// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_HEAP_H_ #define V8_HEAP_HEAP_H_ #include <cmath> #include "src/allocation.h" #include "src/assert-scope.h" #include "src/counters.h" #include "src/globals.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact.h" #include "src/heap/objects-visiting.h" #include "src/heap/spaces.h" #include "src/heap/store-buffer.h" #include "src/list.h" #include "src/splay-tree-inl.h" namespace v8 { namespace internal { // Defines all the roots in Heap. #define STRONG_ROOT_LIST(V) \ V(Map, byte_array_map, ByteArrayMap) \ V(Map, free_space_map, FreeSpaceMap) \ V(Map, one_pointer_filler_map, OnePointerFillerMap) \ V(Map, two_pointer_filler_map, TwoPointerFillerMap) \ /* Cluster the most popular ones in a few cache lines here at the top. */ \ V(Smi, store_buffer_top, StoreBufferTop) \ V(Oddball, undefined_value, UndefinedValue) \ V(Oddball, the_hole_value, TheHoleValue) \ V(Oddball, null_value, NullValue) \ V(Oddball, true_value, TrueValue) \ V(Oddball, false_value, FalseValue) \ V(Oddball, uninitialized_value, UninitializedValue) \ V(Oddball, exception, Exception) \ V(Map, cell_map, CellMap) \ V(Map, global_property_cell_map, GlobalPropertyCellMap) \ V(Map, shared_function_info_map, SharedFunctionInfoMap) \ V(Map, meta_map, MetaMap) \ V(Map, heap_number_map, HeapNumberMap) \ V(Map, mutable_heap_number_map, MutableHeapNumberMap) \ V(Map, native_context_map, NativeContextMap) \ V(Map, fixed_array_map, FixedArrayMap) \ V(Map, code_map, CodeMap) \ V(Map, scope_info_map, ScopeInfoMap) \ V(Map, fixed_cow_array_map, FixedCOWArrayMap) \ V(Map, fixed_double_array_map, FixedDoubleArrayMap) \ V(Map, constant_pool_array_map, ConstantPoolArrayMap) \ V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel) \ V(Map, hash_table_map, HashTableMap) \ V(Map, ordered_hash_table_map, OrderedHashTableMap) \ V(FixedArray, empty_fixed_array, EmptyFixedArray) \ V(ByteArray, empty_byte_array, EmptyByteArray) \ V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray) \ V(ConstantPoolArray, empty_constant_pool_array, EmptyConstantPoolArray) \ V(Oddball, arguments_marker, ArgumentsMarker) \ /* The roots above this line should be boring from a GC point of view. */ \ /* This means they are never in new space and never on a page that is */ \ /* being compacted. */ \ V(FixedArray, number_string_cache, NumberStringCache) \ V(Object, instanceof_cache_function, InstanceofCacheFunction) \ V(Object, instanceof_cache_map, InstanceofCacheMap) \ V(Object, instanceof_cache_answer, InstanceofCacheAnswer) \ V(FixedArray, single_character_string_cache, SingleCharacterStringCache) \ V(FixedArray, string_split_cache, StringSplitCache) \ V(FixedArray, regexp_multiple_cache, RegExpMultipleCache) \ V(Oddball, termination_exception, TerminationException) \ V(Smi, hash_seed, HashSeed) \ V(Map, symbol_map, SymbolMap) \ V(Map, string_map, StringMap) \ V(Map, one_byte_string_map, OneByteStringMap) \ V(Map, cons_string_map, ConsStringMap) \ V(Map, cons_one_byte_string_map, ConsOneByteStringMap) \ V(Map, sliced_string_map, SlicedStringMap) \ V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap) \ V(Map, external_string_map, ExternalStringMap) \ V(Map, external_string_with_one_byte_data_map, \ ExternalStringWithOneByteDataMap) \ V(Map, external_one_byte_string_map, ExternalOneByteStringMap) \ V(Map, short_external_string_map, ShortExternalStringMap) \ V(Map, short_external_string_with_one_byte_data_map, \ ShortExternalStringWithOneByteDataMap) \ V(Map, internalized_string_map, InternalizedStringMap) \ V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap) \ V(Map, external_internalized_string_map, ExternalInternalizedStringMap) \ V(Map, external_internalized_string_with_one_byte_data_map, \ ExternalInternalizedStringWithOneByteDataMap) \ V(Map, external_one_byte_internalized_string_map, \ ExternalOneByteInternalizedStringMap) \ V(Map, short_external_internalized_string_map, \ ShortExternalInternalizedStringMap) \ V(Map, short_external_internalized_string_with_one_byte_data_map, \ ShortExternalInternalizedStringWithOneByteDataMap) \ V(Map, short_external_one_byte_internalized_string_map, \ ShortExternalOneByteInternalizedStringMap) \ V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap) \ V(Map, undetectable_string_map, UndetectableStringMap) \ V(Map, undetectable_one_byte_string_map, UndetectableOneByteStringMap) \ V(Map, external_int8_array_map, ExternalInt8ArrayMap) \ V(Map, external_uint8_array_map, ExternalUint8ArrayMap) \ V(Map, external_int16_array_map, ExternalInt16ArrayMap) \ V(Map, external_uint16_array_map, ExternalUint16ArrayMap) \ V(Map, external_int32_array_map, ExternalInt32ArrayMap) \ V(Map, external_uint32_array_map, ExternalUint32ArrayMap) \ V(Map, external_float32_array_map, ExternalFloat32ArrayMap) \ V(Map, external_float64_array_map, ExternalFloat64ArrayMap) \ V(Map, external_uint8_clamped_array_map, ExternalUint8ClampedArrayMap) \ V(ExternalArray, empty_external_int8_array, EmptyExternalInt8Array) \ V(ExternalArray, empty_external_uint8_array, EmptyExternalUint8Array) \ V(ExternalArray, empty_external_int16_array, EmptyExternalInt16Array) \ V(ExternalArray, empty_external_uint16_array, EmptyExternalUint16Array) \ V(ExternalArray, empty_external_int32_array, EmptyExternalInt32Array) \ V(ExternalArray, empty_external_uint32_array, EmptyExternalUint32Array) \ V(ExternalArray, empty_external_float32_array, EmptyExternalFloat32Array) \ V(ExternalArray, empty_external_float64_array, EmptyExternalFloat64Array) \ V(ExternalArray, empty_external_uint8_clamped_array, \ EmptyExternalUint8ClampedArray) \ V(Map, fixed_uint8_array_map, FixedUint8ArrayMap) \ V(Map, fixed_int8_array_map, FixedInt8ArrayMap) \ V(Map, fixed_uint16_array_map, FixedUint16ArrayMap) \ V(Map, fixed_int16_array_map, FixedInt16ArrayMap) \ V(Map, fixed_uint32_array_map, FixedUint32ArrayMap) \ V(Map, fixed_int32_array_map, FixedInt32ArrayMap) \ V(Map, fixed_float32_array_map, FixedFloat32ArrayMap) \ V(Map, fixed_float64_array_map, FixedFloat64ArrayMap) \ V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap) \ V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array) \ V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array) \ V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array) \ V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array) \ V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array) \ V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array) \ V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array) \ V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array) \ V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array, \ EmptyFixedUint8ClampedArray) \ V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap) \ V(Map, function_context_map, FunctionContextMap) \ V(Map, catch_context_map, CatchContextMap) \ V(Map, with_context_map, WithContextMap) \ V(Map, block_context_map, BlockContextMap) \ V(Map, module_context_map, ModuleContextMap) \ V(Map, global_context_map, GlobalContextMap) \ V(Map, undefined_map, UndefinedMap) \ V(Map, the_hole_map, TheHoleMap) \ V(Map, null_map, NullMap) \ V(Map, boolean_map, BooleanMap) \ V(Map, uninitialized_map, UninitializedMap) \ V(Map, arguments_marker_map, ArgumentsMarkerMap) \ V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap) \ V(Map, exception_map, ExceptionMap) \ V(Map, termination_exception_map, TerminationExceptionMap) \ V(Map, message_object_map, JSMessageObjectMap) \ V(Map, foreign_map, ForeignMap) \ V(HeapNumber, nan_value, NanValue) \ V(HeapNumber, infinity_value, InfinityValue) \ V(HeapNumber, minus_zero_value, MinusZeroValue) \ V(Map, neander_map, NeanderMap) \ V(JSObject, message_listeners, MessageListeners) \ V(UnseededNumberDictionary, code_stubs, CodeStubs) \ V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache) \ V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache) \ V(Code, js_entry_code, JsEntryCode) \ V(Code, js_construct_entry_code, JsConstructEntryCode) \ V(FixedArray, natives_source_cache, NativesSourceCache) \ V(Script, empty_script, EmptyScript) \ V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames) \ V(Cell, undefined_cell, UndefineCell) \ V(JSObject, observation_state, ObservationState) \ V(Map, external_map, ExternalMap) \ V(Object, symbol_registry, SymbolRegistry) \ V(Symbol, frozen_symbol, FrozenSymbol) \ V(Symbol, nonexistent_symbol, NonExistentSymbol) \ V(Symbol, elements_transition_symbol, ElementsTransitionSymbol) \ V(SeededNumberDictionary, empty_slow_element_dictionary, \ EmptySlowElementDictionary) \ V(Symbol, observed_symbol, ObservedSymbol) \ V(Symbol, uninitialized_symbol, UninitializedSymbol) \ V(Symbol, megamorphic_symbol, MegamorphicSymbol) \ V(Symbol, premonomorphic_symbol, PremonomorphicSymbol) \ V(Symbol, generic_symbol, GenericSymbol) \ V(Symbol, stack_trace_symbol, StackTraceSymbol) \ V(Symbol, detailed_stack_trace_symbol, DetailedStackTraceSymbol) \ V(Symbol, normal_ic_symbol, NormalICSymbol) \ V(Symbol, home_object_symbol, HomeObjectSymbol) \ V(FixedArray, materialized_objects, MaterializedObjects) \ V(FixedArray, allocation_sites_scratchpad, AllocationSitesScratchpad) \ V(FixedArray, microtask_queue, MicrotaskQueue) // Entries in this list are limited to Smis and are not visited during GC. #define SMI_ROOT_LIST(V) \ V(Smi, stack_limit, StackLimit) \ V(Smi, real_stack_limit, RealStackLimit) \ V(Smi, last_script_id, LastScriptId) \ V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \ V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset) \ V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset) \ V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset) #define ROOT_LIST(V) \ STRONG_ROOT_LIST(V) \ SMI_ROOT_LIST(V) \ V(StringTable, string_table, StringTable) // Heap roots that are known to be immortal immovable, for which we can safely // skip write barriers. #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \ V(byte_array_map) \ V(free_space_map) \ V(one_pointer_filler_map) \ V(two_pointer_filler_map) \ V(undefined_value) \ V(the_hole_value) \ V(null_value) \ V(true_value) \ V(false_value) \ V(uninitialized_value) \ V(cell_map) \ V(global_property_cell_map) \ V(shared_function_info_map) \ V(meta_map) \ V(heap_number_map) \ V(mutable_heap_number_map) \ V(native_context_map) \ V(fixed_array_map) \ V(code_map) \ V(scope_info_map) \ V(fixed_cow_array_map) \ V(fixed_double_array_map) \ V(constant_pool_array_map) \ V(no_interceptor_result_sentinel) \ V(hash_table_map) \ V(ordered_hash_table_map) \ V(empty_fixed_array) \ V(empty_byte_array) \ V(empty_descriptor_array) \ V(empty_constant_pool_array) \ V(arguments_marker) \ V(symbol_map) \ V(sloppy_arguments_elements_map) \ V(function_context_map) \ V(catch_context_map) \ V(with_context_map) \ V(block_context_map) \ V(module_context_map) \ V(global_context_map) \ V(undefined_map) \ V(the_hole_map) \ V(null_map) \ V(boolean_map) \ V(uninitialized_map) \ V(message_object_map) \ V(foreign_map) \ V(neander_map) #define INTERNALIZED_STRING_LIST(V) \ V(Object_string, "Object") \ V(proto_string, "__proto__") \ V(arguments_string, "arguments") \ V(Arguments_string, "Arguments") \ V(caller_string, "caller") \ V(boolean_string, "boolean") \ V(Boolean_string, "Boolean") \ V(callee_string, "callee") \ V(constructor_string, "constructor") \ V(dot_result_string, ".result") \ V(dot_for_string, ".for.") \ V(eval_string, "eval") \ V(empty_string, "") \ V(function_string, "function") \ V(Function_string, "Function") \ V(length_string, "length") \ V(name_string, "name") \ V(null_string, "null") \ V(number_string, "number") \ V(Number_string, "Number") \ V(nan_string, "NaN") \ V(source_string, "source") \ V(source_url_string, "source_url") \ V(source_mapping_url_string, "source_mapping_url") \ V(global_string, "global") \ V(ignore_case_string, "ignoreCase") \ V(multiline_string, "multiline") \ V(sticky_string, "sticky") \ V(harmony_regexps_string, "harmony_regexps") \ V(input_string, "input") \ V(index_string, "index") \ V(last_index_string, "lastIndex") \ V(object_string, "object") \ V(prototype_string, "prototype") \ V(string_string, "string") \ V(String_string, "String") \ V(symbol_string, "symbol") \ V(Symbol_string, "Symbol") \ V(Map_string, "Map") \ V(Set_string, "Set") \ V(WeakMap_string, "WeakMap") \ V(WeakSet_string, "WeakSet") \ V(for_string, "for") \ V(for_api_string, "for_api") \ V(for_intern_string, "for_intern") \ V(private_api_string, "private_api") \ V(private_intern_string, "private_intern") \ V(Date_string, "Date") \ V(char_at_string, "CharAt") \ V(undefined_string, "undefined") \ V(value_of_string, "valueOf") \ V(stack_string, "stack") \ V(toJSON_string, "toJSON") \ V(KeyedLoadMonomorphic_string, "KeyedLoadMonomorphic") \ V(KeyedStoreMonomorphic_string, "KeyedStoreMonomorphic") \ V(stack_overflow_string, "kStackOverflowBoilerplate") \ V(illegal_access_string, "illegal access") \ V(cell_value_string, "%cell_value") \ V(illegal_argument_string, "illegal argument") \ V(identity_hash_string, "v8::IdentityHash") \ V(closure_string, "(closure)") \ V(dot_string, ".") \ V(compare_ic_string, "==") \ V(strict_compare_ic_string, "===") \ V(infinity_string, "Infinity") \ V(minus_infinity_string, "-Infinity") \ V(query_colon_string, "(?:)") \ V(Generator_string, "Generator") \ V(throw_string, "throw") \ V(done_string, "done") \ V(value_string, "value") \ V(next_string, "next") \ V(byte_length_string, "byteLength") \ V(byte_offset_string, "byteOffset") \ V(intl_initialized_marker_string, "v8::intl_initialized_marker") \ V(intl_impl_object_string, "v8::intl_object") // Forward declarations. class HeapStats; class Isolate; class WeakObjectRetainer; typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap, Object** pointer); class StoreBufferRebuilder { public: explicit StoreBufferRebuilder(StoreBuffer* store_buffer) : store_buffer_(store_buffer) {} void Callback(MemoryChunk* page, StoreBufferEvent event); private: StoreBuffer* store_buffer_; // We record in this variable how full the store buffer was when we started // iterating over the current page, finding pointers to new space. If the // store buffer overflows again we can exempt the page from the store buffer // by rewinding to this point instead of having to search the store buffer. Object*** start_of_current_page_; // The current page we are scanning in the store buffer iterator. MemoryChunk* current_page_; }; // A queue of objects promoted during scavenge. Each object is accompanied // by it's size to avoid dereferencing a map pointer for scanning. class PromotionQueue { public: explicit PromotionQueue(Heap* heap) : front_(NULL), rear_(NULL), limit_(NULL), emergency_stack_(0), heap_(heap) {} void Initialize(); void Destroy() { DCHECK(is_empty()); delete emergency_stack_; emergency_stack_ = NULL; } Page* GetHeadPage() { return Page::FromAllocationTop(reinterpret_cast<Address>(rear_)); } void SetNewLimit(Address limit) { limit_ = reinterpret_cast<intptr_t*>(limit); if (limit_ <= rear_) { return; } RelocateQueueHead(); } bool IsBelowPromotionQueue(Address to_space_top) { // If the given to-space top pointer and the head of the promotion queue // are not on the same page, then the to-space objects are below the // promotion queue. if (GetHeadPage() != Page::FromAddress(to_space_top)) { return true; } // If the to space top pointer is smaller or equal than the promotion // queue head, then the to-space objects are below the promotion queue. return reinterpret_cast<intptr_t*>(to_space_top) <= rear_; } bool is_empty() { return (front_ == rear_) && (emergency_stack_ == NULL || emergency_stack_->length() == 0); } inline void insert(HeapObject* target, int size); void remove(HeapObject** target, int* size) { DCHECK(!is_empty()); if (front_ == rear_) { Entry e = emergency_stack_->RemoveLast(); *target = e.obj_; *size = e.size_; return; } if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(front_))) { NewSpacePage* front_page = NewSpacePage::FromAddress(reinterpret_cast<Address>(front_)); DCHECK(!front_page->prev_page()->is_anchor()); front_ = reinterpret_cast<intptr_t*>(front_page->prev_page()->area_end()); } *target = reinterpret_cast<HeapObject*>(*(--front_)); *size = static_cast<int>(*(--front_)); // Assert no underflow. SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_), reinterpret_cast<Address>(front_)); } private: // The front of the queue is higher in the memory page chain than the rear. intptr_t* front_; intptr_t* rear_; intptr_t* limit_; static const int kEntrySizeInWords = 2; struct Entry { Entry(HeapObject* obj, int size) : obj_(obj), size_(size) {} HeapObject* obj_; int size_; }; List<Entry>* emergency_stack_; Heap* heap_; void RelocateQueueHead(); DISALLOW_COPY_AND_ASSIGN(PromotionQueue); }; typedef void (*ScavengingCallback)(Map* map, HeapObject** slot, HeapObject* object); // External strings table is a place where all external strings are // registered. We need to keep track of such strings to properly // finalize them. class ExternalStringTable { public: // Registers an external string. inline void AddString(String* string); inline void Iterate(ObjectVisitor* v); // Restores internal invariant and gets rid of collected strings. // Must be called after each Iterate() that modified the strings. void CleanUp(); // Destroys all allocated memory. void TearDown(); private: explicit ExternalStringTable(Heap* heap) : heap_(heap) {} friend class Heap; inline void Verify(); inline void AddOldString(String* string); // Notifies the table that only a prefix of the new list is valid. inline void ShrinkNewStrings(int position); // To speed up scavenge collections new space string are kept // separate from old space strings. List<Object*> new_space_strings_; List<Object*> old_space_strings_; Heap* heap_; DISALLOW_COPY_AND_ASSIGN(ExternalStringTable); }; enum ArrayStorageAllocationMode { DONT_INITIALIZE_ARRAY_ELEMENTS, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE }; class Heap { public: // Configure heap size in MB before setup. Return false if the heap has been // set up already. bool ConfigureHeap(int max_semi_space_size, int max_old_space_size, int max_executable_size, size_t code_range_size); bool ConfigureHeapDefault(); // Prepares the heap, setting up memory areas that are needed in the isolate // without actually creating any objects. bool SetUp(); // Bootstraps the object heap with the core set of objects required to run. // Returns whether it succeeded. bool CreateHeapObjects(); // Destroys all memory allocated by the heap. void TearDown(); // Set the stack limit in the roots_ array. Some architectures generate // code that looks here, because it is faster than loading from the static // jslimit_/real_jslimit_ variable in the StackGuard. void SetStackLimits(); // Returns whether SetUp has been called. bool HasBeenSetUp(); // Returns the maximum amount of memory reserved for the heap. For // the young generation, we reserve 4 times the amount needed for a // semi space. The young generation consists of two semi spaces and // we reserve twice the amount needed for those in order to ensure // that new space can be aligned to its size. intptr_t MaxReserved() { return 4 * reserved_semispace_size_ + max_old_generation_size_; } int MaxSemiSpaceSize() { return max_semi_space_size_; } int ReservedSemiSpaceSize() { return reserved_semispace_size_; } int InitialSemiSpaceSize() { return initial_semispace_size_; } intptr_t MaxOldGenerationSize() { return max_old_generation_size_; } intptr_t MaxExecutableSize() { return max_executable_size_; } // Returns the capacity of the heap in bytes w/o growing. Heap grows when // more spaces are needed until it reaches the limit. intptr_t Capacity(); // Returns the amount of memory currently committed for the heap. intptr_t CommittedMemory(); // Returns the amount of executable memory currently committed for the heap. intptr_t CommittedMemoryExecutable(); // Returns the amount of phyical memory currently committed for the heap. size_t CommittedPhysicalMemory(); // Returns the maximum amount of memory ever committed for the heap. intptr_t MaximumCommittedMemory() { return maximum_committed_; } // Updates the maximum committed memory for the heap. Should be called // whenever a space grows. void UpdateMaximumCommitted(); // Returns the available bytes in space w/o growing. // Heap doesn't guarantee that it can allocate an object that requires // all available bytes. Check MaxHeapObjectSize() instead. intptr_t Available(); // Returns of size of all objects residing in the heap. intptr_t SizeOfObjects(); // Return the starting address and a mask for the new space. And-masking an // address with the mask will result in the start address of the new space // for all addresses in either semispace. Address NewSpaceStart() { return new_space_.start(); } uintptr_t NewSpaceMask() { return new_space_.mask(); } Address NewSpaceTop() { return new_space_.top(); } NewSpace* new_space() { return &new_space_; } OldSpace* old_pointer_space() { return old_pointer_space_; } OldSpace* old_data_space() { return old_data_space_; } OldSpace* code_space() { return code_space_; } MapSpace* map_space() { return map_space_; } CellSpace* cell_space() { return cell_space_; } PropertyCellSpace* property_cell_space() { return property_cell_space_; } LargeObjectSpace* lo_space() { return lo_space_; } PagedSpace* paged_space(int idx) { switch (idx) { case OLD_POINTER_SPACE: return old_pointer_space(); case OLD_DATA_SPACE: return old_data_space(); case MAP_SPACE: return map_space(); case CELL_SPACE: return cell_space(); case PROPERTY_CELL_SPACE: return property_cell_space(); case CODE_SPACE: return code_space(); case NEW_SPACE: case LO_SPACE: UNREACHABLE(); } return NULL; } bool always_allocate() { return always_allocate_scope_depth_ != 0; } Address always_allocate_scope_depth_address() { return reinterpret_cast<Address>(&always_allocate_scope_depth_); } Address* NewSpaceAllocationTopAddress() { return new_space_.allocation_top_address(); } Address* NewSpaceAllocationLimitAddress() { return new_space_.allocation_limit_address(); } Address* OldPointerSpaceAllocationTopAddress() { return old_pointer_space_->allocation_top_address(); } Address* OldPointerSpaceAllocationLimitAddress() { return old_pointer_space_->allocation_limit_address(); } Address* OldDataSpaceAllocationTopAddress() { return old_data_space_->allocation_top_address(); } Address* OldDataSpaceAllocationLimitAddress() { return old_data_space_->allocation_limit_address(); } // Returns a deep copy of the JavaScript object. // Properties and elements are copied too. // Optionally takes an AllocationSite to be appended in an AllocationMemento. MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source, AllocationSite* site = NULL); // Clear the Instanceof cache (used when a prototype changes). inline void ClearInstanceofCache(); // Iterates the whole code space to clear all ICs of the given kind. void ClearAllICsByKind(Code::Kind kind); // For use during bootup. void RepairFreeListsAfterBoot(); template <typename T> static inline bool IsOneByte(T t, int chars); // Move len elements within a given array from src_index index to dst_index // index. void MoveElements(FixedArray* array, int dst_index, int src_index, int len); // Sloppy mode arguments object size. static const int kSloppyArgumentsObjectSize = JSObject::kHeaderSize + 2 * kPointerSize; // Strict mode arguments has no callee so it is smaller. static const int kStrictArgumentsObjectSize = JSObject::kHeaderSize + 1 * kPointerSize; // Indicies for direct access into argument objects. static const int kArgumentsLengthIndex = 0; // callee is only valid in sloppy mode. static const int kArgumentsCalleeIndex = 1; // Finalizes an external string by deleting the associated external // data and clearing the resource pointer. inline void FinalizeExternalString(String* string); // Initialize a filler object to keep the ability to iterate over the heap // when introducing gaps within pages. void CreateFillerObjectAt(Address addr, int size); bool CanMoveObjectStart(HeapObject* object); // Indicates whether live bytes adjustment is triggered from within the GC // code or from mutator code. enum InvocationMode { FROM_GC, FROM_MUTATOR }; // Maintain consistency of live bytes during incremental marking. void AdjustLiveBytes(Address address, int by, InvocationMode mode); // Trim the given array from the left. Note that this relocates the object // start and hence is only valid if there is only a single reference to it. FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim); // Trim the given array from the right. template<Heap::InvocationMode mode> void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim); // Converts the given boolean condition to JavaScript boolean value. inline Object* ToBoolean(bool condition); // Performs garbage collection operation. // Returns whether there is a chance that another major GC could // collect more garbage. inline bool CollectGarbage( AllocationSpace space, const char* gc_reason = NULL, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); static const int kNoGCFlags = 0; static const int kReduceMemoryFootprintMask = 1; static const int kAbortIncrementalMarkingMask = 2; // Making the heap iterable requires us to abort incremental marking. static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask; // Performs a full garbage collection. If (flags & kMakeHeapIterableMask) is // non-zero, then the slower precise sweeper is used, which leaves the heap // in a state where we can iterate over the heap visiting all objects. void CollectAllGarbage( int flags, const char* gc_reason = NULL, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); // Last hope GC, should try to squeeze as much as possible. void CollectAllAvailableGarbage(const char* gc_reason = NULL); // Check whether the heap is currently iterable. bool IsHeapIterable(); // Notify the heap that a context has been disposed. int NotifyContextDisposed(); inline void increment_scan_on_scavenge_pages() { scan_on_scavenge_pages_++; if (FLAG_gc_verbose) { PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_); } } inline void decrement_scan_on_scavenge_pages() { scan_on_scavenge_pages_--; if (FLAG_gc_verbose) { PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_); } } PromotionQueue* promotion_queue() { return &promotion_queue_; } void AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback, GCType gc_type_filter, bool pass_isolate = true); void RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback); void AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback, GCType gc_type_filter, bool pass_isolate = true); void RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback); // Heap root getters. We have versions with and without type::cast() here. // You can't use type::cast during GC because the assert fails. // TODO(1490): Try removing the unchecked accessors, now that GC marking does // not corrupt the map. #define ROOT_ACCESSOR(type, name, camel_name) \ type* name() { return type::cast(roots_[k##camel_name##RootIndex]); } \ type* raw_unchecked_##name() { \ return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]); \ } ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR // Utility type maps #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \ Map* name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); } STRUCT_LIST(STRUCT_MAP_ACCESSOR) #undef STRUCT_MAP_ACCESSOR #define STRING_ACCESSOR(name, str) \ String* name() { return String::cast(roots_[k##name##RootIndex]); } INTERNALIZED_STRING_LIST(STRING_ACCESSOR) #undef STRING_ACCESSOR // The hidden_string is special because it is the empty string, but does // not match the empty string. String* hidden_string() { return hidden_string_; } void set_native_contexts_list(Object* object) { native_contexts_list_ = object; } Object* native_contexts_list() const { return native_contexts_list_; } void set_array_buffers_list(Object* object) { array_buffers_list_ = object; } Object* array_buffers_list() const { return array_buffers_list_; } void set_allocation_sites_list(Object* object) { allocation_sites_list_ = object; } Object* allocation_sites_list() { return allocation_sites_list_; } // Used in CreateAllocationSiteStub and the (de)serializer. Object** allocation_sites_list_address() { return &allocation_sites_list_; } Object* weak_object_to_code_table() { return weak_object_to_code_table_; } void set_encountered_weak_collections(Object* weak_collection) { encountered_weak_collections_ = weak_collection; } Object* encountered_weak_collections() const { return encountered_weak_collections_; } // Number of mark-sweeps. unsigned int ms_count() { return ms_count_; } // Iterates over all roots in the heap. void IterateRoots(ObjectVisitor* v, VisitMode mode); // Iterates over all strong roots in the heap. void IterateStrongRoots(ObjectVisitor* v, VisitMode mode); // Iterates over entries in the smi roots list. Only interesting to the // serializer/deserializer, since GC does not care about smis. void IterateSmiRoots(ObjectVisitor* v); // Iterates over all the other roots in the heap. void IterateWeakRoots(ObjectVisitor* v, VisitMode mode); // Iterate pointers to from semispace of new space found in memory interval // from start to end. void IterateAndMarkPointersToFromSpace(Address start, Address end, ObjectSlotCallback callback); // Returns whether the object resides in new space. inline bool InNewSpace(Object* object); inline bool InNewSpace(Address address); inline bool InNewSpacePage(Address address); inline bool InFromSpace(Object* object); inline bool InToSpace(Object* object); // Returns whether the object resides in old pointer space. inline bool InOldPointerSpace(Address address); inline bool InOldPointerSpace(Object* object); // Returns whether the object resides in old data space. inline bool InOldDataSpace(Address address); inline bool InOldDataSpace(Object* object); // Checks whether an address/object in the heap (including auxiliary // area and unused area). bool Contains(Address addr); bool Contains(HeapObject* value); // Checks whether an address/object in a space. // Currently used by tests, serialization and heap verification only. bool InSpace(Address addr, AllocationSpace space); bool InSpace(HeapObject* value, AllocationSpace space); // Finds out which space an object should get promoted to based on its type. inline OldSpace* TargetSpace(HeapObject* object); static inline AllocationSpace TargetSpaceId(InstanceType type); // Checks whether the given object is allowed to be migrated from it's // current space into the given destination space. Used for debugging. inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest); // Sets the stub_cache_ (only used when expanding the dictionary). void public_set_code_stubs(UnseededNumberDictionary* value) { roots_[kCodeStubsRootIndex] = value; } // Support for computing object sizes for old objects during GCs. Returns // a function that is guaranteed to be safe for computing object sizes in // the current GC phase. HeapObjectCallback GcSafeSizeOfOldObjectFunction() { return gc_safe_size_of_old_object_; } // Sets the non_monomorphic_cache_ (only used when expanding the dictionary). void public_set_non_monomorphic_cache(UnseededNumberDictionary* value) { roots_[kNonMonomorphicCacheRootIndex] = value; } void public_set_empty_script(Script* script) { roots_[kEmptyScriptRootIndex] = script; } void public_set_store_buffer_top(Address* top) { roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top); } void public_set_materialized_objects(FixedArray* objects) { roots_[kMaterializedObjectsRootIndex] = objects; } // Generated code can embed this address to get access to the roots. Object** roots_array_start() { return roots_; } Address* store_buffer_top_address() { return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]); } #ifdef VERIFY_HEAP // Verify the heap is in its normal state before or after a GC. void Verify(); bool weak_embedded_objects_verification_enabled() { return no_weak_object_verification_scope_depth_ == 0; } #endif #ifdef DEBUG void Print(); void PrintHandles(); void OldPointerSpaceCheckStoreBuffer(); void MapSpaceCheckStoreBuffer(); void LargeObjectSpaceCheckStoreBuffer(); // Report heap statistics. void ReportHeapStatistics(const char* title); void ReportCodeStatistics(const char* title); #endif // Zapping is needed for verify heap, and always done in debug builds. static inline bool ShouldZapGarbage() { #ifdef DEBUG return true; #else #ifdef VERIFY_HEAP return FLAG_verify_heap; #else return false; #endif #endif } // Number of "runtime allocations" done so far. uint32_t allocations_count() { return allocations_count_; } // Returns deterministic "time" value in ms. Works only with // FLAG_verify_predictable. double synthetic_time() { return allocations_count_ / 2.0; } // Print short heap statistics. void PrintShortHeapStatistics(); // Write barrier support for address[offset] = o. INLINE(void RecordWrite(Address address, int offset)); // Write barrier support for address[start : start + len[ = o. INLINE(void RecordWrites(Address address, int start, int len)); enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT }; inline HeapState gc_state() { return gc_state_; } inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; } #ifdef DEBUG void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; } void TracePathToObjectFrom(Object* target, Object* root); void TracePathToObject(Object* target); void TracePathToGlobal(); #endif // Callback function passed to Heap::Iterate etc. Copies an object if // necessary, the object might be promoted to an old space. The caller must // ensure the precondition that the object is (a) a heap object and (b) in // the heap's from space. static inline void ScavengePointer(HeapObject** p); static inline void ScavengeObject(HeapObject** p, HeapObject* object); enum ScratchpadSlotMode { IGNORE_SCRATCHPAD_SLOT, RECORD_SCRATCHPAD_SLOT }; // If an object has an AllocationMemento trailing it, return it, otherwise // return NULL; inline AllocationMemento* FindAllocationMemento(HeapObject* object); // An object may have an AllocationSite associated with it through a trailing // AllocationMemento. Its feedback should be updated when objects are found // in the heap. static inline void UpdateAllocationSiteFeedback(HeapObject* object, ScratchpadSlotMode mode); // Support for partial snapshots. After calling this we have a linear // space to write objects in each space. void ReserveSpace(int* sizes, Address* addresses); // // Support for the API. // void CreateApiObjects(); inline intptr_t PromotedTotalSize() { int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize(); if (total > kMaxInt) return static_cast<intptr_t>(kMaxInt); if (total < 0) return 0; return static_cast<intptr_t>(total); } inline intptr_t OldGenerationSpaceAvailable() { return old_generation_allocation_limit_ - PromotedTotalSize(); } inline intptr_t OldGenerationCapacityAvailable() { return max_old_generation_size_ - PromotedTotalSize(); } static const intptr_t kMinimumOldGenerationAllocationLimit = 8 * (Page::kPageSize > MB ? Page::kPageSize : MB); static const int kPointerMultiplier = i::kPointerSize / 4; // The new space size has to be a power of 2. Sizes are in MB. static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier; static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier; static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier; static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier; // The old space size has to be a multiple of Page::kPageSize. // Sizes are in MB. static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier; static const int kMaxOldSpaceSizeMediumMemoryDevice = 256 * kPointerMultiplier; static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier; static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier; // The executable size has to be a multiple of Page::kPageSize. // Sizes are in MB. static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier; static const int kMaxExecutableSizeMediumMemoryDevice = 192 * kPointerMultiplier; static const int kMaxExecutableSizeHighMemoryDevice = 256 * kPointerMultiplier; static const int kMaxExecutableSizeHugeMemoryDevice = 256 * kPointerMultiplier; intptr_t OldGenerationAllocationLimit(intptr_t old_gen_size, int freed_global_handles); // Indicates whether inline bump-pointer allocation has been disabled. bool inline_allocation_disabled() { return inline_allocation_disabled_; } // Switch whether inline bump-pointer allocation should be used. void EnableInlineAllocation(); void DisableInlineAllocation(); // Implements the corresponding V8 API function. bool IdleNotification(int idle_time_in_ms); // Declare all the root indices. This defines the root list order. enum RootListIndex { #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex, STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION) #undef ROOT_INDEX_DECLARATION #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex, INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION) #undef STRING_DECLARATION // Utility type maps #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex, STRUCT_LIST(DECLARE_STRUCT_MAP) #undef DECLARE_STRUCT_MAP kStringTableRootIndex, #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex, SMI_ROOT_LIST(ROOT_INDEX_DECLARATION) #undef ROOT_INDEX_DECLARATION kRootListLength, kStrongRootListLength = kStringTableRootIndex, kSmiRootsStart = kStringTableRootIndex + 1 }; STATIC_ASSERT(kUndefinedValueRootIndex == Internals::kUndefinedValueRootIndex); STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex); STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex); STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex); STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex); // Generated code can embed direct references to non-writable roots if // they are in new space. static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index); // Generated code can treat direct references to this root as constant. bool RootCanBeTreatedAsConstant(RootListIndex root_index); Map* MapForFixedTypedArray(ExternalArrayType array_type); RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type); Map* MapForExternalArrayType(ExternalArrayType array_type); RootListIndex RootIndexForExternalArrayType(ExternalArrayType array_type); RootListIndex RootIndexForEmptyExternalArray(ElementsKind kind); RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind); ExternalArray* EmptyExternalArrayForMap(Map* map); FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map); void RecordStats(HeapStats* stats, bool take_snapshot = false); // Copy block of memory from src to dst. Size of block should be aligned // by pointer size. static inline void CopyBlock(Address dst, Address src, int byte_size); // Optimized version of memmove for blocks with pointer size aligned sizes and // pointer size aligned addresses. static inline void MoveBlock(Address dst, Address src, int byte_size); // Check new space expansion criteria and expand semispaces if it was hit. void CheckNewSpaceExpansionCriteria(); inline void IncrementPromotedObjectsSize(int object_size) { DCHECK(object_size > 0); promoted_objects_size_ += object_size; } inline void IncrementSemiSpaceCopiedObjectSize(int object_size) { DCHECK(object_size > 0); semi_space_copied_object_size_ += object_size; } inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; } inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; } inline void IncrementNodesPromoted() { nodes_promoted_++; } inline void IncrementYoungSurvivorsCounter(int survived) { DCHECK(survived >= 0); survived_since_last_expansion_ += survived; } inline bool NextGCIsLikelyToBeFull() { if (FLAG_gc_global) return true; if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true; intptr_t adjusted_allocation_limit = old_generation_allocation_limit_ - new_space_.Capacity(); if (PromotedTotalSize() >= adjusted_allocation_limit) return true; return false; } void UpdateNewSpaceReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func); void UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func); void ProcessWeakReferences(WeakObjectRetainer* retainer); void VisitExternalResources(v8::ExternalResourceVisitor* visitor); // An object should be promoted if the object has survived a // scavenge operation. inline bool ShouldBePromoted(Address old_address, int object_size); void ClearJSFunctionResultCaches(); void ClearNormalizedMapCaches(); GCTracer* tracer() { return &tracer_; } // Returns the size of objects residing in non new spaces. intptr_t PromotedSpaceSizeOfObjects(); double total_regexp_code_generated() { return total_regexp_code_generated_; } void IncreaseTotalRegexpCodeGenerated(int size) { total_regexp_code_generated_ += size; } void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) { if (is_crankshafted) { crankshaft_codegen_bytes_generated_ += size; } else { full_codegen_bytes_generated_ += size; } } // Update GC statistics that are tracked on the Heap. void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator, double marking_time); // Returns maximum GC pause. double get_max_gc_pause() { return max_gc_pause_; } // Returns maximum size of objects alive after GC. intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; } // Returns minimal interval between two subsequent collections. double get_min_in_mutator() { return min_in_mutator_; } MarkCompactCollector* mark_compact_collector() { return &mark_compact_collector_; } StoreBuffer* store_buffer() { return &store_buffer_; } Marking* marking() { return &marking_; } IncrementalMarking* incremental_marking() { return &incremental_marking_; } ExternalStringTable* external_string_table() { return &external_string_table_; } // Returns the current sweep generation. int sweep_generation() { return sweep_generation_; } inline Isolate* isolate(); void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags); void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags); inline bool OldGenerationAllocationLimitReached(); inline void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) { scavenging_visitors_table_.GetVisitor(map)(map, slot, obj); } void QueueMemoryChunkForFree(MemoryChunk* chunk); void FreeQueuedChunks(); int gc_count() const { return gc_count_; } // Completely clear the Instanceof cache (to stop it keeping objects alive // around a GC). inline void CompletelyClearInstanceofCache(); // The roots that have an index less than this are always in old space. static const int kOldSpaceRoots = 0x20; uint32_t HashSeed() { uint32_t seed = static_cast<uint32_t>(hash_seed()->value()); DCHECK(FLAG_randomize_hashes || seed == 0); return seed; } void SetArgumentsAdaptorDeoptPCOffset(int pc_offset) { DCHECK(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0)); set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset)); } void SetConstructStubDeoptPCOffset(int pc_offset) { DCHECK(construct_stub_deopt_pc_offset() == Smi::FromInt(0)); set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset)); } void SetGetterStubDeoptPCOffset(int pc_offset) { DCHECK(getter_stub_deopt_pc_offset() == Smi::FromInt(0)); set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset)); } void SetSetterStubDeoptPCOffset(int pc_offset) { DCHECK(setter_stub_deopt_pc_offset() == Smi::FromInt(0)); set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset)); } // For post mortem debugging. void RememberUnmappedPage(Address page, bool compacted); // Global inline caching age: it is incremented on some GCs after context // disposal. We use it to flush inline caches. int global_ic_age() { return global_ic_age_; } void AgeInlineCaches() { global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax; } bool flush_monomorphic_ics() { return flush_monomorphic_ics_; } int64_t amount_of_external_allocated_memory() { return amount_of_external_allocated_memory_; } void DeoptMarkedAllocationSites(); bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; } bool DeoptMaybeTenuredAllocationSites() { return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0; } // ObjectStats are kept in two arrays, counts and sizes. Related stats are // stored in a contiguous linear buffer. Stats groups are stored one after // another. enum { FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1, FIRST_FIXED_ARRAY_SUB_TYPE = FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS, FIRST_CODE_AGE_SUB_TYPE = FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1, OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1 }; void RecordObjectStats(InstanceType type, size_t size) { DCHECK(type <= LAST_TYPE); object_counts_[type]++; object_sizes_[type] += size; } void RecordCodeSubTypeStats(int code_sub_type, int code_age, size_t size) { int code_sub_type_index = FIRST_CODE_KIND_SUB_TYPE + code_sub_type; int code_age_index = FIRST_CODE_AGE_SUB_TYPE + code_age - Code::kFirstCodeAge; DCHECK(code_sub_type_index >= FIRST_CODE_KIND_SUB_TYPE && code_sub_type_index < FIRST_CODE_AGE_SUB_TYPE); DCHECK(code_age_index >= FIRST_CODE_AGE_SUB_TYPE && code_age_index < OBJECT_STATS_COUNT); object_counts_[code_sub_type_index]++; object_sizes_[code_sub_type_index] += size; object_counts_[code_age_index]++; object_sizes_[code_age_index] += size; } void RecordFixedArraySubTypeStats(int array_sub_type, size_t size) { DCHECK(array_sub_type <= LAST_FIXED_ARRAY_SUB_TYPE); object_counts_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type]++; object_sizes_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type] += size; } void CheckpointObjectStats(); // We don't use a LockGuard here since we want to lock the heap // only when FLAG_concurrent_recompilation is true. class RelocationLock { public: explicit RelocationLock(Heap* heap) : heap_(heap) { heap_->relocation_mutex_.Lock(); } ~RelocationLock() { heap_->relocation_mutex_.Unlock(); } private: Heap* heap_; }; void AddWeakObjectToCodeDependency(Handle<Object> obj, Handle<DependentCode> dep); DependentCode* LookupWeakObjectToCodeDependency(Handle<Object> obj); void InitializeWeakObjectToCodeTable() { set_weak_object_to_code_table(undefined_value()); } void EnsureWeakObjectToCodeTable(); static void FatalProcessOutOfMemory(const char* location, bool take_snapshot = false); // This event is triggered after successful allocation of a new object made // by runtime. Allocations of target space for object evacuation do not // trigger the event. In order to track ALL allocations one must turn off // FLAG_inline_new and FLAG_use_allocation_folding. inline void OnAllocationEvent(HeapObject* object, int size_in_bytes); // This event is triggered after object is moved to a new place. inline void OnMoveEvent(HeapObject* target, HeapObject* source, int size_in_bytes); protected: // Methods made available to tests. // Allocates a JS Map in the heap. MUST_USE_RESULT AllocationResult AllocateMap(InstanceType instance_type, int instance_size, ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND); // Allocates and initializes a new JavaScript object based on a // constructor. // If allocation_site is non-null, then a memento is emitted after the object // that points to the site. MUST_USE_RESULT AllocationResult AllocateJSObject(JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED, AllocationSite* allocation_site = NULL); // Allocates and initializes a new JavaScript object based on a map. // Passing an allocation site means that a memento will be created that // points to the site. MUST_USE_RESULT AllocationResult AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED, bool alloc_props = true, AllocationSite* allocation_site = NULL); // Allocated a HeapNumber from value. MUST_USE_RESULT AllocationResult AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE, PretenureFlag pretenure = NOT_TENURED); // Allocate a byte array of the specified length MUST_USE_RESULT AllocationResult AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED); // Copy the code and scope info part of the code object, but insert // the provided data as the relocation information. MUST_USE_RESULT AllocationResult CopyCode(Code* code, Vector<byte> reloc_info); MUST_USE_RESULT AllocationResult CopyCode(Code* code); // Allocates a fixed array initialized with undefined values MUST_USE_RESULT AllocationResult AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED); private: Heap(); // The amount of external memory registered through the API kept alive // by global handles int64_t amount_of_external_allocated_memory_; // Caches the amount of external memory registered at the last global gc. int64_t amount_of_external_allocated_memory_at_last_global_gc_; // This can be calculated directly from a pointer to the heap; however, it is // more expedient to get at the isolate directly from within Heap methods. Isolate* isolate_; Object* roots_[kRootListLength]; size_t code_range_size_; int reserved_semispace_size_; int max_semi_space_size_; int initial_semispace_size_; intptr_t max_old_generation_size_; intptr_t max_executable_size_; intptr_t maximum_committed_; // For keeping track of how much data has survived // scavenge since last new space expansion. int survived_since_last_expansion_; // For keeping track on when to flush RegExp code. int sweep_generation_; int always_allocate_scope_depth_; // For keeping track of context disposals. int contexts_disposed_; int global_ic_age_; bool flush_monomorphic_ics_; int scan_on_scavenge_pages_; NewSpace new_space_; OldSpace* old_pointer_space_; OldSpace* old_data_space_; OldSpace* code_space_; MapSpace* map_space_; CellSpace* cell_space_; PropertyCellSpace* property_cell_space_; LargeObjectSpace* lo_space_; HeapState gc_state_; int gc_post_processing_depth_; Address new_space_top_after_last_gc_; // Returns the amount of external memory registered since last global gc. int64_t PromotedExternalMemorySize(); // How many "runtime allocations" happened. uint32_t allocations_count_; // Running hash over allocations performed. uint32_t raw_allocations_hash_; // Countdown counter, dumps allocation hash when 0. uint32_t dump_allocations_hash_countdown_; // How many mark-sweep collections happened. unsigned int ms_count_; // How many gc happened. unsigned int gc_count_; // For post mortem debugging. static const int kRememberedUnmappedPages = 128; int remembered_unmapped_pages_index_; Address remembered_unmapped_pages_[kRememberedUnmappedPages]; // Total length of the strings we failed to flatten since the last GC. int unflattened_strings_length_; #define ROOT_ACCESSOR(type, name, camel_name) \ inline void set_##name(type* value) { \ /* The deserializer makes use of the fact that these common roots are */ \ /* never in new space and never on a page that is being compacted. */ \ DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \ roots_[k##camel_name##RootIndex] = value; \ } ROOT_LIST(ROOT_ACCESSOR) #undef ROOT_ACCESSOR #ifdef DEBUG // If the --gc-interval flag is set to a positive value, this // variable holds the value indicating the number of allocations // remain until the next failure and garbage collection. int allocation_timeout_; #endif // DEBUG // Limit that triggers a global GC on the next (normally caused) GC. This // is checked when we have already decided to do a GC to help determine // which collector to invoke, before expanding a paged space in the old // generation and on every allocation in large object space. intptr_t old_generation_allocation_limit_; // Indicates that an allocation has failed in the old generation since the // last GC. bool old_gen_exhausted_; // Indicates that inline bump-pointer allocation has been globally disabled // for all spaces. This is used to disable allocations in generated code. bool inline_allocation_disabled_; // Weak list heads, threaded through the objects. // List heads are initilized lazily and contain the undefined_value at start. Object* native_contexts_list_; Object* array_buffers_list_; Object* allocation_sites_list_; // WeakHashTable that maps objects embedded in optimized code to dependent // code list. It is initilized lazily and contains the undefined_value at // start. Object* weak_object_to_code_table_; // List of encountered weak collections (JSWeakMap and JSWeakSet) during // marking. It is initialized during marking, destroyed after marking and // contains Smi(0) while marking is not active. Object* encountered_weak_collections_; StoreBufferRebuilder store_buffer_rebuilder_; struct StringTypeTable { InstanceType type; int size; RootListIndex index; }; struct ConstantStringTable { const char* contents; RootListIndex index; }; struct StructTable { InstanceType type; int size; RootListIndex index; }; static const StringTypeTable string_type_table[]; static const ConstantStringTable constant_string_table[]; static const StructTable struct_table[]; // The special hidden string which is an empty string, but does not match // any string when looked up in properties. String* hidden_string_; // GC callback function, called before and after mark-compact GC. // Allocations in the callback function are disallowed. struct GCPrologueCallbackPair { GCPrologueCallbackPair(v8::Isolate::GCPrologueCallback callback, GCType gc_type, bool pass_isolate) : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {} bool operator==(const GCPrologueCallbackPair& pair) const { return pair.callback == callback; } v8::Isolate::GCPrologueCallback callback; GCType gc_type; // TODO(dcarney): remove variable bool pass_isolate_; }; List<GCPrologueCallbackPair> gc_prologue_callbacks_; struct GCEpilogueCallbackPair { GCEpilogueCallbackPair(v8::Isolate::GCPrologueCallback callback, GCType gc_type, bool pass_isolate) : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {} bool operator==(const GCEpilogueCallbackPair& pair) const { return pair.callback == callback; } v8::Isolate::GCPrologueCallback callback; GCType gc_type; // TODO(dcarney): remove variable bool pass_isolate_; }; List<GCEpilogueCallbackPair> gc_epilogue_callbacks_; // Support for computing object sizes during GC. HeapObjectCallback gc_safe_size_of_old_object_; static int GcSafeSizeOfOldObject(HeapObject* object); // Update the GC state. Called from the mark-compact collector. void MarkMapPointersAsEncoded(bool encoded) { DCHECK(!encoded); gc_safe_size_of_old_object_ = &GcSafeSizeOfOldObject; } // Code that should be run before and after each GC. Includes some // reporting/verification activities when compiled with DEBUG set. void GarbageCollectionPrologue(); void GarbageCollectionEpilogue(); // Pretenuring decisions are made based on feedback collected during new // space evacuation. Note that between feedback collection and calling this // method object in old space must not move. // Right now we only process pretenuring feedback in high promotion mode. void ProcessPretenuringFeedback(); // Checks whether a global GC is necessary GarbageCollector SelectGarbageCollector(AllocationSpace space, const char** reason); // Make sure there is a filler value behind the top of the new space // so that the GC does not confuse some unintialized/stale memory // with the allocation memento of the object at the top void EnsureFillerObjectAtTop(); // Ensure that we have swept all spaces in such a way that we can iterate // over all objects. May cause a GC. void MakeHeapIterable(); // Performs garbage collection operation. // Returns whether there is a chance that another major GC could // collect more garbage. bool CollectGarbage( GarbageCollector collector, const char* gc_reason, const char* collector_reason, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); // Performs garbage collection // Returns whether there is a chance another major GC could // collect more garbage. bool PerformGarbageCollection( GarbageCollector collector, const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags); inline void UpdateOldSpaceLimits(); // Selects the proper allocation space depending on the given object // size, pretenuring decision, and preferred old-space. static AllocationSpace SelectSpace(int object_size, AllocationSpace preferred_old_space, PretenureFlag pretenure) { DCHECK(preferred_old_space == OLD_POINTER_SPACE || preferred_old_space == OLD_DATA_SPACE); if (object_size > Page::kMaxRegularHeapObjectSize) return LO_SPACE; return (pretenure == TENURED) ? preferred_old_space : NEW_SPACE; } // Allocate an uninitialized object. The memory is non-executable if the // hardware and OS allow. This is the single choke-point for allocations // performed by the runtime and should not be bypassed (to extend this to // inlined allocations, use the Heap::DisableInlineAllocation() support). MUST_USE_RESULT inline AllocationResult AllocateRaw( int size_in_bytes, AllocationSpace space, AllocationSpace retry_space); // Allocates a heap object based on the map. MUST_USE_RESULT AllocationResult Allocate(Map* map, AllocationSpace space, AllocationSite* allocation_site = NULL); // Allocates a partial map for bootstrapping. MUST_USE_RESULT AllocationResult AllocatePartialMap(InstanceType instance_type, int instance_size); // Initializes a JSObject based on its map. void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties, Map* map); void InitializeAllocationMemento(AllocationMemento* memento, AllocationSite* allocation_site); // Allocate a block of memory in the given space (filled with a filler). // Used as a fall-back for generated code when the space is full. MUST_USE_RESULT AllocationResult AllocateFillerObject(int size, bool double_align, AllocationSpace space); // Allocate an uninitialized fixed array. MUST_USE_RESULT AllocationResult AllocateRawFixedArray(int length, PretenureFlag pretenure); // Allocate an uninitialized fixed double array. MUST_USE_RESULT AllocationResult AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure); // Allocate an initialized fixed array with the given filler value. MUST_USE_RESULT AllocationResult AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure, Object* filler); // Allocate and partially initializes a String. There are two String // encodings: one-byte and two-byte. These functions allocate a string of // the given length and set its map and length fields. The characters of // the string are uninitialized. MUST_USE_RESULT AllocationResult AllocateRawOneByteString(int length, PretenureFlag pretenure); MUST_USE_RESULT AllocationResult AllocateRawTwoByteString(int length, PretenureFlag pretenure); bool CreateInitialMaps(); void CreateInitialObjects(); // Allocates an internalized string in old space based on the character // stream. MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8( Vector<const char> str, int chars, uint32_t hash_field); MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString( Vector<const uint8_t> str, uint32_t hash_field); MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString( Vector<const uc16> str, uint32_t hash_field); template <bool is_one_byte, typename T> MUST_USE_RESULT AllocationResult AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field); template <typename T> MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl( T t, int chars, uint32_t hash_field); // Allocates an uninitialized fixed array. It must be filled by the caller. MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length); // Make a copy of src and return it. Returns // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed. MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src); // Make a copy of src, set the map, and return the copy. Returns // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed. MUST_USE_RESULT AllocationResult CopyFixedArrayWithMap(FixedArray* src, Map* map); // Make a copy of src and return it. Returns // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed. MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray( FixedDoubleArray* src); // Make a copy of src and return it. Returns // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed. MUST_USE_RESULT inline AllocationResult CopyConstantPoolArray( ConstantPoolArray* src); // Computes a single character string where the character has code. // A cache is used for one-byte (Latin1) codes. MUST_USE_RESULT AllocationResult LookupSingleCharacterStringFromCode(uint16_t code); // Allocate a symbol in old space. MUST_USE_RESULT AllocationResult AllocateSymbol(); // Make a copy of src, set the map, and return the copy. MUST_USE_RESULT AllocationResult CopyConstantPoolArrayWithMap(ConstantPoolArray* src, Map* map); MUST_USE_RESULT AllocationResult AllocateConstantPoolArray( const ConstantPoolArray::NumberOfEntries& small); MUST_USE_RESULT AllocationResult AllocateExtendedConstantPoolArray( const ConstantPoolArray::NumberOfEntries& small, const ConstantPoolArray::NumberOfEntries& extended); // Allocates an external array of the specified length and type. MUST_USE_RESULT AllocationResult AllocateExternalArray(int length, ExternalArrayType array_type, void* external_pointer, PretenureFlag pretenure); // Allocates a fixed typed array of the specified length and type. MUST_USE_RESULT AllocationResult AllocateFixedTypedArray(int length, ExternalArrayType array_type, PretenureFlag pretenure); // Make a copy of src and return it. MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src); // Make a copy of src, set the map, and return the copy. MUST_USE_RESULT AllocationResult CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map); // Allocates a fixed double array with uninitialized values. Returns MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray( int length, PretenureFlag pretenure = NOT_TENURED); // These five Create*EntryStub functions are here and forced to not be inlined // because of a gcc-4.4 bug that assigns wrong vtable entries. NO_INLINE(void CreateJSEntryStub()); NO_INLINE(void CreateJSConstructEntryStub()); void CreateFixedStubs(); // Allocate empty fixed array. MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray(); // Allocate empty external array of given type. MUST_USE_RESULT AllocationResult AllocateEmptyExternalArray(ExternalArrayType array_type); // Allocate empty fixed typed array of given type. MUST_USE_RESULT AllocationResult AllocateEmptyFixedTypedArray(ExternalArrayType array_type); // Allocate empty constant pool array. MUST_USE_RESULT AllocationResult AllocateEmptyConstantPoolArray(); // Allocate a tenured simple cell. MUST_USE_RESULT AllocationResult AllocateCell(Object* value); // Allocate a tenured JS global property cell initialized with the hole. MUST_USE_RESULT AllocationResult AllocatePropertyCell(); // Allocates a new utility object in the old generation. MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type); // Allocates a new foreign object. MUST_USE_RESULT AllocationResult AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED); MUST_USE_RESULT AllocationResult AllocateCode(int object_size, bool immovable); MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key); MUST_USE_RESULT AllocationResult InternalizeString(String* str); // Performs a minor collection in new generation. void Scavenge(); // Commits from space if it is uncommitted. void EnsureFromSpaceIsCommitted(); // Uncommit unused semi space. bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); } // Fill in bogus values in from space void ZapFromSpace(); static String* UpdateNewSpaceReferenceInExternalStringTableEntry( Heap* heap, Object** pointer); Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front); static void ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page, StoreBufferEvent event); // Performs a major collection in the whole heap. void MarkCompact(); // Code to be run before and after mark-compact. void MarkCompactPrologue(); void ProcessNativeContexts(WeakObjectRetainer* retainer); void ProcessArrayBuffers(WeakObjectRetainer* retainer); void ProcessAllocationSites(WeakObjectRetainer* retainer); // Deopts all code that contains allocation instruction which are tenured or // not tenured. Moreover it clears the pretenuring allocation site statistics. void ResetAllAllocationSitesDependentCode(PretenureFlag flag); // Evaluates local pretenuring for the old space and calls // ResetAllTenuredAllocationSitesDependentCode if too many objects died in // the old space. void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc); // Called on heap tear-down. void TearDownArrayBuffers(); // Record statistics before and after garbage collection. void ReportStatisticsBeforeGC(); void ReportStatisticsAfterGC(); // Slow part of scavenge object. static void ScavengeObjectSlow(HeapObject** p, HeapObject* object); // Total RegExp code ever generated double total_regexp_code_generated_; GCTracer tracer_; // Creates and installs the full-sized number string cache. int FullSizeNumberStringCacheLength(); // Flush the number to string cache. void FlushNumberStringCache(); // Sets used allocation sites entries to undefined. void FlushAllocationSitesScratchpad(); // Initializes the allocation sites scratchpad with undefined values. void InitializeAllocationSitesScratchpad(); // Adds an allocation site to the scratchpad if there is space left. void AddAllocationSiteToScratchpad(AllocationSite* site, ScratchpadSlotMode mode); void UpdateSurvivalStatistics(int start_new_space_size); static const int kYoungSurvivalRateHighThreshold = 90; static const int kYoungSurvivalRateAllowedDeviation = 15; static const int kOldSurvivalRateLowThreshold = 10; int high_survival_rate_period_length_; intptr_t promoted_objects_size_; double promotion_rate_; intptr_t semi_space_copied_object_size_; double semi_space_copied_rate_; int nodes_died_in_new_space_; int nodes_copied_in_new_space_; int nodes_promoted_; // This is the pretenuring trigger for allocation sites that are in maybe // tenure state. When we switched to the maximum new space size we deoptimize // the code that belongs to the allocation site and derive the lifetime // of the allocation site. unsigned int maximum_size_scavenges_; // TODO(hpayer): Allocation site pretenuring may make this method obsolete. // Re-visit incremental marking heuristics. bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; } void SelectScavengingVisitorsTable(); void IdleMarkCompact(const char* message); void AdvanceIdleIncrementalMarking(intptr_t step_size); bool WorthActivatingIncrementalMarking(); void ClearObjectStats(bool clear_last_time_stats = false); void set_weak_object_to_code_table(Object* value) { DCHECK(!InNewSpace(value)); weak_object_to_code_table_ = value; } Object** weak_object_to_code_table_address() { return &weak_object_to_code_table_; } inline void UpdateAllocationsHash(HeapObject* object); inline void UpdateAllocationsHash(uint32_t value); inline void PrintAlloctionsHash(); static const int kInitialStringTableSize = 2048; static const int kInitialEvalCacheSize = 64; static const int kInitialNumberStringCacheSize = 256; // Object counts and used memory by InstanceType size_t object_counts_[OBJECT_STATS_COUNT]; size_t object_counts_last_time_[OBJECT_STATS_COUNT]; size_t object_sizes_[OBJECT_STATS_COUNT]; size_t object_sizes_last_time_[OBJECT_STATS_COUNT]; // Maximum GC pause. double max_gc_pause_; // Total time spent in GC. double total_gc_time_ms_; // Maximum size of objects alive after GC. intptr_t max_alive_after_gc_; // Minimal interval between two subsequent collections. double min_in_mutator_; // Cumulative GC time spent in marking double marking_time_; // Cumulative GC time spent in sweeping double sweeping_time_; MarkCompactCollector mark_compact_collector_; StoreBuffer store_buffer_; Marking marking_; IncrementalMarking incremental_marking_; GCIdleTimeHandler gc_idle_time_handler_; unsigned int gc_count_at_last_idle_gc_; // These two counters are monotomically increasing and never reset. size_t full_codegen_bytes_generated_; size_t crankshaft_codegen_bytes_generated_; // If the --deopt_every_n_garbage_collections flag is set to a positive value, // this variable holds the number of garbage collections since the last // deoptimization triggered by garbage collection. int gcs_since_last_deopt_; #ifdef VERIFY_HEAP int no_weak_object_verification_scope_depth_; #endif static const int kAllocationSiteScratchpadSize = 256; int allocation_sites_scratchpad_length_; static const int kMaxMarkCompactsInIdleRound = 7; static const int kIdleScavengeThreshold = 5; // Shared state read by the scavenge collector and set by ScavengeObject. PromotionQueue promotion_queue_; // Flag is set when the heap has been configured. The heap can be repeatedly // configured through the API until it is set up. bool configured_; ExternalStringTable external_string_table_; VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_; MemoryChunk* chunks_queued_for_free_; base::Mutex relocation_mutex_; int gc_callbacks_depth_; friend class AlwaysAllocateScope; friend class Factory; friend class GCCallbacksScope; friend class GCTracer; friend class HeapIterator; friend class Isolate; friend class MarkCompactCollector; friend class MarkCompactMarkingVisitor; friend class MapCompact; #ifdef VERIFY_HEAP friend class NoWeakObjectVerificationScope; #endif friend class Page; DISALLOW_COPY_AND_ASSIGN(Heap); }; class HeapStats { public: static const int kStartMarker = 0xDECADE00; static const int kEndMarker = 0xDECADE01; int* start_marker; // 0 int* new_space_size; // 1 int* new_space_capacity; // 2 intptr_t* old_pointer_space_size; // 3 intptr_t* old_pointer_space_capacity; // 4 intptr_t* old_data_space_size; // 5 intptr_t* old_data_space_capacity; // 6 intptr_t* code_space_size; // 7 intptr_t* code_space_capacity; // 8 intptr_t* map_space_size; // 9 intptr_t* map_space_capacity; // 10 intptr_t* cell_space_size; // 11 intptr_t* cell_space_capacity; // 12 intptr_t* lo_space_size; // 13 int* global_handle_count; // 14 int* weak_global_handle_count; // 15 int* pending_global_handle_count; // 16 int* near_death_global_handle_count; // 17 int* free_global_handle_count; // 18 intptr_t* memory_allocator_size; // 19 intptr_t* memory_allocator_capacity; // 20 int* objects_per_type; // 21 int* size_per_type; // 22 int* os_error; // 23 int* end_marker; // 24 intptr_t* property_cell_space_size; // 25 intptr_t* property_cell_space_capacity; // 26 }; class AlwaysAllocateScope { public: explicit inline AlwaysAllocateScope(Isolate* isolate); inline ~AlwaysAllocateScope(); private: // Implicitly disable artificial allocation failures. Heap* heap_; DisallowAllocationFailure daf_; }; #ifdef VERIFY_HEAP class NoWeakObjectVerificationScope { public: inline NoWeakObjectVerificationScope(); inline ~NoWeakObjectVerificationScope(); }; #endif class GCCallbacksScope { public: explicit inline GCCallbacksScope(Heap* heap); inline ~GCCallbacksScope(); inline bool CheckReenter(); private: Heap* heap_; }; // Visitor class to verify interior pointers in spaces that do not contain // or care about intergenerational references. All heap object pointers have to // point into the heap to a location that has a map pointer at its first word. // Caveat: Heap::Contains is an approximation because it can return true for // objects in a heap space but above the allocation pointer. class VerifyPointersVisitor : public ObjectVisitor { public: inline void VisitPointers(Object** start, Object** end); }; // Verify that all objects are Smis. class VerifySmisVisitor : public ObjectVisitor { public: inline void VisitPointers(Object** start, Object** end); }; // Space iterator for iterating over all spaces of the heap. Returns each space // in turn, and null when it is done. class AllSpaces BASE_EMBEDDED { public: explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {} Space* next(); private: Heap* heap_; int counter_; }; // Space iterator for iterating over all old spaces of the heap: Old pointer // space, old data space and code space. Returns each space in turn, and null // when it is done. class OldSpaces BASE_EMBEDDED { public: explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {} OldSpace* next(); private: Heap* heap_; int counter_; }; // Space iterator for iterating over all the paged spaces of the heap: Map // space, old pointer space, old data space, code space and cell space. Returns // each space in turn, and null when it is done. class PagedSpaces BASE_EMBEDDED { public: explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {} PagedSpace* next(); private: Heap* heap_; int counter_; }; // Space iterator for iterating over all spaces of the heap. // For each space an object iterator is provided. The deallocation of the // returned object iterators is handled by the space iterator. class SpaceIterator : public Malloced { public: explicit SpaceIterator(Heap* heap); SpaceIterator(Heap* heap, HeapObjectCallback size_func); virtual ~SpaceIterator(); bool has_next(); ObjectIterator* next(); private: ObjectIterator* CreateIterator(); Heap* heap_; int current_space_; // from enum AllocationSpace. ObjectIterator* iterator_; // object iterator for the current space. HeapObjectCallback size_func_; }; // A HeapIterator provides iteration over the whole heap. It // aggregates the specific iterators for the different spaces as // these can only iterate over one space only. // // HeapIterator ensures there is no allocation during its lifetime // (using an embedded DisallowHeapAllocation instance). // // HeapIterator can skip free list nodes (that is, de-allocated heap // objects that still remain in the heap). As implementation of free // nodes filtering uses GC marks, it can't be used during MS/MC GC // phases. Also, it is forbidden to interrupt iteration in this mode, // as this will leave heap objects marked (and thus, unusable). class HeapObjectsFilter; class HeapIterator BASE_EMBEDDED { public: enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable }; explicit HeapIterator(Heap* heap); HeapIterator(Heap* heap, HeapObjectsFiltering filtering); ~HeapIterator(); HeapObject* next(); void reset(); private: struct MakeHeapIterableHelper { explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); } }; // Perform the initialization. void Init(); // Perform all necessary shutdown (destruction) work. void Shutdown(); HeapObject* NextObject(); MakeHeapIterableHelper make_heap_iterable_helper_; DisallowHeapAllocation no_heap_allocation_; Heap* heap_; HeapObjectsFiltering filtering_; HeapObjectsFilter* filter_; // Space iterator for iterating all the spaces. SpaceIterator* space_iterator_; // Object iterator for the space currently being iterated. ObjectIterator* object_iterator_; }; // Cache for mapping (map, property name) into field offset. // Cleared at startup and prior to mark sweep collection. class KeyedLookupCache { public: // Lookup field offset for (map, name). If absent, -1 is returned. int Lookup(Handle<Map> map, Handle<Name> name); // Update an element in the cache. void Update(Handle<Map> map, Handle<Name> name, int field_offset); // Clear the cache. void Clear(); static const int kLength = 256; static const int kCapacityMask = kLength - 1; static const int kMapHashShift = 5; static const int kHashMask = -4; // Zero the last two bits. static const int kEntriesPerBucket = 4; static const int kEntryLength = 2; static const int kMapIndex = 0; static const int kKeyIndex = 1; static const int kNotFound = -1; // kEntriesPerBucket should be a power of 2. STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0); STATIC_ASSERT(kEntriesPerBucket == -kHashMask); private: KeyedLookupCache() { for (int i = 0; i < kLength; ++i) { keys_[i].map = NULL; keys_[i].name = NULL; field_offsets_[i] = kNotFound; } } static inline int Hash(Handle<Map> map, Handle<Name> name); // Get the address of the keys and field_offsets arrays. Used in // generated code to perform cache lookups. Address keys_address() { return reinterpret_cast<Address>(&keys_); } Address field_offsets_address() { return reinterpret_cast<Address>(&field_offsets_); } struct Key { Map* map; Name* name; }; Key keys_[kLength]; int field_offsets_[kLength]; friend class ExternalReference; friend class Isolate; DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache); }; // Cache for mapping (map, property name) into descriptor index. // The cache contains both positive and negative results. // Descriptor index equals kNotFound means the property is absent. // Cleared at startup and prior to any gc. class DescriptorLookupCache { public: // Lookup descriptor index for (map, name). // If absent, kAbsent is returned. int Lookup(Map* source, Name* name) { if (!name->IsUniqueName()) return kAbsent; int index = Hash(source, name); Key& key = keys_[index]; if ((key.source == source) && (key.name == name)) return results_[index]; return kAbsent; } // Update an element in the cache. void Update(Map* source, Name* name, int result) { DCHECK(result != kAbsent); if (name->IsUniqueName()) { int index = Hash(source, name); Key& key = keys_[index]; key.source = source; key.name = name; results_[index] = result; } } // Clear the cache. void Clear(); static const int kAbsent = -2; private: DescriptorLookupCache() { for (int i = 0; i < kLength; ++i) { keys_[i].source = NULL; keys_[i].name = NULL; results_[i] = kAbsent; } } static int Hash(Object* source, Name* name) { // Uses only lower 32 bits if pointers are larger. uint32_t source_hash = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source)) >> kPointerSizeLog2; uint32_t name_hash = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >> kPointerSizeLog2; return (source_hash ^ name_hash) % kLength; } static const int kLength = 64; struct Key { Map* source; Name* name; }; Key keys_[kLength]; int results_[kLength]; friend class Isolate; DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache); }; class RegExpResultsCache { public: enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS }; // Attempt to retrieve a cached result. On failure, 0 is returned as a Smi. // On success, the returned result is guaranteed to be a COW-array. static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern, ResultsCacheType type); // Attempt to add value_array to the cache specified by type. On success, // value_array is turned into a COW-array. static void Enter(Isolate* isolate, Handle<String> key_string, Handle<Object> key_pattern, Handle<FixedArray> value_array, ResultsCacheType type); static void Clear(FixedArray* cache); static const int kRegExpResultsCacheSize = 0x100; private: static const int kArrayEntriesPerCacheEntry = 4; static const int kStringOffset = 0; static const int kPatternOffset = 1; static const int kArrayOffset = 2; }; // Abstract base class for checking whether a weak object should be retained. class WeakObjectRetainer { public: virtual ~WeakObjectRetainer() {} // Return whether this object should be retained. If NULL is returned the // object has no references. Otherwise the address of the retained object // should be returned as in some GC situations the object has been moved. virtual Object* RetainAs(Object* object) = 0; }; // Intrusive object marking uses least significant bit of // heap object's map word to mark objects. // Normally all map words have least significant bit set // because they contain tagged map pointer. // If the bit is not set object is marked. // All objects should be unmarked before resuming // JavaScript execution. class IntrusiveMarking { public: static bool IsMarked(HeapObject* object) { return (object->map_word().ToRawValue() & kNotMarkedBit) == 0; } static void ClearMark(HeapObject* object) { uintptr_t map_word = object->map_word().ToRawValue(); object->set_map_word(MapWord::FromRawValue(map_word | kNotMarkedBit)); DCHECK(!IsMarked(object)); } static void SetMark(HeapObject* object) { uintptr_t map_word = object->map_word().ToRawValue(); object->set_map_word(MapWord::FromRawValue(map_word & ~kNotMarkedBit)); DCHECK(IsMarked(object)); } static Map* MapOfMarkedObject(HeapObject* object) { uintptr_t map_word = object->map_word().ToRawValue(); return MapWord::FromRawValue(map_word | kNotMarkedBit).ToMap(); } static int SizeOfMarkedObject(HeapObject* object) { return object->SizeFromMap(MapOfMarkedObject(object)); } private: static const uintptr_t kNotMarkedBit = 0x1; STATIC_ASSERT((kHeapObjectTag & kNotMarkedBit) != 0); // NOLINT }; #ifdef DEBUG // Helper class for tracing paths to a search target Object from all roots. // The TracePathFrom() method can be used to trace paths from a specific // object to the search target object. class PathTracer : public ObjectVisitor { public: enum WhatToFind { FIND_ALL, // Will find all matches. FIND_FIRST // Will stop the search after first match. }; // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject. static const int kMarkTag = 2; // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop // after the first match. If FIND_ALL is specified, then tracing will be // done for all matches. PathTracer(Object* search_target, WhatToFind what_to_find, VisitMode visit_mode) : search_target_(search_target), found_target_(false), found_target_in_trace_(false), what_to_find_(what_to_find), visit_mode_(visit_mode), object_stack_(20), no_allocation() {} virtual void VisitPointers(Object** start, Object** end); void Reset(); void TracePathFrom(Object** root); bool found() const { return found_target_; } static Object* const kAnyGlobalObject; protected: class MarkVisitor; class UnmarkVisitor; void MarkRecursively(Object** p, MarkVisitor* mark_visitor); void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor); virtual void ProcessResults(); Object* search_target_; bool found_target_; bool found_target_in_trace_; WhatToFind what_to_find_; VisitMode visit_mode_; List<Object*> object_stack_; DisallowHeapAllocation no_allocation; // i.e. no gc allowed. private: DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer); }; #endif // DEBUG } } // namespace v8::internal #endif // V8_HEAP_HEAP_H_