// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_MARK_COMPACT_H_ #define V8_HEAP_MARK_COMPACT_H_ #include "src/base/bits.h" #include "src/heap/spaces.h" namespace v8 { namespace internal { // Callback function, returns whether an object is alive. The heap size // of the object is returned in size. It optionally updates the offset // to the first live object in the page (only used for old and map objects). typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset); // Forward declarations. class CodeFlusher; class MarkCompactCollector; class MarkingVisitor; class RootMarkingVisitor; class Marking { public: explicit Marking(Heap* heap) : heap_(heap) {} INLINE(static MarkBit MarkBitFrom(Address addr)); INLINE(static MarkBit MarkBitFrom(HeapObject* obj)) { return MarkBitFrom(reinterpret_cast<Address>(obj)); } // Impossible markbits: 01 static const char* kImpossibleBitPattern; INLINE(static bool IsImpossible(MarkBit mark_bit)) { return !mark_bit.Get() && mark_bit.Next().Get(); } // Black markbits: 10 - this is required by the sweeper. static const char* kBlackBitPattern; INLINE(static bool IsBlack(MarkBit mark_bit)) { return mark_bit.Get() && !mark_bit.Next().Get(); } // White markbits: 00 - this is required by the mark bit clearer. static const char* kWhiteBitPattern; INLINE(static bool IsWhite(MarkBit mark_bit)) { return !mark_bit.Get(); } // Grey markbits: 11 static const char* kGreyBitPattern; INLINE(static bool IsGrey(MarkBit mark_bit)) { return mark_bit.Get() && mark_bit.Next().Get(); } INLINE(static void MarkBlack(MarkBit mark_bit)) { mark_bit.Set(); mark_bit.Next().Clear(); } INLINE(static void BlackToGrey(MarkBit markbit)) { markbit.Next().Set(); } INLINE(static void WhiteToGrey(MarkBit markbit)) { markbit.Set(); markbit.Next().Set(); } INLINE(static void GreyToBlack(MarkBit markbit)) { markbit.Next().Clear(); } INLINE(static void BlackToGrey(HeapObject* obj)) { BlackToGrey(MarkBitFrom(obj)); } INLINE(static void AnyToGrey(MarkBit markbit)) { markbit.Set(); markbit.Next().Set(); } void TransferMark(Address old_start, Address new_start); #ifdef DEBUG enum ObjectColor { BLACK_OBJECT, WHITE_OBJECT, GREY_OBJECT, IMPOSSIBLE_COLOR }; static const char* ColorName(ObjectColor color) { switch (color) { case BLACK_OBJECT: return "black"; case WHITE_OBJECT: return "white"; case GREY_OBJECT: return "grey"; case IMPOSSIBLE_COLOR: return "impossible"; } return "error"; } static ObjectColor Color(HeapObject* obj) { return Color(Marking::MarkBitFrom(obj)); } static ObjectColor Color(MarkBit mark_bit) { if (IsBlack(mark_bit)) return BLACK_OBJECT; if (IsWhite(mark_bit)) return WHITE_OBJECT; if (IsGrey(mark_bit)) return GREY_OBJECT; UNREACHABLE(); return IMPOSSIBLE_COLOR; } #endif // Returns true if the transferred color is black. INLINE(static bool TransferColor(HeapObject* from, HeapObject* to)) { MarkBit from_mark_bit = MarkBitFrom(from); MarkBit to_mark_bit = MarkBitFrom(to); bool is_black = false; if (from_mark_bit.Get()) { to_mark_bit.Set(); is_black = true; // Looks black so far. } if (from_mark_bit.Next().Get()) { to_mark_bit.Next().Set(); is_black = false; // Was actually gray. } return is_black; } private: Heap* heap_; }; // ---------------------------------------------------------------------------- // Marking deque for tracing live objects. class MarkingDeque { public: MarkingDeque() : array_(NULL), top_(0), bottom_(0), mask_(0), overflowed_(false) {} void Initialize(Address low, Address high) { HeapObject** obj_low = reinterpret_cast<HeapObject**>(low); HeapObject** obj_high = reinterpret_cast<HeapObject**>(high); array_ = obj_low; mask_ = base::bits::RoundDownToPowerOfTwo32( static_cast<uint32_t>(obj_high - obj_low)) - 1; top_ = bottom_ = 0; overflowed_ = false; } inline bool IsFull() { return ((top_ + 1) & mask_) == bottom_; } inline bool IsEmpty() { return top_ == bottom_; } bool overflowed() const { return overflowed_; } void ClearOverflowed() { overflowed_ = false; } void SetOverflowed() { overflowed_ = true; } // Push the (marked) object on the marking stack if there is room, // otherwise mark the object as overflowed and wait for a rescan of the // heap. INLINE(void PushBlack(HeapObject* object)) { DCHECK(object->IsHeapObject()); if (IsFull()) { Marking::BlackToGrey(object); MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size()); SetOverflowed(); } else { array_[top_] = object; top_ = ((top_ + 1) & mask_); } } INLINE(void PushGrey(HeapObject* object)) { DCHECK(object->IsHeapObject()); if (IsFull()) { SetOverflowed(); } else { array_[top_] = object; top_ = ((top_ + 1) & mask_); } } INLINE(HeapObject* Pop()) { DCHECK(!IsEmpty()); top_ = ((top_ - 1) & mask_); HeapObject* object = array_[top_]; DCHECK(object->IsHeapObject()); return object; } INLINE(void UnshiftGrey(HeapObject* object)) { DCHECK(object->IsHeapObject()); if (IsFull()) { SetOverflowed(); } else { bottom_ = ((bottom_ - 1) & mask_); array_[bottom_] = object; } } HeapObject** array() { return array_; } int bottom() { return bottom_; } int top() { return top_; } int mask() { return mask_; } void set_top(int top) { top_ = top; } private: HeapObject** array_; // array_[(top - 1) & mask_] is the top element in the deque. The Deque is // empty when top_ == bottom_. It is full when top_ + 1 == bottom // (mod mask + 1). int top_; int bottom_; int mask_; bool overflowed_; DISALLOW_COPY_AND_ASSIGN(MarkingDeque); }; class SlotsBufferAllocator { public: SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer); void DeallocateBuffer(SlotsBuffer* buffer); void DeallocateChain(SlotsBuffer** buffer_address); }; // SlotsBuffer records a sequence of slots that has to be updated // after live objects were relocated from evacuation candidates. // All slots are either untyped or typed: // - Untyped slots are expected to contain a tagged object pointer. // They are recorded by an address. // - Typed slots are expected to contain an encoded pointer to a heap // object where the way of encoding depends on the type of the slot. // They are recorded as a pair (SlotType, slot address). // We assume that zero-page is never mapped this allows us to distinguish // untyped slots from typed slots during iteration by a simple comparison: // if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it // is the first element of typed slot's pair. class SlotsBuffer { public: typedef Object** ObjectSlot; explicit SlotsBuffer(SlotsBuffer* next_buffer) : idx_(0), chain_length_(1), next_(next_buffer) { if (next_ != NULL) { chain_length_ = next_->chain_length_ + 1; } } ~SlotsBuffer() {} void Add(ObjectSlot slot) { DCHECK(0 <= idx_ && idx_ < kNumberOfElements); slots_[idx_++] = slot; } enum SlotType { EMBEDDED_OBJECT_SLOT, RELOCATED_CODE_OBJECT, CODE_TARGET_SLOT, CODE_ENTRY_SLOT, DEBUG_TARGET_SLOT, JS_RETURN_SLOT, NUMBER_OF_SLOT_TYPES }; static const char* SlotTypeToString(SlotType type) { switch (type) { case EMBEDDED_OBJECT_SLOT: return "EMBEDDED_OBJECT_SLOT"; case RELOCATED_CODE_OBJECT: return "RELOCATED_CODE_OBJECT"; case CODE_TARGET_SLOT: return "CODE_TARGET_SLOT"; case CODE_ENTRY_SLOT: return "CODE_ENTRY_SLOT"; case DEBUG_TARGET_SLOT: return "DEBUG_TARGET_SLOT"; case JS_RETURN_SLOT: return "JS_RETURN_SLOT"; case NUMBER_OF_SLOT_TYPES: return "NUMBER_OF_SLOT_TYPES"; } return "UNKNOWN SlotType"; } void UpdateSlots(Heap* heap); void UpdateSlotsWithFilter(Heap* heap); SlotsBuffer* next() { return next_; } static int SizeOfChain(SlotsBuffer* buffer) { if (buffer == NULL) return 0; return static_cast<int>(buffer->idx_ + (buffer->chain_length_ - 1) * kNumberOfElements); } inline bool IsFull() { return idx_ == kNumberOfElements; } inline bool HasSpaceForTypedSlot() { return idx_ < kNumberOfElements - 1; } static void UpdateSlotsRecordedIn(Heap* heap, SlotsBuffer* buffer, bool code_slots_filtering_required) { while (buffer != NULL) { if (code_slots_filtering_required) { buffer->UpdateSlotsWithFilter(heap); } else { buffer->UpdateSlots(heap); } buffer = buffer->next(); } } enum AdditionMode { FAIL_ON_OVERFLOW, IGNORE_OVERFLOW }; static bool ChainLengthThresholdReached(SlotsBuffer* buffer) { return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold; } INLINE(static bool AddTo(SlotsBufferAllocator* allocator, SlotsBuffer** buffer_address, ObjectSlot slot, AdditionMode mode)) { SlotsBuffer* buffer = *buffer_address; if (buffer == NULL || buffer->IsFull()) { if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) { allocator->DeallocateChain(buffer_address); return false; } buffer = allocator->AllocateBuffer(buffer); *buffer_address = buffer; } buffer->Add(slot); return true; } static bool IsTypedSlot(ObjectSlot slot); static bool AddTo(SlotsBufferAllocator* allocator, SlotsBuffer** buffer_address, SlotType type, Address addr, AdditionMode mode); static const int kNumberOfElements = 1021; private: static const int kChainLengthThreshold = 15; intptr_t idx_; intptr_t chain_length_; SlotsBuffer* next_; ObjectSlot slots_[kNumberOfElements]; }; // CodeFlusher collects candidates for code flushing during marking and // processes those candidates after marking has completed in order to // reset those functions referencing code objects that would otherwise // be unreachable. Code objects can be referenced in three ways: // - SharedFunctionInfo references unoptimized code. // - JSFunction references either unoptimized or optimized code. // - OptimizedCodeMap references optimized code. // We are not allowed to flush unoptimized code for functions that got // optimized or inlined into optimized code, because we might bailout // into the unoptimized code again during deoptimization. class CodeFlusher { public: explicit CodeFlusher(Isolate* isolate) : isolate_(isolate), jsfunction_candidates_head_(NULL), shared_function_info_candidates_head_(NULL), optimized_code_map_holder_head_(NULL) {} void AddCandidate(SharedFunctionInfo* shared_info) { if (GetNextCandidate(shared_info) == NULL) { SetNextCandidate(shared_info, shared_function_info_candidates_head_); shared_function_info_candidates_head_ = shared_info; } } void AddCandidate(JSFunction* function) { DCHECK(function->code() == function->shared()->code()); if (GetNextCandidate(function)->IsUndefined()) { SetNextCandidate(function, jsfunction_candidates_head_); jsfunction_candidates_head_ = function; } } void AddOptimizedCodeMap(SharedFunctionInfo* code_map_holder) { if (GetNextCodeMap(code_map_holder)->IsUndefined()) { SetNextCodeMap(code_map_holder, optimized_code_map_holder_head_); optimized_code_map_holder_head_ = code_map_holder; } } void EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder); void EvictCandidate(SharedFunctionInfo* shared_info); void EvictCandidate(JSFunction* function); void ProcessCandidates() { ProcessOptimizedCodeMaps(); ProcessSharedFunctionInfoCandidates(); ProcessJSFunctionCandidates(); } void EvictAllCandidates() { EvictOptimizedCodeMaps(); EvictJSFunctionCandidates(); EvictSharedFunctionInfoCandidates(); } void IteratePointersToFromSpace(ObjectVisitor* v); private: void ProcessOptimizedCodeMaps(); void ProcessJSFunctionCandidates(); void ProcessSharedFunctionInfoCandidates(); void EvictOptimizedCodeMaps(); void EvictJSFunctionCandidates(); void EvictSharedFunctionInfoCandidates(); static JSFunction** GetNextCandidateSlot(JSFunction* candidate) { return reinterpret_cast<JSFunction**>( HeapObject::RawField(candidate, JSFunction::kNextFunctionLinkOffset)); } static JSFunction* GetNextCandidate(JSFunction* candidate) { Object* next_candidate = candidate->next_function_link(); return reinterpret_cast<JSFunction*>(next_candidate); } static void SetNextCandidate(JSFunction* candidate, JSFunction* next_candidate) { candidate->set_next_function_link(next_candidate); } static void ClearNextCandidate(JSFunction* candidate, Object* undefined) { DCHECK(undefined->IsUndefined()); candidate->set_next_function_link(undefined, SKIP_WRITE_BARRIER); } static SharedFunctionInfo* GetNextCandidate(SharedFunctionInfo* candidate) { Object* next_candidate = candidate->code()->gc_metadata(); return reinterpret_cast<SharedFunctionInfo*>(next_candidate); } static void SetNextCandidate(SharedFunctionInfo* candidate, SharedFunctionInfo* next_candidate) { candidate->code()->set_gc_metadata(next_candidate); } static void ClearNextCandidate(SharedFunctionInfo* candidate) { candidate->code()->set_gc_metadata(NULL, SKIP_WRITE_BARRIER); } static SharedFunctionInfo* GetNextCodeMap(SharedFunctionInfo* holder) { FixedArray* code_map = FixedArray::cast(holder->optimized_code_map()); Object* next_map = code_map->get(SharedFunctionInfo::kNextMapIndex); return reinterpret_cast<SharedFunctionInfo*>(next_map); } static void SetNextCodeMap(SharedFunctionInfo* holder, SharedFunctionInfo* next_holder) { FixedArray* code_map = FixedArray::cast(holder->optimized_code_map()); code_map->set(SharedFunctionInfo::kNextMapIndex, next_holder); } static void ClearNextCodeMap(SharedFunctionInfo* holder) { FixedArray* code_map = FixedArray::cast(holder->optimized_code_map()); code_map->set_undefined(SharedFunctionInfo::kNextMapIndex); } Isolate* isolate_; JSFunction* jsfunction_candidates_head_; SharedFunctionInfo* shared_function_info_candidates_head_; SharedFunctionInfo* optimized_code_map_holder_head_; DISALLOW_COPY_AND_ASSIGN(CodeFlusher); }; // Defined in isolate.h. class ThreadLocalTop; // ------------------------------------------------------------------------- // Mark-Compact collector class MarkCompactCollector { public: // Set the global flags, it must be called before Prepare to take effect. inline void SetFlags(int flags); static void Initialize(); void SetUp(); void TearDown(); void CollectEvacuationCandidates(PagedSpace* space); void AddEvacuationCandidate(Page* p); // Prepares for GC by resetting relocation info in old and map spaces and // choosing spaces to compact. void Prepare(); // Performs a global garbage collection. void CollectGarbage(); enum CompactionMode { INCREMENTAL_COMPACTION, NON_INCREMENTAL_COMPACTION }; bool StartCompaction(CompactionMode mode); void AbortCompaction(); #ifdef DEBUG // Checks whether performing mark-compact collection. bool in_use() { return state_ > PREPARE_GC; } bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; } #endif // Determine type of object and emit deletion log event. static void ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate); // Distinguishable invalid map encodings (for single word and multiple words) // that indicate free regions. static const uint32_t kSingleFreeEncoding = 0; static const uint32_t kMultiFreeEncoding = 1; static inline bool IsMarked(Object* obj); inline Heap* heap() const { return heap_; } inline Isolate* isolate() const; CodeFlusher* code_flusher() { return code_flusher_; } inline bool is_code_flushing_enabled() const { return code_flusher_ != NULL; } void EnableCodeFlushing(bool enable); enum SweeperType { PARALLEL_SWEEPING, CONCURRENT_SWEEPING, SEQUENTIAL_SWEEPING }; enum SweepingParallelism { SWEEP_ON_MAIN_THREAD, SWEEP_IN_PARALLEL }; #ifdef VERIFY_HEAP void VerifyMarkbitsAreClean(); static void VerifyMarkbitsAreClean(PagedSpace* space); static void VerifyMarkbitsAreClean(NewSpace* space); void VerifyWeakEmbeddedObjectsInCode(); void VerifyOmittedMapChecks(); #endif INLINE(static bool ShouldSkipEvacuationSlotRecording(Object** anchor)) { return Page::FromAddress(reinterpret_cast<Address>(anchor)) ->ShouldSkipEvacuationSlotRecording(); } INLINE(static bool ShouldSkipEvacuationSlotRecording(Object* host)) { return Page::FromAddress(reinterpret_cast<Address>(host)) ->ShouldSkipEvacuationSlotRecording(); } INLINE(static bool IsOnEvacuationCandidate(Object* obj)) { return Page::FromAddress(reinterpret_cast<Address>(obj)) ->IsEvacuationCandidate(); } INLINE(void EvictEvacuationCandidate(Page* page)) { if (FLAG_trace_fragmentation) { PrintF("Page %p is too popular. Disabling evacuation.\n", reinterpret_cast<void*>(page)); } // TODO(gc) If all evacuation candidates are too popular we // should stop slots recording entirely. page->ClearEvacuationCandidate(); // We were not collecting slots on this page that point // to other evacuation candidates thus we have to // rescan the page after evacuation to discover and update all // pointers to evacuated objects. if (page->owner()->identity() == OLD_DATA_SPACE) { evacuation_candidates_.RemoveElement(page); } else { page->SetFlag(Page::RESCAN_ON_EVACUATION); } } void RecordRelocSlot(RelocInfo* rinfo, Object* target); void RecordCodeEntrySlot(Address slot, Code* target); void RecordCodeTargetPatch(Address pc, Code* target); INLINE(void RecordSlot( Object** anchor_slot, Object** slot, Object* object, SlotsBuffer::AdditionMode mode = SlotsBuffer::FAIL_ON_OVERFLOW)); void MigrateObject(HeapObject* dst, HeapObject* src, int size, AllocationSpace to_old_space); bool TryPromoteObject(HeapObject* object, int object_size); void InvalidateCode(Code* code); void ClearMarkbits(); bool abort_incremental_marking() const { return abort_incremental_marking_; } bool is_compacting() const { return compacting_; } MarkingParity marking_parity() { return marking_parity_; } // Concurrent and parallel sweeping support. If required_freed_bytes was set // to a value larger than 0, then sweeping returns after a block of at least // required_freed_bytes was freed. If required_freed_bytes was set to zero // then the whole given space is swept. It returns the size of the maximum // continuous freed memory chunk. int SweepInParallel(PagedSpace* space, int required_freed_bytes); // Sweeps a given page concurrently to the sweeper threads. It returns the // size of the maximum continuous freed memory chunk. int SweepInParallel(Page* page, PagedSpace* space); void EnsureSweepingCompleted(); // If sweeper threads are not active this method will return true. If // this is a latency issue we should be smarter here. Otherwise, it will // return true if the sweeper threads are done processing the pages. bool IsSweepingCompleted(); void RefillFreeList(PagedSpace* space); bool AreSweeperThreadsActivated(); // Checks if sweeping is in progress right now on any space. bool sweeping_in_progress() { return sweeping_in_progress_; } void set_sequential_sweeping(bool sequential_sweeping) { sequential_sweeping_ = sequential_sweeping; } bool sequential_sweeping() const { return sequential_sweeping_; } // Mark the global table which maps weak objects to dependent code without // marking its contents. void MarkWeakObjectToCodeTable(); // Special case for processing weak references in a full collection. We need // to artificially keep AllocationSites alive for a time. void MarkAllocationSite(AllocationSite* site); private: class SweeperTask; explicit MarkCompactCollector(Heap* heap); ~MarkCompactCollector(); bool MarkInvalidatedCode(); bool WillBeDeoptimized(Code* code); void RemoveDeadInvalidatedCode(); void ProcessInvalidatedCode(ObjectVisitor* visitor); void StartSweeperThreads(); #ifdef DEBUG enum CollectorState { IDLE, PREPARE_GC, MARK_LIVE_OBJECTS, SWEEP_SPACES, ENCODE_FORWARDING_ADDRESSES, UPDATE_POINTERS, RELOCATE_OBJECTS }; // The current stage of the collector. CollectorState state_; #endif bool reduce_memory_footprint_; bool abort_incremental_marking_; MarkingParity marking_parity_; // True if we are collecting slots to perform evacuation from evacuation // candidates. bool compacting_; bool was_marked_incrementally_; // True if concurrent or parallel sweeping is currently in progress. bool sweeping_in_progress_; base::Semaphore pending_sweeper_jobs_semaphore_; bool sequential_sweeping_; SlotsBufferAllocator slots_buffer_allocator_; SlotsBuffer* migration_slots_buffer_; // Finishes GC, performs heap verification if enabled. void Finish(); // ----------------------------------------------------------------------- // Phase 1: Marking live objects. // // Before: The heap has been prepared for garbage collection by // MarkCompactCollector::Prepare() and is otherwise in its // normal state. // // After: Live objects are marked and non-live objects are unmarked. friend class RootMarkingVisitor; friend class MarkingVisitor; friend class MarkCompactMarkingVisitor; friend class CodeMarkingVisitor; friend class SharedFunctionInfoMarkingVisitor; // Mark code objects that are active on the stack to prevent them // from being flushed. void PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top); void PrepareForCodeFlushing(); // Marking operations for objects reachable from roots. void MarkLiveObjects(); void AfterMarking(); // Marks the object black and pushes it on the marking stack. // This is for non-incremental marking only. INLINE(void MarkObject(HeapObject* obj, MarkBit mark_bit)); // Marks the object black assuming that it is not yet marked. // This is for non-incremental marking only. INLINE(void SetMark(HeapObject* obj, MarkBit mark_bit)); // Mark the heap roots and all objects reachable from them. void MarkRoots(RootMarkingVisitor* visitor); // Mark the string table specially. References to internalized strings from // the string table are weak. void MarkStringTable(RootMarkingVisitor* visitor); // Mark objects in implicit references groups if their parent object // is marked. void MarkImplicitRefGroups(); // Mark objects reachable (transitively) from objects in the marking stack // or overflowed in the heap. void ProcessMarkingDeque(); // Mark objects reachable (transitively) from objects in the marking stack // or overflowed in the heap. This respects references only considered in // the final atomic marking pause including the following: // - Processing of objects reachable through Harmony WeakMaps. // - Objects reachable due to host application logic like object groups // or implicit references' groups. void ProcessEphemeralMarking(ObjectVisitor* visitor); // If the call-site of the top optimized code was not prepared for // deoptimization, then treat the maps in the code as strong pointers, // otherwise a map can die and deoptimize the code. void ProcessTopOptimizedFrame(ObjectVisitor* visitor); // Mark objects reachable (transitively) from objects in the marking // stack. This function empties the marking stack, but may leave // overflowed objects in the heap, in which case the marking stack's // overflow flag will be set. void EmptyMarkingDeque(); // Refill the marking stack with overflowed objects from the heap. This // function either leaves the marking stack full or clears the overflow // flag on the marking stack. void RefillMarkingDeque(); // After reachable maps have been marked process per context object // literal map caches removing unmarked entries. void ProcessMapCaches(); // Callback function for telling whether the object *p is an unmarked // heap object. static bool IsUnmarkedHeapObject(Object** p); static bool IsUnmarkedHeapObjectWithHeap(Heap* heap, Object** p); // Map transitions from a live map to a dead map must be killed. // We replace them with a null descriptor, with the same key. void ClearNonLiveReferences(); void ClearNonLivePrototypeTransitions(Map* map); void ClearNonLiveMapTransitions(Map* map, MarkBit map_mark); void ClearMapTransitions(Map* map); bool ClearMapBackPointer(Map* map); void TrimDescriptorArray(Map* map, DescriptorArray* descriptors, int number_of_own_descriptors); void TrimEnumCache(Map* map, DescriptorArray* descriptors); void ClearDependentCode(DependentCode* dependent_code); void ClearDependentICList(Object* head); void ClearNonLiveDependentCode(DependentCode* dependent_code); int ClearNonLiveDependentCodeInGroup(DependentCode* dependent_code, int group, int start, int end, int new_start); // Mark all values associated with reachable keys in weak collections // encountered so far. This might push new object or even new weak maps onto // the marking stack. void ProcessWeakCollections(); // After all reachable objects have been marked those weak map entries // with an unreachable key are removed from all encountered weak maps. // The linked list of all encountered weak maps is destroyed. void ClearWeakCollections(); // We have to remove all encountered weak maps from the list of weak // collections when incremental marking is aborted. void AbortWeakCollections(); // ----------------------------------------------------------------------- // Phase 2: Sweeping to clear mark bits and free non-live objects for // a non-compacting collection. // // Before: Live objects are marked and non-live objects are unmarked. // // After: Live objects are unmarked, non-live regions have been added to // their space's free list. Active eden semispace is compacted by // evacuation. // // If we are not compacting the heap, we simply sweep the spaces except // for the large object space, clearing mark bits and adding unmarked // regions to each space's free list. void SweepSpaces(); int DiscoverAndEvacuateBlackObjectsOnPage(NewSpace* new_space, NewSpacePage* p); void EvacuateNewSpace(); void EvacuateLiveObjectsFromPage(Page* p); void EvacuatePages(); void EvacuateNewSpaceAndCandidates(); void ReleaseEvacuationCandidates(); // Moves the pages of the evacuation_candidates_ list to the end of their // corresponding space pages list. void MoveEvacuationCandidatesToEndOfPagesList(); void SweepSpace(PagedSpace* space, SweeperType sweeper); // Finalizes the parallel sweeping phase. Marks all the pages that were // swept in parallel. void ParallelSweepSpacesComplete(); void ParallelSweepSpaceComplete(PagedSpace* space); // Updates store buffer and slot buffer for a pointer in a migrating object. void RecordMigratedSlot(Object* value, Address slot); #ifdef DEBUG friend class MarkObjectVisitor; static void VisitObject(HeapObject* obj); friend class UnmarkObjectVisitor; static void UnmarkObject(HeapObject* obj); #endif Heap* heap_; MarkingDeque marking_deque_; CodeFlusher* code_flusher_; bool have_code_to_deoptimize_; List<Page*> evacuation_candidates_; List<Code*> invalidated_code_; SmartPointer<FreeList> free_list_old_data_space_; SmartPointer<FreeList> free_list_old_pointer_space_; friend class Heap; }; class MarkBitCellIterator BASE_EMBEDDED { public: explicit MarkBitCellIterator(MemoryChunk* chunk) : chunk_(chunk) { last_cell_index_ = Bitmap::IndexToCell(Bitmap::CellAlignIndex( chunk_->AddressToMarkbitIndex(chunk_->area_end()))); cell_base_ = chunk_->area_start(); cell_index_ = Bitmap::IndexToCell( Bitmap::CellAlignIndex(chunk_->AddressToMarkbitIndex(cell_base_))); cells_ = chunk_->markbits()->cells(); } inline bool Done() { return cell_index_ == last_cell_index_; } inline bool HasNext() { return cell_index_ < last_cell_index_ - 1; } inline MarkBit::CellType* CurrentCell() { DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex( chunk_->AddressToMarkbitIndex(cell_base_)))); return &cells_[cell_index_]; } inline Address CurrentCellBase() { DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex( chunk_->AddressToMarkbitIndex(cell_base_)))); return cell_base_; } inline void Advance() { cell_index_++; cell_base_ += 32 * kPointerSize; } private: MemoryChunk* chunk_; MarkBit::CellType* cells_; unsigned int last_cell_index_; unsigned int cell_index_; Address cell_base_; }; class SequentialSweepingScope BASE_EMBEDDED { public: explicit SequentialSweepingScope(MarkCompactCollector* collector) : collector_(collector) { collector_->set_sequential_sweeping(true); } ~SequentialSweepingScope() { collector_->set_sequential_sweeping(false); } private: MarkCompactCollector* collector_; }; const char* AllocationSpaceName(AllocationSpace space); } } // namespace v8::internal #endif // V8_HEAP_MARK_COMPACT_H_