // If there is no JavaScript stack don't do anything. return; } for (JavaScriptFrameIterator it(isolate_, id); !it.done(); it.Advance()) { JavaScriptFrame* frame = it.frame(); if (frame->HasHandler()) { // Flood the function with the catch block with break points FloodWithOneShot(Handle<JSFunction>(frame->function())); return; } } } void Debug::ChangeBreakOnException(ExceptionBreakType type, bool enable) { if (type == BreakUncaughtException) { break_on_uncaught_exception_ = enable; } else { break_on_exception_ = enable; } } bool Debug::IsBreakOnException(ExceptionBreakType type) { if (type == BreakUncaughtException) { return break_on_uncaught_exception_; } else { return break_on_exception_; } } bool Debug::PromiseHasRejectHandler(Handle<JSObject> promise) { Handle<JSFunction> fun = Handle<JSFunction>::cast( JSObject::GetDataProperty(isolate_->js_builtins_object(), isolate_->factory()->NewStringFromStaticChars( "PromiseHasRejectHandler"))); Handle<Object> result = Execution::Call(isolate_, fun, promise, 0, NULL).ToHandleChecked(); return result->IsTrue(); } void Debug::PrepareStep(StepAction step_action, int step_count, StackFrame::Id frame_id) { HandleScope scope(isolate_); PrepareForBreakPoints(); DCHECK(in_debug_scope()); // Remember this step action and count. thread_local_.last_step_action_ = step_action; if (step_action == StepOut) { // For step out target frame will be found on the stack so there is no need // to set step counter for it. It's expected to always be 0 for StepOut. thread_local_.step_count_ = 0; } else { thread_local_.step_count_ = step_count; } // Get the frame where the execution has stopped and skip the debug frame if // any. The debug frame will only be present if execution was stopped due to // hitting a break point. In other situations (e.g. unhandled exception) the // debug frame is not present. StackFrame::Id id = break_frame_id(); if (id == StackFrame::NO_ID) { // If there is no JavaScript stack don't do anything. return; } if (frame_id != StackFrame::NO_ID) { id = frame_id; } JavaScriptFrameIterator frames_it(isolate_, id); JavaScriptFrame* frame = frames_it.frame(); // First of all ensure there is one-shot break points in the top handler // if any. FloodHandlerWithOneShot(); // If the function on the top frame is unresolved perform step out. This will // be the case when calling unknown functions and having the debugger stopped // in an unhandled exception. if (!frame->function()->IsJSFunction()) { // Step out: Find the calling JavaScript frame and flood it with // breakpoints. frames_it.Advance(); // Fill the function to return to with one-shot break points. JSFunction* function = frames_it.frame()->function(); FloodWithOneShot(Handle<JSFunction>(function)); return; } // Get the debug info (create it if it does not exist). Handle<JSFunction> function(frame->function()); Handle<SharedFunctionInfo> shared(function->shared()); if (!EnsureDebugInfo(shared, function)) { // Return if ensuring debug info failed. return; } Handle<DebugInfo> debug_info = GetDebugInfo(shared); // Find the break location where execution has stopped. BreakLocationIterator it(debug_info, ALL_BREAK_LOCATIONS); // pc points to the instruction after the current one, possibly a break // location as well. So the "- 1" to exclude it from the search. it.FindBreakLocationFromAddress(frame->pc() - 1); // Compute whether or not the target is a call target. bool is_load_or_store = false; bool is_inline_cache_stub = false; bool is_at_restarted_function = false; Handle<Code> call_function_stub; if (thread_local_.restarter_frame_function_pointer_ == NULL) { if (RelocInfo::IsCodeTarget(it.rinfo()->rmode())) { bool is_call_target = false; Address target = it.rinfo()->target_address(); Code* code = Code::GetCodeFromTargetAddress(target); if (code->is_call_stub()) { is_call_target = true; } if (code->is_inline_cache_stub()) { is_inline_cache_stub = true; is_load_or_store = !is_call_target; } // Check if target code is CallFunction stub. Code* maybe_call_function_stub = code; // If there is a breakpoint at this line look at the original code to // check if it is a CallFunction stub. if (it.IsDebugBreak()) { Address original_target = it.original_rinfo()->target_address(); maybe_call_function_stub = Code::GetCodeFromTargetAddress(original_target); } if ((maybe_call_function_stub->kind() == Code::STUB && CodeStub::GetMajorKey(maybe_call_function_stub) == CodeStub::CallFunction) || maybe_call_function_stub->kind() == Code::CALL_IC) { // Save reference to the code as we may need it to find out arguments // count for 'step in' later. call_function_stub = Handle<Code>(maybe_call_function_stub); } } } else { is_at_restarted_function = true; } // If this is the last break code target step out is the only possibility. if (it.IsExit() || step_action == StepOut) { if (step_action == StepOut) { // Skip step_count frames starting with the current one. while (step_count-- > 0 && !frames_it.done()) { frames_it.Advance(); } } else { DCHECK(it.IsExit()); frames_it.Advance(); } // Skip builtin functions on the stack. while (!frames_it.done() && frames_it.frame()->function()->IsFromNativeScript()) { frames_it.Advance(); } // Step out: If there is a JavaScript caller frame, we need to // flood it with breakpoints. if (!frames_it.done()) { // Fill the function to return to with one-shot break points. JSFunction* function = frames_it.frame()->function(); FloodWithOneShot(Handle<JSFunction>(function)); // Set target frame pointer. ActivateStepOut(frames_it.frame()); } } else if (!(is_inline_cache_stub || RelocInfo::IsConstructCall(it.rmode()) || !call_function_stub.is_null() || is_at_restarted_function) || step_action == StepNext || step_action == StepMin) { // Step next or step min. // Fill the current function with one-shot break points. FloodWithOneShot(function); // Remember source position and frame to handle step next. thread_local_.last_statement_position_ = debug_info->code()->SourceStatementPosition(frame->pc()); thread_local_.last_fp_ = frame->UnpaddedFP(); } else { // If there's restarter frame on top of the stack, just get the pointer // to function which is going to be restarted. if (is_at_restarted_function) { Handle<JSFunction> restarted_function( JSFunction::cast(*thread_local_.restarter_frame_function_pointer_)); FloodWithOneShot(restarted_function); } else if (!call_function_stub.is_null()) { // If it's CallFunction stub ensure target function is compiled and flood // it with one shot breakpoints. bool is_call_ic = call_function_stub->kind() == Code::CALL_IC; // Find out number of arguments from the stub minor key. uint32_t key = call_function_stub->stub_key(); // Argc in the stub is the number of arguments passed - not the // expected arguments of the called function. int call_function_arg_count = is_call_ic ? CallICStub::ExtractArgcFromMinorKey(CodeStub::MinorKeyFromKey(key)) : CallFunctionStub::ExtractArgcFromMinorKey( CodeStub::MinorKeyFromKey(key)); DCHECK(is_call_ic || CodeStub::GetMajorKey(*call_function_stub) == CodeStub::MajorKeyFromKey(key)); // Find target function on the expression stack. // Expression stack looks like this (top to bottom): // argN // ... // arg0 // Receiver // Function to call int expressions_count = frame->ComputeExpressionsCount(); DCHECK(expressions_count - 2 - call_function_arg_count >= 0); Object* fun = frame->GetExpression( expressions_count - 2 - call_function_arg_count); // Flood the actual target of call/apply. if (fun->IsJSFunction()) { Isolate* isolate = JSFunction::cast(fun)->GetIsolate(); Code* apply = isolate->builtins()->builtin(Builtins::kFunctionApply); Code* call = isolate->builtins()->builtin(Builtins::kFunctionCall); while (fun->IsJSFunction()) { Code* code = JSFunction::cast(fun)->shared()->code(); if (code != apply && code != call) break; fun = frame->GetExpression( expressions_count - 1 - call_function_arg_count); } } if (fun->IsJSFunction()) { Handle<JSFunction> js_function(JSFunction::cast(fun)); if (js_function->shared()->bound()) { Debug::FloodBoundFunctionWithOneShot(js_function); } else if (!js_function->IsFromNativeScript()) { // Don't step into builtins. // It will also compile target function if it's not compiled yet. FloodWithOneShot(js_function); } } } // Fill the current function with one-shot break points even for step in on // a call target as the function called might be a native function for // which step in will not stop. It also prepares for stepping in // getters/setters. FloodWithOneShot(function); if (is_load_or_store) { // Remember source position and frame to handle step in getter/setter. If // there is a custom getter/setter it will be handled in // Object::Get/SetPropertyWithAccessor, otherwise the step action will be // propagated on the next Debug::Break. thread_local_.last_statement_position_ = debug_info->code()->SourceStatementPosition(frame->pc()); thread_local_.last_fp_ = frame->UnpaddedFP(); } // Step in or Step in min it.PrepareStepIn(isolate_); ActivateStepIn(frame); } } // Check whether the current debug break should be reported to the debugger. It // is used to have step next and step in only report break back to the debugger // if on a different frame or in a different statement. In some situations // there will be several break points in the same statement when the code is // flooded with one-shot break points. This function helps to perform several // steps before reporting break back to the debugger. bool Debug::StepNextContinue(BreakLocationIterator* break_location_iterator, JavaScriptFrame* frame) { // StepNext and StepOut shouldn't bring us deeper in code, so last frame // shouldn't be a parent of current frame. if (thread_local_.last_step_action_ == StepNext || thread_local_.last_step_action_ == StepOut) { if (frame->fp() < thread_local_.last_fp_) return true; } // If the step last action was step next or step in make sure that a new // statement is hit. if (thread_local_.last_step_action_ == StepNext || thread_local_.last_step_action_ == StepIn) { // Never continue if returning from function. if (break_location_iterator->IsExit()) return false; // Continue if we are still on the same frame and in the same statement. int current_statement_position = break_location_iterator->code()->SourceStatementPosition(frame->pc()); return thread_local_.last_fp_ == frame->UnpaddedFP() && thread_local_.last_statement_position_ == current_statement_position; } // No step next action - don't continue. return false; } // Check whether the code object at the specified address is a debug break code // object. bool Debug::IsDebugBreak(Address addr) { Code* code = Code::GetCodeFromTargetAddress(addr); return code->is_debug_stub() && code->extra_ic_state() == DEBUG_BREAK; } // Simple function for returning the source positions for active break points. Handle<Object> Debug::GetSourceBreakLocations( Handle<SharedFunctionInfo> shared, BreakPositionAlignment position_alignment) { Isolate* isolate = shared->GetIsolate(); Heap* heap = isolate->heap(); if (!HasDebugInfo(shared)) { return Handle<Object>(heap->undefined_value(), isolate); } Handle<DebugInfo> debug_info = GetDebugInfo(shared); if (debug_info->GetBreakPointCount() == 0) { return Handle<Object>(heap->undefined_value(), isolate); } Handle<FixedArray> locations = isolate->factory()->NewFixedArray(debug_info->GetBreakPointCount()); int count = 0; for (int i = 0; i < debug_info->break_points()->length(); i++) { if (!debug_info->break_points()->get(i)->IsUndefined()) { BreakPointInfo* break_point_info = BreakPointInfo::cast(debug_info->break_points()->get(i)); if (break_point_info->GetBreakPointCount() > 0) { Smi* position; switch (position_alignment) { case STATEMENT_ALIGNED: position = break_point_info->statement_position(); break; case BREAK_POSITION_ALIGNED: position = break_point_info->source_position(); break; default: UNREACHABLE(); position = break_point_info->statement_position(); } locations->set(count++, position); } } } return locations; } // Handle stepping into a function. void Debug::HandleStepIn(Handle<JSFunction> function, Handle<Object> holder, Address fp, bool is_constructor) { Isolate* isolate = function->GetIsolate(); // If the frame pointer is not supplied by the caller find it. if (fp == 0) { StackFrameIterator it(isolate); it.Advance(); // For constructor functions skip another frame. if (is_constructor) { DCHECK(it.frame()->is_construct()); it.Advance(); } fp = it.frame()->fp(); } // Flood the function with one-shot break points if it is called from where // step into was requested. if (fp == thread_local_.step_into_fp_) { if (function->shared()->bound()) { // Handle Function.prototype.bind Debug::FloodBoundFunctionWithOneShot(function); } else if (!function->IsFromNativeScript()) { // Don't allow step into functions in the native context. if (function->shared()->code() == isolate->builtins()->builtin(Builtins::kFunctionApply) || function->shared()->code() == isolate->builtins()->builtin(Builtins::kFunctionCall)) { // Handle function.apply and function.call separately to flood the // function to be called and not the code for Builtins::FunctionApply or // Builtins::FunctionCall. The receiver of call/apply is the target // function. if (!holder.is_null() && holder->IsJSFunction()) { Handle<JSFunction> js_function = Handle<JSFunction>::cast(holder); if (!js_function->IsFromNativeScript()) { Debug::FloodWithOneShot(js_function); } else if (js_function->shared()->bound()) { // Handle Function.prototype.bind Debug::FloodBoundFunctionWithOneShot(js_function); } } } else { Debug::FloodWithOneShot(function); } } } } void Debug::ClearStepping() { // Clear the various stepping setup. ClearOneShot(); ClearStepIn(); ClearStepOut(); ClearStepNext(); // Clear multiple step counter. thread_local_.step_count_ = 0; } // Clears all the one-shot break points that are currently set. Normally this // function is called each time a break point is hit as one shot break points // are used to support stepping. void Debug::ClearOneShot() { // The current implementation just runs through all the breakpoints. When the // last break point for a function is removed that function is automatically // removed from the list. DebugInfoListNode* node = debug_info_list_; while (node != NULL) { BreakLocationIterator it(node->debug_info(), ALL_BREAK_LOCATIONS); while (!it.Done()) { it.ClearOneShot(); it.Next(); } node = node->next(); } } void Debug::ActivateStepIn(StackFrame* frame) { DCHECK(!StepOutActive()); thread_local_.step_into_fp_ = frame->UnpaddedFP(); } void Debug::ClearStepIn() { thread_local_.step_into_fp_ = 0; } void Debug::ActivateStepOut(StackFrame* frame) { DCHECK(!StepInActive()); thread_local_.step_out_fp_ = frame->UnpaddedFP(); } void Debug::ClearStepOut() { thread_local_.step_out_fp_ = 0; } void Debug::ClearStepNext() { thread_local_.last_step_action_ = StepNone; thread_local_.last_statement_position_ = RelocInfo::kNoPosition; thread_local_.last_fp_ = 0; } static void CollectActiveFunctionsFromThread( Isolate* isolate, ThreadLocalTop* top, List<Handle<JSFunction> >* active_functions, Object* active_code_marker) { // Find all non-optimized code functions with activation frames // on the stack. This includes functions which have optimized // activations (including inlined functions) on the stack as the // non-optimized code is needed for the lazy deoptimization. for (JavaScriptFrameIterator it(isolate, top); !it.done(); it.Advance()) { JavaScriptFrame* frame = it.frame(); if (frame->is_optimized()) { List<JSFunction*> functions(FLAG_max_inlining_levels + 1); frame->GetFunctions(&functions); for (int i = 0; i < functions.length(); i++) { JSFunction* function = functions[i]; active_functions->Add(Handle<JSFunction>(function)); function->shared()->code()->set_gc_metadata(active_code_marker); } } else if (frame->function()->IsJSFunction()) { JSFunction* function = frame->function(); DCHECK(frame->LookupCode()->kind() == Code::FUNCTION); active_functions->Add(Handle<JSFunction>(function)); function->shared()->code()->set_gc_metadata(active_code_marker); } } } // Figure out how many bytes of "pc_offset" correspond to actual code by // subtracting off the bytes that correspond to constant/veneer pools. See // Assembler::CheckConstPool() and Assembler::CheckVeneerPool(). Note that this // is only useful for architectures using constant pools or veneer pools. static int ComputeCodeOffsetFromPcOffset(Code *code, int pc_offset) { DCHECK_EQ(code->kind(), Code::FUNCTION); DCHECK(!code->has_debug_break_slots()); DCHECK_LE(0, pc_offset); DCHECK_LT(pc_offset, code->instruction_end() - code->instruction_start()); int mask = RelocInfo::ModeMask(RelocInfo::CONST_POOL) | RelocInfo::ModeMask(RelocInfo::VENEER_POOL); byte *pc = code->instruction_start() + pc_offset; int code_offset = pc_offset; for (RelocIterator it(code, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); if (info->pc() >= pc) break; DCHECK(RelocInfo::IsConstPool(info->rmode())); code_offset -= static_cast<int>(info->data()); DCHECK_LE(0, code_offset); } return code_offset; } // The inverse of ComputeCodeOffsetFromPcOffset. static int ComputePcOffsetFromCodeOffset(Code *code, int code_offset) { DCHECK_EQ(code->kind(), Code::FUNCTION); int mask = RelocInfo::ModeMask(RelocInfo::DEBUG_BREAK_SLOT) | RelocInfo::ModeMask(RelocInfo::CONST_POOL) | RelocInfo::ModeMask(RelocInfo::VENEER_POOL); int reloc = 0; for (RelocIterator it(code, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); if (info->pc() - code->instruction_start() - reloc >= code_offset) break; if (RelocInfo::IsDebugBreakSlot(info->rmode())) { reloc += Assembler::kDebugBreakSlotLength; } else { DCHECK(RelocInfo::IsConstPool(info->rmode())); reloc += static_cast<int>(info->data()); } } int pc_offset = code_offset + reloc; DCHECK_LT(code->instruction_start() + pc_offset, code->instruction_end()); return pc_offset; } static void RedirectActivationsToRecompiledCodeOnThread( Isolate* isolate, ThreadLocalTop* top) { for (JavaScriptFrameIterator it(isolate, top); !it.done(); it.Advance()) { JavaScriptFrame* frame = it.frame(); if (frame->is_optimized() || !frame->function()->IsJSFunction()) continue; JSFunction* function = frame->function(); DCHECK(frame->LookupCode()->kind() == Code::FUNCTION); Handle<Code> frame_code(frame->LookupCode()); if (frame_code->has_debug_break_slots()) continue; Handle<Code> new_code(function->shared()->code()); if (new_code->kind() != Code::FUNCTION || !new_code->has_debug_break_slots()) { continue; } int old_pc_offset = static_cast<int>(frame->pc() - frame_code->instruction_start()); int code_offset = ComputeCodeOffsetFromPcOffset(*frame_code, old_pc_offset); int new_pc_offset = ComputePcOffsetFromCodeOffset(*new_code, code_offset); // Compute the equivalent pc in the new code. byte* new_pc = new_code->instruction_start() + new_pc_offset; if (FLAG_trace_deopt) { PrintF("Replacing code %08" V8PRIxPTR " - %08" V8PRIxPTR " (%d) " "with %08" V8PRIxPTR " - %08" V8PRIxPTR " (%d) " "for debugging, " "changing pc from %08" V8PRIxPTR " to %08" V8PRIxPTR "\n", reinterpret_cast<intptr_t>( frame_code->instruction_start()), reinterpret_cast<intptr_t>( frame_code->instruction_start()) + frame_code->instruction_size(), frame_code->instruction_size(), reinterpret_cast<intptr_t>(new_code->instruction_start()), reinterpret_cast<intptr_t>(new_code->instruction_start()) + new_code->instruction_size(), new_code->instruction_size(), reinterpret_cast<intptr_t>(frame->pc()), reinterpret_cast<intptr_t>(new_pc)); } if (FLAG_enable_ool_constant_pool) { // Update constant pool pointer for new code. frame->set_constant_pool(new_code->constant_pool()); } // Patch the return address to return into the code with // debug break slots. frame->set_pc(new_pc); } } class ActiveFunctionsCollector : public ThreadVisitor { public: explicit ActiveFunctionsCollector(List<Handle<JSFunction> >* active_functions, Object* active_code_marker) : active_functions_(active_functions), active_code_marker_(active_code_marker) { } void VisitThread(Isolate* isolate, ThreadLocalTop* top) { CollectActiveFunctionsFromThread(isolate, top, active_functions_, active_code_marker_); } private: List<Handle<JSFunction> >* active_functions_; Object* active_code_marker_; }; class ActiveFunctionsRedirector : public ThreadVisitor { public: void VisitThread(Isolate* isolate, ThreadLocalTop* top) { RedirectActivationsToRecompiledCodeOnThread(isolate, top); } }; static void EnsureFunctionHasDebugBreakSlots(Handle<JSFunction> function) { if (function->code()->kind() == Code::FUNCTION && function->code()->has_debug_break_slots()) { // Nothing to do. Function code already had debug break slots. return; } // Make sure that the shared full code is compiled with debug // break slots. if (!function->shared()->code()->has_debug_break_slots()) { MaybeHandle<Code> code = Compiler::GetDebugCode(function); // Recompilation can fail. In that case leave the code as it was. if (!code.is_null()) function->ReplaceCode(*code.ToHandleChecked()); } else { // Simply use shared code if it has debug break slots. function->ReplaceCode(function->shared()->code()); } } static void RecompileAndRelocateSuspendedGenerators( const List<Handle<JSGeneratorObject> > &generators) { for (int i = 0; i < generators.length(); i++) { Handle<JSFunction> fun(generators[i]->function()); EnsureFunctionHasDebugBreakSlots(fun); int code_offset = generators[i]->continuation(); int pc_offset = ComputePcOffsetFromCodeOffset(fun->code(), code_offset); generators[i]->set_continuation(pc_offset); } } void Debug::PrepareForBreakPoints() { // If preparing for the first break point make sure to deoptimize all // functions as debugging does not work with optimized code. if (!has_break_points_) { if (isolate_->concurrent_recompilation_enabled()) { isolate_->optimizing_compiler_thread()->Flush(); } Deoptimizer::DeoptimizeAll(isolate_); Handle<Code> lazy_compile = isolate_->builtins()->CompileLazy(); // There will be at least one break point when we are done. has_break_points_ = true; // Keep the list of activated functions in a handlified list as it // is used both in GC and non-GC code. List<Handle<JSFunction> > active_functions(100); // A list of all suspended generators. List<Handle<JSGeneratorObject> > suspended_generators; // A list of all generator functions. We need to recompile all functions, // but we don't know until after visiting the whole heap which generator // functions have suspended activations and which do not. As in the case of // functions with activations on the stack, we need to be careful with // generator functions with suspended activations because although they // should be recompiled, recompilation can fail, and we need to avoid // leaving the heap in an inconsistent state. // // We could perhaps avoid this list and instead re-use the GC metadata // links. List<Handle<JSFunction> > generator_functions; { // We are going to iterate heap to find all functions without // debug break slots. Heap* heap = isolate_->heap(); heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "preparing for breakpoints"); HeapIterator iterator(heap); // Ensure no GC in this scope as we are going to use gc_metadata // field in the Code object to mark active functions. DisallowHeapAllocation no_allocation; Object* active_code_marker = heap->the_hole_value(); CollectActiveFunctionsFromThread(isolate_, isolate_->thread_local_top(), &active_functions, active_code_marker); ActiveFunctionsCollector active_functions_collector(&active_functions, active_code_marker); isolate_->thread_manager()->IterateArchivedThreads( &active_functions_collector); // Scan the heap for all non-optimized functions which have no // debug break slots and are not active or inlined into an active // function and mark them for lazy compilation. HeapObject* obj = NULL; while (((obj = iterator.next()) != NULL)) { if (obj->IsJSFunction()) { JSFunction* function = JSFunction::cast(obj); SharedFunctionInfo* shared = function->shared(); if (!shared->allows_lazy_compilation()) continue; if (!shared->script()->IsScript()) continue; if (function->IsFromNativeScript()) continue; if (shared->code()->gc_metadata() == active_code_marker) continue; if (shared->is_generator()) { generator_functions.Add(Handle<JSFunction>(function, isolate_)); continue; } Code::Kind kind = function->code()->kind(); if (kind == Code::FUNCTION && !function->code()->has_debug_break_slots()) { function->ReplaceCode(*lazy_compile); function->shared()->ReplaceCode(*lazy_compile); } else if (kind == Code::BUILTIN && (function->IsInOptimizationQueue() || function->IsMarkedForOptimization() || function->IsMarkedForConcurrentOptimization())) { // Abort in-flight compilation. Code* shared_code = function->shared()->code(); if (shared_code->kind() == Code::FUNCTION && shared_code->has_debug_break_slots()) { function->ReplaceCode(shared_code); } else { function->ReplaceCode(*lazy_compile); function->shared()->ReplaceCode(*lazy_compile); } } } else if (obj->IsJSGeneratorObject()) { JSGeneratorObject* gen = JSGeneratorObject::cast(obj); if (!gen->is_suspended()) continue; JSFunction* fun = gen->function(); DCHECK_EQ(fun->code()->kind(), Code::FUNCTION); if (fun->code()->has_debug_break_slots()) continue; int pc_offset = gen->continuation(); DCHECK_LT(0, pc_offset); int code_offset = ComputeCodeOffsetFromPcOffset(fun->code(), pc_offset); // This will be fixed after we recompile the functions. gen->set_continuation(code_offset); suspended_generators.Add(Handle<JSGeneratorObject>(gen, isolate_)); } } // Clear gc_metadata field. for (int i = 0; i < active_functions.length(); i++) { Handle<JSFunction> function = active_functions[i]; function->shared()->code()->set_gc_metadata(Smi::FromInt(0)); } } // Recompile generator functions that have suspended activations, and // relocate those activations. RecompileAndRelocateSuspendedGenerators(suspended_generators); // Mark generator functions that didn't have suspended activations for lazy // recompilation. Note that this set does not include any active functions. for (int i = 0; i < generator_functions.length(); i++) { Handle<JSFunction> &function = generator_functions[i]; if (function->code()->kind() != Code::FUNCTION) continue; if (function->code()->has_debug_break_slots()) continue; function->ReplaceCode(*lazy_compile); function->shared()->ReplaceCode(*lazy_compile); } // Now recompile all functions with activation frames and and // patch the return address to run in the new compiled code. It could be // that some active functions were recompiled already by the suspended // generator recompilation pass above; a generator with suspended // activations could also have active activations. That's fine. for (int i = 0; i < active_functions.length(); i++) { Handle<JSFunction> function = active_functions[i]; Handle<SharedFunctionInfo> shared(function->shared()); // If recompilation is not possible just skip it. if (shared->is_toplevel()) continue; if (!shared->allows_lazy_compilation()) continue; if (shared->code()->kind() == Code::BUILTIN) continue; EnsureFunctionHasDebugBreakSlots(function); } RedirectActivationsToRecompiledCodeOnThread(isolate_, isolate_->thread_local_top()); ActiveFunctionsRedirector active_functions_redirector; isolate_->thread_manager()->IterateArchivedThreads( &active_functions_redirector); } } Object* Debug::FindSharedFunctionInfoInScript(Handle<Script> script, int position) { // Iterate the heap looking for SharedFunctionInfo generated from the // script. The inner most SharedFunctionInfo containing the source position // for the requested break point is found. // NOTE: This might require several heap iterations. If the SharedFunctionInfo // which is found is not compiled it is compiled and the heap is iterated // again as the compilation might create inner functions from the newly // compiled function and the actual requested break point might be in one of // these functions. // NOTE: The below fix-point iteration depends on all functions that cannot be // compiled lazily without a context to not be compiled at all. Compilation // will be triggered at points where we do not need a context. bool done = false; // The current candidate for the source position: int target_start_position = RelocInfo::kNoPosition; Handle<JSFunction> target_function; Handle<SharedFunctionInfo> target; Heap* heap = isolate_->heap(); while (!done) { { // Extra scope for iterator. HeapIterator iterator(heap); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { bool found_next_candidate = false; Handle<JSFunction> function; Handle<SharedFunctionInfo> shared; if (obj->IsJSFunction()) { function = Handle<JSFunction>(JSFunction::cast(obj)); shared = Handle<SharedFunctionInfo>(function->shared()); DCHECK(shared->allows_lazy_compilation() || shared->is_compiled()); found_next_candidate = true; } else if (obj->IsSharedFunctionInfo()) { shared = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(obj)); // Skip functions that we cannot compile lazily without a context, // which is not available here, because there is no closure. found_next_candidate = shared->is_compiled() || shared->allows_lazy_compilation_without_context(); } if (!found_next_candidate) continue; if (shared->script() == *script) { // If the SharedFunctionInfo found has the requested script data and // contains the source position it is a candidate. int start_position = shared->function_token_position(); if (start_position == RelocInfo::kNoPosition) { start_position = shared->start_position(); } if (start_position <= position && position <= shared->end_position()) { // If there is no candidate or this function is within the current // candidate this is the new candidate. if (target.is_null()) { target_start_position = start_position; target_function = function; target = shared; } else { if (target_start_position == start_position && shared->end_position() == target->end_position()) { // If a top-level function contains only one function // declaration the source for the top-level and the function // is the same. In that case prefer the non top-level function. if (!shared->is_toplevel()) { target_start_position = start_position; target_function = function; target = shared; } } else if (target_start_position <= start_position && shared->end_position() <= target->end_position()) { // This containment check includes equality as a function // inside a top-level function can share either start or end // position with the top-level function. target_start_position = start_position; target_function = function; target = shared; } } } } } // End for loop. } // End no-allocation scope. if (target.is_null()) return heap->undefined_value(); // There will be at least one break point when we are done. has_break_points_ = true; // If the candidate found is compiled we are done. done = target->is_compiled(); if (!done) { // If the candidate is not compiled, compile it to reveal any inner // functions which might contain the requested source position. This // will compile all inner functions that cannot be compiled without a // context, because Compiler::BuildFunctionInfo checks whether the // debugger is active. MaybeHandle<Code> maybe_result = target_function.is_null() ? Compiler::GetUnoptimizedCode(target) : Compiler::GetUnoptimizedCode(target_function); if (maybe_result.is_null()) return isolate_->heap()->undefined_value(); } } // End while loop. return *target; } // Ensures the debug information is present for shared. bool Debug::EnsureDebugInfo(Handle<SharedFunctionInfo> shared, Handle<JSFunction> function) { Isolate* isolate = shared->GetIsolate(); // Return if we already have the debug info for shared. if (HasDebugInfo(shared)) { DCHECK(shared->is_compiled()); return true; } // There will be at least one break point when we are done. has_break_points_ = true; // Ensure function is compiled. Return false if this failed. if (!function.is_null() && !Compiler::EnsureCompiled(function, CLEAR_EXCEPTION)) { return false; } // Create the debug info object. Handle<DebugInfo> debug_info = isolate->factory()->NewDebugInfo(shared); // Add debug info to the list. DebugInfoListNode* node = new DebugInfoListNode(*debug_info); node->set_next(debug_info_list_); debug_info_list_ = node; return true; } void Debug::RemoveDebugInfo(Handle<DebugInfo> debug_info) { DCHECK(debug_info_list_ != NULL); // Run through the debug info objects to find this one and remove it. DebugInfoListNode* prev = NULL; DebugInfoListNode* current = debug_info_list_; while (current != NULL) { if (*current->debug_info() == *debug_info) { // Unlink from list. If prev is NULL we are looking at the first element. if (prev == NULL) { debug_info_list_ = current->next(); } else { prev->set_next(current->next()); } current->debug_info()->shared()->set_debug_info( isolate_->heap()->undefined_value()); delete current; // If there are no more debug info objects there are not more break // points. has_break_points_ = debug_info_list_ != NULL; return; } // Move to next in list. prev = current; current = current->next(); } UNREACHABLE(); } void Debug::SetAfterBreakTarget(JavaScriptFrame* frame) { after_break_target_ = NULL; if (LiveEdit::SetAfterBreakTarget(this)) return; // LiveEdit did the job. HandleScope scope(isolate_); PrepareForBreakPoints(); // Get the executing function in which the debug break occurred. Handle<JSFunction> function(JSFunction::cast(frame->function())); Handle<SharedFunctionInfo> shared(function->shared()); if (!EnsureDebugInfo(shared, function)) { // Return if we failed to retrieve the debug info. return; } Handle<DebugInfo> debug_info = GetDebugInfo(shared); Handle<Code> code(debug_info->code()); Handle<Code> original_code(debug_info->original_code()); #ifdef DEBUG // Get the code which is actually executing. Handle<Code> frame_code(frame->LookupCode()); DCHECK(frame_code.is_identical_to(code)); #endif // Find the call address in the running code. This address holds the call to // either a DebugBreakXXX or to the debug break return entry code if the // break point is still active after processing the break point. Address addr = Assembler::break_address_from_return_address(frame->pc()); // Check if the location is at JS exit or debug break slot. bool at_js_return = false; bool break_at_js_return_active = false; bool at_debug_break_slot = false; RelocIterator it(debug_info->code()); while (!it.done() && !at_js_return && !at_debug_break_slot) { if (RelocInfo::IsJSReturn(it.rinfo()->rmode())) { at_js_return = (it.rinfo()->pc() == addr - Assembler::kPatchReturnSequenceAddressOffset); break_at_js_return_active = it.rinfo()->IsPatchedReturnSequence(); } if (RelocInfo::IsDebugBreakSlot(it.rinfo()->rmode())) { at_debug_break_slot = (it.rinfo()->pc() == addr - Assembler::kPatchDebugBreakSlotAddressOffset); } it.next(); } // Handle the jump to continue execution after break point depending on the // break location. if (at_js_return) { // If the break point as return is still active jump to the corresponding // place in the original code. If not the break point was removed during // break point processing. if (break_at_js_return_active) { addr += original_code->instruction_start() - code->instruction_start(); } // Move back to where the call instruction sequence started. after_break_target_ = addr - Assembler::kPatchReturnSequenceAddressOffset; } else if (at_debug_break_slot) { // Address of where the debug break slot starts. addr = addr - Assembler::kPatchDebugBreakSlotAddressOffset; // Continue just after the slot. after_break_target_ = addr + Assembler::kDebugBreakSlotLength; } else { addr = Assembler::target_address_from_return_address(frame->pc()); if (IsDebugBreak(Assembler::target_address_at(addr, *code))) { // We now know that there is still a debug break call at the target // address, so the break point is still there and the original code will // hold the address to jump to in order to complete the call which is // replaced by a call to DebugBreakXXX. // Find the corresponding address in the original code. addr += original_code->instruction_start() - code->instruction_start(); // Install jump to the call address in the original code. This will be the // call which was overwritten by the call to DebugBreakXXX. after_break_target_ = Assembler::target_address_at(addr, *original_code); } else { // There is no longer a break point present. Don't try to look in the // original code as the running code will have the right address. This // takes care of the case where the last break point is removed from the // function and therefore no "original code" is available. after_break_target_ = Assembler::target_address_at(addr, *code); } } } bool Debug::IsBreakAtReturn(JavaScriptFrame* frame) { HandleScope scope(isolate_); // If there are no break points this cannot be break at return, as // the debugger statement and stack guard bebug break cannot be at // return. if (!has_break_points_) { return false; } PrepareForBreakPoints(); // Get the executing function in which the debug break occurred. Handle<JSFunction> function(JSFunction::cast(frame->function())); Handle<SharedFunctionInfo> shared(function->shared()); if (!EnsureDebugInfo(shared, function)) { // Return if we failed to retrieve the debug info. return false; } Handle<DebugInfo> debug_info = GetDebugInfo(shared); Handle<Code> code(debug_info->code()); #ifdef DEBUG // Get the code which is actually executing. Handle<Code> frame_code(frame->LookupCode()); DCHECK(frame_code.is_identical_to(code)); #endif // Find the call address in the running code. Address addr = Assembler::break_address_from_return_address(frame->pc()); // Check if the location is at JS return. RelocIterator it(debug_info->code()); while (!it.done()) { if (RelocInfo::IsJSReturn(it.rinfo()->rmode())) { return (it.rinfo()->pc() == addr - Assembler::kPatchReturnSequenceAddressOffset); } it.next(); } return false; } void Debug::FramesHaveBeenDropped(StackFrame::Id new_break_frame_id, LiveEdit::FrameDropMode mode, Object** restarter_frame_function_pointer) { if (mode != LiveEdit::CURRENTLY_SET_MODE) { thread_local_.frame_drop_mode_ = mode; } thread_local_.break_frame_id_ = new_break_frame_id; thread_local_.restarter_frame_function_pointer_ = restarter_frame_function_pointer; } bool Debug::IsDebugGlobal(GlobalObject* global) { return is_loaded() && global == debug_context()->global_object(); } void Debug::ClearMirrorCache() { PostponeInterruptsScope postpone(isolate_); HandleScope scope(isolate_); AssertDebugContext(); Factory* factory = isolate_->factory(); Handle<GlobalObject> global(isolate_->global_object()); JSObject::SetProperty(global, factory->NewStringFromAsciiChecked("next_handle_"), handle(Smi::FromInt(0), isolate_), SLOPPY).Check(); JSObject::SetProperty(global, factory->NewStringFromAsciiChecked("mirror_cache_"), factory->NewJSArray(0, FAST_ELEMENTS), SLOPPY).Check(); } Handle<FixedArray> Debug::GetLoadedScripts() { // Create and fill the script cache when the loaded scripts is requested for // the first time. if (script_cache_ == NULL) script_cache_ = new ScriptCache(isolate_); // Perform GC to get unreferenced scripts evicted from the cache before // returning the content. isolate_->heap()->CollectAllGarbage(Heap::kNoGCFlags, "Debug::GetLoadedScripts"); // Get the scripts from the cache. return script_cache_->GetScripts(); } void Debug::RecordEvalCaller(Handle<Script> script) { script->set_compilation_type(Script::COMPILATION_TYPE_EVAL); // For eval scripts add information on the function from which eval was // called. StackTraceFrameIterator it(script->GetIsolate()); if (!it.done()) { script->set_eval_from_shared(it.frame()->function()->shared()); Code* code = it.frame()->LookupCode(); int offset = static_cast<int>( it.frame()->pc() - code->instruction_start()); script->set_eval_from_instructions_offset(Smi::FromInt(offset)); } } MaybeHandle<Object> Debug::MakeJSObject(const char* constructor_name, int argc, Handle<Object> argv[]) { AssertDebugContext(); // Create the execution state object. Handle<GlobalObject> global(isolate_->global_object()); Handle<Object> constructor = Object::GetProperty( isolate_, global, constructor_name).ToHandleChecked(); DCHECK(constructor->IsJSFunction()); if (!constructor->IsJSFunction()) return MaybeHandle<Object>(); // We do not handle interrupts here. In particular, termination interrupts. PostponeInterruptsScope no_interrupts(isolate_); return Execution::TryCall(Handle<JSFunction>::cast(constructor), handle(debug_context()->global_proxy()), argc, argv); } MaybeHandle<Object> Debug::MakeExecutionState() { // Create the execution state object. Handle<Object> argv[] = { isolate_->factory()->NewNumberFromInt(break_id()) }; return MakeJSObject("MakeExecutionState", arraysize(argv), argv); } MaybeHandle<Object> Debug::MakeBreakEvent(Handle<Object> break_points_hit) { // Create the new break event object. Handle<Object> argv[] = { isolate_->factory()->NewNumberFromInt(break_id()), break_points_hit }; return MakeJSObject("MakeBreakEvent", arraysize(argv), argv); } MaybeHandle<Object> Debug::MakeExceptionEvent(Handle<Object> exception, bool uncaught, Handle<Object> promise) { // Create the new exception event object. Handle<Object> argv[] = { isolate_->factory()->NewNumberFromInt(break_id()), exception, isolate_->factory()->ToBoolean(uncaught), promise }; return MakeJSObject("MakeExceptionEvent", arraysize(argv), argv); } MaybeHandle<Object> Debug::MakeCompileEvent(Handle<Script> script, v8::DebugEvent type) { // Create the compile event object. Handle<Object> script_wrapper = Script::GetWrapper(script); Handle<Object> argv[] = { script_wrapper, isolate_->factory()->NewNumberFromInt(type) }; return MakeJSObject("MakeCompileEvent", arraysize(argv), argv); } MaybeHandle<Object> Debug::MakePromiseEvent(Handle<JSObject> event_data) { // Create the promise event object. Handle<Object> argv[] = { event_data }; return MakeJSObject("MakePromiseEvent", arraysize(argv), argv); } MaybeHandle<Object> Debug::MakeAsyncTaskEvent(Handle<JSObject> task_event) { // Create the async task event object. Handle<Object> argv[] = { task_event }; return MakeJSObject("MakeAsyncTaskEvent", arraysize(argv), argv); } void Debug::OnThrow(Handle<Object> exception, bool uncaught) { if (in_debug_scope() || ignore_events()) return; // Temporarily clear any scheduled_exception to allow evaluating // JavaScript from the debug event handler. HandleScope scope(isolate_); Handle<Object> scheduled_exception; if (isolate_->has_scheduled_exception()) { scheduled_exception = handle(isolate_->scheduled_exception(), isolate_); isolate_->clear_scheduled_exception(); } OnException(exception, uncaught, isolate_->GetPromiseOnStackOnThrow()); if (!scheduled_exception.is_null()) { isolate_->thread_local_top()->scheduled_exception_ = *scheduled_exception; } } void Debug::OnPromiseReject(Handle<JSObject> promise, Handle<Object> value) { if (in_debug_scope() || ignore_events()) return; HandleScope scope(isolate_); OnException(value, false, promise); } void Debug::OnException(Handle<Object> exception, bool uncaught, Handle<Object> promise) { if (promise->IsJSObject()) { uncaught |= !PromiseHasRejectHandler(Handle<JSObject>::cast(promise)); } // Bail out if exception breaks are not active if (uncaught) { // Uncaught exceptions are reported by either flags. if (!(break_on_uncaught_exception_ || break_on_exception_)) return; } else { // Caught exceptions are reported is activated. if (!break_on_exception_) return; } DebugScope debug_scope(this); if (debug_scope.failed()) return; // Clear all current stepping setup. ClearStepping(); // Create the event data object. Handle<Object> event_data; // Bail out and don't call debugger if exception. if (!MakeExceptionEvent( exception, uncaught, promise).ToHandle(&event_data)) { return; } // Process debug event. ProcessDebugEvent(v8::Exception, Handle<JSObject>::cast(event_data), false); // Return to continue execution from where the exception was thrown. } void Debug::OnCompileError(Handle<Script> script) { // No more to do if not debugging. if (in_debug_scope() || ignore_events()) return; HandleScope scope(isolate_); DebugScope debug_scope(this); if (debug_scope.failed()) return; // Create the compile state object. Handle<Object> event_data; // Bail out and don't call debugger if exception. if (!MakeCompileEvent(script, v8::CompileError).ToHandle(&event_data)) return; // Process debug event. ProcessDebugEvent(v8::CompileError, Handle<JSObject>::cast(event_data), true); } void Debug::OnDebugBreak(Handle<Object> break_points_hit, bool auto_continue) { // The caller provided for DebugScope. AssertDebugContext(); // Bail out if there is no listener for this event if (ignore_events()) return; HandleScope scope(isolate_); // Create the event data object. Handle<Object> event_data; // Bail out and don't call debugger if exception. if (!MakeBreakEvent(break_points_hit).ToHandle(&event_data)) return; // Process debug event. ProcessDebugEvent(v8::Break, Handle<JSObject>::cast(event_data), auto_continue); } void Debug::OnBeforeCompile(Handle<Script> script) { if (in_debug_scope() || ignore_events()) return; HandleScope scope(isolate_); DebugScope debug_scope(this); if (debug_scope.failed()) return; // Create the event data object. Handle<Object> event_data; // Bail out and don't call debugger if exception. if (!MakeCompileEvent(script, v8::BeforeCompile).ToHandle(&event_data)) return; // Process debug event. ProcessDebugEvent(v8::BeforeCompile, Handle<JSObject>::cast(event_data), true); } // Handle debugger actions when a new script is compiled. void Debug::OnAfterCompile(Handle<Script> script) { // Add the newly compiled script to the script cache. if (script_cache_ != NULL) script_cache_->Add(script); // No more to do if not debugging. if (in_debug_scope() || ignore_events()) return; HandleScope scope(isolate_); DebugScope debug_scope(this); if (debug_scope.failed()) return; // If debugging there might be script break points registered for this // script. Make sure that these break points are set. // Get the function UpdateScriptBreakPoints (defined in debug-debugger.js). Handle<String> update_script_break_points_string = isolate_->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("UpdateScriptBreakPoints")); Handle<GlobalObject> debug_global(debug_context()->global_object()); Handle<Object> update_script_break_points = Object::GetProperty( debug_global, update_script_break_points_string).ToHandleChecked(); if (!update_script_break_points->IsJSFunction()) { return; } DCHECK(update_script_break_points->IsJSFunction()); // Wrap the script object in a proper JS object before passing it // to JavaScript. Handle<Object> wrapper = Script::GetWrapper(script); // Call UpdateScriptBreakPoints expect no exceptions. Handle<Object> argv[] = { wrapper }; if (Execution::TryCall(Handle<JSFunction>::cast(update_script_break_points), isolate_->js_builtins_object(), arraysize(argv), argv).is_null()) { return; } // Create the compile state object. Handle<Object> event_data; // Bail out and don't call debugger if exception. if (!MakeCompileEvent(script, v8::AfterCompile).ToHandle(&event_data)) return; // Process debug event. ProcessDebugEvent(v8::AfterCompile, Handle<JSObject>::cast(event_data), true); } void Debug::OnPromiseEvent(Handle<JSObject> data) { if (in_debug_scope() || ignore_events()) return; HandleScope scope(isolate_); DebugScope debug_scope(this); if (debug_scope.failed()) return; // Create the script collected state object. Handle<Object> event_data; // Bail out and don't call debugger if exception. if (!MakePromiseEvent(data).ToHandle(&event_data)) return; // Process debug event. ProcessDebugEvent(v8::PromiseEvent, Handle<JSObject>::cast(event_data), true); } void Debug::OnAsyncTaskEvent(Handle<JSObject> data) { if (in_debug_scope() || ignore_events()) return; HandleScope scope(isolate_); DebugScope debug_scope(this); if (debug_scope.failed()) return; // Create the script collected state object. Handle<Object> event_data; // Bail out and don't call debugger if exception. if (!MakeAsyncTaskEvent(data).ToHandle(&event_data)) return; // Process debug event. ProcessDebugEvent(v8::AsyncTaskEvent, Handle<JSObject>::cast(event_data), true); } void Debug::ProcessDebugEvent(v8::DebugEvent event, Handle<JSObject> event_data, bool auto_continue) { HandleScope scope(isolate_); // Create the execution state. Handle<Object> exec_state; // Bail out and don't call debugger if exception. if (!MakeExecutionState().ToHandle(&exec_state)) return; // First notify the message handler if any. if (message_handler_ != NULL) { NotifyMessageHandler(event, Handle<JSObject>::cast(exec_state), event_data, auto_continue); } // Notify registered debug event listener. This can be either a C or // a JavaScript function. Don't call event listener for v8::Break // here, if it's only a debug command -- they will be processed later. if ((event != v8::Break || !auto_continue) && !event_listener_.is_null()) { CallEventCallback(event, exec_state, event_data, NULL); } // Process pending debug commands. if (event == v8::Break) { while (!event_command_queue_.IsEmpty()) { CommandMessage command = event_command_queue_.Get(); if (!event_listener_.is_null()) { CallEventCallback(v8::BreakForCommand, exec_state, event_data, command.client_data()); } command.Dispose(); } } } void Debug::CallEventCallback(v8::DebugEvent event, Handle<Object> exec_state, Handle<Object> event_data, v8::Debug::ClientData* client_data) { if (event_listener_->IsForeign()) { // Invoke the C debug event listener. v8::Debug::EventCallback callback = FUNCTION_CAST<v8::Debug::EventCallback>( Handle<Foreign>::cast(event_listener_)->foreign_address()); EventDetailsImpl event_details(event, Handle<JSObject>::cast(exec_state), Handle<JSObject>::cast(event_data), event_listener_data_, client_data); callback(event_details); DCHECK(!isolate_->has_scheduled_exception()); } else { // Invoke the JavaScript debug event listener. DCHECK(event_listener_->IsJSFunction()); Handle<Object> argv[] = { Handle<Object>(Smi::FromInt(event), isolate_), exec_state, event_data, event_listener_data_ }; Handle<JSReceiver> global(isolate_->global_proxy()); Execution::TryCall(Handle<JSFunction>::cast(event_listener_), global, arraysize(argv), argv); } } Handle<Context> Debug::GetDebugContext() { DebugScope debug_scope(this); // The global handle may be destroyed soon after. Return it reboxed. return handle(*debug_context(), isolate_); } void Debug::NotifyMessageHandler(v8::DebugEvent event, Handle<JSObject> exec_state, Handle<JSObject> event_data, bool auto_continue) { // Prevent other interrupts from triggering, for example API callbacks, // while dispatching message handler callbacks. PostponeInterruptsScope no_interrupts(isolate_); DCHECK(is_active_); HandleScope scope(isolate_); // Process the individual events. bool sendEventMessage = false; switch (event) { case v8::Break: case v8::BreakForCommand: sendEventMessage = !auto_continue; break; case v8::Exception: sendEventMessage = true; break; case v8::BeforeCompile: break; case v8::AfterCompile: sendEventMessage = true; break; case v8::NewFunction: break; default: UNREACHABLE(); } // The debug command interrupt flag might have been set when the command was // added. It should be enough to clear the flag only once while we are in the // debugger. DCHECK(in_debug_scope()); isolate_->stack_guard()->ClearDebugCommand(); // Notify the debugger that a debug event has occurred unless auto continue is // active in which case no event is send. if (sendEventMessage) { MessageImpl message = MessageImpl::NewEvent( event, auto_continue, Handle<JSObject>::cast(exec_state), Handle<JSObject>::cast(event_data)); InvokeMessageHandler(message); } // If auto continue don't make the event cause a break, but process messages // in the queue if any. For script collected events don't even process // messages in the queue as the execution state might not be what is expected // by the client. if (auto_continue && !has_commands()) return; // DebugCommandProcessor goes here. bool running = auto_continue; Handle<Object> cmd_processor_ctor = Object::GetProperty( isolate_, exec_state, "debugCommandProcessor").ToHandleChecked(); Handle<Object> ctor_args[] = { isolate_->factory()->ToBoolean(running) }; Handle<Object> cmd_processor = Execution::Call( isolate_, cmd_processor_ctor, exec_state, 1, ctor_args).ToHandleChecked(); Handle<JSFunction> process_debug_request = Handle<JSFunction>::cast( Object::GetProperty( isolate_, cmd_processor, "processDebugRequest").ToHandleChecked()); Handle<Object> is_running = Object::GetProperty( isolate_, cmd_processor, "isRunning").ToHandleChecked(); // Process requests from the debugger. do { // Wait for new command in the queue. command_received_.Wait(); // Get the command from the queue. CommandMessage command = command_queue_.Get(); isolate_->logger()->DebugTag( "Got request from command queue, in interactive loop."); if (!is_active()) { // Delete command text and user data. command.Dispose(); return; } Vector<const uc16> command_text( const_cast<const uc16*>(command.text().start()), command.text().length()); Handle<String> request_text = isolate_->factory()->NewStringFromTwoByte( command_text).ToHandleChecked(); Handle<Object> request_args[] = { request_text }; Handle<Object> answer_value; Handle<String> answer; MaybeHandle<Object> maybe_exception; MaybeHandle<Object> maybe_result = Execution::TryCall(process_debug_request, cmd_processor, 1, request_args, &maybe_exception); if (maybe_result.ToHandle(&answer_value)) { if (answer_value->IsUndefined()) { answer = isolate_->factory()->empty_string(); } else { answer = Handle<String>::cast(answer_value); } // Log the JSON request/response. if (FLAG_trace_debug_json) { PrintF("%s\n", request_text->ToCString().get()); PrintF("%s\n", answer->ToCString().get()); } Handle<Object> is_running_args[] = { answer }; maybe_result = Execution::Call( isolate_, is_running, cmd_processor, 1, is_running_args); Handle<Object> result; if (!maybe_result.ToHandle(&result)) break; running = result->IsTrue(); } else { Handle<Object> exception; if (!maybe_exception.ToHandle(&exception)) break; Handle<Object> result; if (!Execution::ToString(isolate_, exception).ToHandle(&result)) break; answer = Handle<String>::cast(result); } // Return the result. MessageImpl message = MessageImpl::NewResponse( event, running, exec_state, event_data, answer, command.client_data()); InvokeMessageHandler(message); command.Dispose(); // Return from debug event processing if either the VM is put into the // running state (through a continue command) or auto continue is active // and there are no more commands queued. } while (!running || has_commands()); command_queue_.Clear(); } void Debug::SetEventListener(Handle<Object> callback, Handle<Object> data) { GlobalHandles* global_handles = isolate_->global_handles(); // Remove existing entry. GlobalHandles::Destroy(event_listener_.location()); event_listener_ = Handle<Object>(); GlobalHandles::Destroy(event_listener_data_.location()); event_listener_data_ = Handle<Object>(); // Set new entry. if (!callback->IsUndefined() && !callback->IsNull()) { event_listener_ = global_handles->Create(*callback); if (data.is_null()) data = isolate_->factory()->undefined_value(); event_listener_data_ = global_handles->Create(*data); } UpdateState(); } void Debug::SetMessageHandler(v8::Debug::MessageHandler handler) { message_handler_ = handler; UpdateState(); if (handler == NULL && in_debug_scope()) { // Send an empty command to the debugger if in a break to make JavaScript // run again if the debugger is closed. EnqueueCommandMessage(Vector<const uint16_t>::empty()); } } void Debug::UpdateState() { is_active_ = message_handler_ != NULL || !event_listener_.is_null(); if (is_active_ || in_debug_scope()) { // Note that the debug context could have already been loaded to // bootstrap test cases. isolate_->compilation_cache()->Disable(); is_active_ = Load(); } else if (is_loaded()) { isolate_->compilation_cache()->Enable(); Unload(); } } // Calls the registered debug message handler. This callback is part of the // public API. void Debug::InvokeMessageHandler(MessageImpl message) { if (message_handler_ != NULL) message_handler_(message); } // Puts a command coming from the public API on the queue. Creates // a copy of the command string managed by the debugger. Up to this // point, the command data was managed by the API client. Called // by the API client thread. void Debug::EnqueueCommandMessage(Vector<const uint16_t> command, v8::Debug::ClientData* client_data) { // Need to cast away const. CommandMessage message = CommandMessage::New( Vector<uint16_t>(const_cast<uint16_t*>(command.start()), command.length()), client_data); isolate_->logger()->DebugTag("Put command on command_queue."); command_queue_.Put(message); command_received_.Signal(); // Set the debug command break flag to have the command processed. if (!in_debug_scope()) isolate_->stack_guard()->RequestDebugCommand(); } void Debug::EnqueueDebugCommand(v8::Debug::ClientData* client_data) { CommandMessage message = CommandMessage::New(Vector<uint16_t>(), client_data); event_command_queue_.Put(message); // Set the debug command break flag to have the command processed. if (!in_debug_scope()) isolate_->stack_guard()->RequestDebugCommand(); } MaybeHandle<Object> Debug::Call(Handle<JSFunction> fun, Handle<Object> data) { DebugScope debug_scope(this); if (debug_scope.failed()) return isolate_->factory()->undefined_value(); // Create the execution state. Handle<Object> exec_state; if (!MakeExecutionState().ToHandle(&exec_state)) { return isolate_->factory()->undefined_value(); } Handle<Object> argv[] = { exec_state, data }; return Execution::Call( isolate_, fun, Handle<Object>(debug_context()->global_proxy(), isolate_), arraysize(argv), argv); } void Debug::HandleDebugBreak() { // Ignore debug break during bootstrapping. if (isolate_->bootstrapper()->IsActive()) return; // Just continue if breaks are disabled. if (break_disabled_) return; // Ignore debug break if debugger is not active. if (!is_active()) return; StackLimitCheck check(isolate_); if (check.HasOverflowed()) return; { JavaScriptFrameIterator it(isolate_); DCHECK(!it.done()); Object* fun = it.frame()->function(); if (fun && fun->IsJSFunction()) { // Don't stop in builtin functions. if (JSFunction::cast(fun)->IsBuiltin()) return; GlobalObject* global = JSFunction::cast(fun)->context()->global_object(); // Don't stop in debugger functions. if (IsDebugGlobal(global)) return; } } // Collect the break state before clearing the flags. bool debug_command_only = isolate_->stack_guard()->CheckDebugCommand() && !isolate_->stack_guard()->CheckDebugBreak(); isolate_->stack_guard()->ClearDebugBreak(); ProcessDebugMessages(debug_command_only); } void Debug::ProcessDebugMessages(bool debug_command_only) { isolate_->stack_guard()->ClearDebugCommand(); StackLimitCheck check(isolate_); if (check.HasOverflowed()) return; HandleScope scope(isolate_); DebugScope debug_scope(this); if (debug_scope.failed()) return; // Notify the debug event listeners. Indicate auto continue if the break was // a debug command break. OnDebugBreak(isolate_->factory()->undefined_value(), debug_command_only); } DebugScope::DebugScope(Debug* debug) : debug_(debug), prev_(debug->debugger_entry()), save_(debug_->isolate_), no_termination_exceptons_(debug_->isolate_, StackGuard::TERMINATE_EXECUTION) { // Link recursive debugger entry. debug_->thread_local_.current_debug_scope_ = this; // Store the previous break id and frame id. break_id_ = debug_->break_id(); break_frame_id_ = debug_->break_frame_id(); // Create the new break info. If there is no JavaScript frames there is no // break frame id. JavaScriptFrameIterator it(isolate()); bool has_js_frames = !it.done(); debug_->thread_local_.break_frame_id_ = has_js_frames ? it.frame()->id() : StackFrame::NO_ID; debug_->SetNextBreakId(); debug_->UpdateState(); // Make sure that debugger is loaded and enter the debugger context. // The previous context is kept in save_. failed_ = !debug_->is_loaded(); if (!failed_) isolate()->set_context(*debug->debug_context()); } DebugScope::~DebugScope() { if (!failed_ && prev_ == NULL) { // Clear mirror cache when leaving the debugger. Skip this if there is a // pending exception as clearing the mirror cache calls back into // JavaScript. This can happen if the v8::Debug::Call is used in which // case the exception should end up in the calling code. if (!isolate()->has_pending_exception()) debug_->ClearMirrorCache(); // If there are commands in the queue when leaving the debugger request // that these commands are processed. if (debug_->has_commands()) isolate()->stack_guard()->RequestDebugCommand(); } // Leaving this debugger entry. debug_->thread_local_.current_debug_scope_ = prev_; // Restore to the previous break state. debug_->thread_local_.break_frame_id_ = break_frame_id_; debug_->thread_local_.break_id_ = break_id_; debug_->UpdateState(); } MessageImpl MessageImpl::NewEvent(DebugEvent event, bool running, Handle<JSObject> exec_state, Handle<JSObject> event_data) { MessageImpl message(true, event, running, exec_state, event_data, Handle<String>(), NULL); return message; } MessageImpl MessageImpl::NewResponse(DebugEvent event, bool running, Handle<JSObject> exec_state, Handle<JSObject> event_data, Handle<String> response_json, v8::Debug::ClientData* client_data) { MessageImpl message(false, event, running, exec_state, event_data, response_json, client_data); return message; } MessageImpl::MessageImpl(bool is_event, DebugEvent event, bool running, Handle<JSObject> exec_state, Handle<JSObject> event_data, Handle<String> response_json, v8::Debug::ClientData* client_data) : is_event_(is_event), event_(event), running_(running), exec_state_(exec_state), event_data_(event_data), response_json_(response_json), client_data_(client_data) {} bool MessageImpl::IsEvent() const { return is_event_; } bool MessageImpl::IsResponse() const { return !is_event_; } DebugEvent MessageImpl::GetEvent() const { return event_; } bool MessageImpl::WillStartRunning() const { return running_; } v8::Handle<v8::Object> MessageImpl::GetExecutionState() const { return v8::Utils::ToLocal(exec_state_); } v8::Isolate* MessageImpl::GetIsolate() const { return reinterpret_cast<v8::Isolate*>(exec_state_->GetIsolate()); } v8::Handle<v8::Object> MessageImpl::GetEventData() const { return v8::Utils::ToLocal(event_data_); } v8::Handle<v8::String> MessageImpl::GetJSON() const { Isolate* isolate = event_data_->GetIsolate(); v8::EscapableHandleScope scope(reinterpret_cast<v8::Isolate*>(isolate)); if (IsEvent()) { // Call toJSONProtocol on the debug event object. Handle<Object> fun = Object::GetProperty( isolate, event_data_, "toJSONProtocol").ToHandleChecked(); if (!fun->IsJSFunction()) { return v8::Handle<v8::String>(); } MaybeHandle<Object> maybe_json = Execution::TryCall(Handle<JSFunction>::cast(fun), event_data_, 0, NULL); Handle<Object> json; if (!maybe_json.ToHandle(&json) || !json->IsString()) { return v8::Handle<v8::String>(); } return scope.Escape(v8::Utils::ToLocal(Handle<String>::cast(json))); } else { return v8::Utils::ToLocal(response_json_); } } v8::Handle<v8::Context> MessageImpl::GetEventContext() const { Isolate* isolate = event_data_->GetIsolate(); v8::Handle<v8::Context> context = GetDebugEventContext(isolate); // Isolate::context() may be NULL when "script collected" event occures. DCHECK(!context.IsEmpty()); return context; } v8::Debug::ClientData* MessageImpl::GetClientData() const { return client_data_; } EventDetailsImpl::EventDetailsImpl(DebugEvent event, Handle<JSObject> exec_state, Handle<JSObject> event_data, Handle<Object> callback_data, v8::Debug::ClientData* client_data) : event_(event), exec_state_(exec_state), event_data_(event_data), callback_data_(callback_data), client_data_(client_data) {} DebugEvent EventDetailsImpl::GetEvent() const { return event_; } v8::Handle<v8::Object> EventDetailsImpl::GetExecutionState() const { return v8::Utils::ToLocal(exec_state_); } v8::Handle<v8::Object> EventDetailsImpl::GetEventData() const { return v8::Utils::ToLocal(event_data_); } v8::Handle<v8::Context> EventDetailsImpl::GetEventContext() const { return GetDebugEventContext(exec_state_->GetIsolate()); } v8::Handle<v8::Value> EventDetailsImpl::GetCallbackData() const { return v8::Utils::ToLocal(callback_data_); } v8::Debug::ClientData* EventDetailsImpl::GetClientData() const { return client_data_; } CommandMessage::CommandMessage() : text_(Vector<uint16_t>::empty()), client_data_(NULL) { } CommandMessage::CommandMessage(const Vector<uint16_t>& text, v8::Debug::ClientData* data) : text_(text), client_data_(data) { } void CommandMessage::Dispose() { text_.Dispose(); delete client_data_; client_data_ = NULL; } CommandMessage CommandMessage::New(const Vector<uint16_t>& command, v8::Debug::ClientData* data) { return CommandMessage(command.Clone(), data); } CommandMessageQueue::CommandMessageQueue(int size) : start_(0), end_(0), size_(size) { messages_ = NewArray<CommandMessage>(size); } CommandMessageQueue::~CommandMessageQueue() { while (!IsEmpty()) Get().Dispose(); DeleteArray(messages_); } CommandMessage CommandMessageQueue::Get() { DCHECK(!IsEmpty()); int result = start_; start_ = (start_ + 1) % size_; return messages_[result]; } void CommandMessageQueue::Put(const CommandMessage& message) { if ((end_ + 1) % size_ == start_) { Expand(); } messages_[end_] = message; end_ = (end_ + 1) % size_; } void CommandMessageQueue::Expand() { CommandMessageQueue new_queue(size_ * 2); while (!IsEmpty()) { new_queue.Put(Get()); } CommandMessage* array_to_free = messages_; *this = new_queue; new_queue.messages_ = array_to_free; // Make the new_queue empty so that it doesn't call Dispose on any messages. new_queue.start_ = new_queue.end_; // Automatic destructor called on new_queue, freeing array_to_free. } LockingCommandMessageQueue::LockingCommandMessageQueue(Logger* logger, int size) : logger_(logger), queue_(size) {} bool LockingCommandMessageQueue::IsEmpty() const { base::LockGuard<base::Mutex> lock_guard(&mutex_); return queue_.IsEmpty(); } CommandMessage LockingCommandMessageQueue::Get() { base::LockGuard<base::Mutex> lock_guard(&mutex_); CommandMessage result = queue_.Get(); logger_->DebugEvent("Get", result.text()); return result; } void LockingCommandMessageQueue::Put(const CommandMessage& message) { base::LockGuard<base::Mutex> lock_guard(&mutex_); queue_.Put(message); logger_->DebugEvent("Put", message.text()); } void LockingCommandMessageQueue::Clear() { base::LockGuard<base::Mutex> lock_guard(&mutex_); queue_.Clear(); } } } // namespace v8::internal