// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/accessors.h" #include "src/allocation-site-scopes.h" #include "src/api.h" #include "src/arguments.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/cpu-profiler.h" #include "src/date.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/elements.h" #include "src/execution.h" #include "src/field-index-inl.h" #include "src/field-index.h" #include "src/full-codegen.h" #include "src/heap/mark-compact.h" #include "src/heap/objects-visiting-inl.h" #include "src/hydrogen.h" #include "src/ic/ic.h" #include "src/isolate-inl.h" #include "src/log.h" #include "src/lookup.h" #include "src/macro-assembler.h" #include "src/objects-inl.h" #include "src/prototype.h" #include "src/safepoint-table.h" #include "src/string-search.h" #include "src/string-stream.h" #include "src/utils.h" #ifdef ENABLE_DISASSEMBLER #include "src/disasm.h" #include "src/disassembler.h" #endif namespace v8 { namespace internal { Handle<HeapType> Object::OptimalType(Isolate* isolate, Representation representation) { if (representation.IsNone()) return HeapType::None(isolate); if (FLAG_track_field_types) { if (representation.IsHeapObject() && IsHeapObject()) { // We can track only JavaScript objects with stable maps. Handle<Map> map(HeapObject::cast(this)->map(), isolate); if (map->is_stable() && map->instance_type() >= FIRST_NONCALLABLE_SPEC_OBJECT_TYPE && map->instance_type() <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE) { return HeapType::Class(map, isolate); } } } return HeapType::Any(isolate); } MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate, Handle<Object> object, Handle<Context> native_context) { if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object); Handle<JSFunction> constructor; if (object->IsNumber()) { constructor = handle(native_context->number_function(), isolate); } else if (object->IsBoolean()) { constructor = handle(native_context->boolean_function(), isolate); } else if (object->IsString()) { constructor = handle(native_context->string_function(), isolate); } else if (object->IsSymbol()) { constructor = handle(native_context->symbol_function(), isolate); } else { return MaybeHandle<JSReceiver>(); } Handle<JSObject> result = isolate->factory()->NewJSObject(constructor); Handle<JSValue>::cast(result)->set_value(*object); return result; } bool Object::BooleanValue() { if (IsBoolean()) return IsTrue(); if (IsSmi()) return Smi::cast(this)->value() != 0; if (IsUndefined() || IsNull()) return false; if (IsUndetectableObject()) return false; // Undetectable object is false. if (IsString()) return String::cast(this)->length() != 0; if (IsHeapNumber()) return HeapNumber::cast(this)->HeapNumberBooleanValue(); return true; } bool Object::IsCallable() const { const Object* fun = this; while (fun->IsJSFunctionProxy()) { fun = JSFunctionProxy::cast(fun)->call_trap(); } return fun->IsJSFunction() || (fun->IsHeapObject() && HeapObject::cast(fun)->map()->has_instance_call_handler()); } MaybeHandle<Object> Object::GetProperty(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return JSProxy::GetPropertyWithHandler(it->GetHolder<JSProxy>(), it->GetReceiver(), it->name()); case LookupIterator::INTERCEPTOR: { MaybeHandle<Object> maybe_result = JSObject::GetPropertyWithInterceptor( it->GetHolder<JSObject>(), it->GetReceiver(), it->name()); if (!maybe_result.is_null()) return maybe_result; if (it->isolate()->has_pending_exception()) return maybe_result; break; } case LookupIterator::ACCESS_CHECK: if (it->HasAccess(v8::ACCESS_GET)) break; return JSObject::GetPropertyWithFailedAccessCheck(it); case LookupIterator::ACCESSOR: return GetPropertyWithAccessor(it->GetReceiver(), it->name(), it->GetHolder<JSObject>(), it->GetAccessors()); case LookupIterator::DATA: return it->GetDataValue(); } } return it->factory()->undefined_value(); } Handle<Object> JSObject::GetDataProperty(Handle<JSObject> object, Handle<Name> key) { LookupIterator it(object, key, LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); return GetDataProperty(&it); } Handle<Object> JSObject::GetDataProperty(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::INTERCEPTOR: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it->HasAccess(v8::ACCESS_GET)) continue; // Fall through. case LookupIterator::JSPROXY: it->NotFound(); return it->isolate()->factory()->undefined_value(); case LookupIterator::ACCESSOR: // TODO(verwaest): For now this doesn't call into // ExecutableAccessorInfo, since clients don't need it. Update once // relevant. it->NotFound(); return it->isolate()->factory()->undefined_value(); case LookupIterator::DATA: return it->GetDataValue(); } } return it->isolate()->factory()->undefined_value(); } bool Object::ToInt32(int32_t* value) { if (IsSmi()) { *value = Smi::cast(this)->value(); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); if (FastI2D(FastD2I(num)) == num) { *value = FastD2I(num); return true; } } return false; } bool Object::ToUint32(uint32_t* value) { if (IsSmi()) { int num = Smi::cast(this)->value(); if (num >= 0) { *value = static_cast<uint32_t>(num); return true; } } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); if (num >= 0 && FastUI2D(FastD2UI(num)) == num) { *value = FastD2UI(num); return true; } } return false; } bool FunctionTemplateInfo::IsTemplateFor(Object* object) { if (!object->IsHeapObject()) return false; return IsTemplateFor(HeapObject::cast(object)->map()); } bool FunctionTemplateInfo::IsTemplateFor(Map* map) { // There is a constraint on the object; check. if (!map->IsJSObjectMap()) return false; // Fetch the constructor function of the object. Object* cons_obj = map->constructor(); if (!cons_obj->IsJSFunction()) return false; JSFunction* fun = JSFunction::cast(cons_obj); // Iterate through the chain of inheriting function templates to // see if the required one occurs. for (Object* type = fun->shared()->function_data(); type->IsFunctionTemplateInfo(); type = FunctionTemplateInfo::cast(type)->parent_template()) { if (type == this) return true; } // Didn't find the required type in the inheritance chain. return false; } template<typename To> static inline To* CheckedCast(void *from) { uintptr_t temp = reinterpret_cast<uintptr_t>(from); DCHECK(temp % sizeof(To) == 0); return reinterpret_cast<To*>(temp); } static Handle<Object> PerformCompare(const BitmaskCompareDescriptor& descriptor, char* ptr, Isolate* isolate) { uint32_t bitmask = descriptor.bitmask; uint32_t compare_value = descriptor.compare_value; uint32_t value; switch (descriptor.size) { case 1: value = static_cast<uint32_t>(*CheckedCast<uint8_t>(ptr)); compare_value &= 0xff; bitmask &= 0xff; break; case 2: value = static_cast<uint32_t>(*CheckedCast<uint16_t>(ptr)); compare_value &= 0xffff; bitmask &= 0xffff; break; case 4: value = *CheckedCast<uint32_t>(ptr); break; default: UNREACHABLE(); return isolate->factory()->undefined_value(); } return isolate->factory()->ToBoolean( (bitmask & value) == (bitmask & compare_value)); } static Handle<Object> PerformCompare(const PointerCompareDescriptor& descriptor, char* ptr, Isolate* isolate) { uintptr_t compare_value = reinterpret_cast<uintptr_t>(descriptor.compare_value); uintptr_t value = *CheckedCast<uintptr_t>(ptr); return isolate->factory()->ToBoolean(compare_value == value); } static Handle<Object> GetPrimitiveValue( const PrimitiveValueDescriptor& descriptor, char* ptr, Isolate* isolate) { int32_t int32_value = 0; switch (descriptor.data_type) { case kDescriptorInt8Type: int32_value = *CheckedCast<int8_t>(ptr); break; case kDescriptorUint8Type: int32_value = *CheckedCast<uint8_t>(ptr); break; case kDescriptorInt16Type: int32_value = *CheckedCast<int16_t>(ptr); break; case kDescriptorUint16Type: int32_value = *CheckedCast<uint16_t>(ptr); break; case kDescriptorInt32Type: int32_value = *CheckedCast<int32_t>(ptr); break; case kDescriptorUint32Type: { uint32_t value = *CheckedCast<uint32_t>(ptr); AllowHeapAllocation allow_gc; return isolate->factory()->NewNumberFromUint(value); } case kDescriptorBoolType: { uint8_t byte = *CheckedCast<uint8_t>(ptr); return isolate->factory()->ToBoolean( byte & (0x1 << descriptor.bool_offset)); } case kDescriptorFloatType: { float value = *CheckedCast<float>(ptr); AllowHeapAllocation allow_gc; return isolate->factory()->NewNumber(value); } case kDescriptorDoubleType: { double value = *CheckedCast<double>(ptr); AllowHeapAllocation allow_gc; return isolate->factory()->NewNumber(value); } } AllowHeapAllocation allow_gc; return isolate->factory()->NewNumberFromInt(int32_value); } static Handle<Object> GetDeclaredAccessorProperty( Handle<Object> receiver, Handle<DeclaredAccessorInfo> info, Isolate* isolate) { DisallowHeapAllocation no_gc; char* current = reinterpret_cast<char*>(*receiver); DeclaredAccessorDescriptorIterator iterator(info->descriptor()); while (true) { const DeclaredAccessorDescriptorData* data = iterator.Next(); switch (data->type) { case kDescriptorReturnObject: { DCHECK(iterator.Complete()); current = *CheckedCast<char*>(current); return handle(*CheckedCast<Object*>(current), isolate); } case kDescriptorPointerDereference: DCHECK(!iterator.Complete()); current = *reinterpret_cast<char**>(current); break; case kDescriptorPointerShift: DCHECK(!iterator.Complete()); current += data->pointer_shift_descriptor.byte_offset; break; case kDescriptorObjectDereference: { DCHECK(!iterator.Complete()); Object* object = CheckedCast<Object>(current); int field = data->object_dereference_descriptor.internal_field; Object* smi = JSObject::cast(object)->GetInternalField(field); DCHECK(smi->IsSmi()); current = reinterpret_cast<char*>(smi); break; } case kDescriptorBitmaskCompare: DCHECK(iterator.Complete()); return PerformCompare(data->bitmask_compare_descriptor, current, isolate); case kDescriptorPointerCompare: DCHECK(iterator.Complete()); return PerformCompare(data->pointer_compare_descriptor, current, isolate); case kDescriptorPrimitiveValue: DCHECK(iterator.Complete()); return GetPrimitiveValue(data->primitive_value_descriptor, current, isolate); } } UNREACHABLE(); return isolate->factory()->undefined_value(); } Handle<FixedArray> JSObject::EnsureWritableFastElements( Handle<JSObject> object) { DCHECK(object->HasFastSmiOrObjectElements()); Isolate* isolate = object->GetIsolate(); Handle<FixedArray> elems(FixedArray::cast(object->elements()), isolate); if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems; Handle<FixedArray> writable_elems = isolate->factory()->CopyFixedArrayWithMap( elems, isolate->factory()->fixed_array_map()); object->set_elements(*writable_elems); isolate->counters()->cow_arrays_converted()->Increment(); return writable_elems; } MaybeHandle<Object> JSProxy::GetPropertyWithHandler(Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name) { Isolate* isolate = proxy->GetIsolate(); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return isolate->factory()->undefined_value(); Handle<Object> args[] = { receiver, name }; return CallTrap( proxy, "get", isolate->derived_get_trap(), arraysize(args), args); } MaybeHandle<Object> Object::GetPropertyWithAccessor(Handle<Object> receiver, Handle<Name> name, Handle<JSObject> holder, Handle<Object> structure) { Isolate* isolate = name->GetIsolate(); DCHECK(!structure->IsForeign()); // api style callbacks. if (structure->IsAccessorInfo()) { Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(structure); if (!info->IsCompatibleReceiver(*receiver)) { Handle<Object> args[2] = { name, receiver }; THROW_NEW_ERROR(isolate, NewTypeError("incompatible_method_receiver", HandleVector(args, arraysize(args))), Object); } if (structure->IsDeclaredAccessorInfo()) { return GetDeclaredAccessorProperty( receiver, Handle<DeclaredAccessorInfo>::cast(structure), isolate); } Handle<ExecutableAccessorInfo> data = Handle<ExecutableAccessorInfo>::cast(structure); v8::AccessorNameGetterCallback call_fun = v8::ToCData<v8::AccessorNameGetterCallback>(data->getter()); if (call_fun == NULL) return isolate->factory()->undefined_value(); LOG(isolate, ApiNamedPropertyAccess("load", *holder, *name)); PropertyCallbackArguments args(isolate, data->data(), *receiver, *holder); v8::Handle<v8::Value> result = args.Call(call_fun, v8::Utils::ToLocal(name)); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.IsEmpty()) { return isolate->factory()->undefined_value(); } Handle<Object> return_value = v8::Utils::OpenHandle(*result); return_value->VerifyApiCallResultType(); // Rebox handle before return. return handle(*return_value, isolate); } // __defineGetter__ callback Handle<Object> getter(Handle<AccessorPair>::cast(structure)->getter(), isolate); if (getter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return Object::GetPropertyWithDefinedGetter( receiver, Handle<JSReceiver>::cast(getter)); } // Getter is not a function. return isolate->factory()->undefined_value(); } bool AccessorInfo::IsCompatibleReceiverType(Isolate* isolate, Handle<AccessorInfo> info, Handle<HeapType> type) { if (!info->HasExpectedReceiverType()) return true; Handle<Map> map = IC::TypeToMap(*type, isolate); if (!map->IsJSObjectMap()) return false; return FunctionTemplateInfo::cast(info->expected_receiver_type()) ->IsTemplateFor(*map); } MaybeHandle<Object> Object::SetPropertyWithAccessor( Handle<Object> receiver, Handle<Name> name, Handle<Object> value, Handle<JSObject> holder, Handle<Object> structure, StrictMode strict_mode) { Isolate* isolate = name->GetIsolate(); // We should never get here to initialize a const with the hole // value since a const declaration would conflict with the setter. DCHECK(!structure->IsForeign()); if (structure->IsExecutableAccessorInfo()) { // Don't call executable accessor setters with non-JSObject receivers. if (!receiver->IsJSObject()) return value; // api style callbacks ExecutableAccessorInfo* info = ExecutableAccessorInfo::cast(*structure); if (!info->IsCompatibleReceiver(*receiver)) { Handle<Object> args[2] = { name, receiver }; THROW_NEW_ERROR(isolate, NewTypeError("incompatible_method_receiver", HandleVector(args, arraysize(args))), Object); } Object* call_obj = info->setter(); v8::AccessorNameSetterCallback call_fun = v8::ToCData<v8::AccessorNameSetterCallback>(call_obj); if (call_fun == NULL) return value; LOG(isolate, ApiNamedPropertyAccess("store", *holder, *name)); PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder); args.Call(call_fun, v8::Utils::ToLocal(name), v8::Utils::ToLocal(value)); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return value; } if (structure->IsAccessorPair()) { Handle<Object> setter(AccessorPair::cast(*structure)->setter(), isolate); if (setter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return SetPropertyWithDefinedSetter( receiver, Handle<JSReceiver>::cast(setter), value); } else { if (strict_mode == SLOPPY) return value; Handle<Object> args[2] = { name, holder }; THROW_NEW_ERROR( isolate, NewTypeError("no_setter_in_callback", HandleVector(args, 2)), Object); } } // TODO(dcarney): Handle correctly. if (structure->IsDeclaredAccessorInfo()) { return value; } UNREACHABLE(); return MaybeHandle<Object>(); } MaybeHandle<Object> Object::GetPropertyWithDefinedGetter( Handle<Object> receiver, Handle<JSReceiver> getter) { Isolate* isolate = getter->GetIsolate(); Debug* debug = isolate->debug(); // Handle stepping into a getter if step into is active. // TODO(rossberg): should this apply to getters that are function proxies? if (debug->StepInActive() && getter->IsJSFunction()) { debug->HandleStepIn( Handle<JSFunction>::cast(getter), Handle<Object>::null(), 0, false); } return Execution::Call(isolate, getter, receiver, 0, NULL, true); } MaybeHandle<Object> Object::SetPropertyWithDefinedSetter( Handle<Object> receiver, Handle<JSReceiver> setter, Handle<Object> value) { Isolate* isolate = setter->GetIsolate(); Debug* debug = isolate->debug(); // Handle stepping into a setter if step into is active. // TODO(rossberg): should this apply to getters that are function proxies? if (debug->StepInActive() && setter->IsJSFunction()) { debug->HandleStepIn( Handle<JSFunction>::cast(setter), Handle<Object>::null(), 0, false); } Handle<Object> argv[] = { value }; RETURN_ON_EXCEPTION(isolate, Execution::Call(isolate, setter, receiver, arraysize(argv), argv, true), Object); return value; } static bool FindAllCanReadHolder(LookupIterator* it) { for (; it->IsFound(); it->Next()) { if (it->state() == LookupIterator::ACCESSOR) { Handle<Object> accessors = it->GetAccessors(); if (accessors->IsAccessorInfo()) { if (AccessorInfo::cast(*accessors)->all_can_read()) return true; } } } return false; } MaybeHandle<Object> JSObject::GetPropertyWithFailedAccessCheck( LookupIterator* it) { Handle<JSObject> checked = it->GetHolder<JSObject>(); if (FindAllCanReadHolder(it)) { return GetPropertyWithAccessor(it->GetReceiver(), it->name(), it->GetHolder<JSObject>(), it->GetAccessors()); } it->isolate()->ReportFailedAccessCheck(checked, v8::ACCESS_GET); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it->isolate(), Object); return it->factory()->undefined_value(); } Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithFailedAccessCheck( LookupIterator* it) { Handle<JSObject> checked = it->GetHolder<JSObject>(); if (FindAllCanReadHolder(it)) return maybe(it->property_details().attributes()); it->isolate()->ReportFailedAccessCheck(checked, v8::ACCESS_HAS); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Maybe<PropertyAttributes>()); return maybe(ABSENT); } static bool FindAllCanWriteHolder(LookupIterator* it) { for (; it->IsFound(); it->Next()) { if (it->state() == LookupIterator::ACCESSOR) { Handle<Object> accessors = it->GetAccessors(); if (accessors->IsAccessorInfo()) { if (AccessorInfo::cast(*accessors)->all_can_write()) return true; } } } return false; } MaybeHandle<Object> JSObject::SetPropertyWithFailedAccessCheck( LookupIterator* it, Handle<Object> value, StrictMode strict_mode) { Handle<JSObject> checked = it->GetHolder<JSObject>(); if (FindAllCanWriteHolder(it)) { return SetPropertyWithAccessor(it->GetReceiver(), it->name(), value, it->GetHolder<JSObject>(), it->GetAccessors(), strict_mode); } it->isolate()->ReportFailedAccessCheck(checked, v8::ACCESS_SET); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it->isolate(), Object); return value; } void JSObject::SetNormalizedProperty(Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyDetails details) { DCHECK(!object->HasFastProperties()); Handle<NameDictionary> property_dictionary(object->property_dictionary()); if (!name->IsUniqueName()) { name = object->GetIsolate()->factory()->InternalizeString( Handle<String>::cast(name)); } int entry = property_dictionary->FindEntry(name); if (entry == NameDictionary::kNotFound) { Handle<Object> store_value = value; if (object->IsGlobalObject()) { store_value = object->GetIsolate()->factory()->NewPropertyCell(value); } property_dictionary = NameDictionary::Add( property_dictionary, name, store_value, details); object->set_properties(*property_dictionary); return; } PropertyDetails original_details = property_dictionary->DetailsAt(entry); int enumeration_index; // Preserve the enumeration index unless the property was deleted. if (original_details.IsDeleted()) { enumeration_index = property_dictionary->NextEnumerationIndex(); property_dictionary->SetNextEnumerationIndex(enumeration_index + 1); } else { enumeration_index = original_details.dictionary_index(); DCHECK(enumeration_index > 0); } details = PropertyDetails( details.attributes(), details.type(), enumeration_index); if (object->IsGlobalObject()) { Handle<PropertyCell> cell( PropertyCell::cast(property_dictionary->ValueAt(entry))); PropertyCell::SetValueInferType(cell, value); // Please note we have to update the property details. property_dictionary->DetailsAtPut(entry, details); } else { property_dictionary->SetEntry(entry, name, value, details); } } Handle<Object> JSObject::DeleteNormalizedProperty(Handle<JSObject> object, Handle<Name> name, DeleteMode mode) { DCHECK(!object->HasFastProperties()); Isolate* isolate = object->GetIsolate(); Handle<NameDictionary> dictionary(object->property_dictionary()); int entry = dictionary->FindEntry(name); if (entry != NameDictionary::kNotFound) { // If we have a global object set the cell to the hole. if (object->IsGlobalObject()) { PropertyDetails details = dictionary->DetailsAt(entry); if (!details.IsConfigurable()) { if (mode != FORCE_DELETION) return isolate->factory()->false_value(); // When forced to delete global properties, we have to make a // map change to invalidate any ICs that think they can load // from the non-configurable cell without checking if it contains // the hole value. Handle<Map> new_map = Map::CopyDropDescriptors(handle(object->map())); DCHECK(new_map->is_dictionary_map()); JSObject::MigrateToMap(object, new_map); } Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry))); Handle<Object> value = isolate->factory()->the_hole_value(); PropertyCell::SetValueInferType(cell, value); dictionary->DetailsAtPut(entry, details.AsDeleted()); } else { Handle<Object> deleted( NameDictionary::DeleteProperty(dictionary, entry, mode)); if (*deleted == isolate->heap()->true_value()) { Handle<NameDictionary> new_properties = NameDictionary::Shrink(dictionary, name); object->set_properties(*new_properties); } return deleted; } } return isolate->factory()->true_value(); } bool JSObject::IsDirty() { Object* cons_obj = map()->constructor(); if (!cons_obj->IsJSFunction()) return true; JSFunction* fun = JSFunction::cast(cons_obj); if (!fun->shared()->IsApiFunction()) return true; // If the object is fully fast case and has the same map it was // created with then no changes can have been made to it. return map() != fun->initial_map() || !HasFastObjectElements() || !HasFastProperties(); } MaybeHandle<Object> Object::GetElementWithReceiver(Isolate* isolate, Handle<Object> object, Handle<Object> receiver, uint32_t index) { if (object->IsUndefined()) { // TODO(verwaest): Why is this check here? UNREACHABLE(); return isolate->factory()->undefined_value(); } // Iterate up the prototype chain until an element is found or the null // prototype is encountered. for (PrototypeIterator iter(isolate, object, object->IsJSProxy() || object->IsJSObject() ? PrototypeIterator::START_AT_RECEIVER : PrototypeIterator::START_AT_PROTOTYPE); !iter.IsAtEnd(); iter.Advance()) { if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) { return JSProxy::GetElementWithHandler( Handle<JSProxy>::cast(PrototypeIterator::GetCurrent(iter)), receiver, index); } // Inline the case for JSObjects. Doing so significantly improves the // performance of fetching elements where checking the prototype chain is // necessary. Handle<JSObject> js_object = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); // Check access rights if needed. if (js_object->IsAccessCheckNeeded()) { if (!isolate->MayIndexedAccess(js_object, index, v8::ACCESS_GET)) { isolate->ReportFailedAccessCheck(js_object, v8::ACCESS_GET); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->undefined_value(); } } if (js_object->HasIndexedInterceptor()) { return JSObject::GetElementWithInterceptor(js_object, receiver, index); } if (js_object->elements() != isolate->heap()->empty_fixed_array()) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, js_object->GetElementsAccessor()->Get(receiver, js_object, index), Object); if (!result->IsTheHole()) return result; } } return isolate->factory()->undefined_value(); } Map* Object::GetRootMap(Isolate* isolate) { DisallowHeapAllocation no_alloc; if (IsSmi()) { Context* context = isolate->context()->native_context(); return context->number_function()->initial_map(); } HeapObject* heap_object = HeapObject::cast(this); // The object is either a number, a string, a boolean, // a real JS object, or a Harmony proxy. if (heap_object->IsJSReceiver()) { return heap_object->map(); } Context* context = isolate->context()->native_context(); if (heap_object->IsHeapNumber()) { return context->number_function()->initial_map(); } if (heap_object->IsString()) { return context->string_function()->initial_map(); } if (heap_object->IsSymbol()) { return context->symbol_function()->initial_map(); } if (heap_object->IsBoolean()) { return context->boolean_function()->initial_map(); } return isolate->heap()->null_value()->map(); } Object* Object::GetHash() { // The object is either a number, a name, an odd-ball, // a real JS object, or a Harmony proxy. if (IsNumber()) { uint32_t hash = ComputeLongHash(double_to_uint64(Number())); return Smi::FromInt(hash & Smi::kMaxValue); } if (IsName()) { uint32_t hash = Name::cast(this)->Hash(); return Smi::FromInt(hash); } if (IsOddball()) { uint32_t hash = Oddball::cast(this)->to_string()->Hash(); return Smi::FromInt(hash); } DCHECK(IsJSReceiver()); return JSReceiver::cast(this)->GetIdentityHash(); } Handle<Smi> Object::GetOrCreateHash(Isolate* isolate, Handle<Object> object) { Handle<Object> hash(object->GetHash(), isolate); if (hash->IsSmi()) return Handle<Smi>::cast(hash); DCHECK(object->IsJSReceiver()); return JSReceiver::GetOrCreateIdentityHash(Handle<JSReceiver>::cast(object)); } bool Object::SameValue(Object* other) { if (other == this) return true; // The object is either a number, a name, an odd-ball, // a real JS object, or a Harmony proxy. if (IsNumber() && other->IsNumber()) { double this_value = Number(); double other_value = other->Number(); bool equal = this_value == other_value; // SameValue(NaN, NaN) is true. if (!equal) return std::isnan(this_value) && std::isnan(other_value); // SameValue(0.0, -0.0) is false. return (this_value != 0) || ((1 / this_value) == (1 / other_value)); } if (IsString() && other->IsString()) { return String::cast(this)->Equals(String::cast(other)); } return false; } bool Object::SameValueZero(Object* other) { if (other == this) return true; // The object is either a number, a name, an odd-ball, // a real JS object, or a Harmony proxy. if (IsNumber() && other->IsNumber()) { double this_value = Number(); double other_value = other->Number(); // +0 == -0 is true return this_value == other_value || (std::isnan(this_value) && std::isnan(other_value)); } if (IsString() && other->IsString()) { return String::cast(this)->Equals(String::cast(other)); } return false; } void Object::ShortPrint(FILE* out) { OFStream os(out); os << Brief(this); } void Object::ShortPrint(StringStream* accumulator) { OStringStream os; os << Brief(this); accumulator->Add(os.c_str()); } OStream& operator<<(OStream& os, const Brief& v) { if (v.value->IsSmi()) { Smi::cast(v.value)->SmiPrint(os); } else { // TODO(svenpanne) Const-correct HeapObjectShortPrint! HeapObject* obj = const_cast<HeapObject*>(HeapObject::cast(v.value)); obj->HeapObjectShortPrint(os); } return os; } void Smi::SmiPrint(OStream& os) const { // NOLINT os << value(); } // Should a word be prefixed by 'a' or 'an' in order to read naturally in // English? Returns false for non-ASCII or words that don't start with // a capital letter. The a/an rule follows pronunciation in English. // We don't use the BBC's overcorrect "an historic occasion" though if // you speak a dialect you may well say "an 'istoric occasion". static bool AnWord(String* str) { if (str->length() == 0) return false; // A nothing. int c0 = str->Get(0); int c1 = str->length() > 1 ? str->Get(1) : 0; if (c0 == 'U') { if (c1 > 'Z') { return true; // An Umpire, but a UTF8String, a U. } } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') { return true; // An Ape, an ABCBook. } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) && (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' || c0 == 'S' || c0 == 'X')) { return true; // An MP3File, an M. } return false; } Handle<String> String::SlowFlatten(Handle<ConsString> cons, PretenureFlag pretenure) { DCHECK(AllowHeapAllocation::IsAllowed()); DCHECK(cons->second()->length() != 0); Isolate* isolate = cons->GetIsolate(); int length = cons->length(); PretenureFlag tenure = isolate->heap()->InNewSpace(*cons) ? pretenure : TENURED; Handle<SeqString> result; if (cons->IsOneByteRepresentation()) { Handle<SeqOneByteString> flat = isolate->factory()->NewRawOneByteString( length, tenure).ToHandleChecked(); DisallowHeapAllocation no_gc; WriteToFlat(*cons, flat->GetChars(), 0, length); result = flat; } else { Handle<SeqTwoByteString> flat = isolate->factory()->NewRawTwoByteString( length, tenure).ToHandleChecked(); DisallowHeapAllocation no_gc; WriteToFlat(*cons, flat->GetChars(), 0, length); result = flat; } cons->set_first(*result); cons->set_second(isolate->heap()->empty_string()); DCHECK(result->IsFlat()); return result; } bool String::MakeExternal(v8::String::ExternalStringResource* resource) { // Externalizing twice leaks the external resource, so it's // prohibited by the API. DCHECK(!this->IsExternalString()); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. DCHECK(static_cast<size_t>(this->length()) == resource->length()); ScopedVector<uc16> smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0])) == 0); } #endif // DEBUG int size = this->Size(); // Byte size of the original string. // Abort if size does not allow in-place conversion. if (size < ExternalString::kShortSize) return false; Heap* heap = GetHeap(); bool is_one_byte = this->IsOneByteRepresentation(); bool is_internalized = this->IsInternalizedString(); // Morph the string to an external string by replacing the map and // reinitializing the fields. This won't work if the space the existing // string occupies is too small for a regular external string. // Instead, we resort to a short external string instead, omitting // the field caching the address of the backing store. When we encounter // short external strings in generated code, we need to bailout to runtime. Map* new_map; if (size < ExternalString::kSize) { new_map = is_internalized ? (is_one_byte ? heap->short_external_internalized_string_with_one_byte_data_map() : heap->short_external_internalized_string_map()) : (is_one_byte ? heap->short_external_string_with_one_byte_data_map() : heap->short_external_string_map()); } else { new_map = is_internalized ? (is_one_byte ? heap->external_internalized_string_with_one_byte_data_map() : heap->external_internalized_string_map()) : (is_one_byte ? heap->external_string_with_one_byte_data_map() : heap->external_string_map()); } // Byte size of the external String object. int new_size = this->SizeFromMap(new_map); heap->CreateFillerObjectAt(this->address() + new_size, size - new_size); // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. this->synchronized_set_map(new_map); ExternalTwoByteString* self = ExternalTwoByteString::cast(this); self->set_resource(resource); if (is_internalized) self->Hash(); // Force regeneration of the hash value. heap->AdjustLiveBytes(this->address(), new_size - size, Heap::FROM_MUTATOR); return true; } bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) { // Externalizing twice leaks the external resource, so it's // prohibited by the API. DCHECK(!this->IsExternalString()); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. DCHECK(static_cast<size_t>(this->length()) == resource->length()); if (this->IsTwoByteRepresentation()) { ScopedVector<uint16_t> smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(String::IsOneByte(smart_chars.start(), this->length())); } ScopedVector<char> smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0])) == 0); } #endif // DEBUG int size = this->Size(); // Byte size of the original string. // Abort if size does not allow in-place conversion. if (size < ExternalString::kShortSize) return false; Heap* heap = GetHeap(); bool is_internalized = this->IsInternalizedString(); // Morph the string to an external string by replacing the map and // reinitializing the fields. This won't work if the space the existing // string occupies is too small for a regular external string. // Instead, we resort to a short external string instead, omitting // the field caching the address of the backing store. When we encounter // short external strings in generated code, we need to bailout to runtime. Map* new_map; if (size < ExternalString::kSize) { new_map = is_internalized ? heap->short_external_one_byte_internalized_string_map() : heap->short_external_one_byte_string_map(); } else { new_map = is_internalized ? heap->external_one_byte_internalized_string_map() : heap->external_one_byte_string_map(); } // Byte size of the external String object. int new_size = this->SizeFromMap(new_map); heap->CreateFillerObjectAt(this->address() + new_size, size - new_size); // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. this->synchronized_set_map(new_map); ExternalOneByteString* self = ExternalOneByteString::cast(this); self->set_resource(resource); if (is_internalized) self->Hash(); // Force regeneration of the hash value. heap->AdjustLiveBytes(this->address(), new_size - size, Heap::FROM_MUTATOR); return true; } void String::StringShortPrint(StringStream* accumulator) { int len = length(); if (len > kMaxShortPrintLength) { accumulator->Add("<Very long string[%u]>", len); return; } if (!LooksValid()) { accumulator->Add("<Invalid String>"); return; } ConsStringIteratorOp op; StringCharacterStream stream(this, &op); bool truncated = false; if (len > kMaxShortPrintLength) { len = kMaxShortPrintLength; truncated = true; } bool one_byte = true; for (int i = 0; i < len; i++) { uint16_t c = stream.GetNext(); if (c < 32 || c >= 127) { one_byte = false; } } stream.Reset(this); if (one_byte) { accumulator->Add("<String[%u]: ", length()); for (int i = 0; i < len; i++) { accumulator->Put(static_cast<char>(stream.GetNext())); } accumulator->Put('>'); } else { // Backslash indicates that the string contains control // characters and that backslashes are therefore escaped. accumulator->Add("<String[%u]\\: ", length()); for (int i = 0; i < len; i++) { uint16_t c = stream.GetNext(); if (c == '\n') { accumulator->Add("\\n"); } else if (c == '\r') { accumulator->Add("\\r"); } else if (c == '\\') { accumulator->Add("\\\\"); } else if (c < 32 || c > 126) { accumulator->Add("\\x%02x", c); } else { accumulator->Put(static_cast<char>(c)); } } if (truncated) { accumulator->Put('.'); accumulator->Put('.'); accumulator->Put('.'); } accumulator->Put('>'); } return; } void String::PrintUC16(OStream& os, int start, int end) { // NOLINT if (end < 0) end = length(); ConsStringIteratorOp op; StringCharacterStream stream(this, &op, start); for (int i = start; i < end && stream.HasMore(); i++) { os << AsUC16(stream.GetNext()); } } void JSObject::JSObjectShortPrint(StringStream* accumulator) { switch (map()->instance_type()) { case JS_ARRAY_TYPE: { double length = JSArray::cast(this)->length()->IsUndefined() ? 0 : JSArray::cast(this)->length()->Number(); accumulator->Add("<JS Array[%u]>", static_cast<uint32_t>(length)); break; } case JS_WEAK_MAP_TYPE: { accumulator->Add("<JS WeakMap>"); break; } case JS_WEAK_SET_TYPE: { accumulator->Add("<JS WeakSet>"); break; } case JS_REGEXP_TYPE: { accumulator->Add("<JS RegExp>"); break; } case JS_FUNCTION_TYPE: { JSFunction* function = JSFunction::cast(this); Object* fun_name = function->shared()->DebugName(); bool printed = false; if (fun_name->IsString()) { String* str = String::cast(fun_name); if (str->length() > 0) { accumulator->Add("<JS Function "); accumulator->Put(str); printed = true; } } if (!printed) { accumulator->Add("<JS Function"); } accumulator->Add(" (SharedFunctionInfo %p)", reinterpret_cast<void*>(function->shared())); accumulator->Put('>'); break; } case JS_GENERATOR_OBJECT_TYPE: { accumulator->Add("<JS Generator>"); break; } case JS_MODULE_TYPE: { accumulator->Add("<JS Module>"); break; } // All other JSObjects are rather similar to each other (JSObject, // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue). default: { Map* map_of_this = map(); Heap* heap = GetHeap(); Object* constructor = map_of_this->constructor(); bool printed = false; if (constructor->IsHeapObject() && !heap->Contains(HeapObject::cast(constructor))) { accumulator->Add("!!!INVALID CONSTRUCTOR!!!"); } else { bool global_object = IsJSGlobalProxy(); if (constructor->IsJSFunction()) { if (!heap->Contains(JSFunction::cast(constructor)->shared())) { accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!"); } else { Object* constructor_name = JSFunction::cast(constructor)->shared()->name(); if (constructor_name->IsString()) { String* str = String::cast(constructor_name); if (str->length() > 0) { bool vowel = AnWord(str); accumulator->Add("<%sa%s ", global_object ? "Global Object: " : "", vowel ? "n" : ""); accumulator->Put(str); accumulator->Add(" with %smap %p", map_of_this->is_deprecated() ? "deprecated " : "", map_of_this); printed = true; } } } } if (!printed) { accumulator->Add("<JS %sObject", global_object ? "Global " : ""); } } if (IsJSValue()) { accumulator->Add(" value = "); JSValue::cast(this)->value()->ShortPrint(accumulator); } accumulator->Put('>'); break; } } } void JSObject::PrintElementsTransition( FILE* file, Handle<JSObject> object, ElementsKind from_kind, Handle<FixedArrayBase> from_elements, ElementsKind to_kind, Handle<FixedArrayBase> to_elements) { if (from_kind != to_kind) { OFStream os(file); os << "elements transition [" << ElementsKindToString(from_kind) << " -> " << ElementsKindToString(to_kind) << "] in "; JavaScriptFrame::PrintTop(object->GetIsolate(), file, false, true); PrintF(file, " for "); object->ShortPrint(file); PrintF(file, " from "); from_elements->ShortPrint(file); PrintF(file, " to "); to_elements->ShortPrint(file); PrintF(file, "\n"); } } void Map::PrintGeneralization(FILE* file, const char* reason, int modify_index, int split, int descriptors, bool constant_to_field, Representation old_representation, Representation new_representation, HeapType* old_field_type, HeapType* new_field_type) { OFStream os(file); os << "[generalizing "; constructor_name()->PrintOn(file); os << "] "; Name* name = instance_descriptors()->GetKey(modify_index); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { os << "{symbol " << static_cast<void*>(name) << "}"; } os << ":"; if (constant_to_field) { os << "c"; } else { os << old_representation.Mnemonic() << "{"; old_field_type->PrintTo(os, HeapType::SEMANTIC_DIM); os << "}"; } os << "->" << new_representation.Mnemonic() << "{"; new_field_type->PrintTo(os, HeapType::SEMANTIC_DIM); os << "} ("; if (strlen(reason) > 0) { os << reason; } else { os << "+" << (descriptors - split) << " maps"; } os << ") ["; JavaScriptFrame::PrintTop(GetIsolate(), file, false, true); os << "]\n"; } void JSObject::PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map) { PrintF(file, "[migrating "); map()->constructor_name()->PrintOn(file); PrintF(file, "] "); DescriptorArray* o = original_map->instance_descriptors(); DescriptorArray* n = new_map->instance_descriptors(); for (int i = 0; i < original_map->NumberOfOwnDescriptors(); i++) { Representation o_r = o->GetDetails(i).representation(); Representation n_r = n->GetDetails(i).representation(); if (!o_r.Equals(n_r)) { String::cast(o->GetKey(i))->PrintOn(file); PrintF(file, ":%s->%s ", o_r.Mnemonic(), n_r.Mnemonic()); } else if (o->GetDetails(i).type() == CONSTANT && n->GetDetails(i).type() == FIELD) { Name* name = o->GetKey(i); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { PrintF(file, "{symbol %p}", static_cast<void*>(name)); } PrintF(file, " "); } } PrintF(file, "\n"); } void HeapObject::HeapObjectShortPrint(OStream& os) { // NOLINT Heap* heap = GetHeap(); if (!heap->Contains(this)) { os << "!!!INVALID POINTER!!!"; return; } if (!heap->Contains(map())) { os << "!!!INVALID MAP!!!"; return; } os << this << " "; if (IsString()) { HeapStringAllocator allocator; StringStream accumulator(&allocator); String::cast(this)->StringShortPrint(&accumulator); os << accumulator.ToCString().get(); return; } if (IsJSObject()) { HeapStringAllocator allocator; StringStream accumulator(&allocator); JSObject::cast(this)->JSObjectShortPrint(&accumulator); os << accumulator.ToCString().get(); return; } switch (map()->instance_type()) { case MAP_TYPE: os << "<Map(elements=" << Map::cast(this)->elements_kind() << ")>"; break; case FIXED_ARRAY_TYPE: os << "<FixedArray[" << FixedArray::cast(this)->length() << "]>"; break; case FIXED_DOUBLE_ARRAY_TYPE: os << "<FixedDoubleArray[" << FixedDoubleArray::cast(this)->length() << "]>"; break; case BYTE_ARRAY_TYPE: os << "<ByteArray[" << ByteArray::cast(this)->length() << "]>"; break; case FREE_SPACE_TYPE: os << "<FreeSpace[" << FreeSpace::cast(this)->Size() << "]>"; break; #define TYPED_ARRAY_SHORT_PRINT(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ARRAY_TYPE: \ os << "<External" #Type "Array[" \ << External##Type##Array::cast(this)->length() << "]>"; \ break; \ case FIXED_##TYPE##_ARRAY_TYPE: \ os << "<Fixed" #Type "Array[" << Fixed##Type##Array::cast(this)->length() \ << "]>"; \ break; TYPED_ARRAYS(TYPED_ARRAY_SHORT_PRINT) #undef TYPED_ARRAY_SHORT_PRINT case SHARED_FUNCTION_INFO_TYPE: { SharedFunctionInfo* shared = SharedFunctionInfo::cast(this); SmartArrayPointer<char> debug_name = shared->DebugName()->ToCString(); if (debug_name[0] != 0) { os << "<SharedFunctionInfo " << debug_name.get() << ">"; } else { os << "<SharedFunctionInfo>"; } break; } case JS_MESSAGE_OBJECT_TYPE: os << "<JSMessageObject>"; break; #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: \ os << "<" #Name ">"; \ break; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE case CODE_TYPE: { Code* code = Code::cast(this); os << "<Code: " << Code::Kind2String(code->kind()) << ">"; break; } case ODDBALL_TYPE: { if (IsUndefined()) { os << "<undefined>"; } else if (IsTheHole()) { os << "<the hole>"; } else if (IsNull()) { os << "<null>"; } else if (IsTrue()) { os << "<true>"; } else if (IsFalse()) { os << "<false>"; } else { os << "<Odd Oddball>"; } break; } case SYMBOL_TYPE: { Symbol* symbol = Symbol::cast(this); os << "<Symbol: " << symbol->Hash(); if (!symbol->name()->IsUndefined()) { os << " "; HeapStringAllocator allocator; StringStream accumulator(&allocator); String::cast(symbol->name())->StringShortPrint(&accumulator); os << accumulator.ToCString().get(); } os << ">"; break; } case HEAP_NUMBER_TYPE: { os << "<Number: "; HeapNumber::cast(this)->HeapNumberPrint(os); os << ">"; break; } case MUTABLE_HEAP_NUMBER_TYPE: { os << "<MutableNumber: "; HeapNumber::cast(this)->HeapNumberPrint(os); os << '>'; break; } case JS_PROXY_TYPE: os << "<JSProxy>"; break; case JS_FUNCTION_PROXY_TYPE: os << "<JSFunctionProxy>"; break; case FOREIGN_TYPE: os << "<Foreign>"; break; case CELL_TYPE: { os << "Cell for "; HeapStringAllocator allocator; StringStream accumulator(&allocator); Cell::cast(this)->value()->ShortPrint(&accumulator); os << accumulator.ToCString().get(); break; } case PROPERTY_CELL_TYPE: { os << "PropertyCell for "; HeapStringAllocator allocator; StringStream accumulator(&allocator); PropertyCell::cast(this)->value()->ShortPrint(&accumulator); os << accumulator.ToCString().get(); break; } default: os << "<Other heap object (" << map()->instance_type() << ")>"; break; } } void HeapObject::Iterate(ObjectVisitor* v) { // Handle header IteratePointer(v, kMapOffset); // Handle object body Map* m = map(); IterateBody(m->instance_type(), SizeFromMap(m), v); } void HeapObject::IterateBody(InstanceType type, int object_size, ObjectVisitor* v) { // Avoiding <Type>::cast(this) because it accesses the map pointer field. // During GC, the map pointer field is encoded. if (type < FIRST_NONSTRING_TYPE) { switch (type & kStringRepresentationMask) { case kSeqStringTag: break; case kConsStringTag: ConsString::BodyDescriptor::IterateBody(this, v); break; case kSlicedStringTag: SlicedString::BodyDescriptor::IterateBody(this, v); break; case kExternalStringTag: if ((type & kStringEncodingMask) == kOneByteStringTag) { reinterpret_cast<ExternalOneByteString*>(this) ->ExternalOneByteStringIterateBody(v); } else { reinterpret_cast<ExternalTwoByteString*>(this)-> ExternalTwoByteStringIterateBody(v); } break; } return; } switch (type) { case FIXED_ARRAY_TYPE: FixedArray::BodyDescriptor::IterateBody(this, object_size, v); break; case CONSTANT_POOL_ARRAY_TYPE: reinterpret_cast<ConstantPoolArray*>(this)->ConstantPoolIterateBody(v); break; case FIXED_DOUBLE_ARRAY_TYPE: break; case JS_OBJECT_TYPE: case JS_CONTEXT_EXTENSION_OBJECT_TYPE: case JS_GENERATOR_OBJECT_TYPE: case JS_MODULE_TYPE: case JS_VALUE_TYPE: case JS_DATE_TYPE: case JS_ARRAY_TYPE: case JS_ARRAY_BUFFER_TYPE: case JS_TYPED_ARRAY_TYPE: case JS_DATA_VIEW_TYPE: case JS_SET_TYPE: case JS_MAP_TYPE: case JS_SET_ITERATOR_TYPE: case JS_MAP_ITERATOR_TYPE: case JS_WEAK_MAP_TYPE: case JS_WEAK_SET_TYPE: case JS_REGEXP_TYPE: case JS_GLOBAL_PROXY_TYPE: case JS_GLOBAL_OBJECT_TYPE: case JS_BUILTINS_OBJECT_TYPE: case JS_MESSAGE_OBJECT_TYPE: JSObject::BodyDescriptor::IterateBody(this, object_size, v); break; case JS_FUNCTION_TYPE: reinterpret_cast<JSFunction*>(this) ->JSFunctionIterateBody(object_size, v); break; case ODDBALL_TYPE: Oddball::BodyDescriptor::IterateBody(this, v); break; case JS_PROXY_TYPE: JSProxy::BodyDescriptor::IterateBody(this, v); break; case JS_FUNCTION_PROXY_TYPE: JSFunctionProxy::BodyDescriptor::IterateBody(this, v); break; case FOREIGN_TYPE: reinterpret_cast<Foreign*>(this)->ForeignIterateBody(v); break; case MAP_TYPE: Map::BodyDescriptor::IterateBody(this, v); break; case CODE_TYPE: reinterpret_cast<Code*>(this)->CodeIterateBody(v); break; case CELL_TYPE: Cell::BodyDescriptor::IterateBody(this, v); break; case PROPERTY_CELL_TYPE: PropertyCell::BodyDescriptor::IterateBody(this, v); break; case SYMBOL_TYPE: Symbol::BodyDescriptor::IterateBody(this, v); break; case HEAP_NUMBER_TYPE: case MUTABLE_HEAP_NUMBER_TYPE: case FILLER_TYPE: case BYTE_ARRAY_TYPE: case FREE_SPACE_TYPE: break; #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ARRAY_TYPE: \ case FIXED_##TYPE##_ARRAY_TYPE: \ break; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE case SHARED_FUNCTION_INFO_TYPE: { SharedFunctionInfo::BodyDescriptor::IterateBody(this, v); break; } #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE if (type == ALLOCATION_SITE_TYPE) { AllocationSite::BodyDescriptor::IterateBody(this, v); } else { StructBodyDescriptor::IterateBody(this, object_size, v); } break; default: PrintF("Unknown type: %d\n", type); UNREACHABLE(); } } bool HeapNumber::HeapNumberBooleanValue() { return DoubleToBoolean(value()); } void HeapNumber::HeapNumberPrint(OStream& os) { // NOLINT os << value(); } String* JSReceiver::class_name() { if (IsJSFunction() || IsJSFunctionProxy()) { return GetHeap()->Function_string(); } if (map()->constructor()->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(map()->constructor()); return String::cast(constructor->shared()->instance_class_name()); } // If the constructor is not present, return "Object". return GetHeap()->Object_string(); } String* Map::constructor_name() { if (constructor()->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(this->constructor()); String* name = String::cast(constructor->shared()->name()); if (name->length() > 0) return name; String* inferred_name = constructor->shared()->inferred_name(); if (inferred_name->length() > 0) return inferred_name; Object* proto = prototype(); if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name(); } // TODO(rossberg): what about proxies? // If the constructor is not present, return "Object". return GetHeap()->Object_string(); } String* JSReceiver::constructor_name() { return map()->constructor_name(); } MaybeHandle<Map> Map::CopyWithField(Handle<Map> map, Handle<Name> name, Handle<HeapType> type, PropertyAttributes attributes, Representation representation, TransitionFlag flag) { DCHECK(DescriptorArray::kNotFound == map->instance_descriptors()->Search( *name, map->NumberOfOwnDescriptors())); // Ensure the descriptor array does not get too big. if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) { return MaybeHandle<Map>(); } Isolate* isolate = map->GetIsolate(); // Compute the new index for new field. int index = map->NextFreePropertyIndex(); if (map->instance_type() == JS_CONTEXT_EXTENSION_OBJECT_TYPE) { representation = Representation::Tagged(); type = HeapType::Any(isolate); } FieldDescriptor new_field_desc(name, index, type, attributes, representation); Handle<Map> new_map = Map::CopyAddDescriptor(map, &new_field_desc, flag); int unused_property_fields = new_map->unused_property_fields() - 1; if (unused_property_fields < 0) { unused_property_fields += JSObject::kFieldsAdded; } new_map->set_unused_property_fields(unused_property_fields); return new_map; } MaybeHandle<Map> Map::CopyWithConstant(Handle<Map> map, Handle<Name> name, Handle<Object> constant, PropertyAttributes attributes, TransitionFlag flag) { // Ensure the descriptor array does not get too big. if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) { return MaybeHandle<Map>(); } // Allocate new instance descriptors with (name, constant) added. ConstantDescriptor new_constant_desc(name, constant, attributes); return Map::CopyAddDescriptor(map, &new_constant_desc, flag); } void JSObject::AddSlowProperty(Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes) { DCHECK(!object->HasFastProperties()); Isolate* isolate = object->GetIsolate(); Handle<NameDictionary> dict(object->property_dictionary()); if (object->IsGlobalObject()) { // In case name is an orphaned property reuse the cell. int entry = dict->FindEntry(name); if (entry != NameDictionary::kNotFound) { Handle<PropertyCell> cell(PropertyCell::cast(dict->ValueAt(entry))); PropertyCell::SetValueInferType(cell, value); // Assign an enumeration index to the property and update // SetNextEnumerationIndex. int index = dict->NextEnumerationIndex(); PropertyDetails details = PropertyDetails(attributes, NORMAL, index); dict->SetNextEnumerationIndex(index + 1); dict->SetEntry(entry, name, cell, details); return; } Handle<PropertyCell> cell = isolate->factory()->NewPropertyCell(value); PropertyCell::SetValueInferType(cell, value); value = cell; } PropertyDetails details = PropertyDetails(attributes, NORMAL, 0); Handle<NameDictionary> result = NameDictionary::Add(dict, name, value, details); if (*dict != *result) object->set_properties(*result); } Context* JSObject::GetCreationContext() { Object* constructor = this->map()->constructor(); JSFunction* function; if (!constructor->IsJSFunction()) { // Functions have null as a constructor, // but any JSFunction knows its context immediately. function = JSFunction::cast(this); } else { function = JSFunction::cast(constructor); } return function->context()->native_context(); } void JSObject::EnqueueChangeRecord(Handle<JSObject> object, const char* type_str, Handle<Name> name, Handle<Object> old_value) { DCHECK(!object->IsJSGlobalProxy()); DCHECK(!object->IsJSGlobalObject()); Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle<String> type = isolate->factory()->InternalizeUtf8String(type_str); Handle<Object> args[] = { type, object, name, old_value }; int argc = name.is_null() ? 2 : old_value->IsTheHole() ? 3 : 4; Execution::Call(isolate, Handle<JSFunction>(isolate->observers_notify_change()), isolate->factory()->undefined_value(), argc, args).Assert(); } const char* Representation::Mnemonic() const { switch (kind_) { case kNone: return "v"; case kTagged: return "t"; case kSmi: return "s"; case kDouble: return "d"; case kInteger32: return "i"; case kHeapObject: return "h"; case kExternal: return "x"; default: UNREACHABLE(); return NULL; } } bool Map::InstancesNeedRewriting(Map* target, int target_number_of_fields, int target_inobject, int target_unused, int* old_number_of_fields) { // If fields were added (or removed), rewrite the instance. *old_number_of_fields = NumberOfFields(); DCHECK(target_number_of_fields >= *old_number_of_fields); if (target_number_of_fields != *old_number_of_fields) return true; // If smi descriptors were replaced by double descriptors, rewrite. DescriptorArray* old_desc = instance_descriptors(); DescriptorArray* new_desc = target->instance_descriptors(); int limit = NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { if (new_desc->GetDetails(i).representation().IsDouble() != old_desc->GetDetails(i).representation().IsDouble()) { return true; } } // If no fields were added, and no inobject properties were removed, setting // the map is sufficient. if (target_inobject == inobject_properties()) return false; // In-object slack tracking may have reduced the object size of the new map. // In that case, succeed if all existing fields were inobject, and they still // fit within the new inobject size. DCHECK(target_inobject < inobject_properties()); if (target_number_of_fields <= target_inobject) { DCHECK(target_number_of_fields + target_unused == target_inobject); return false; } // Otherwise, properties will need to be moved to the backing store. return true; } void Map::ConnectElementsTransition(Handle<Map> parent, Handle<Map> child) { Isolate* isolate = parent->GetIsolate(); Handle<Name> name = isolate->factory()->elements_transition_symbol(); ConnectTransition(parent, child, name, FULL_TRANSITION); } void JSObject::MigrateToMap(Handle<JSObject> object, Handle<Map> new_map) { if (object->map() == *new_map) return; if (object->HasFastProperties()) { if (!new_map->is_dictionary_map()) { Handle<Map> old_map(object->map()); MigrateFastToFast(object, new_map); if (old_map->is_prototype_map()) { // Clear out the old descriptor array to avoid problems to sharing // the descriptor array without using an explicit. old_map->InitializeDescriptors( old_map->GetHeap()->empty_descriptor_array()); // Ensure that no transition was inserted for prototype migrations. DCHECK(!old_map->HasTransitionArray()); DCHECK(new_map->GetBackPointer()->IsUndefined()); } } else { MigrateFastToSlow(object, new_map, 0); } } else { // For slow-to-fast migrations JSObject::TransformToFastProperties() // must be used instead. CHECK(new_map->is_dictionary_map()); // Slow-to-slow migration is trivial. object->set_map(*new_map); } } // To migrate a fast instance to a fast map: // - First check whether the instance needs to be rewritten. If not, simply // change the map. // - Otherwise, allocate a fixed array large enough to hold all fields, in // addition to unused space. // - Copy all existing properties in, in the following order: backing store // properties, unused fields, inobject properties. // - If all allocation succeeded, commit the state atomically: // * Copy inobject properties from the backing store back into the object. // * Trim the difference in instance size of the object. This also cleanly // frees inobject properties that moved to the backing store. // * If there are properties left in the backing store, trim of the space used // to temporarily store the inobject properties. // * If there are properties left in the backing store, install the backing // store. void JSObject::MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map) { Isolate* isolate = object->GetIsolate(); Handle<Map> old_map(object->map()); int old_number_of_fields; int number_of_fields = new_map->NumberOfFields(); int inobject = new_map->inobject_properties(); int unused = new_map->unused_property_fields(); // Nothing to do if no functions were converted to fields and no smis were // converted to doubles. if (!old_map->InstancesNeedRewriting(*new_map, number_of_fields, inobject, unused, &old_number_of_fields)) { object->synchronized_set_map(*new_map); return; } int total_size = number_of_fields + unused; int external = total_size - inobject; if (number_of_fields != old_number_of_fields && new_map->GetBackPointer() == *old_map) { PropertyDetails details = new_map->GetLastDescriptorDetails(); if (old_map->unused_property_fields() > 0) { if (details.representation().IsDouble()) { Handle<Object> value = isolate->factory()->NewHeapNumber(0, MUTABLE); FieldIndex index = FieldIndex::ForDescriptor(*new_map, new_map->LastAdded()); object->FastPropertyAtPut(index, *value); } object->synchronized_set_map(*new_map); return; } DCHECK(number_of_fields == old_number_of_fields + 1); // This migration is a transition from a map that has run out out property // space. Therefore it could be done by extending the backing store. Handle<FixedArray> old_storage = handle(object->properties(), isolate); Handle<FixedArray> new_storage = FixedArray::CopySize(old_storage, external); // Properly initialize newly added property. Handle<Object> value; if (details.representation().IsDouble()) { value = isolate->factory()->NewHeapNumber(0, MUTABLE); } else { value = isolate->factory()->uninitialized_value(); } DCHECK(details.type() == FIELD); int target_index = details.field_index() - inobject; DCHECK(target_index >= 0); // Must be a backing store index. new_storage->set(target_index, *value); // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; // Set the new property value and do the map transition. object->set_properties(*new_storage); object->synchronized_set_map(*new_map); return; } Handle<FixedArray> array = isolate->factory()->NewFixedArray(total_size); Handle<DescriptorArray> old_descriptors(old_map->instance_descriptors()); Handle<DescriptorArray> new_descriptors(new_map->instance_descriptors()); int old_nof = old_map->NumberOfOwnDescriptors(); int new_nof = new_map->NumberOfOwnDescriptors(); // This method only supports generalizing instances to at least the same // number of properties. DCHECK(old_nof <= new_nof); for (int i = 0; i < old_nof; i++) { PropertyDetails details = new_descriptors->GetDetails(i); if (details.type() != FIELD) continue; PropertyDetails old_details = old_descriptors->GetDetails(i); if (old_details.type() == CALLBACKS) { DCHECK(details.representation().IsTagged()); continue; } DCHECK(old_details.type() == CONSTANT || old_details.type() == FIELD); Object* raw_value = old_details.type() == CONSTANT ? old_descriptors->GetValue(i) : object->RawFastPropertyAt(FieldIndex::ForDescriptor(*old_map, i)); Handle<Object> value(raw_value, isolate); if (!old_details.representation().IsDouble() && details.representation().IsDouble()) { if (old_details.representation().IsNone()) { value = handle(Smi::FromInt(0), isolate); } value = Object::NewStorageFor(isolate, value, details.representation()); } else if (old_details.representation().IsDouble() && !details.representation().IsDouble()) { value = Object::WrapForRead(isolate, value, old_details.representation()); } DCHECK(!(details.representation().IsDouble() && value->IsSmi())); int target_index = new_descriptors->GetFieldIndex(i) - inobject; if (target_index < 0) target_index += total_size; array->set(target_index, *value); } for (int i = old_nof; i < new_nof; i++) { PropertyDetails details = new_descriptors->GetDetails(i); if (details.type() != FIELD) continue; Handle<Object> value; if (details.representation().IsDouble()) { value = isolate->factory()->NewHeapNumber(0, MUTABLE); } else { value = isolate->factory()->uninitialized_value(); } int target_index = new_descriptors->GetFieldIndex(i) - inobject; if (target_index < 0) target_index += total_size; array->set(target_index, *value); } // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; // Copy (real) inobject properties. If necessary, stop at number_of_fields to // avoid overwriting |one_pointer_filler_map|. int limit = Min(inobject, number_of_fields); for (int i = 0; i < limit; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i); object->FastPropertyAtPut(index, array->get(external + i)); } Heap* heap = isolate->heap(); // If there are properties in the new backing store, trim it to the correct // size and install the backing store into the object. if (external > 0) { heap->RightTrimFixedArray<Heap::FROM_MUTATOR>(*array, inobject); object->set_properties(*array); } // Create filler object past the new instance size. int new_instance_size = new_map->instance_size(); int instance_size_delta = old_map->instance_size() - new_instance_size; DCHECK(instance_size_delta >= 0); if (instance_size_delta > 0) { Address address = object->address(); heap->CreateFillerObjectAt( address + new_instance_size, instance_size_delta); heap->AdjustLiveBytes(address, -instance_size_delta, Heap::FROM_MUTATOR); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. object->synchronized_set_map(*new_map); } void JSObject::GeneralizeFieldRepresentation(Handle<JSObject> object, int modify_index, Representation new_representation, Handle<HeapType> new_field_type) { Handle<Map> new_map = Map::GeneralizeRepresentation( handle(object->map()), modify_index, new_representation, new_field_type, FORCE_FIELD); MigrateToMap(object, new_map); } int Map::NumberOfFields() { DescriptorArray* descriptors = instance_descriptors(); int result = 0; for (int i = 0; i < NumberOfOwnDescriptors(); i++) { if (descriptors->GetDetails(i).type() == FIELD) result++; } return result; } Handle<Map> Map::CopyGeneralizeAllRepresentations(Handle<Map> map, int modify_index, StoreMode store_mode, PropertyAttributes attributes, const char* reason) { Isolate* isolate = map->GetIsolate(); Handle<Map> new_map = Copy(map); DescriptorArray* descriptors = new_map->instance_descriptors(); int length = descriptors->number_of_descriptors(); for (int i = 0; i < length; i++) { descriptors->SetRepresentation(i, Representation::Tagged()); if (descriptors->GetDetails(i).type() == FIELD) { descriptors->SetValue(i, HeapType::Any()); } } // Unless the instance is being migrated, ensure that modify_index is a field. PropertyDetails details = descriptors->GetDetails(modify_index); if (store_mode == FORCE_FIELD && (details.type() != FIELD || details.attributes() != attributes)) { int field_index = details.type() == FIELD ? details.field_index() : new_map->NumberOfFields(); FieldDescriptor d(handle(descriptors->GetKey(modify_index), isolate), field_index, attributes, Representation::Tagged()); descriptors->Replace(modify_index, &d); if (details.type() != FIELD) { int unused_property_fields = new_map->unused_property_fields() - 1; if (unused_property_fields < 0) { unused_property_fields += JSObject::kFieldsAdded; } new_map->set_unused_property_fields(unused_property_fields); } } else { DCHECK(details.attributes() == attributes); } if (FLAG_trace_generalization) { HeapType* field_type = (details.type() == FIELD) ? map->instance_descriptors()->GetFieldType(modify_index) : NULL; map->PrintGeneralization(stdout, reason, modify_index, new_map->NumberOfOwnDescriptors(), new_map->NumberOfOwnDescriptors(), details.type() == CONSTANT && store_mode == FORCE_FIELD, details.representation(), Representation::Tagged(), field_type, HeapType::Any()); } return new_map; } // static Handle<Map> Map::CopyGeneralizeAllRepresentations(Handle<Map> map, int modify_index, StoreMode store_mode, const char* reason) { PropertyDetails details = map->instance_descriptors()->GetDetails(modify_index); return CopyGeneralizeAllRepresentations(map, modify_index, store_mode, details.attributes(), reason); } void Map::DeprecateTransitionTree() { if (is_deprecated()) return; if (HasTransitionArray()) { TransitionArray* transitions = this->transitions(); for (int i = 0; i < transitions->number_of_transitions(); i++) { transitions->GetTarget(i)->DeprecateTransitionTree(); } } deprecate(); dependent_code()->DeoptimizeDependentCodeGroup( GetIsolate(), DependentCode::kTransitionGroup); NotifyLeafMapLayoutChange(); } // Invalidates a transition target at |key|, and installs |new_descriptors| over // the current instance_descriptors to ensure proper sharing of descriptor // arrays. void Map::DeprecateTarget(Name* key, DescriptorArray* new_descriptors) { if (HasTransitionArray()) { TransitionArray* transitions = this->transitions(); int transition = transitions->Search(key); if (transition != TransitionArray::kNotFound) { transitions->GetTarget(transition)->DeprecateTransitionTree(); } } // Don't overwrite the empty descriptor array. if (NumberOfOwnDescriptors() == 0) return; DescriptorArray* to_replace = instance_descriptors(); Map* current = this; GetHeap()->incremental_marking()->RecordWrites(to_replace); while (current->instance_descriptors() == to_replace) { current->SetEnumLength(kInvalidEnumCacheSentinel); current->set_instance_descriptors(new_descriptors); Object* next = current->GetBackPointer(); if (next->IsUndefined()) break; current = Map::cast(next); } set_owns_descriptors(false); } Map* Map::FindRootMap() { Map* result = this; while (true) { Object* back = result->GetBackPointer(); if (back->IsUndefined()) return result; result = Map::cast(back); } } Map* Map::FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors) { DisallowHeapAllocation no_allocation; // This can only be called on roots of transition trees. DCHECK(GetBackPointer()->IsUndefined()); Map* current = this; for (int i = verbatim; i < length; i++) { if (!current->HasTransitionArray()) break; Name* name = descriptors->GetKey(i); TransitionArray* transitions = current->transitions(); int transition = transitions->Search(name); if (transition == TransitionArray::kNotFound) break; Map* next = transitions->GetTarget(transition); DescriptorArray* next_descriptors = next->instance_descriptors(); PropertyDetails details = descriptors->GetDetails(i); PropertyDetails next_details = next_descriptors->GetDetails(i); if (details.type() != next_details.type()) break; if (details.attributes() != next_details.attributes()) break; if (!details.representation().Equals(next_details.representation())) break; if (next_details.type() == FIELD) { if (!descriptors->GetFieldType(i)->NowIs( next_descriptors->GetFieldType(i))) break; } else { if (descriptors->GetValue(i) != next_descriptors->GetValue(i)) break; } current = next; } return current; } Map* Map::FindFieldOwner(int descriptor) { DisallowHeapAllocation no_allocation; DCHECK_EQ(FIELD, instance_descriptors()->GetDetails(descriptor).type()); Map* result = this; while (true) { Object* back = result->GetBackPointer(); if (back->IsUndefined()) break; Map* parent = Map::cast(back); if (parent->NumberOfOwnDescriptors() <= descriptor) break; result = parent; } return result; } void Map::UpdateFieldType(int descriptor, Handle<Name> name, Handle<HeapType> new_type) { DisallowHeapAllocation no_allocation; PropertyDetails details = instance_descriptors()->GetDetails(descriptor); if (details.type() != FIELD) return; if (HasTransitionArray()) { TransitionArray* transitions = this->transitions(); for (int i = 0; i < transitions->number_of_transitions(); ++i) { transitions->GetTarget(i)->UpdateFieldType(descriptor, name, new_type); } } // Skip if already updated the shared descriptor. if (instance_descriptors()->GetFieldType(descriptor) == *new_type) return; FieldDescriptor d(name, instance_descriptors()->GetFieldIndex(descriptor), new_type, details.attributes(), details.representation()); instance_descriptors()->Replace(descriptor, &d); } // static Handle<HeapType> Map::GeneralizeFieldType(Handle<HeapType> type1, Handle<HeapType> type2, Isolate* isolate) { static const int kMaxClassesPerFieldType = 5; if (type1->NowIs(type2)) return type2; if (type2->NowIs(type1)) return type1; if (type1->NowStable() && type2->NowStable()) { Handle<HeapType> type = HeapType::Union(type1, type2, isolate); if (type->NumClasses() <= kMaxClassesPerFieldType) { DCHECK(type->NowStable()); DCHECK(type1->NowIs(type)); DCHECK(type2->NowIs(type)); return type; } } return HeapType::Any(isolate); } // static void Map::GeneralizeFieldType(Handle<Map> map, int modify_index, Handle<HeapType> new_field_type) { Isolate* isolate = map->GetIsolate(); // Check if we actually need to generalize the field type at all. Handle<HeapType> old_field_type( map->instance_descriptors()->GetFieldType(modify_index), isolate); if (new_field_type->NowIs(old_field_type)) { DCHECK(Map::GeneralizeFieldType(old_field_type, new_field_type, isolate)->NowIs(old_field_type)); return; } // Determine the field owner. Handle<Map> field_owner(map->FindFieldOwner(modify_index), isolate); Handle<DescriptorArray> descriptors( field_owner->instance_descriptors(), isolate); DCHECK_EQ(*old_field_type, descriptors->GetFieldType(modify_index)); // Determine the generalized new field type. new_field_type = Map::GeneralizeFieldType( old_field_type, new_field_type, isolate); PropertyDetails details = descriptors->GetDetails(modify_index); Handle<Name> name(descriptors->GetKey(modify_index)); field_owner->UpdateFieldType(modify_index, name, new_field_type); field_owner->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kFieldTypeGroup); if (FLAG_trace_generalization) { map->PrintGeneralization( stdout, "field type generalization", modify_index, map->NumberOfOwnDescriptors(), map->NumberOfOwnDescriptors(), false, details.representation(), details.representation(), *old_field_type, *new_field_type); } } // Generalize the representation of the descriptor at |modify_index|. // This method rewrites the transition tree to reflect the new change. To avoid // high degrees over polymorphism, and to stabilize quickly, on every rewrite // the new type is deduced by merging the current type with any potential new // (partial) version of the type in the transition tree. // To do this, on each rewrite: // - Search the root of the transition tree using FindRootMap. // - Find |target_map|, the newest matching version of this map using the keys // in the |old_map|'s descriptor array to walk the transition tree. // - Merge/generalize the descriptor array of the |old_map| and |target_map|. // - Generalize the |modify_index| descriptor using |new_representation| and // |new_field_type|. // - Walk the tree again starting from the root towards |target_map|. Stop at // |split_map|, the first map who's descriptor array does not match the merged // descriptor array. // - If |target_map| == |split_map|, |target_map| is in the expected state. // Return it. // - Otherwise, invalidate the outdated transition target from |target_map|, and // replace its transition tree with a new branch for the updated descriptors. Handle<Map> Map::GeneralizeRepresentation(Handle<Map> old_map, int modify_index, Representation new_representation, Handle<HeapType> new_field_type, StoreMode store_mode) { Isolate* isolate = old_map->GetIsolate(); Handle<DescriptorArray> old_descriptors( old_map->instance_descriptors(), isolate); int old_nof = old_map->NumberOfOwnDescriptors(); PropertyDetails old_details = old_descriptors->GetDetails(modify_index); Representation old_representation = old_details.representation(); // It's fine to transition from None to anything but double without any // modification to the object, because the default uninitialized value for // representation None can be overwritten by both smi and tagged values. // Doubles, however, would require a box allocation. if (old_representation.IsNone() && !new_representation.IsNone() && !new_representation.IsDouble()) { DCHECK(old_details.type() == FIELD); DCHECK(old_descriptors->GetFieldType(modify_index)->NowIs( HeapType::None())); if (FLAG_trace_generalization) { old_map->PrintGeneralization( stdout, "uninitialized field", modify_index, old_map->NumberOfOwnDescriptors(), old_map->NumberOfOwnDescriptors(), false, old_representation, new_representation, old_descriptors->GetFieldType(modify_index), *new_field_type); } old_descriptors->SetRepresentation(modify_index, new_representation); old_descriptors->SetValue(modify_index, *new_field_type); return old_map; } // Check the state of the root map. Handle<Map> root_map(old_map->FindRootMap(), isolate); if (!old_map->EquivalentToForTransition(*root_map)) { return CopyGeneralizeAllRepresentations( old_map, modify_index, store_mode, "not equivalent"); } int root_nof = root_map->NumberOfOwnDescriptors(); if (modify_index < root_nof) { PropertyDetails old_details = old_descriptors->GetDetails(modify_index); if ((old_details.type() != FIELD && store_mode == FORCE_FIELD) || (old_details.type() == FIELD && (!new_field_type->NowIs(old_descriptors->GetFieldType(modify_index)) || !new_representation.fits_into(old_details.representation())))) { return CopyGeneralizeAllRepresentations( old_map, modify_index, store_mode, "root modification"); } } Handle<Map> target_map = root_map; for (int i = root_nof; i < old_nof; ++i) { int j = target_map->SearchTransition(old_descriptors->GetKey(i)); if (j == TransitionArray::kNotFound) break; Handle<Map> tmp_map(target_map->GetTransition(j), isolate); Handle<DescriptorArray> tmp_descriptors = handle( tmp_map->instance_descriptors(), isolate); // Check if target map is incompatible. PropertyDetails old_details = old_descriptors->GetDetails(i); PropertyDetails tmp_details = tmp_descriptors->GetDetails(i); PropertyType old_type = old_details.type(); PropertyType tmp_type = tmp_details.type(); if (tmp_details.attributes() != old_details.attributes() || ((tmp_type == CALLBACKS || old_type == CALLBACKS) && (tmp_type != old_type || tmp_descriptors->GetValue(i) != old_descriptors->GetValue(i)))) { return CopyGeneralizeAllRepresentations( old_map, modify_index, store_mode, "incompatible"); } Representation old_representation = old_details.representation(); Representation tmp_representation = tmp_details.representation(); if (!old_representation.fits_into(tmp_representation) || (!new_representation.fits_into(tmp_representation) && modify_index == i)) { break; } if (tmp_type == FIELD) { // Generalize the field type as necessary. Handle<HeapType> old_field_type = (old_type == FIELD) ? handle(old_descriptors->GetFieldType(i), isolate) : old_descriptors->GetValue(i)->OptimalType( isolate, tmp_representation); if (modify_index == i) { old_field_type = GeneralizeFieldType( new_field_type, old_field_type, isolate); } GeneralizeFieldType(tmp_map, i, old_field_type); } else if (tmp_type == CONSTANT) { if (old_type != CONSTANT || old_descriptors->GetConstant(i) != tmp_descriptors->GetConstant(i)) { break; } } else { DCHECK_EQ(tmp_type, old_type); DCHECK_EQ(tmp_descriptors->GetValue(i), old_descriptors->GetValue(i)); } target_map = tmp_map; } // Directly change the map if the target map is more general. Handle<DescriptorArray> target_descriptors( target_map->instance_descriptors(), isolate); int target_nof = target_map->NumberOfOwnDescriptors(); if (target_nof == old_nof && (store_mode != FORCE_FIELD || target_descriptors->GetDetails(modify_index).type() == FIELD)) { DCHECK(modify_index < target_nof); DCHECK(new_representation.fits_into( target_descriptors->GetDetails(modify_index).representation())); DCHECK(target_descriptors->GetDetails(modify_index).type() != FIELD || new_field_type->NowIs( target_descriptors->GetFieldType(modify_index))); return target_map; } // Find the last compatible target map in the transition tree. for (int i = target_nof; i < old_nof; ++i) { int j = target_map->SearchTransition(old_descriptors->GetKey(i)); if (j == TransitionArray::kNotFound) break; Handle<Map> tmp_map(target_map->GetTransition(j), isolate); Handle<DescriptorArray> tmp_descriptors( tmp_map->instance_descriptors(), isolate); // Check if target map is compatible. PropertyDetails old_details = old_descriptors->GetDetails(i); PropertyDetails tmp_details = tmp_descriptors->GetDetails(i); if (tmp_details.attributes() != old_details.attributes() || ((tmp_details.type() == CALLBACKS || old_details.type() == CALLBACKS) && (tmp_details.type() != old_details.type() || tmp_descriptors->GetValue(i) != old_descriptors->GetValue(i)))) { return CopyGeneralizeAllRepresentations( old_map, modify_index, store_mode, "incompatible"); } target_map = tmp_map; } target_nof = target_map->NumberOfOwnDescriptors(); target_descriptors = handle(target_map->instance_descriptors(), isolate); // Allocate a new descriptor array large enough to hold the required // descriptors, with minimally the exact same size as the old descriptor // array. int new_slack = Max( old_nof, old_descriptors->number_of_descriptors()) - old_nof; Handle<DescriptorArray> new_descriptors = DescriptorArray::Allocate( isolate, old_nof, new_slack); DCHECK(new_descriptors->length() > target_descriptors->length() || new_descriptors->NumberOfSlackDescriptors() > 0 || new_descriptors->number_of_descriptors() == old_descriptors->number_of_descriptors()); DCHECK(new_descriptors->number_of_descriptors() == old_nof); // 0 -> |root_nof| int current_offset = 0; for (int i = 0; i < root_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); if (old_details.type() == FIELD) current_offset++; Descriptor d(handle(old_descriptors->GetKey(i), isolate), handle(old_descriptors->GetValue(i), isolate), old_details); new_descriptors->Set(i, &d); } // |root_nof| -> |target_nof| for (int i = root_nof; i < target_nof; ++i) { Handle<Name> target_key(target_descriptors->GetKey(i), isolate); PropertyDetails old_details = old_descriptors->GetDetails(i); PropertyDetails target_details = target_descriptors->GetDetails(i); target_details = target_details.CopyWithRepresentation( old_details.representation().generalize( target_details.representation())); if (modify_index == i) { target_details = target_details.CopyWithRepresentation( new_representation.generalize(target_details.representation())); } DCHECK_EQ(old_details.attributes(), target_details.attributes()); if (old_details.type() == FIELD || target_details.type() == FIELD || (modify_index == i && store_mode == FORCE_FIELD) || (target_descriptors->GetValue(i) != old_descriptors->GetValue(i))) { Handle<HeapType> old_field_type = (old_details.type() == FIELD) ? handle(old_descriptors->GetFieldType(i), isolate) : old_descriptors->GetValue(i)->OptimalType( isolate, target_details.representation()); Handle<HeapType> target_field_type = (target_details.type() == FIELD) ? handle(target_descriptors->GetFieldType(i), isolate) : target_descriptors->GetValue(i)->OptimalType( isolate, target_details.representation()); target_field_type = GeneralizeFieldType( target_field_type, old_field_type, isolate); if (modify_index == i) { target_field_type = GeneralizeFieldType( target_field_type, new_field_type, isolate); } FieldDescriptor d(target_key, current_offset++, target_field_type, target_details.attributes(), target_details.representation()); new_descriptors->Set(i, &d); } else { DCHECK_NE(FIELD, target_details.type()); Descriptor d(target_key, handle(target_descriptors->GetValue(i), isolate), target_details); new_descriptors->Set(i, &d); } } // |target_nof| -> |old_nof| for (int i = target_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); Handle<Name> old_key(old_descriptors->GetKey(i), isolate); if (modify_index == i) { old_details = old_details.CopyWithRepresentation( new_representation.generalize(old_details.representation())); } if (old_details.type() == FIELD) { Handle<HeapType> old_field_type( old_descriptors->GetFieldType(i), isolate); if (modify_index == i) { old_field_type = GeneralizeFieldType( old_field_type, new_field_type, isolate); } FieldDescriptor d(old_key, current_offset++, old_field_type, old_details.attributes(), old_details.representation()); new_descriptors->Set(i, &d); } else { DCHECK(old_details.type() == CONSTANT || old_details.type() == CALLBACKS); if (modify_index == i && store_mode == FORCE_FIELD) { FieldDescriptor d(old_key, current_offset++, GeneralizeFieldType( old_descriptors->GetValue(i)->OptimalType( isolate, old_details.representation()), new_field_type, isolate), old_details.attributes(), old_details.representation()); new_descriptors->Set(i, &d); } else { DCHECK_NE(FIELD, old_details.type()); Descriptor d(old_key, handle(old_descriptors->GetValue(i), isolate), old_details); new_descriptors->Set(i, &d); } } } new_descriptors->Sort(); DCHECK(store_mode != FORCE_FIELD || new_descriptors->GetDetails(modify_index).type() == FIELD); Handle<Map> split_map(root_map->FindLastMatchMap( root_nof, old_nof, *new_descriptors), isolate); int split_nof = split_map->NumberOfOwnDescriptors(); DCHECK_NE(old_nof, split_nof); split_map->DeprecateTarget( old_descriptors->GetKey(split_nof), *new_descriptors); if (FLAG_trace_generalization) { PropertyDetails old_details = old_descriptors->GetDetails(modify_index); PropertyDetails new_details = new_descriptors->GetDetails(modify_index); Handle<HeapType> old_field_type = (old_details.type() == FIELD) ? handle(old_descriptors->GetFieldType(modify_index), isolate) : HeapType::Constant(handle(old_descriptors->GetValue(modify_index), isolate), isolate); Handle<HeapType> new_field_type = (new_details.type() == FIELD) ? handle(new_descriptors->GetFieldType(modify_index), isolate) : HeapType::Constant(handle(new_descriptors->GetValue(modify_index), isolate), isolate); old_map->PrintGeneralization( stdout, "", modify_index, split_nof, old_nof, old_details.type() == CONSTANT && store_mode == FORCE_FIELD, old_details.representation(), new_details.representation(), *old_field_type, *new_field_type); } // Add missing transitions. Handle<Map> new_map = split_map; for (int i = split_nof; i < old_nof; ++i) { new_map = CopyInstallDescriptors(new_map, i, new_descriptors); } new_map->set_owns_descriptors(true); return new_map; } // Generalize the representation of all FIELD descriptors. Handle<Map> Map::GeneralizeAllFieldRepresentations( Handle<Map> map) { Handle<DescriptorArray> descriptors(map->instance_descriptors()); for (int i = 0; i < map->NumberOfOwnDescriptors(); ++i) { if (descriptors->GetDetails(i).type() == FIELD) { map = GeneralizeRepresentation(map, i, Representation::Tagged(), HeapType::Any(map->GetIsolate()), FORCE_FIELD); } } return map; } // static MaybeHandle<Map> Map::TryUpdate(Handle<Map> map) { Handle<Map> proto_map(map); while (proto_map->prototype()->IsJSObject()) { Handle<JSObject> holder(JSObject::cast(proto_map->prototype())); proto_map = Handle<Map>(holder->map()); if (proto_map->is_deprecated() && JSObject::TryMigrateInstance(holder)) { proto_map = Handle<Map>(holder->map()); } } return TryUpdateInternal(map); } // static Handle<Map> Map::Update(Handle<Map> map) { if (!map->is_deprecated()) return map; return GeneralizeRepresentation(map, 0, Representation::None(), HeapType::None(map->GetIsolate()), ALLOW_AS_CONSTANT); } // static MaybeHandle<Map> Map::TryUpdateInternal(Handle<Map> old_map) { DisallowHeapAllocation no_allocation; DisallowDeoptimization no_deoptimization(old_map->GetIsolate()); if (!old_map->is_deprecated()) return old_map; // Check the state of the root map. Map* root_map = old_map->FindRootMap(); if (!old_map->EquivalentToForTransition(root_map)) return MaybeHandle<Map>(); int root_nof = root_map->NumberOfOwnDescriptors(); int old_nof = old_map->NumberOfOwnDescriptors(); DescriptorArray* old_descriptors = old_map->instance_descriptors(); Map* new_map = root_map; for (int i = root_nof; i < old_nof; ++i) { int j = new_map->SearchTransition(old_descriptors->GetKey(i)); if (j == TransitionArray::kNotFound) return MaybeHandle<Map>(); new_map = new_map->GetTransition(j); DescriptorArray* new_descriptors = new_map->instance_descriptors(); PropertyDetails new_details = new_descriptors->GetDetails(i); PropertyDetails old_details = old_descriptors->GetDetails(i); if (old_details.attributes() != new_details.attributes() || !old_details.representation().fits_into(new_details.representation())) { return MaybeHandle<Map>(); } PropertyType new_type = new_details.type(); PropertyType old_type = old_details.type(); Object* new_value = new_descriptors->GetValue(i); Object* old_value = old_descriptors->GetValue(i); switch (new_type) { case FIELD: if ((old_type == FIELD && !HeapType::cast(old_value)->NowIs(HeapType::cast(new_value))) || (old_type == CONSTANT && !HeapType::cast(new_value)->NowContains(old_value)) || (old_type == CALLBACKS && !HeapType::Any()->Is(HeapType::cast(new_value)))) { return MaybeHandle<Map>(); } break; case CONSTANT: case CALLBACKS: if (old_type != new_type || old_value != new_value) { return MaybeHandle<Map>(); } break; case NORMAL: UNREACHABLE(); } } if (new_map->NumberOfOwnDescriptors() != old_nof) return MaybeHandle<Map>(); return handle(new_map); } MaybeHandle<Object> JSObject::SetPropertyWithInterceptor(LookupIterator* it, Handle<Object> value) { // TODO(rossberg): Support symbols in the API. if (it->name()->IsSymbol()) return value; Handle<String> name_string = Handle<String>::cast(it->name()); Handle<JSObject> holder = it->GetHolder<JSObject>(); Handle<InterceptorInfo> interceptor(holder->GetNamedInterceptor()); if (interceptor->setter()->IsUndefined()) return MaybeHandle<Object>(); LOG(it->isolate(), ApiNamedPropertyAccess("interceptor-named-set", *holder, *name_string)); PropertyCallbackArguments args(it->isolate(), interceptor->data(), *holder, *holder); v8::NamedPropertySetterCallback setter = v8::ToCData<v8::NamedPropertySetterCallback>(interceptor->setter()); v8::Handle<v8::Value> result = args.Call( setter, v8::Utils::ToLocal(name_string), v8::Utils::ToLocal(value)); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it->isolate(), Object); if (!result.IsEmpty()) return value; return MaybeHandle<Object>(); } MaybeHandle<Object> Object::SetProperty(Handle<Object> object, Handle<Name> name, Handle<Object> value, StrictMode strict_mode, StoreFromKeyed store_mode) { LookupIterator it(object, name); return SetProperty(&it, value, strict_mode, store_mode); } MaybeHandle<Object> Object::SetProperty(LookupIterator* it, Handle<Object> value, StrictMode strict_mode, StoreFromKeyed store_mode) { // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(it->isolate()); bool done = false; for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: // TODO(verwaest): Remove the distinction. This is mostly bogus since we // don't know whether we'll want to fetch attributes or call a setter // until we find the property. if (it->HasAccess(v8::ACCESS_SET)) break; return JSObject::SetPropertyWithFailedAccessCheck(it, value, strict_mode); case LookupIterator::JSPROXY: if (it->HolderIsReceiverOrHiddenPrototype()) { return JSProxy::SetPropertyWithHandler(it->GetHolder<JSProxy>(), it->GetReceiver(), it->name(), value, strict_mode); } else { // TODO(verwaest): Use the MaybeHandle to indicate result. bool has_result = false; MaybeHandle<Object> maybe_result = JSProxy::SetPropertyViaPrototypesWithHandler( it->GetHolder<JSProxy>(), it->GetReceiver(), it->name(), value, strict_mode, &has_result); if (has_result) return maybe_result; done = true; } break; case LookupIterator::INTERCEPTOR: if (it->HolderIsReceiverOrHiddenPrototype()) { MaybeHandle<Object> maybe_result = JSObject::SetPropertyWithInterceptor(it, value); if (!maybe_result.is_null()) return maybe_result; if (it->isolate()->has_pending_exception()) return maybe_result; } else { Maybe<PropertyAttributes> maybe_attributes = JSObject::GetPropertyAttributesWithInterceptor( it->GetHolder<JSObject>(), it->GetReceiver(), it->name()); if (!maybe_attributes.has_value) return MaybeHandle<Object>(); done = maybe_attributes.value != ABSENT; if (done && (maybe_attributes.value & READ_ONLY) != 0) { return WriteToReadOnlyProperty(it, value, strict_mode); } } break; case LookupIterator::ACCESSOR: if (it->property_details().IsReadOnly()) { return WriteToReadOnlyProperty(it, value, strict_mode); } if (it->HolderIsReceiverOrHiddenPrototype() || !it->GetAccessors()->IsDeclaredAccessorInfo()) { return SetPropertyWithAccessor(it->GetReceiver(), it->name(), value, it->GetHolder<JSObject>(), it->GetAccessors(), strict_mode); } done = true; break; case LookupIterator::DATA: if (it->property_details().IsReadOnly()) { return WriteToReadOnlyProperty(it, value, strict_mode); } if (it->HolderIsReceiverOrHiddenPrototype()) { return SetDataProperty(it, value); } done = true; break; case LookupIterator::TRANSITION: done = true; break; } if (done) break; } // If the receiver is the JSGlobalObject, the store was contextual. In case // the property did not exist yet on the global object itself, we have to // throw a reference error in strict mode. if (it->GetReceiver()->IsJSGlobalObject() && strict_mode == STRICT) { Handle<Object> args[1] = {it->name()}; THROW_NEW_ERROR(it->isolate(), NewReferenceError("not_defined", HandleVector(args, 1)), Object); } return AddDataProperty(it, value, NONE, strict_mode, store_mode); } MaybeHandle<Object> Object::WriteToReadOnlyProperty(LookupIterator* it, Handle<Object> value, StrictMode strict_mode) { if (strict_mode != STRICT) return value; Handle<Object> args[] = {it->name(), it->GetReceiver()}; THROW_NEW_ERROR(it->isolate(), NewTypeError("strict_read_only_property", HandleVector(args, arraysize(args))), Object); } Handle<Object> Object::SetDataProperty(LookupIterator* it, Handle<Object> value) { // Proxies are handled on the WithHandler path. Other non-JSObjects cannot // have own properties. Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver()); // Store on the holder which may be hidden behind the receiver. DCHECK(it->HolderIsReceiverOrHiddenPrototype()); // Old value for the observation change record. // Fetch before transforming the object since the encoding may become // incompatible with what's cached in |it|. bool is_observed = receiver->map()->is_observed() && !it->name().is_identical_to(it->factory()->hidden_string()); MaybeHandle<Object> maybe_old; if (is_observed) maybe_old = it->GetDataValue(); // Possibly migrate to the most up-to-date map that will be able to store // |value| under it->name(). it->PrepareForDataProperty(value); // Write the property value. it->WriteDataValue(value); // Send the change record if there are observers. if (is_observed && !value->SameValue(*maybe_old.ToHandleChecked())) { JSObject::EnqueueChangeRecord(receiver, "update", it->name(), maybe_old.ToHandleChecked()); } return value; } MaybeHandle<Object> Object::AddDataProperty(LookupIterator* it, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, StoreFromKeyed store_mode) { DCHECK(!it->GetReceiver()->IsJSProxy()); if (!it->GetReceiver()->IsJSObject()) { // TODO(verwaest): Throw a TypeError with a more specific message. return WriteToReadOnlyProperty(it, value, strict_mode); } Handle<JSObject> receiver = it->GetStoreTarget(); // If the receiver is a JSGlobalProxy, store on the prototype (JSGlobalObject) // instead. If the prototype is Null, the proxy is detached. if (receiver->IsJSGlobalProxy()) return value; // Possibly migrate to the most up-to-date map that will be able to store // |value| under it->name() with |attributes|. it->PrepareTransitionToDataProperty(value, attributes, store_mode); if (it->state() != LookupIterator::TRANSITION) { if (strict_mode == SLOPPY) return value; Handle<Object> args[1] = {it->name()}; THROW_NEW_ERROR(it->isolate(), NewTypeError("object_not_extensible", HandleVector(args, arraysize(args))), Object); } it->ApplyTransitionToDataProperty(); // TODO(verwaest): Encapsulate dictionary handling better. if (receiver->map()->is_dictionary_map()) { // TODO(verwaest): Probably should ensure this is done beforehand. it->InternalizeName(); JSObject::AddSlowProperty(receiver, it->name(), value, attributes); } else { // Write the property value. it->WriteDataValue(value); } // Send the change record if there are observers. if (receiver->map()->is_observed() && !it->name().is_identical_to(it->factory()->hidden_string())) { JSObject::EnqueueChangeRecord(receiver, "add", it->name(), it->factory()->the_hole_value()); } return value; } MaybeHandle<Object> JSObject::SetElementWithCallbackSetterInPrototypes( Handle<JSObject> object, uint32_t index, Handle<Object> value, bool* found, StrictMode strict_mode) { Isolate *isolate = object->GetIsolate(); for (PrototypeIterator iter(isolate, object); !iter.IsAtEnd(); iter.Advance()) { if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) { return JSProxy::SetPropertyViaPrototypesWithHandler( Handle<JSProxy>::cast(PrototypeIterator::GetCurrent(iter)), object, isolate->factory()->Uint32ToString(index), // name value, strict_mode, found); } Handle<JSObject> js_proto = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); if (!js_proto->HasDictionaryElements()) { continue; } Handle<SeededNumberDictionary> dictionary(js_proto->element_dictionary()); int entry = dictionary->FindEntry(index); if (entry != SeededNumberDictionary::kNotFound) { PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS) { *found = true; Handle<Object> structure(dictionary->ValueAt(entry), isolate); return SetElementWithCallback(object, structure, index, value, js_proto, strict_mode); } } } *found = false; return isolate->factory()->the_hole_value(); } void Map::EnsureDescriptorSlack(Handle<Map> map, int slack) { // Only supports adding slack to owned descriptors. DCHECK(map->owns_descriptors()); Handle<DescriptorArray> descriptors(map->instance_descriptors()); int old_size = map->NumberOfOwnDescriptors(); if (slack <= descriptors->NumberOfSlackDescriptors()) return; Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo( descriptors, old_size, slack); if (old_size == 0) { map->set_instance_descriptors(*new_descriptors); return; } // If the source descriptors had an enum cache we copy it. This ensures // that the maps to which we push the new descriptor array back can rely // on a cache always being available once it is set. If the map has more // enumerated descriptors than available in the original cache, the cache // will be lazily replaced by the extended cache when needed. if (descriptors->HasEnumCache()) { new_descriptors->CopyEnumCacheFrom(*descriptors); } // Replace descriptors by new_descriptors in all maps that share it. map->GetHeap()->incremental_marking()->RecordWrites(*descriptors); Map* walk_map; for (Object* current = map->GetBackPointer(); !current->IsUndefined(); current = walk_map->GetBackPointer()) { walk_map = Map::cast(current); if (walk_map->instance_descriptors() != *descriptors) break; walk_map->set_instance_descriptors(*new_descriptors); } map->set_instance_descriptors(*new_descriptors); } template<class T> static int AppendUniqueCallbacks(NeanderArray* callbacks, Handle<typename T::Array> array, int valid_descriptors) { int nof_callbacks = callbacks->length(); Isolate* isolate = array->GetIsolate(); // Ensure the keys are unique names before writing them into the // instance descriptor. Since it may cause a GC, it has to be done before we // temporarily put the heap in an invalid state while appending descriptors. for (int i = 0; i < nof_callbacks; ++i) { Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i))); if (entry->name()->IsUniqueName()) continue; Handle<String> key = isolate->factory()->InternalizeString( Handle<String>(String::cast(entry->name()))); entry->set_name(*key); } // Fill in new callback descriptors. Process the callbacks from // back to front so that the last callback with a given name takes // precedence over previously added callbacks with that name. for (int i = nof_callbacks - 1; i >= 0; i--) { Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i))); Handle<Name> key(Name::cast(entry->name())); // Check if a descriptor with this name already exists before writing. if (!T::Contains(key, entry, valid_descriptors, array)) { T::Insert(key, entry, valid_descriptors, array); valid_descriptors++; } } return valid_descriptors; } struct DescriptorArrayAppender { typedef DescriptorArray Array; static bool Contains(Handle<Name> key, Handle<AccessorInfo> entry, int valid_descriptors, Handle<DescriptorArray> array) { DisallowHeapAllocation no_gc; return array->Search(*key, valid_descriptors) != DescriptorArray::kNotFound; } static void Insert(Handle<Name> key, Handle<AccessorInfo> entry, int valid_descriptors, Handle<DescriptorArray> array) { DisallowHeapAllocation no_gc; CallbacksDescriptor desc(key, entry, entry->property_attributes()); array->Append(&desc); } }; struct FixedArrayAppender { typedef FixedArray Array; static bool Contains(Handle<Name> key, Handle<AccessorInfo> entry, int valid_descriptors, Handle<FixedArray> array) { for (int i = 0; i < valid_descriptors; i++) { if (*key == AccessorInfo::cast(array->get(i))->name()) return true; } return false; } static void Insert(Handle<Name> key, Handle<AccessorInfo> entry, int valid_descriptors, Handle<FixedArray> array) { DisallowHeapAllocation no_gc; array->set(valid_descriptors, *entry); } }; void Map::AppendCallbackDescriptors(Handle<Map> map, Handle<Object> descriptors) { int nof = map->NumberOfOwnDescriptors(); Handle<DescriptorArray> array(map->instance_descriptors()); NeanderArray callbacks(descriptors); DCHECK(array->NumberOfSlackDescriptors() >= callbacks.length()); nof = AppendUniqueCallbacks<DescriptorArrayAppender>(&callbacks, array, nof); map->SetNumberOfOwnDescriptors(nof); } int AccessorInfo::AppendUnique(Handle<Object> descriptors, Handle<FixedArray> array, int valid_descriptors) { NeanderArray callbacks(descriptors); DCHECK(array->length() >= callbacks.length() + valid_descriptors); return AppendUniqueCallbacks<FixedArrayAppender>(&callbacks, array, valid_descriptors); } static bool ContainsMap(MapHandleList* maps, Handle<Map> map) { DCHECK(!map.is_null()); for (int i = 0; i < maps->length(); ++i) { if (!maps->at(i).is_null() && maps->at(i).is_identical_to(map)) return true; } return false; } template <class T> static Handle<T> MaybeNull(T* p) { if (p == NULL) return Handle<T>::null(); return Handle<T>(p); } Handle<Map> Map::FindTransitionedMap(MapHandleList* candidates) { ElementsKind kind = elements_kind(); Handle<Map> transitioned_map = Handle<Map>::null(); Handle<Map> current_map(this); bool packed = IsFastPackedElementsKind(kind); if (IsTransitionableFastElementsKind(kind)) { while (CanTransitionToMoreGeneralFastElementsKind(kind, false)) { kind = GetNextMoreGeneralFastElementsKind(kind, false); Handle<Map> maybe_transitioned_map = MaybeNull(current_map->LookupElementsTransitionMap(kind)); if (maybe_transitioned_map.is_null()) break; if (ContainsMap(candidates, maybe_transitioned_map) && (packed || !IsFastPackedElementsKind(kind))) { transitioned_map = maybe_transitioned_map; if (!IsFastPackedElementsKind(kind)) packed = false; } current_map = maybe_transitioned_map; } } return transitioned_map; } static Map* FindClosestElementsTransition(Map* map, ElementsKind to_kind) { Map* current_map = map; int target_kind = IsFastElementsKind(to_kind) || IsExternalArrayElementsKind(to_kind) ? to_kind : TERMINAL_FAST_ELEMENTS_KIND; // Support for legacy API: SetIndexedPropertiesTo{External,Pixel}Data // allows to change elements from arbitrary kind to any ExternalArray // elements kind. Satisfy its requirements, checking whether we already // have the cached transition. if (IsExternalArrayElementsKind(to_kind) && !IsFixedTypedArrayElementsKind(map->elements_kind())) { if (map->HasElementsTransition()) { Map* next_map = map->elements_transition_map(); if (next_map->elements_kind() == to_kind) return next_map; } return map; } ElementsKind kind = map->elements_kind(); while (kind != target_kind) { kind = GetNextTransitionElementsKind(kind); if (!current_map->HasElementsTransition()) return current_map; current_map = current_map->elements_transition_map(); } if (to_kind != kind && current_map->HasElementsTransition()) { DCHECK(to_kind == DICTIONARY_ELEMENTS); Map* next_map = current_map->elements_transition_map(); if (next_map->elements_kind() == to_kind) return next_map; } DCHECK(current_map->elements_kind() == target_kind); return current_map; } Map* Map::LookupElementsTransitionMap(ElementsKind to_kind) { Map* to_map = FindClosestElementsTransition(this, to_kind); if (to_map->elements_kind() == to_kind) return to_map; return NULL; } bool Map::IsMapInArrayPrototypeChain() { Isolate* isolate = GetIsolate(); if (isolate->initial_array_prototype()->map() == this) { return true; } if (isolate->initial_object_prototype()->map() == this) { return true; } return false; } static Handle<Map> AddMissingElementsTransitions(Handle<Map> map, ElementsKind to_kind) { DCHECK(IsTransitionElementsKind(map->elements_kind())); Handle<Map> current_map = map; ElementsKind kind = map->elements_kind(); if (!map->is_prototype_map()) { while (kind != to_kind && !IsTerminalElementsKind(kind)) { kind = GetNextTransitionElementsKind(kind); current_map = Map::CopyAsElementsKind(current_map, kind, INSERT_TRANSITION); } } // In case we are exiting the fast elements kind system, just add the map in // the end. if (kind != to_kind) { current_map = Map::CopyAsElementsKind( current_map, to_kind, INSERT_TRANSITION); } DCHECK(current_map->elements_kind() == to_kind); return current_map; } Handle<Map> Map::TransitionElementsTo(Handle<Map> map, ElementsKind to_kind) { ElementsKind from_kind = map->elements_kind(); if (from_kind == to_kind) return map; Isolate* isolate = map->GetIsolate(); Context* native_context = isolate->context()->native_context(); Object* maybe_array_maps = native_context->js_array_maps(); if (maybe_array_maps->IsFixedArray()) { DisallowHeapAllocation no_gc; FixedArray* array_maps = FixedArray::cast(maybe_array_maps); if (array_maps->get(from_kind) == *map) { Object* maybe_transitioned_map = array_maps->get(to_kind); if (maybe_transitioned_map->IsMap()) { return handle(Map::cast(maybe_transitioned_map)); } } } return TransitionElementsToSlow(map, to_kind); } Handle<Map> Map::TransitionElementsToSlow(Handle<Map> map, ElementsKind to_kind) { ElementsKind from_kind = map->elements_kind(); if (from_kind == to_kind) { return map; } bool allow_store_transition = // Only remember the map transition if there is not an already existing // non-matching element transition. !map->IsUndefined() && !map->is_dictionary_map() && IsTransitionElementsKind(from_kind); // Only store fast element maps in ascending generality. if (IsFastElementsKind(to_kind)) { allow_store_transition &= IsTransitionableFastElementsKind(from_kind) && IsMoreGeneralElementsKindTransition(from_kind, to_kind); } if (!allow_store_transition) { return Map::CopyAsElementsKind(map, to_kind, OMIT_TRANSITION); } return Map::AsElementsKind(map, to_kind); } // static Handle<Map> Map::AsElementsKind(Handle<Map> map, ElementsKind kind) { Handle<Map> closest_map(FindClosestElementsTransition(*map, kind)); if (closest_map->elements_kind() == kind) { return closest_map; } return AddMissingElementsTransitions(closest_map, kind); } Handle<Map> JSObject::GetElementsTransitionMap(Handle<JSObject> object, ElementsKind to_kind) { Handle<Map> map(object->map()); return Map::TransitionElementsTo(map, to_kind); } Maybe<bool> JSProxy::HasPropertyWithHandler(Handle<JSProxy> proxy, Handle<Name> name) { Isolate* isolate = proxy->GetIsolate(); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return maybe(false); Handle<Object> args[] = { name }; Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, result, CallTrap(proxy, "has", isolate->derived_has_trap(), arraysize(args), args), Maybe<bool>()); return maybe(result->BooleanValue()); } MaybeHandle<Object> JSProxy::SetPropertyWithHandler(Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name, Handle<Object> value, StrictMode strict_mode) { Isolate* isolate = proxy->GetIsolate(); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return value; Handle<Object> args[] = { receiver, name, value }; RETURN_ON_EXCEPTION( isolate, CallTrap(proxy, "set", isolate->derived_set_trap(), arraysize(args), args), Object); return value; } MaybeHandle<Object> JSProxy::SetPropertyViaPrototypesWithHandler( Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name, Handle<Object> value, StrictMode strict_mode, bool* done) { Isolate* isolate = proxy->GetIsolate(); Handle<Object> handler(proxy->handler(), isolate); // Trap might morph proxy. // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) { *done = false; return isolate->factory()->the_hole_value(); } *done = true; // except where redefined... Handle<Object> args[] = { name }; Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, CallTrap(proxy, "getPropertyDescriptor", Handle<Object>(), arraysize(args), args), Object); if (result->IsUndefined()) { *done = false; return isolate->factory()->the_hole_value(); } // Emulate [[GetProperty]] semantics for proxies. Handle<Object> argv[] = { result }; Handle<Object> desc; ASSIGN_RETURN_ON_EXCEPTION( isolate, desc, Execution::Call(isolate, isolate->to_complete_property_descriptor(), result, arraysize(argv), argv), Object); // [[GetProperty]] requires to check that all properties are configurable. Handle<String> configurable_name = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("configurable_")); Handle<Object> configurable = Object::GetProperty(desc, configurable_name).ToHandleChecked(); DCHECK(configurable->IsBoolean()); if (configurable->IsFalse()) { Handle<String> trap = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("getPropertyDescriptor")); Handle<Object> args[] = { handler, trap, name }; THROW_NEW_ERROR(isolate, NewTypeError("proxy_prop_not_configurable", HandleVector(args, arraysize(args))), Object); } DCHECK(configurable->IsTrue()); // Check for DataDescriptor. Handle<String> hasWritable_name = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("hasWritable_")); Handle<Object> hasWritable = Object::GetProperty(desc, hasWritable_name).ToHandleChecked(); DCHECK(hasWritable->IsBoolean()); if (hasWritable->IsTrue()) { Handle<String> writable_name = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("writable_")); Handle<Object> writable = Object::GetProperty(desc, writable_name).ToHandleChecked(); DCHECK(writable->IsBoolean()); *done = writable->IsFalse(); if (!*done) return isolate->factory()->the_hole_value(); if (strict_mode == SLOPPY) return value; Handle<Object> args[] = { name, receiver }; THROW_NEW_ERROR(isolate, NewTypeError("strict_read_only_property", HandleVector(args, arraysize(args))), Object); } // We have an AccessorDescriptor. Handle<String> set_name = isolate->factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("set_")); Handle<Object> setter = Object::GetProperty(desc, set_name).ToHandleChecked(); if (!setter->IsUndefined()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return SetPropertyWithDefinedSetter( receiver, Handle<JSReceiver>::cast(setter), value); } if (strict_mode == SLOPPY) return value; Handle<Object> args2[] = { name, proxy }; THROW_NEW_ERROR(isolate, NewTypeError("no_setter_in_callback", HandleVector(args2, arraysize(args2))), Object); } MaybeHandle<Object> JSProxy::DeletePropertyWithHandler( Handle<JSProxy> proxy, Handle<Name> name, DeleteMode mode) { Isolate* isolate = proxy->GetIsolate(); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return isolate->factory()->false_value(); Handle<Object> args[] = { name }; Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, CallTrap(proxy, "delete", Handle<Object>(), arraysize(args), args), Object); bool result_bool = result->BooleanValue(); if (mode == STRICT_DELETION && !result_bool) { Handle<Object> handler(proxy->handler(), isolate); Handle<String> trap_name = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("delete")); Handle<Object> args[] = { handler, trap_name }; THROW_NEW_ERROR(isolate, NewTypeError("handler_failed", HandleVector(args, arraysize(args))), Object); } return isolate->factory()->ToBoolean(result_bool); } MaybeHandle<Object> JSProxy::DeleteElementWithHandler( Handle<JSProxy> proxy, uint32_t index, DeleteMode mode) { Isolate* isolate = proxy->GetIsolate(); Handle<String> name = isolate->factory()->Uint32ToString(index); return JSProxy::DeletePropertyWithHandler(proxy, name, mode); } Maybe<PropertyAttributes> JSProxy::GetPropertyAttributesWithHandler( Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name) { Isolate* isolate = proxy->GetIsolate(); HandleScope scope(isolate); // TODO(rossberg): adjust once there is a story for symbols vs proxies. if (name->IsSymbol()) return maybe(ABSENT); Handle<Object> args[] = { name }; Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, result, proxy->CallTrap(proxy, "getPropertyDescriptor", Handle<Object>(), arraysize(args), args), Maybe<PropertyAttributes>()); if (result->IsUndefined()) return maybe(ABSENT); Handle<Object> argv[] = { result }; Handle<Object> desc; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, desc, Execution::Call(isolate, isolate->to_complete_property_descriptor(), result, arraysize(argv), argv), Maybe<PropertyAttributes>()); // Convert result to PropertyAttributes. Handle<String> enum_n = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("enumerable_")); Handle<Object> enumerable; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, enumerable, Object::GetProperty(desc, enum_n), Maybe<PropertyAttributes>()); Handle<String> conf_n = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("configurable_")); Handle<Object> configurable; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, configurable, Object::GetProperty(desc, conf_n), Maybe<PropertyAttributes>()); Handle<String> writ_n = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("writable_")); Handle<Object> writable; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, writable, Object::GetProperty(desc, writ_n), Maybe<PropertyAttributes>()); if (!writable->BooleanValue()) { Handle<String> set_n = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("set_")); Handle<Object> setter; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, setter, Object::GetProperty(desc, set_n), Maybe<PropertyAttributes>()); writable = isolate->factory()->ToBoolean(!setter->IsUndefined()); } if (configurable->IsFalse()) { Handle<Object> handler(proxy->handler(), isolate); Handle<String> trap = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("getPropertyDescriptor")); Handle<Object> args[] = { handler, trap, name }; Handle<Object> error; MaybeHandle<Object> maybe_error = isolate->factory()->NewTypeError( "proxy_prop_not_configurable", HandleVector(args, arraysize(args))); if (maybe_error.ToHandle(&error)) isolate->Throw(*error); return maybe(NONE); } int attributes = NONE; if (!enumerable->BooleanValue()) attributes |= DONT_ENUM; if (!configurable->BooleanValue()) attributes |= DONT_DELETE; if (!writable->BooleanValue()) attributes |= READ_ONLY; return maybe(static_cast<PropertyAttributes>(attributes)); } Maybe<PropertyAttributes> JSProxy::GetElementAttributeWithHandler( Handle<JSProxy> proxy, Handle<JSReceiver> receiver, uint32_t index) { Isolate* isolate = proxy->GetIsolate(); Handle<String> name = isolate->factory()->Uint32ToString(index); return GetPropertyAttributesWithHandler(proxy, receiver, name); } void JSProxy::Fix(Handle<JSProxy> proxy) { Isolate* isolate = proxy->GetIsolate(); // Save identity hash. Handle<Object> hash(proxy->GetIdentityHash(), isolate); if (proxy->IsJSFunctionProxy()) { isolate->factory()->BecomeJSFunction(proxy); // Code will be set on the JavaScript side. } else { isolate->factory()->BecomeJSObject(proxy); } DCHECK(proxy->IsJSObject()); // Inherit identity, if it was present. if (hash->IsSmi()) { JSObject::SetIdentityHash(Handle<JSObject>::cast(proxy), Handle<Smi>::cast(hash)); } } MaybeHandle<Object> JSProxy::CallTrap(Handle<JSProxy> proxy, const char* name, Handle<Object> derived, int argc, Handle<Object> argv[]) { Isolate* isolate = proxy->GetIsolate(); Handle<Object> handler(proxy->handler(), isolate); Handle<String> trap_name = isolate->factory()->InternalizeUtf8String(name); Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION( isolate, trap, Object::GetPropertyOrElement(handler, trap_name), Object); if (trap->IsUndefined()) { if (derived.is_null()) { Handle<Object> args[] = { handler, trap_name }; THROW_NEW_ERROR(isolate, NewTypeError("handler_trap_missing", HandleVector(args, arraysize(args))), Object); } trap = Handle<Object>(derived); } return Execution::Call(isolate, trap, handler, argc, argv); } void JSObject::AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map) { DCHECK(object->map()->inobject_properties() == map->inobject_properties()); ElementsKind obj_kind = object->map()->elements_kind(); ElementsKind map_kind = map->elements_kind(); if (map_kind != obj_kind) { ElementsKind to_kind = map_kind; if (IsMoreGeneralElementsKindTransition(map_kind, obj_kind) || IsDictionaryElementsKind(obj_kind)) { to_kind = obj_kind; } if (IsDictionaryElementsKind(to_kind)) { NormalizeElements(object); } else { TransitionElementsKind(object, to_kind); } map = Map::AsElementsKind(map, to_kind); } JSObject::MigrateToMap(object, map); } void JSObject::MigrateInstance(Handle<JSObject> object) { Handle<Map> original_map(object->map()); Handle<Map> map = Map::Update(original_map); map->set_migration_target(true); MigrateToMap(object, map); if (FLAG_trace_migration) { object->PrintInstanceMigration(stdout, *original_map, *map); } } // static bool JSObject::TryMigrateInstance(Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); DisallowDeoptimization no_deoptimization(isolate); Handle<Map> original_map(object->map(), isolate); Handle<Map> new_map; if (!Map::TryUpdate(original_map).ToHandle(&new_map)) { return false; } JSObject::MigrateToMap(object, new_map); if (FLAG_trace_migration) { object->PrintInstanceMigration(stdout, *original_map, object->map()); } return true; } void JSObject::MigrateToNewProperty(Handle<JSObject> object, Handle<Map> map, Handle<Object> value) { JSObject::MigrateToMap(object, map); if (map->GetLastDescriptorDetails().type() != FIELD) return; object->WriteToField(map->LastAdded(), *value); } void JSObject::WriteToField(int descriptor, Object* value) { DisallowHeapAllocation no_gc; DescriptorArray* desc = map()->instance_descriptors(); PropertyDetails details = desc->GetDetails(descriptor); DCHECK(details.type() == FIELD); FieldIndex index = FieldIndex::ForDescriptor(map(), descriptor); if (details.representation().IsDouble()) { // Nothing more to be done. if (value->IsUninitialized()) return; HeapNumber* box = HeapNumber::cast(RawFastPropertyAt(index)); DCHECK(box->IsMutableHeapNumber()); box->set_value(value->Number()); } else { FastPropertyAtPut(index, value); } } void JSObject::AddProperty(Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes) { LookupIterator it(object, name, LookupIterator::OWN_SKIP_INTERCEPTOR); CHECK_NE(LookupIterator::ACCESS_CHECK, it.state()); #ifdef DEBUG uint32_t index; DCHECK(!object->IsJSProxy()); DCHECK(!name->AsArrayIndex(&index)); Maybe<PropertyAttributes> maybe = GetPropertyAttributes(&it); DCHECK(maybe.has_value); DCHECK(!it.IsFound()); DCHECK(object->map()->is_extensible() || name.is_identical_to(it.isolate()->factory()->hidden_string())); #endif AddDataProperty(&it, value, attributes, STRICT, CERTAINLY_NOT_STORE_FROM_KEYED).Check(); } // Reconfigures a property to a data property with attributes, even if it is not // reconfigurable. MaybeHandle<Object> JSObject::SetOwnPropertyIgnoreAttributes( Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, ExecutableAccessorInfoHandling handling) { DCHECK(!value->IsTheHole()); LookupIterator it(object, name, LookupIterator::OWN_SKIP_INTERCEPTOR); bool is_observed = object->map()->is_observed() && *name != it.isolate()->heap()->hidden_string(); for (; it.IsFound(); it.Next()) { switch (it.state()) { case LookupIterator::INTERCEPTOR: case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (!it.isolate()->MayNamedAccess(object, name, v8::ACCESS_SET)) { return SetPropertyWithFailedAccessCheck(&it, value, SLOPPY); } break; case LookupIterator::ACCESSOR: { PropertyDetails details = it.property_details(); Handle<Object> old_value = it.isolate()->factory()->the_hole_value(); // Ensure the context isn't changed after calling into accessors. AssertNoContextChange ncc(it.isolate()); Handle<Object> accessors = it.GetAccessors(); if (is_observed && accessors->IsAccessorInfo()) { ASSIGN_RETURN_ON_EXCEPTION( it.isolate(), old_value, GetPropertyWithAccessor(it.GetReceiver(), it.name(), it.GetHolder<JSObject>(), accessors), Object); } // Special handling for ExecutableAccessorInfo, which behaves like a // data property. if (handling == DONT_FORCE_FIELD && accessors->IsExecutableAccessorInfo()) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( it.isolate(), result, JSObject::SetPropertyWithAccessor(it.GetReceiver(), it.name(), value, it.GetHolder<JSObject>(), accessors, STRICT), Object); DCHECK(result->SameValue(*value)); if (details.attributes() == attributes) { // Regular property update if the attributes match. if (is_observed && !old_value->SameValue(*value)) { // If we are setting the prototype of a function and are // observed, don't send change records because the prototype // handles that itself. if (!object->IsJSFunction() || !Name::Equals(it.isolate()->factory()->prototype_string(), name) || !Handle<JSFunction>::cast(object)->should_have_prototype()) { EnqueueChangeRecord(object, "update", name, old_value); } } return value; } // Reconfigure the accessor if attributes mismatch. Handle<ExecutableAccessorInfo> new_data = Accessors::CloneAccessor( it.isolate(), Handle<ExecutableAccessorInfo>::cast(accessors)); new_data->set_property_attributes(attributes); // By clearing the setter we don't have to introduce a lookup to // the setter, simply make it unavailable to reflect the // attributes. if (attributes & READ_ONLY) new_data->clear_setter(); SetPropertyCallback(object, name, new_data, attributes); if (is_observed) { if (old_value->SameValue(*value)) { old_value = it.isolate()->factory()->the_hole_value(); } EnqueueChangeRecord(object, "reconfigure", name, old_value); } return value; } it.ReconfigureDataProperty(value, attributes); it.PrepareForDataProperty(value); it.WriteDataValue(value); if (is_observed) { if (old_value->SameValue(*value)) { old_value = it.isolate()->factory()->the_hole_value(); } EnqueueChangeRecord(object, "reconfigure", name, old_value); } return value; } case LookupIterator::DATA: { PropertyDetails details = it.property_details(); Handle<Object> old_value = it.isolate()->factory()->the_hole_value(); // Regular property update if the attributes match. if (details.attributes() == attributes) { return SetDataProperty(&it, value); } // Reconfigure the data property if the attributes mismatch. if (is_observed) old_value = it.GetDataValue(); it.ReconfigureDataProperty(value, attributes); it.PrepareForDataProperty(value); it.WriteDataValue(value); if (is_observed) { if (old_value->SameValue(*value)) { old_value = it.isolate()->factory()->the_hole_value(); } EnqueueChangeRecord(object, "reconfigure", name, old_value); } return value; } } } return AddDataProperty(&it, value, attributes, STRICT, CERTAINLY_NOT_STORE_FROM_KEYED); } Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithInterceptor( Handle<JSObject> holder, Handle<Object> receiver, Handle<Name> name) { // TODO(rossberg): Support symbols in the API. if (name->IsSymbol()) return maybe(ABSENT); Isolate* isolate = holder->GetIsolate(); HandleScope scope(isolate); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc(isolate); Handle<InterceptorInfo> interceptor(holder->GetNamedInterceptor()); PropertyCallbackArguments args( isolate, interceptor->data(), *receiver, *holder); if (!interceptor->query()->IsUndefined()) { v8::NamedPropertyQueryCallback query = v8::ToCData<v8::NamedPropertyQueryCallback>(interceptor->query()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-has", *holder, *name)); v8::Handle<v8::Integer> result = args.Call(query, v8::Utils::ToLocal(Handle<String>::cast(name))); if (!result.IsEmpty()) { DCHECK(result->IsInt32()); return maybe(static_cast<PropertyAttributes>(result->Int32Value())); } } else if (!interceptor->getter()->IsUndefined()) { v8::NamedPropertyGetterCallback getter = v8::ToCData<v8::NamedPropertyGetterCallback>(interceptor->getter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-get-has", *holder, *name)); v8::Handle<v8::Value> result = args.Call(getter, v8::Utils::ToLocal(Handle<String>::cast(name))); if (!result.IsEmpty()) return maybe(DONT_ENUM); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Maybe<PropertyAttributes>()); return maybe(ABSENT); } Maybe<PropertyAttributes> JSReceiver::GetOwnPropertyAttributes( Handle<JSReceiver> object, Handle<Name> name) { // Check whether the name is an array index. uint32_t index = 0; if (object->IsJSObject() && name->AsArrayIndex(&index)) { return GetOwnElementAttribute(object, index); } LookupIterator it(object, name, LookupIterator::HIDDEN); return GetPropertyAttributes(&it); } Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes( LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return JSProxy::GetPropertyAttributesWithHandler( it->GetHolder<JSProxy>(), it->GetReceiver(), it->name()); case LookupIterator::INTERCEPTOR: { Maybe<PropertyAttributes> result = JSObject::GetPropertyAttributesWithInterceptor( it->GetHolder<JSObject>(), it->GetReceiver(), it->name()); if (!result.has_value) return result; if (result.value != ABSENT) return result; break; } case LookupIterator::ACCESS_CHECK: if (it->HasAccess(v8::ACCESS_HAS)) break; return JSObject::GetPropertyAttributesWithFailedAccessCheck(it); case LookupIterator::ACCESSOR: case LookupIterator::DATA: return maybe(it->property_details().attributes()); } } return maybe(ABSENT); } Maybe<PropertyAttributes> JSObject::GetElementAttributeWithReceiver( Handle<JSObject> object, Handle<JSReceiver> receiver, uint32_t index, bool check_prototype) { Isolate* isolate = object->GetIsolate(); // Check access rights if needed. if (object->IsAccessCheckNeeded()) { if (!isolate->MayIndexedAccess(object, index, v8::ACCESS_HAS)) { isolate->ReportFailedAccessCheck(object, v8::ACCESS_HAS); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Maybe<PropertyAttributes>()); return maybe(ABSENT); } } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return maybe(ABSENT); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return JSObject::GetElementAttributeWithReceiver( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), receiver, index, check_prototype); } // Check for lookup interceptor except when bootstrapping. if (object->HasIndexedInterceptor() && !isolate->bootstrapper()->IsActive()) { return JSObject::GetElementAttributeWithInterceptor( object, receiver, index, check_prototype); } return GetElementAttributeWithoutInterceptor( object, receiver, index, check_prototype); } Maybe<PropertyAttributes> JSObject::GetElementAttributeWithInterceptor( Handle<JSObject> object, Handle<JSReceiver> receiver, uint32_t index, bool check_prototype) { Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc(isolate); Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor()); PropertyCallbackArguments args( isolate, interceptor->data(), *receiver, *object); if (!interceptor->query()->IsUndefined()) { v8::IndexedPropertyQueryCallback query = v8::ToCData<v8::IndexedPropertyQueryCallback>(interceptor->query()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-has", *object, index)); v8::Handle<v8::Integer> result = args.Call(query, index); if (!result.IsEmpty()) return maybe(static_cast<PropertyAttributes>(result->Int32Value())); } else if (!interceptor->getter()->IsUndefined()) { v8::IndexedPropertyGetterCallback getter = v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter()); LOG(isolate, ApiIndexedPropertyAccess( "interceptor-indexed-get-has", *object, index)); v8::Handle<v8::Value> result = args.Call(getter, index); if (!result.IsEmpty()) return maybe(NONE); } return GetElementAttributeWithoutInterceptor( object, receiver, index, check_prototype); } Maybe<PropertyAttributes> JSObject::GetElementAttributeWithoutInterceptor( Handle<JSObject> object, Handle<JSReceiver> receiver, uint32_t index, bool check_prototype) { PropertyAttributes attr = object->GetElementsAccessor()->GetAttributes( receiver, object, index); if (attr != ABSENT) return maybe(attr); // Handle [] on String objects. if (object->IsStringObjectWithCharacterAt(index)) { return maybe(static_cast<PropertyAttributes>(READ_ONLY | DONT_DELETE)); } if (!check_prototype) return maybe(ABSENT); PrototypeIterator iter(object->GetIsolate(), object); if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) { // We need to follow the spec and simulate a call to [[GetOwnProperty]]. return JSProxy::GetElementAttributeWithHandler( Handle<JSProxy>::cast(PrototypeIterator::GetCurrent(iter)), receiver, index); } if (iter.IsAtEnd()) return maybe(ABSENT); return GetElementAttributeWithReceiver( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), receiver, index, true); } Handle<NormalizedMapCache> NormalizedMapCache::New(Isolate* isolate) { Handle<FixedArray> array( isolate->factory()->NewFixedArray(kEntries, TENURED)); return Handle<NormalizedMapCache>::cast(array); } MaybeHandle<Map> NormalizedMapCache::Get(Handle<Map> fast_map, PropertyNormalizationMode mode) { DisallowHeapAllocation no_gc; Object* value = FixedArray::get(GetIndex(fast_map)); if (!value->IsMap() || !Map::cast(value)->EquivalentToForNormalization(*fast_map, mode)) { return MaybeHandle<Map>(); } return handle(Map::cast(value)); } void NormalizedMapCache::Set(Handle<Map> fast_map, Handle<Map> normalized_map) { DisallowHeapAllocation no_gc; DCHECK(normalized_map->is_dictionary_map()); FixedArray::set(GetIndex(fast_map), *normalized_map); } void NormalizedMapCache::Clear() { int entries = length(); for (int i = 0; i != entries; i++) { set_undefined(i); } } void HeapObject::UpdateMapCodeCache(Handle<HeapObject> object, Handle<Name> name, Handle<Code> code) { Handle<Map> map(object->map()); Map::UpdateCodeCache(map, name, code); } void JSObject::NormalizeProperties(Handle<JSObject> object, PropertyNormalizationMode mode, int expected_additional_properties) { if (!object->HasFastProperties()) return; Handle<Map> map(object->map()); Handle<Map> new_map = Map::Normalize(map, mode); MigrateFastToSlow(object, new_map, expected_additional_properties); } void JSObject::MigrateFastToSlow(Handle<JSObject> object, Handle<Map> new_map, int expected_additional_properties) { // The global object is always normalized. DCHECK(!object->IsGlobalObject()); // JSGlobalProxy must never be normalized DCHECK(!object->IsJSGlobalProxy()); Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle<Map> map(object->map()); // Allocate new content. int real_size = map->NumberOfOwnDescriptors(); int property_count = real_size; if (expected_additional_properties > 0) { property_count += expected_additional_properties; } else { property_count += 2; // Make space for two more properties. } Handle<NameDictionary> dictionary = NameDictionary::New(isolate, property_count); Handle<DescriptorArray> descs(map->instance_descriptors()); for (int i = 0; i < real_size; i++) { PropertyDetails details = descs->GetDetails(i); switch (details.type()) { case CONSTANT: { Handle<Name> key(descs->GetKey(i)); Handle<Object> value(descs->GetConstant(i), isolate); PropertyDetails d = PropertyDetails( details.attributes(), NORMAL, i + 1); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } case FIELD: { Handle<Name> key(descs->GetKey(i)); FieldIndex index = FieldIndex::ForDescriptor(*map, i); Handle<Object> value( object->RawFastPropertyAt(index), isolate); if (details.representation().IsDouble()) { DCHECK(value->IsMutableHeapNumber()); Handle<HeapNumber> old = Handle<HeapNumber>::cast(value); value = isolate->factory()->NewHeapNumber(old->value()); } PropertyDetails d = PropertyDetails(details.attributes(), NORMAL, i + 1); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } case CALLBACKS: { Handle<Name> key(descs->GetKey(i)); Handle<Object> value(descs->GetCallbacksObject(i), isolate); PropertyDetails d = PropertyDetails( details.attributes(), CALLBACKS, i + 1); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } case NORMAL: UNREACHABLE(); break; } } // Copy the next enumeration index from instance descriptor. dictionary->SetNextEnumerationIndex(real_size + 1); // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; // Resize the object in the heap if necessary. int new_instance_size = new_map->instance_size(); int instance_size_delta = map->instance_size() - new_instance_size; DCHECK(instance_size_delta >= 0); if (instance_size_delta > 0) { Heap* heap = isolate->heap(); heap->CreateFillerObjectAt(object->address() + new_instance_size, instance_size_delta); heap->AdjustLiveBytes(object->address(), -instance_size_delta, Heap::FROM_MUTATOR); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. object->synchronized_set_map(*new_map); object->set_properties(*dictionary); isolate->counters()->props_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { OFStream os(stdout); os << "Object properties have been normalized:\n"; object->Print(os); } #endif } void JSObject::MigrateSlowToFast(Handle<JSObject> object, int unused_property_fields) { if (object->HasFastProperties()) return; DCHECK(!object->IsGlobalObject()); Isolate* isolate = object->GetIsolate(); Factory* factory = isolate->factory(); Handle<NameDictionary> dictionary(object->property_dictionary()); // Make sure we preserve dictionary representation if there are too many // descriptors. int number_of_elements = dictionary->NumberOfElements(); if (number_of_elements > kMaxNumberOfDescriptors) return; if (number_of_elements != dictionary->NextEnumerationIndex()) { NameDictionary::DoGenerateNewEnumerationIndices(dictionary); } int instance_descriptor_length = 0; int number_of_fields = 0; // Compute the length of the instance descriptor. int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = dictionary->KeyAt(i); if (dictionary->IsKey(k)) { Object* value = dictionary->ValueAt(i); PropertyType type = dictionary->DetailsAt(i).type(); DCHECK(type != FIELD); instance_descriptor_length++; if (type == NORMAL && !value->IsJSFunction()) { number_of_fields += 1; } } } int inobject_props = object->map()->inobject_properties(); // Allocate new map. Handle<Map> new_map = Map::CopyDropDescriptors(handle(object->map())); new_map->set_dictionary_map(false); if (instance_descriptor_length == 0) { DisallowHeapAllocation no_gc; DCHECK_LE(unused_property_fields, inobject_props); // Transform the object. new_map->set_unused_property_fields(inobject_props); object->synchronized_set_map(*new_map); object->set_properties(isolate->heap()->empty_fixed_array()); // Check that it really works. DCHECK(object->HasFastProperties()); return; } // Allocate the instance descriptor. Handle<DescriptorArray> descriptors = DescriptorArray::Allocate( isolate, instance_descriptor_length); int number_of_allocated_fields = number_of_fields + unused_property_fields - inobject_props; if (number_of_allocated_fields < 0) { // There is enough inobject space for all fields (including unused). number_of_allocated_fields = 0; unused_property_fields = inobject_props - number_of_fields; } // Allocate the fixed array for the fields. Handle<FixedArray> fields = factory->NewFixedArray( number_of_allocated_fields); // Fill in the instance descriptor and the fields. int current_offset = 0; for (int i = 0; i < capacity; i++) { Object* k = dictionary->KeyAt(i); if (dictionary->IsKey(k)) { Object* value = dictionary->ValueAt(i); Handle<Name> key; if (k->IsSymbol()) { key = handle(Symbol::cast(k)); } else { // Ensure the key is a unique name before writing into the // instance descriptor. key = factory->InternalizeString(handle(String::cast(k))); } PropertyDetails details = dictionary->DetailsAt(i); int enumeration_index = details.dictionary_index(); PropertyType type = details.type(); if (value->IsJSFunction()) { ConstantDescriptor d(key, handle(value, isolate), details.attributes()); descriptors->Set(enumeration_index - 1, &d); } else if (type == NORMAL) { if (current_offset < inobject_props) { object->InObjectPropertyAtPut(current_offset, value, UPDATE_WRITE_BARRIER); } else { int offset = current_offset - inobject_props; fields->set(offset, value); } FieldDescriptor d(key, current_offset++, details.attributes(), // TODO(verwaest): value->OptimalRepresentation(); Representation::Tagged()); descriptors->Set(enumeration_index - 1, &d); } else if (type == CALLBACKS) { CallbacksDescriptor d(key, handle(value, isolate), details.attributes()); descriptors->Set(enumeration_index - 1, &d); } else { UNREACHABLE(); } } } DCHECK(current_offset == number_of_fields); descriptors->Sort(); DisallowHeapAllocation no_gc; new_map->InitializeDescriptors(*descriptors); new_map->set_unused_property_fields(unused_property_fields); // Transform the object. object->synchronized_set_map(*new_map); object->set_properties(*fields); DCHECK(object->IsJSObject()); // Check that it really works. DCHECK(object->HasFastProperties()); } void JSObject::ResetElements(Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); CHECK(object->map() != isolate->heap()->sloppy_arguments_elements_map()); if (object->map()->has_dictionary_elements()) { Handle<SeededNumberDictionary> new_elements = SeededNumberDictionary::New(isolate, 0); object->set_elements(*new_elements); } else { object->set_elements(object->map()->GetInitialElements()); } } static Handle<SeededNumberDictionary> CopyFastElementsToDictionary( Handle<FixedArrayBase> array, int length, Handle<SeededNumberDictionary> dictionary) { Isolate* isolate = array->GetIsolate(); Factory* factory = isolate->factory(); bool has_double_elements = array->IsFixedDoubleArray(); for (int i = 0; i < length; i++) { Handle<Object> value; if (has_double_elements) { Handle<FixedDoubleArray> double_array = Handle<FixedDoubleArray>::cast(array); if (double_array->is_the_hole(i)) { value = factory->the_hole_value(); } else { value = factory->NewHeapNumber(double_array->get_scalar(i)); } } else { value = handle(Handle<FixedArray>::cast(array)->get(i), isolate); } if (!value->IsTheHole()) { PropertyDetails details = PropertyDetails(NONE, NORMAL, 0); dictionary = SeededNumberDictionary::AddNumberEntry(dictionary, i, value, details); } } return dictionary; } Handle<SeededNumberDictionary> JSObject::NormalizeElements( Handle<JSObject> object) { DCHECK(!object->HasExternalArrayElements() && !object->HasFixedTypedArrayElements()); Isolate* isolate = object->GetIsolate(); // Find the backing store. Handle<FixedArrayBase> array(FixedArrayBase::cast(object->elements())); bool is_arguments = (array->map() == isolate->heap()->sloppy_arguments_elements_map()); if (is_arguments) { array = handle(FixedArrayBase::cast( Handle<FixedArray>::cast(array)->get(1))); } if (array->IsDictionary()) return Handle<SeededNumberDictionary>::cast(array); DCHECK(object->HasFastSmiOrObjectElements() || object->HasFastDoubleElements() || object->HasFastArgumentsElements()); // Compute the effective length and allocate a new backing store. int length = object->IsJSArray() ? Smi::cast(Handle<JSArray>::cast(object)->length())->value() : array->length(); int old_capacity = 0; int used_elements = 0; object->GetElementsCapacityAndUsage(&old_capacity, &used_elements); Handle<SeededNumberDictionary> dictionary = SeededNumberDictionary::New(isolate, used_elements); dictionary = CopyFastElementsToDictionary(array, length, dictionary); // Switch to using the dictionary as the backing storage for elements. if (is_arguments) { FixedArray::cast(object->elements())->set(1, *dictionary); } else { // Set the new map first to satify the elements type assert in // set_elements(). Handle<Map> new_map = JSObject::GetElementsTransitionMap(object, DICTIONARY_ELEMENTS); JSObject::MigrateToMap(object, new_map); object->set_elements(*dictionary); } isolate->counters()->elements_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { OFStream os(stdout); os << "Object elements have been normalized:\n"; object->Print(os); } #endif DCHECK(object->HasDictionaryElements() || object->HasDictionaryArgumentsElements()); return dictionary; } static Smi* GenerateIdentityHash(Isolate* isolate) { int hash_value; int attempts = 0; do { // Generate a random 32-bit hash value but limit range to fit // within a smi. hash_value = isolate->random_number_generator()->NextInt() & Smi::kMaxValue; attempts++; } while (hash_value == 0 && attempts < 30); hash_value = hash_value != 0 ? hash_value : 1; // never return 0 return Smi::FromInt(hash_value); } void JSObject::SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash) { DCHECK(!object->IsJSGlobalProxy()); Isolate* isolate = object->GetIsolate(); SetHiddenProperty(object, isolate->factory()->identity_hash_string(), hash); } template<typename ProxyType> static Handle<Smi> GetOrCreateIdentityHashHelper(Handle<ProxyType> proxy) { Isolate* isolate = proxy->GetIsolate(); Handle<Object> maybe_hash(proxy->hash(), isolate); if (maybe_hash->IsSmi()) return Handle<Smi>::cast(maybe_hash); Handle<Smi> hash(GenerateIdentityHash(isolate), isolate); proxy->set_hash(*hash); return hash; } Object* JSObject::GetIdentityHash() { DisallowHeapAllocation no_gc; Isolate* isolate = GetIsolate(); if (IsJSGlobalProxy()) { return JSGlobalProxy::cast(this)->hash(); } Object* stored_value = GetHiddenProperty(isolate->factory()->identity_hash_string()); return stored_value->IsSmi() ? stored_value : isolate->heap()->undefined_value(); } Handle<Smi> JSObject::GetOrCreateIdentityHash(Handle<JSObject> object) { if (object->IsJSGlobalProxy()) { return GetOrCreateIdentityHashHelper(Handle<JSGlobalProxy>::cast(object)); } Isolate* isolate = object->GetIsolate(); Handle<Object> maybe_hash(object->GetIdentityHash(), isolate); if (maybe_hash->IsSmi()) return Handle<Smi>::cast(maybe_hash); Handle<Smi> hash(GenerateIdentityHash(isolate), isolate); SetHiddenProperty(object, isolate->factory()->identity_hash_string(), hash); return hash; } Object* JSProxy::GetIdentityHash() { return this->hash(); } Handle<Smi> JSProxy::GetOrCreateIdentityHash(Handle<JSProxy> proxy) { return GetOrCreateIdentityHashHelper(proxy); } Object* JSObject::GetHiddenProperty(Handle<Name> key) { DisallowHeapAllocation no_gc; DCHECK(key->IsUniqueName()); if (IsJSGlobalProxy()) { // JSGlobalProxies store their hash internally. DCHECK(*key != GetHeap()->identity_hash_string()); // For a proxy, use the prototype as target object. PrototypeIterator iter(GetIsolate(), this); // If the proxy is detached, return undefined. if (iter.IsAtEnd()) return GetHeap()->the_hole_value(); DCHECK(iter.GetCurrent()->IsJSGlobalObject()); return JSObject::cast(iter.GetCurrent())->GetHiddenProperty(key); } DCHECK(!IsJSGlobalProxy()); Object* inline_value = GetHiddenPropertiesHashTable(); if (inline_value->IsSmi()) { // Handle inline-stored identity hash. if (*key == GetHeap()->identity_hash_string()) { return inline_value; } else { return GetHeap()->the_hole_value(); } } if (inline_value->IsUndefined()) return GetHeap()->the_hole_value(); ObjectHashTable* hashtable = ObjectHashTable::cast(inline_value); Object* entry = hashtable->Lookup(key); return entry; } Handle<Object> JSObject::SetHiddenProperty(Handle<JSObject> object, Handle<Name> key, Handle<Object> value) { Isolate* isolate = object->GetIsolate(); DCHECK(key->IsUniqueName()); if (object->IsJSGlobalProxy()) { // JSGlobalProxies store their hash internally. DCHECK(*key != *isolate->factory()->identity_hash_string()); // For a proxy, use the prototype as target object. PrototypeIterator iter(isolate, object); // If the proxy is detached, return undefined. if (iter.IsAtEnd()) return isolate->factory()->undefined_value(); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return SetHiddenProperty( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), key, value); } DCHECK(!object->IsJSGlobalProxy()); Handle<Object> inline_value(object->GetHiddenPropertiesHashTable(), isolate); // If there is no backing store yet, store the identity hash inline. if (value->IsSmi() && *key == *isolate->factory()->identity_hash_string() && (inline_value->IsUndefined() || inline_value->IsSmi())) { return JSObject::SetHiddenPropertiesHashTable(object, value); } Handle<ObjectHashTable> hashtable = GetOrCreateHiddenPropertiesHashtable(object); // If it was found, check if the key is already in the dictionary. Handle<ObjectHashTable> new_table = ObjectHashTable::Put(hashtable, key, value); if (*new_table != *hashtable) { // If adding the key expanded the dictionary (i.e., Add returned a new // dictionary), store it back to the object. SetHiddenPropertiesHashTable(object, new_table); } // Return this to mark success. return object; } void JSObject::DeleteHiddenProperty(Handle<JSObject> object, Handle<Name> key) { Isolate* isolate = object->GetIsolate(); DCHECK(key->IsUniqueName()); if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return; DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return DeleteHiddenProperty( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), key); } Object* inline_value = object->GetHiddenPropertiesHashTable(); // We never delete (inline-stored) identity hashes. DCHECK(*key != *isolate->factory()->identity_hash_string()); if (inline_value->IsUndefined() || inline_value->IsSmi()) return; Handle<ObjectHashTable> hashtable(ObjectHashTable::cast(inline_value)); bool was_present = false; ObjectHashTable::Remove(hashtable, key, &was_present); } bool JSObject::HasHiddenProperties(Handle<JSObject> object) { Handle<Name> hidden = object->GetIsolate()->factory()->hidden_string(); LookupIterator it(object, hidden, LookupIterator::OWN_SKIP_INTERCEPTOR); Maybe<PropertyAttributes> maybe = GetPropertyAttributes(&it); // Cannot get an exception since the hidden_string isn't accessible to JS. DCHECK(maybe.has_value); return maybe.value != ABSENT; } Object* JSObject::GetHiddenPropertiesHashTable() { DCHECK(!IsJSGlobalProxy()); if (HasFastProperties()) { // If the object has fast properties, check whether the first slot // in the descriptor array matches the hidden string. Since the // hidden strings hash code is zero (and no other name has hash // code zero) it will always occupy the first entry if present. DescriptorArray* descriptors = this->map()->instance_descriptors(); if (descriptors->number_of_descriptors() > 0) { int sorted_index = descriptors->GetSortedKeyIndex(0); if (descriptors->GetKey(sorted_index) == GetHeap()->hidden_string() && sorted_index < map()->NumberOfOwnDescriptors()) { DCHECK(descriptors->GetType(sorted_index) == FIELD); DCHECK(descriptors->GetDetails(sorted_index).representation(). IsCompatibleForLoad(Representation::Tagged())); FieldIndex index = FieldIndex::ForDescriptor(this->map(), sorted_index); return this->RawFastPropertyAt(index); } else { return GetHeap()->undefined_value(); } } else { return GetHeap()->undefined_value(); } } else { Isolate* isolate = GetIsolate(); LookupIterator it(handle(this), isolate->factory()->hidden_string(), LookupIterator::OWN_SKIP_INTERCEPTOR); // Access check is always skipped for the hidden string anyways. return *GetDataProperty(&it); } } Handle<ObjectHashTable> JSObject::GetOrCreateHiddenPropertiesHashtable( Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); static const int kInitialCapacity = 4; Handle<Object> inline_value(object->GetHiddenPropertiesHashTable(), isolate); if (inline_value->IsHashTable()) { return Handle<ObjectHashTable>::cast(inline_value); } Handle<ObjectHashTable> hashtable = ObjectHashTable::New( isolate, kInitialCapacity, USE_CUSTOM_MINIMUM_CAPACITY); if (inline_value->IsSmi()) { // We were storing the identity hash inline and now allocated an actual // dictionary. Put the identity hash into the new dictionary. hashtable = ObjectHashTable::Put(hashtable, isolate->factory()->identity_hash_string(), inline_value); } SetHiddenPropertiesHashTable(object, hashtable); return hashtable; } Handle<Object> JSObject::SetHiddenPropertiesHashTable(Handle<JSObject> object, Handle<Object> value) { DCHECK(!object->IsJSGlobalProxy()); Isolate* isolate = object->GetIsolate(); Handle<Name> name = isolate->factory()->hidden_string(); SetOwnPropertyIgnoreAttributes(object, name, value, DONT_ENUM).Assert(); return object; } MaybeHandle<Object> JSObject::DeletePropertyWithInterceptor( Handle<JSObject> holder, Handle<JSObject> receiver, Handle<Name> name) { Isolate* isolate = holder->GetIsolate(); // TODO(rossberg): Support symbols in the API. if (name->IsSymbol()) return MaybeHandle<Object>(); Handle<InterceptorInfo> interceptor(holder->GetNamedInterceptor()); if (interceptor->deleter()->IsUndefined()) return MaybeHandle<Object>(); v8::NamedPropertyDeleterCallback deleter = v8::ToCData<v8::NamedPropertyDeleterCallback>(interceptor->deleter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-delete", *holder, *name)); PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *holder); v8::Handle<v8::Boolean> result = args.Call(deleter, v8::Utils::ToLocal(Handle<String>::cast(name))); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.IsEmpty()) return MaybeHandle<Object>(); DCHECK(result->IsBoolean()); Handle<Object> result_internal = v8::Utils::OpenHandle(*result); result_internal->VerifyApiCallResultType(); // Rebox CustomArguments::kReturnValueOffset before returning. return handle(*result_internal, isolate); } MaybeHandle<Object> JSObject::DeleteElementWithInterceptor( Handle<JSObject> object, uint32_t index) { Isolate* isolate = object->GetIsolate(); Factory* factory = isolate->factory(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc(isolate); Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor()); if (interceptor->deleter()->IsUndefined()) return factory->false_value(); v8::IndexedPropertyDeleterCallback deleter = v8::ToCData<v8::IndexedPropertyDeleterCallback>(interceptor->deleter()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-delete", *object, index)); PropertyCallbackArguments args( isolate, interceptor->data(), *object, *object); v8::Handle<v8::Boolean> result = args.Call(deleter, index); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (!result.IsEmpty()) { DCHECK(result->IsBoolean()); Handle<Object> result_internal = v8::Utils::OpenHandle(*result); result_internal->VerifyApiCallResultType(); // Rebox CustomArguments::kReturnValueOffset before returning. return handle(*result_internal, isolate); } MaybeHandle<Object> delete_result = object->GetElementsAccessor()->Delete( object, index, NORMAL_DELETION); return delete_result; } MaybeHandle<Object> JSObject::DeleteElement(Handle<JSObject> object, uint32_t index, DeleteMode mode) { Isolate* isolate = object->GetIsolate(); Factory* factory = isolate->factory(); // Check access rights if needed. if (object->IsAccessCheckNeeded() && !isolate->MayIndexedAccess(object, index, v8::ACCESS_DELETE)) { isolate->ReportFailedAccessCheck(object, v8::ACCESS_DELETE); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return factory->false_value(); } if (object->IsStringObjectWithCharacterAt(index)) { if (mode == STRICT_DELETION) { // Deleting a non-configurable property in strict mode. Handle<Object> name = factory->NewNumberFromUint(index); Handle<Object> args[2] = { name, object }; THROW_NEW_ERROR(isolate, NewTypeError("strict_delete_property", HandleVector(args, 2)), Object); } return factory->false_value(); } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return factory->false_value(); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return DeleteElement( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), index, mode); } Handle<Object> old_value; bool should_enqueue_change_record = false; if (object->map()->is_observed()) { Maybe<bool> maybe = HasOwnElement(object, index); if (!maybe.has_value) return MaybeHandle<Object>(); should_enqueue_change_record = maybe.value; if (should_enqueue_change_record) { if (!GetOwnElementAccessorPair(object, index).is_null()) { old_value = Handle<Object>::cast(factory->the_hole_value()); } else { old_value = Object::GetElement( isolate, object, index).ToHandleChecked(); } } } // Skip interceptor if forcing deletion. MaybeHandle<Object> maybe_result; if (object->HasIndexedInterceptor() && mode != FORCE_DELETION) { maybe_result = DeleteElementWithInterceptor(object, index); } else { maybe_result = object->GetElementsAccessor()->Delete(object, index, mode); } Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION(isolate, result, maybe_result, Object); if (should_enqueue_change_record) { Maybe<bool> maybe = HasOwnElement(object, index); if (!maybe.has_value) return MaybeHandle<Object>(); if (!maybe.value) { Handle<String> name = factory->Uint32ToString(index); EnqueueChangeRecord(object, "delete", name, old_value); } } return result; } MaybeHandle<Object> JSObject::DeleteProperty(Handle<JSObject> object, Handle<Name> name, DeleteMode delete_mode) { // ECMA-262, 3rd, 8.6.2.5 DCHECK(name->IsName()); uint32_t index = 0; if (name->AsArrayIndex(&index)) { return DeleteElement(object, index, delete_mode); } // Skip interceptors on FORCE_DELETION. LookupIterator::Configuration config = delete_mode == FORCE_DELETION ? LookupIterator::HIDDEN_SKIP_INTERCEPTOR : LookupIterator::HIDDEN; LookupIterator it(object, name, config); bool is_observed = object->map()->is_observed() && *name != it.isolate()->heap()->hidden_string(); Handle<Object> old_value = it.isolate()->factory()->the_hole_value(); for (; it.IsFound(); it.Next()) { switch (it.state()) { case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it.HasAccess(v8::ACCESS_DELETE)) break; it.isolate()->ReportFailedAccessCheck(it.GetHolder<JSObject>(), v8::ACCESS_DELETE); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it.isolate(), Object); return it.isolate()->factory()->false_value(); case LookupIterator::INTERCEPTOR: { MaybeHandle<Object> maybe_result = JSObject::DeletePropertyWithInterceptor(it.GetHolder<JSObject>(), object, it.name()); // Delete with interceptor succeeded. Return result. if (!maybe_result.is_null()) return maybe_result; // An exception was thrown in the interceptor. Propagate. if (it.isolate()->has_pending_exception()) return maybe_result; break; } case LookupIterator::DATA: if (is_observed) { old_value = it.GetDataValue(); } // Fall through. case LookupIterator::ACCESSOR: { if (delete_mode != FORCE_DELETION && !it.IsConfigurable()) { // Fail if the property is not configurable. if (delete_mode == STRICT_DELETION) { Handle<Object> args[2] = {name, object}; THROW_NEW_ERROR(it.isolate(), NewTypeError("strict_delete_property", HandleVector(args, arraysize(args))), Object); } return it.isolate()->factory()->false_value(); } PropertyNormalizationMode mode = object->map()->is_prototype_map() ? KEEP_INOBJECT_PROPERTIES : CLEAR_INOBJECT_PROPERTIES; Handle<JSObject> holder = it.GetHolder<JSObject>(); // TODO(verwaest): Remove this temporary compatibility hack when blink // tests are updated. if (!holder.is_identical_to(object) && !(object->IsJSGlobalProxy() && holder->IsJSGlobalObject())) { return it.isolate()->factory()->true_value(); } NormalizeProperties(holder, mode, 0); Handle<Object> result = DeleteNormalizedProperty(holder, name, delete_mode); ReoptimizeIfPrototype(holder); if (is_observed) { EnqueueChangeRecord(object, "delete", name, old_value); } return result; } } } return it.isolate()->factory()->true_value(); } MaybeHandle<Object> JSReceiver::DeleteElement(Handle<JSReceiver> object, uint32_t index, DeleteMode mode) { if (object->IsJSProxy()) { return JSProxy::DeleteElementWithHandler( Handle<JSProxy>::cast(object), index, mode); } return JSObject::DeleteElement(Handle<JSObject>::cast(object), index, mode); } MaybeHandle<Object> JSReceiver::DeleteProperty(Handle<JSReceiver> object, Handle<Name> name, DeleteMode mode) { if (object->IsJSProxy()) { return JSProxy::DeletePropertyWithHandler( Handle<JSProxy>::cast(object), name, mode); } return JSObject::DeleteProperty(Handle<JSObject>::cast(object), name, mode); } bool JSObject::ReferencesObjectFromElements(FixedArray* elements, ElementsKind kind, Object* object) { DCHECK(IsFastObjectElementsKind(kind) || kind == DICTIONARY_ELEMENTS); if (IsFastObjectElementsKind(kind)) { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : elements->length(); for (int i = 0; i < length; ++i) { Object* element = elements->get(i); if (!element->IsTheHole() && element == object) return true; } } else { Object* key = SeededNumberDictionary::cast(elements)->SlowReverseLookup(object); if (!key->IsUndefined()) return true; } return false; } // Check whether this object references another object. bool JSObject::ReferencesObject(Object* obj) { Map* map_of_this = map(); Heap* heap = GetHeap(); DisallowHeapAllocation no_allocation; // Is the object the constructor for this object? if (map_of_this->constructor() == obj) { return true; } // Is the object the prototype for this object? if (map_of_this->prototype() == obj) { return true; } // Check if the object is among the named properties. Object* key = SlowReverseLookup(obj); if (!key->IsUndefined()) { return true; } // Check if the object is among the indexed properties. ElementsKind kind = GetElementsKind(); switch (kind) { // Raw pixels and external arrays do not reference other // objects. #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ELEMENTS: \ case TYPE##_ELEMENTS: \ break; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: break; case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: break; case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: case DICTIONARY_ELEMENTS: { FixedArray* elements = FixedArray::cast(this->elements()); if (ReferencesObjectFromElements(elements, kind, obj)) return true; break; } case SLOPPY_ARGUMENTS_ELEMENTS: { FixedArray* parameter_map = FixedArray::cast(elements()); // Check the mapped parameters. int length = parameter_map->length(); for (int i = 2; i < length; ++i) { Object* value = parameter_map->get(i); if (!value->IsTheHole() && value == obj) return true; } // Check the arguments. FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS : FAST_HOLEY_ELEMENTS; if (ReferencesObjectFromElements(arguments, kind, obj)) return true; break; } } // For functions check the context. if (IsJSFunction()) { // Get the constructor function for arguments array. Map* arguments_map = heap->isolate()->context()->native_context()->sloppy_arguments_map(); JSFunction* arguments_function = JSFunction::cast(arguments_map->constructor()); // Get the context and don't check if it is the native context. JSFunction* f = JSFunction::cast(this); Context* context = f->context(); if (context->IsNativeContext()) { return false; } // Check the non-special context slots. for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { // Only check JS objects. if (context->get(i)->IsJSObject()) { JSObject* ctxobj = JSObject::cast(context->get(i)); // If it is an arguments array check the content. if (ctxobj->map()->constructor() == arguments_function) { if (ctxobj->ReferencesObject(obj)) { return true; } } else if (ctxobj == obj) { return true; } } } // Check the context extension (if any) if it can have references. if (context->has_extension() && !context->IsCatchContext()) { // With harmony scoping, a JSFunction may have a global context. // TODO(mvstanton): walk into the ScopeInfo. if (FLAG_harmony_scoping && context->IsGlobalContext()) { return false; } return JSObject::cast(context->extension())->ReferencesObject(obj); } } // No references to object. return false; } MaybeHandle<Object> JSObject::PreventExtensions(Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); if (!object->map()->is_extensible()) return object; if (object->IsAccessCheckNeeded() && !isolate->MayNamedAccess( object, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(object, v8::ACCESS_KEYS); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->false_value(); } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return object; DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return PreventExtensions( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter))); } // It's not possible to seal objects with external array elements if (object->HasExternalArrayElements() || object->HasFixedTypedArrayElements()) { THROW_NEW_ERROR(isolate, NewTypeError("cant_prevent_ext_external_array_elements", HandleVector(&object, 1)), Object); } // If there are fast elements we normalize. Handle<SeededNumberDictionary> dictionary = NormalizeElements(object); DCHECK(object->HasDictionaryElements() || object->HasDictionaryArgumentsElements()); // Make sure that we never go back to fast case. dictionary->set_requires_slow_elements(); // Do a map transition, other objects with this map may still // be extensible. // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps. Handle<Map> new_map = Map::Copy(handle(object->map())); new_map->set_is_extensible(false); JSObject::MigrateToMap(object, new_map); DCHECK(!object->map()->is_extensible()); if (object->map()->is_observed()) { EnqueueChangeRecord(object, "preventExtensions", Handle<Name>(), isolate->factory()->the_hole_value()); } return object; } template<typename Dictionary> static void FreezeDictionary(Dictionary* dictionary) { int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = dictionary->KeyAt(i); if (dictionary->IsKey(k) && !(k->IsSymbol() && Symbol::cast(k)->is_private())) { PropertyDetails details = dictionary->DetailsAt(i); int attrs = DONT_DELETE; // READ_ONLY is an invalid attribute for JS setters/getters. if (details.type() == CALLBACKS) { Object* v = dictionary->ValueAt(i); if (v->IsPropertyCell()) v = PropertyCell::cast(v)->value(); if (!v->IsAccessorPair()) attrs |= READ_ONLY; } else { attrs |= READ_ONLY; } details = details.CopyAddAttributes( static_cast<PropertyAttributes>(attrs)); dictionary->DetailsAtPut(i, details); } } } MaybeHandle<Object> JSObject::Freeze(Handle<JSObject> object) { // Freezing sloppy arguments should be handled elsewhere. DCHECK(!object->HasSloppyArgumentsElements()); DCHECK(!object->map()->is_observed()); if (object->map()->is_frozen()) return object; Isolate* isolate = object->GetIsolate(); if (object->IsAccessCheckNeeded() && !isolate->MayNamedAccess( object, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(object, v8::ACCESS_KEYS); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->false_value(); } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return object; DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return Freeze(Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter))); } // It's not possible to freeze objects with external array elements if (object->HasExternalArrayElements() || object->HasFixedTypedArrayElements()) { THROW_NEW_ERROR(isolate, NewTypeError("cant_prevent_ext_external_array_elements", HandleVector(&object, 1)), Object); } Handle<SeededNumberDictionary> new_element_dictionary; if (!object->elements()->IsDictionary()) { int length = object->IsJSArray() ? Smi::cast(Handle<JSArray>::cast(object)->length())->value() : object->elements()->length(); if (length > 0) { int capacity = 0; int used = 0; object->GetElementsCapacityAndUsage(&capacity, &used); new_element_dictionary = SeededNumberDictionary::New(isolate, used); // Move elements to a dictionary; avoid calling NormalizeElements to avoid // unnecessary transitions. new_element_dictionary = CopyFastElementsToDictionary( handle(object->elements()), length, new_element_dictionary); } else { // No existing elements, use a pre-allocated empty backing store new_element_dictionary = isolate->factory()->empty_slow_element_dictionary(); } } Handle<Map> old_map(object->map(), isolate); int transition_index = old_map->SearchTransition( isolate->heap()->frozen_symbol()); if (transition_index != TransitionArray::kNotFound) { Handle<Map> transition_map(old_map->GetTransition(transition_index)); DCHECK(transition_map->has_dictionary_elements()); DCHECK(transition_map->is_frozen()); DCHECK(!transition_map->is_extensible()); JSObject::MigrateToMap(object, transition_map); } else if (object->HasFastProperties() && old_map->CanHaveMoreTransitions()) { // Create a new descriptor array with fully-frozen properties Handle<Map> new_map = Map::CopyForFreeze(old_map); JSObject::MigrateToMap(object, new_map); } else { DCHECK(old_map->is_dictionary_map() || !old_map->is_prototype_map()); // Slow path: need to normalize properties for safety NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0); // Create a new map, since other objects with this map may be extensible. // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps. Handle<Map> new_map = Map::Copy(handle(object->map())); new_map->freeze(); new_map->set_is_extensible(false); new_map->set_elements_kind(DICTIONARY_ELEMENTS); JSObject::MigrateToMap(object, new_map); // Freeze dictionary-mode properties FreezeDictionary(object->property_dictionary()); } DCHECK(object->map()->has_dictionary_elements()); if (!new_element_dictionary.is_null()) { object->set_elements(*new_element_dictionary); } if (object->elements() != isolate->heap()->empty_slow_element_dictionary()) { SeededNumberDictionary* dictionary = object->element_dictionary(); // Make sure we never go back to the fast case dictionary->set_requires_slow_elements(); // Freeze all elements in the dictionary FreezeDictionary(dictionary); } return object; } void JSObject::SetObserved(Handle<JSObject> object) { DCHECK(!object->IsJSGlobalProxy()); DCHECK(!object->IsJSGlobalObject()); Isolate* isolate = object->GetIsolate(); Handle<Map> new_map; Handle<Map> old_map(object->map(), isolate); DCHECK(!old_map->is_observed()); int transition_index = old_map->SearchTransition( isolate->heap()->observed_symbol()); if (transition_index != TransitionArray::kNotFound) { new_map = handle(old_map->GetTransition(transition_index), isolate); DCHECK(new_map->is_observed()); } else if (object->HasFastProperties() && old_map->CanHaveMoreTransitions()) { new_map = Map::CopyForObserved(old_map); } else { new_map = Map::Copy(old_map); new_map->set_is_observed(); } JSObject::MigrateToMap(object, new_map); } Handle<Object> JSObject::FastPropertyAt(Handle<JSObject> object, Representation representation, FieldIndex index) { Isolate* isolate = object->GetIsolate(); Handle<Object> raw_value(object->RawFastPropertyAt(index), isolate); return Object::WrapForRead(isolate, raw_value, representation); } template<class ContextObject> class JSObjectWalkVisitor { public: JSObjectWalkVisitor(ContextObject* site_context, bool copying, JSObject::DeepCopyHints hints) : site_context_(site_context), copying_(copying), hints_(hints) {} MUST_USE_RESULT MaybeHandle<JSObject> StructureWalk(Handle<JSObject> object); protected: MUST_USE_RESULT inline MaybeHandle<JSObject> VisitElementOrProperty( Handle<JSObject> object, Handle<JSObject> value) { Handle<AllocationSite> current_site = site_context()->EnterNewScope(); MaybeHandle<JSObject> copy_of_value = StructureWalk(value); site_context()->ExitScope(current_site, value); return copy_of_value; } inline ContextObject* site_context() { return site_context_; } inline Isolate* isolate() { return site_context()->isolate(); } inline bool copying() const { return copying_; } private: ContextObject* site_context_; const bool copying_; const JSObject::DeepCopyHints hints_; }; template <class ContextObject> MaybeHandle<JSObject> JSObjectWalkVisitor<ContextObject>::StructureWalk( Handle<JSObject> object) { Isolate* isolate = this->isolate(); bool copying = this->copying(); bool shallow = hints_ == JSObject::kObjectIsShallow; if (!shallow) { StackLimitCheck check(isolate); if (check.HasOverflowed()) { isolate->StackOverflow(); return MaybeHandle<JSObject>(); } } if (object->map()->is_deprecated()) { JSObject::MigrateInstance(object); } Handle<JSObject> copy; if (copying) { Handle<AllocationSite> site_to_pass; if (site_context()->ShouldCreateMemento(object)) { site_to_pass = site_context()->current(); } copy = isolate->factory()->CopyJSObjectWithAllocationSite( object, site_to_pass); } else { copy = object; } DCHECK(copying || copy.is_identical_to(object)); ElementsKind kind = copy->GetElementsKind(); if (copying && IsFastSmiOrObjectElementsKind(kind) && FixedArray::cast(copy->elements())->map() == isolate->heap()->fixed_cow_array_map()) { isolate->counters()->cow_arrays_created_runtime()->Increment(); } if (!shallow) { HandleScope scope(isolate); // Deep copy own properties. if (copy->HasFastProperties()) { Handle<DescriptorArray> descriptors(copy->map()->instance_descriptors()); int limit = copy->map()->NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { PropertyDetails details = descriptors->GetDetails(i); if (details.type() != FIELD) continue; FieldIndex index = FieldIndex::ForDescriptor(copy->map(), i); Handle<Object> value(object->RawFastPropertyAt(index), isolate); if (value->IsJSObject()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, value, VisitElementOrProperty(copy, Handle<JSObject>::cast(value)), JSObject); } else { Representation representation = details.representation(); value = Object::NewStorageFor(isolate, value, representation); } if (copying) { copy->FastPropertyAtPut(index, *value); } } } else { Handle<FixedArray> names = isolate->factory()->NewFixedArray(copy->NumberOfOwnProperties()); copy->GetOwnPropertyNames(*names, 0); for (int i = 0; i < names->length(); i++) { DCHECK(names->get(i)->IsString()); Handle<String> key_string(String::cast(names->get(i))); Maybe<PropertyAttributes> maybe = JSReceiver::GetOwnPropertyAttributes(copy, key_string); DCHECK(maybe.has_value); PropertyAttributes attributes = maybe.value; // Only deep copy fields from the object literal expression. // In particular, don't try to copy the length attribute of // an array. if (attributes != NONE) continue; Handle<Object> value = Object::GetProperty(copy, key_string).ToHandleChecked(); if (value->IsJSObject()) { Handle<JSObject> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, VisitElementOrProperty(copy, Handle<JSObject>::cast(value)), JSObject); if (copying) { // Creating object copy for literals. No strict mode needed. JSObject::SetProperty(copy, key_string, result, SLOPPY).Assert(); } } } } // Deep copy own elements. // Pixel elements cannot be created using an object literal. DCHECK(!copy->HasExternalArrayElements()); switch (kind) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { Handle<FixedArray> elements(FixedArray::cast(copy->elements())); if (elements->map() == isolate->heap()->fixed_cow_array_map()) { #ifdef DEBUG for (int i = 0; i < elements->length(); i++) { DCHECK(!elements->get(i)->IsJSObject()); } #endif } else { for (int i = 0; i < elements->length(); i++) { Handle<Object> value(elements->get(i), isolate); DCHECK(value->IsSmi() || value->IsTheHole() || (IsFastObjectElementsKind(copy->GetElementsKind()))); if (value->IsJSObject()) { Handle<JSObject> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, VisitElementOrProperty(copy, Handle<JSObject>::cast(value)), JSObject); if (copying) { elements->set(i, *result); } } } } break; } case DICTIONARY_ELEMENTS: { Handle<SeededNumberDictionary> element_dictionary( copy->element_dictionary()); int capacity = element_dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = element_dictionary->KeyAt(i); if (element_dictionary->IsKey(k)) { Handle<Object> value(element_dictionary->ValueAt(i), isolate); if (value->IsJSObject()) { Handle<JSObject> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, VisitElementOrProperty(copy, Handle<JSObject>::cast(value)), JSObject); if (copying) { element_dictionary->ValueAtPut(i, *result); } } } } break; } case SLOPPY_ARGUMENTS_ELEMENTS: UNIMPLEMENTED(); break; #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ELEMENTS: \ case TYPE##_ELEMENTS: \ TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: // No contained objects, nothing to do. break; } } return copy; } MaybeHandle<JSObject> JSObject::DeepWalk( Handle<JSObject> object, AllocationSiteCreationContext* site_context) { JSObjectWalkVisitor<AllocationSiteCreationContext> v(site_context, false, kNoHints); MaybeHandle<JSObject> result = v.StructureWalk(object); Handle<JSObject> for_assert; DCHECK(!result.ToHandle(&for_assert) || for_assert.is_identical_to(object)); return result; } MaybeHandle<JSObject> JSObject::DeepCopy( Handle<JSObject> object, AllocationSiteUsageContext* site_context, DeepCopyHints hints) { JSObjectWalkVisitor<AllocationSiteUsageContext> v(site_context, true, hints); MaybeHandle<JSObject> copy = v.StructureWalk(object); Handle<JSObject> for_assert; DCHECK(!copy.ToHandle(&for_assert) || !for_assert.is_identical_to(object)); return copy; } // Tests for the fast common case for property enumeration: // - This object and all prototypes has an enum cache (which means that // it is no proxy, has no interceptors and needs no access checks). // - This object has no elements. // - No prototype has enumerable properties/elements. bool JSReceiver::IsSimpleEnum() { for (PrototypeIterator iter(GetIsolate(), this, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(); iter.Advance()) { if (!iter.GetCurrent()->IsJSObject()) return false; JSObject* curr = JSObject::cast(iter.GetCurrent()); int enum_length = curr->map()->EnumLength(); if (enum_length == kInvalidEnumCacheSentinel) return false; if (curr->IsAccessCheckNeeded()) return false; DCHECK(!curr->HasNamedInterceptor()); DCHECK(!curr->HasIndexedInterceptor()); if (curr->NumberOfEnumElements() > 0) return false; if (curr != this && enum_length != 0) return false; } return true; } static bool FilterKey(Object* key, PropertyAttributes filter) { if ((filter & SYMBOLIC) && key->IsSymbol()) { return true; } if ((filter & PRIVATE_SYMBOL) && key->IsSymbol() && Symbol::cast(key)->is_private()) { return true; } if ((filter & STRING) && !key->IsSymbol()) { return true; } return false; } int Map::NumberOfDescribedProperties(DescriptorFlag which, PropertyAttributes filter) { int result = 0; DescriptorArray* descs = instance_descriptors(); int limit = which == ALL_DESCRIPTORS ? descs->number_of_descriptors() : NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { if ((descs->GetDetails(i).attributes() & filter) == 0 && !FilterKey(descs->GetKey(i), filter)) { result++; } } return result; } int Map::NextFreePropertyIndex() { int max_index = -1; int number_of_own_descriptors = NumberOfOwnDescriptors(); DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < number_of_own_descriptors; i++) { if (descs->GetType(i) == FIELD) { int current_index = descs->GetFieldIndex(i); if (current_index > max_index) max_index = current_index; } } return max_index + 1; } static bool ContainsOnlyValidKeys(Handle<FixedArray> array) { int len = array->length(); for (int i = 0; i < len; i++) { Object* e = array->get(i); if (!(e->IsString() || e->IsNumber())) return false; } return true; } static Handle<FixedArray> ReduceFixedArrayTo( Handle<FixedArray> array, int length) { DCHECK(array->length() >= length); if (array->length() == length) return array; Handle<FixedArray> new_array = array->GetIsolate()->factory()->NewFixedArray(length); for (int i = 0; i < length; ++i) new_array->set(i, array->get(i)); return new_array; } static Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object, bool cache_result) { Isolate* isolate = object->GetIsolate(); if (object->HasFastProperties()) { int own_property_count = object->map()->EnumLength(); // If the enum length of the given map is set to kInvalidEnumCache, this // means that the map itself has never used the present enum cache. The // first step to using the cache is to set the enum length of the map by // counting the number of own descriptors that are not DONT_ENUM or // SYMBOLIC. if (own_property_count == kInvalidEnumCacheSentinel) { own_property_count = object->map()->NumberOfDescribedProperties( OWN_DESCRIPTORS, DONT_SHOW); } else { DCHECK(own_property_count == object->map()->NumberOfDescribedProperties( OWN_DESCRIPTORS, DONT_SHOW)); } if (object->map()->instance_descriptors()->HasEnumCache()) { DescriptorArray* desc = object->map()->instance_descriptors(); Handle<FixedArray> keys(desc->GetEnumCache(), isolate); // In case the number of properties required in the enum are actually // present, we can reuse the enum cache. Otherwise, this means that the // enum cache was generated for a previous (smaller) version of the // Descriptor Array. In that case we regenerate the enum cache. if (own_property_count <= keys->length()) { if (cache_result) object->map()->SetEnumLength(own_property_count); isolate->counters()->enum_cache_hits()->Increment(); return ReduceFixedArrayTo(keys, own_property_count); } } Handle<Map> map(object->map()); if (map->instance_descriptors()->IsEmpty()) { isolate->counters()->enum_cache_hits()->Increment(); if (cache_result) map->SetEnumLength(0); return isolate->factory()->empty_fixed_array(); } isolate->counters()->enum_cache_misses()->Increment(); Handle<FixedArray> storage = isolate->factory()->NewFixedArray( own_property_count); Handle<FixedArray> indices = isolate->factory()->NewFixedArray( own_property_count); Handle<DescriptorArray> descs = Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate); int size = map->NumberOfOwnDescriptors(); int index = 0; for (int i = 0; i < size; i++) { PropertyDetails details = descs->GetDetails(i); Object* key = descs->GetKey(i); if (!(details.IsDontEnum() || key->IsSymbol())) { storage->set(index, key); if (!indices.is_null()) { if (details.type() != FIELD) { indices = Handle<FixedArray>(); } else { FieldIndex field_index = FieldIndex::ForDescriptor(*map, i); int load_by_field_index = field_index.GetLoadByFieldIndex(); indices->set(index, Smi::FromInt(load_by_field_index)); } } index++; } } DCHECK(index == storage->length()); Handle<FixedArray> bridge_storage = isolate->factory()->NewFixedArray( DescriptorArray::kEnumCacheBridgeLength); DescriptorArray* desc = object->map()->instance_descriptors(); desc->SetEnumCache(*bridge_storage, *storage, indices.is_null() ? Object::cast(Smi::FromInt(0)) : Object::cast(*indices)); if (cache_result) { object->map()->SetEnumLength(own_property_count); } return storage; } else { Handle<NameDictionary> dictionary(object->property_dictionary()); int length = dictionary->NumberOfEnumElements(); if (length == 0) { return Handle<FixedArray>(isolate->heap()->empty_fixed_array()); } Handle<FixedArray> storage = isolate->factory()->NewFixedArray(length); dictionary->CopyEnumKeysTo(*storage); return storage; } } MaybeHandle<FixedArray> JSReceiver::GetKeys(Handle<JSReceiver> object, KeyCollectionType type) { USE(ContainsOnlyValidKeys); Isolate* isolate = object->GetIsolate(); Handle<FixedArray> content = isolate->factory()->empty_fixed_array(); Handle<JSFunction> arguments_function( JSFunction::cast(isolate->sloppy_arguments_map()->constructor())); // Only collect keys if access is permitted. for (PrototypeIterator iter(isolate, object, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(); iter.Advance()) { if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) { Handle<JSProxy> proxy(JSProxy::cast(*PrototypeIterator::GetCurrent(iter)), isolate); Handle<Object> args[] = { proxy }; Handle<Object> names; ASSIGN_RETURN_ON_EXCEPTION( isolate, names, Execution::Call(isolate, isolate->proxy_enumerate(), object, arraysize(args), args), FixedArray); ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::AddKeysFromArrayLike( content, Handle<JSObject>::cast(names)), FixedArray); break; } Handle<JSObject> current = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); // Check access rights if required. if (current->IsAccessCheckNeeded() && !isolate->MayNamedAccess( current, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(current, v8::ACCESS_KEYS); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, FixedArray); break; } // Compute the element keys. Handle<FixedArray> element_keys = isolate->factory()->NewFixedArray(current->NumberOfEnumElements()); current->GetEnumElementKeys(*element_keys); ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::UnionOfKeys(content, element_keys), FixedArray); DCHECK(ContainsOnlyValidKeys(content)); // Add the element keys from the interceptor. if (current->HasIndexedInterceptor()) { Handle<JSObject> result; if (JSObject::GetKeysForIndexedInterceptor( current, object).ToHandle(&result)) { ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::AddKeysFromArrayLike(content, result), FixedArray); } DCHECK(ContainsOnlyValidKeys(content)); } // We can cache the computed property keys if access checks are // not needed and no interceptors are involved. // // We do not use the cache if the object has elements and // therefore it does not make sense to cache the property names // for arguments objects. Arguments objects will always have // elements. // Wrapped strings have elements, but don't have an elements // array or dictionary. So the fast inline test for whether to // use the cache says yes, so we should not create a cache. bool cache_enum_keys = ((current->map()->constructor() != *arguments_function) && !current->IsJSValue() && !current->IsAccessCheckNeeded() && !current->HasNamedInterceptor() && !current->HasIndexedInterceptor()); // Compute the property keys and cache them if possible. ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::UnionOfKeys( content, GetEnumPropertyKeys(current, cache_enum_keys)), FixedArray); DCHECK(ContainsOnlyValidKeys(content)); // Add the property keys from the interceptor. if (current->HasNamedInterceptor()) { Handle<JSObject> result; if (JSObject::GetKeysForNamedInterceptor( current, object).ToHandle(&result)) { ASSIGN_RETURN_ON_EXCEPTION( isolate, content, FixedArray::AddKeysFromArrayLike(content, result), FixedArray); } DCHECK(ContainsOnlyValidKeys(content)); } // If we only want own properties we bail out after the first // iteration. if (type == OWN_ONLY) break; } return content; } // Try to update an accessor in an elements dictionary. Return true if the // update succeeded, and false otherwise. static bool UpdateGetterSetterInDictionary( SeededNumberDictionary* dictionary, uint32_t index, Object* getter, Object* setter, PropertyAttributes attributes) { int entry = dictionary->FindEntry(index); if (entry != SeededNumberDictionary::kNotFound) { Object* result = dictionary->ValueAt(entry); PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS && result->IsAccessorPair()) { DCHECK(details.IsConfigurable()); if (details.attributes() != attributes) { dictionary->DetailsAtPut( entry, PropertyDetails(attributes, CALLBACKS, index)); } AccessorPair::cast(result)->SetComponents(getter, setter); return true; } } return false; } void JSObject::DefineElementAccessor(Handle<JSObject> object, uint32_t index, Handle<Object> getter, Handle<Object> setter, PropertyAttributes attributes) { switch (object->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: break; #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ELEMENTS: \ case TYPE##_ELEMENTS: \ TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE // Ignore getters and setters on pixel and external array elements. return; case DICTIONARY_ELEMENTS: if (UpdateGetterSetterInDictionary(object->element_dictionary(), index, *getter, *setter, attributes)) { return; } break; case SLOPPY_ARGUMENTS_ELEMENTS: { // Ascertain whether we have read-only properties or an existing // getter/setter pair in an arguments elements dictionary backing // store. FixedArray* parameter_map = FixedArray::cast(object->elements()); uint32_t length = parameter_map->length(); Object* probe = index < (length - 2) ? parameter_map->get(index + 2) : NULL; if (probe == NULL || probe->IsTheHole()) { FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); if (arguments->IsDictionary()) { SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(arguments); if (UpdateGetterSetterInDictionary(dictionary, index, *getter, *setter, attributes)) { return; } } } break; } } Isolate* isolate = object->GetIsolate(); Handle<AccessorPair> accessors = isolate->factory()->NewAccessorPair(); accessors->SetComponents(*getter, *setter); SetElementCallback(object, index, accessors, attributes); } bool Map::DictionaryElementsInPrototypeChainOnly() { if (IsDictionaryElementsKind(elements_kind())) { return false; } for (PrototypeIterator iter(this); !iter.IsAtEnd(); iter.Advance()) { if (iter.GetCurrent()->IsJSProxy()) { // Be conservative, don't walk into proxies. return true; } if (IsDictionaryElementsKind( JSObject::cast(iter.GetCurrent())->map()->elements_kind())) { return true; } } return false; } void JSObject::SetElementCallback(Handle<JSObject> object, uint32_t index, Handle<Object> structure, PropertyAttributes attributes) { Heap* heap = object->GetHeap(); PropertyDetails details = PropertyDetails(attributes, CALLBACKS, 0); // Normalize elements to make this operation simple. bool had_dictionary_elements = object->HasDictionaryElements(); Handle<SeededNumberDictionary> dictionary = NormalizeElements(object); DCHECK(object->HasDictionaryElements() || object->HasDictionaryArgumentsElements()); // Update the dictionary with the new CALLBACKS property. dictionary = SeededNumberDictionary::Set(dictionary, index, structure, details); dictionary->set_requires_slow_elements(); // Update the dictionary backing store on the object. if (object->elements()->map() == heap->sloppy_arguments_elements_map()) { // Also delete any parameter alias. // // TODO(kmillikin): when deleting the last parameter alias we could // switch to a direct backing store without the parameter map. This // would allow GC of the context. FixedArray* parameter_map = FixedArray::cast(object->elements()); if (index < static_cast<uint32_t>(parameter_map->length()) - 2) { parameter_map->set(index + 2, heap->the_hole_value()); } parameter_map->set(1, *dictionary); } else { object->set_elements(*dictionary); if (!had_dictionary_elements) { // KeyedStoreICs (at least the non-generic ones) need a reset. heap->ClearAllICsByKind(Code::KEYED_STORE_IC); } } } void JSObject::SetPropertyCallback(Handle<JSObject> object, Handle<Name> name, Handle<Object> structure, PropertyAttributes attributes) { PropertyNormalizationMode mode = object->map()->is_prototype_map() ? KEEP_INOBJECT_PROPERTIES : CLEAR_INOBJECT_PROPERTIES; // Normalize object to make this operation simple. NormalizeProperties(object, mode, 0); // For the global object allocate a new map to invalidate the global inline // caches which have a global property cell reference directly in the code. if (object->IsGlobalObject()) { Handle<Map> new_map = Map::CopyDropDescriptors(handle(object->map())); DCHECK(new_map->is_dictionary_map()); JSObject::MigrateToMap(object, new_map); // When running crankshaft, changing the map is not enough. We // need to deoptimize all functions that rely on this global // object. Deoptimizer::DeoptimizeGlobalObject(*object); } // Update the dictionary with the new CALLBACKS property. PropertyDetails details = PropertyDetails(attributes, CALLBACKS, 0); SetNormalizedProperty(object, name, structure, details); ReoptimizeIfPrototype(object); } MaybeHandle<Object> JSObject::DefineAccessor(Handle<JSObject> object, Handle<Name> name, Handle<Object> getter, Handle<Object> setter, PropertyAttributes attributes) { Isolate* isolate = object->GetIsolate(); // Check access rights if needed. if (object->IsAccessCheckNeeded() && !isolate->MayNamedAccess(object, name, v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(object, v8::ACCESS_SET); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->undefined_value(); } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return isolate->factory()->undefined_value(); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); DefineAccessor(Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), name, getter, setter, attributes); return isolate->factory()->undefined_value(); } // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); // Try to flatten before operating on the string. if (name->IsString()) name = String::Flatten(Handle<String>::cast(name)); uint32_t index = 0; bool is_element = name->AsArrayIndex(&index); Handle<Object> old_value = isolate->factory()->the_hole_value(); bool is_observed = object->map()->is_observed() && *name != isolate->heap()->hidden_string(); bool preexists = false; if (is_observed) { if (is_element) { Maybe<bool> maybe = HasOwnElement(object, index); // Workaround for a GCC 4.4.3 bug which leads to "‘preexists’ may be used // uninitialized in this function". if (!maybe.has_value) { DCHECK(false); return isolate->factory()->undefined_value(); } preexists = maybe.value; if (preexists && GetOwnElementAccessorPair(object, index).is_null()) { old_value = Object::GetElement(isolate, object, index).ToHandleChecked(); } } else { LookupIterator it(object, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR); CHECK(GetPropertyAttributes(&it).has_value); preexists = it.IsFound(); if (preexists && (it.state() == LookupIterator::DATA || it.GetAccessors()->IsAccessorInfo())) { old_value = GetProperty(&it).ToHandleChecked(); } } } if (is_element) { DefineElementAccessor(object, index, getter, setter, attributes); } else { DCHECK(getter->IsSpecFunction() || getter->IsUndefined() || getter->IsNull()); DCHECK(setter->IsSpecFunction() || setter->IsUndefined() || setter->IsNull()); // At least one of the accessors needs to be a new value. DCHECK(!getter->IsNull() || !setter->IsNull()); LookupIterator it(object, name, LookupIterator::OWN_SKIP_INTERCEPTOR); if (it.state() == LookupIterator::ACCESS_CHECK) { // We already did an access check before. We do have access. it.Next(); } if (!getter->IsNull()) { it.TransitionToAccessorProperty(ACCESSOR_GETTER, getter, attributes); } if (!setter->IsNull()) { it.TransitionToAccessorProperty(ACCESSOR_SETTER, setter, attributes); } } if (is_observed) { const char* type = preexists ? "reconfigure" : "add"; EnqueueChangeRecord(object, type, name, old_value); } return isolate->factory()->undefined_value(); } MaybeHandle<Object> JSObject::SetAccessor(Handle<JSObject> object, Handle<AccessorInfo> info) { Isolate* isolate = object->GetIsolate(); Factory* factory = isolate->factory(); Handle<Name> name(Name::cast(info->name())); // Check access rights if needed. if (object->IsAccessCheckNeeded() && !isolate->MayNamedAccess(object, name, v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(object, v8::ACCESS_SET); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return factory->undefined_value(); } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return object; DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return SetAccessor( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), info); } // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); // Try to flatten before operating on the string. if (name->IsString()) name = String::Flatten(Handle<String>::cast(name)); uint32_t index = 0; bool is_element = name->AsArrayIndex(&index); if (is_element) { if (object->IsJSArray()) return factory->undefined_value(); // Accessors overwrite previous callbacks (cf. with getters/setters). switch (object->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: break; #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ELEMENTS: \ case TYPE##_ELEMENTS: \ TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE // Ignore getters and setters on pixel and external array // elements. return factory->undefined_value(); case DICTIONARY_ELEMENTS: break; case SLOPPY_ARGUMENTS_ELEMENTS: UNIMPLEMENTED(); break; } SetElementCallback(object, index, info, info->property_attributes()); } else { // Lookup the name. LookupIterator it(object, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR); CHECK(GetPropertyAttributes(&it).has_value); // ES5 forbids turning a property into an accessor if it's not // configurable. See 8.6.1 (Table 5). if (it.IsFound() && (it.IsReadOnly() || !it.IsConfigurable())) { return factory->undefined_value(); } SetPropertyCallback(object, name, info, info->property_attributes()); } return object; } MaybeHandle<Object> JSObject::GetAccessor(Handle<JSObject> object, Handle<Name> name, AccessorComponent component) { Isolate* isolate = object->GetIsolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); // Make the lookup and include prototypes. uint32_t index = 0; if (name->AsArrayIndex(&index)) { for (PrototypeIterator iter(isolate, object, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(); iter.Advance()) { Handle<Object> current = PrototypeIterator::GetCurrent(iter); // Check access rights if needed. if (current->IsAccessCheckNeeded() && !isolate->MayNamedAccess(Handle<JSObject>::cast(current), name, v8::ACCESS_HAS)) { isolate->ReportFailedAccessCheck(Handle<JSObject>::cast(current), v8::ACCESS_HAS); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->undefined_value(); } if (current->IsJSObject() && Handle<JSObject>::cast(current)->HasDictionaryElements()) { JSObject* js_object = JSObject::cast(*current); SeededNumberDictionary* dictionary = js_object->element_dictionary(); int entry = dictionary->FindEntry(index); if (entry != SeededNumberDictionary::kNotFound) { Object* element = dictionary->ValueAt(entry); if (dictionary->DetailsAt(entry).type() == CALLBACKS && element->IsAccessorPair()) { return handle(AccessorPair::cast(element)->GetComponent(component), isolate); } } } } } else { LookupIterator it(object, name, LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); for (; it.IsFound(); it.Next()) { switch (it.state()) { case LookupIterator::INTERCEPTOR: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it.HasAccess(v8::ACCESS_HAS)) continue; isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>(), v8::ACCESS_HAS); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->undefined_value(); case LookupIterator::JSPROXY: return isolate->factory()->undefined_value(); case LookupIterator::DATA: continue; case LookupIterator::ACCESSOR: { Handle<Object> maybe_pair = it.GetAccessors(); if (maybe_pair->IsAccessorPair()) { return handle( AccessorPair::cast(*maybe_pair)->GetComponent(component), isolate); } } } } } return isolate->factory()->undefined_value(); } Object* JSObject::SlowReverseLookup(Object* value) { if (HasFastProperties()) { int number_of_own_descriptors = map()->NumberOfOwnDescriptors(); DescriptorArray* descs = map()->instance_descriptors(); for (int i = 0; i < number_of_own_descriptors; i++) { if (descs->GetType(i) == FIELD) { Object* property = RawFastPropertyAt(FieldIndex::ForDescriptor(map(), i)); if (descs->GetDetails(i).representation().IsDouble()) { DCHECK(property->IsMutableHeapNumber()); if (value->IsNumber() && property->Number() == value->Number()) { return descs->GetKey(i); } } else if (property == value) { return descs->GetKey(i); } } else if (descs->GetType(i) == CONSTANT) { if (descs->GetConstant(i) == value) { return descs->GetKey(i); } } } return GetHeap()->undefined_value(); } else { return property_dictionary()->SlowReverseLookup(value); } } Handle<Map> Map::RawCopy(Handle<Map> map, int instance_size) { Handle<Map> result = map->GetIsolate()->factory()->NewMap( map->instance_type(), instance_size); result->set_prototype(map->prototype()); result->set_constructor(map->constructor()); result->set_bit_field(map->bit_field()); result->set_bit_field2(map->bit_field2()); int new_bit_field3 = map->bit_field3(); new_bit_field3 = OwnsDescriptors::update(new_bit_field3, true); new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0); new_bit_field3 = EnumLengthBits::update(new_bit_field3, kInvalidEnumCacheSentinel); new_bit_field3 = Deprecated::update(new_bit_field3, false); if (!map->is_dictionary_map()) { new_bit_field3 = IsUnstable::update(new_bit_field3, false); } new_bit_field3 = ConstructionCount::update(new_bit_field3, JSFunction::kNoSlackTracking); result->set_bit_field3(new_bit_field3); return result; } Handle<Map> Map::Normalize(Handle<Map> fast_map, PropertyNormalizationMode mode) { DCHECK(!fast_map->is_dictionary_map()); Isolate* isolate = fast_map->GetIsolate(); Handle<Object> maybe_cache(isolate->native_context()->normalized_map_cache(), isolate); bool use_cache = !maybe_cache->IsUndefined(); Handle<NormalizedMapCache> cache; if (use_cache) cache = Handle<NormalizedMapCache>::cast(maybe_cache); Handle<Map> new_map; if (use_cache && cache->Get(fast_map, mode).ToHandle(&new_map)) { #ifdef VERIFY_HEAP if (FLAG_verify_heap) new_map->DictionaryMapVerify(); #endif #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // The cached map should match newly created normalized map bit-by-bit, // except for the code cache, which can contain some ics which can be // applied to the shared map. Handle<Map> fresh = Map::CopyNormalized(fast_map, mode); DCHECK(memcmp(fresh->address(), new_map->address(), Map::kCodeCacheOffset) == 0); STATIC_ASSERT(Map::kDependentCodeOffset == Map::kCodeCacheOffset + kPointerSize); int offset = Map::kDependentCodeOffset + kPointerSize; DCHECK(memcmp(fresh->address() + offset, new_map->address() + offset, Map::kSize - offset) == 0); } #endif } else { new_map = Map::CopyNormalized(fast_map, mode); if (use_cache) { cache->Set(fast_map, new_map); isolate->counters()->normalized_maps()->Increment(); } } fast_map->NotifyLeafMapLayoutChange(); return new_map; } Handle<Map> Map::CopyNormalized(Handle<Map> map, PropertyNormalizationMode mode) { int new_instance_size = map->instance_size(); if (mode == CLEAR_INOBJECT_PROPERTIES) { new_instance_size -= map->inobject_properties() * kPointerSize; } Handle<Map> result = RawCopy(map, new_instance_size); if (mode != CLEAR_INOBJECT_PROPERTIES) { result->set_inobject_properties(map->inobject_properties()); } result->set_dictionary_map(true); result->set_migration_target(false); #ifdef VERIFY_HEAP if (FLAG_verify_heap) result->DictionaryMapVerify(); #endif return result; } Handle<Map> Map::CopyDropDescriptors(Handle<Map> map) { Handle<Map> result = RawCopy(map, map->instance_size()); // Please note instance_type and instance_size are set when allocated. result->set_inobject_properties(map->inobject_properties()); result->set_unused_property_fields(map->unused_property_fields()); result->set_pre_allocated_property_fields( map->pre_allocated_property_fields()); result->ClearCodeCache(map->GetHeap()); map->NotifyLeafMapLayoutChange(); return result; } Handle<Map> Map::ShareDescriptor(Handle<Map> map, Handle<DescriptorArray> descriptors, Descriptor* descriptor) { // Sanity check. This path is only to be taken if the map owns its descriptor // array, implying that its NumberOfOwnDescriptors equals the number of // descriptors in the descriptor array. DCHECK(map->NumberOfOwnDescriptors() == map->instance_descriptors()->number_of_descriptors()); Handle<Map> result = CopyDropDescriptors(map); Handle<Name> name = descriptor->GetKey(); // Ensure there's space for the new descriptor in the shared descriptor array. if (descriptors->NumberOfSlackDescriptors() == 0) { int old_size = descriptors->number_of_descriptors(); if (old_size == 0) { descriptors = DescriptorArray::Allocate(map->GetIsolate(), 0, 1); } else { EnsureDescriptorSlack(map, old_size < 4 ? 1 : old_size / 2); descriptors = handle(map->instance_descriptors()); } } { DisallowHeapAllocation no_gc; descriptors->Append(descriptor); result->InitializeDescriptors(*descriptors); } DCHECK(result->NumberOfOwnDescriptors() == map->NumberOfOwnDescriptors() + 1); ConnectTransition(map, result, name, SIMPLE_TRANSITION); return result; } void Map::ConnectTransition(Handle<Map> parent, Handle<Map> child, Handle<Name> name, SimpleTransitionFlag flag) { parent->set_owns_descriptors(false); if (parent->is_prototype_map()) { DCHECK(child->is_prototype_map()); } else { Handle<TransitionArray> transitions = TransitionArray::CopyInsert(parent, name, child, flag); parent->set_transitions(*transitions); child->SetBackPointer(*parent); } } Handle<Map> Map::CopyReplaceDescriptors(Handle<Map> map, Handle<DescriptorArray> descriptors, TransitionFlag flag, MaybeHandle<Name> maybe_name, SimpleTransitionFlag simple_flag) { DCHECK(descriptors->IsSortedNoDuplicates()); Handle<Map> result = CopyDropDescriptors(map); result->InitializeDescriptors(*descriptors); if (!map->is_prototype_map()) { if (flag == INSERT_TRANSITION && map->CanHaveMoreTransitions()) { Handle<Name> name; CHECK(maybe_name.ToHandle(&name)); ConnectTransition(map, result, name, simple_flag); } else { int length = descriptors->number_of_descriptors(); for (int i = 0; i < length; i++) { descriptors->SetRepresentation(i, Representation::Tagged()); if (descriptors->GetDetails(i).type() == FIELD) { descriptors->SetValue(i, HeapType::Any()); } } } } return result; } // Since this method is used to rewrite an existing transition tree, it can // always insert transitions without checking. Handle<Map> Map::CopyInstallDescriptors(Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors) { DCHECK(descriptors->IsSortedNoDuplicates()); Handle<Map> result = CopyDropDescriptors(map); result->InitializeDescriptors(*descriptors); result->SetNumberOfOwnDescriptors(new_descriptor + 1); int unused_property_fields = map->unused_property_fields(); if (descriptors->GetDetails(new_descriptor).type() == FIELD) { unused_property_fields = map->unused_property_fields() - 1; if (unused_property_fields < 0) { unused_property_fields += JSObject::kFieldsAdded; } } result->set_unused_property_fields(unused_property_fields); Handle<Name> name = handle(descriptors->GetKey(new_descriptor)); ConnectTransition(map, result, name, SIMPLE_TRANSITION); return result; } Handle<Map> Map::CopyAsElementsKind(Handle<Map> map, ElementsKind kind, TransitionFlag flag) { if (flag == INSERT_TRANSITION) { DCHECK(!map->HasElementsTransition() || ((map->elements_transition_map()->elements_kind() == DICTIONARY_ELEMENTS || IsExternalArrayElementsKind( map->elements_transition_map()->elements_kind())) && (kind == DICTIONARY_ELEMENTS || IsExternalArrayElementsKind(kind)))); DCHECK(!IsFastElementsKind(kind) || IsMoreGeneralElementsKindTransition(map->elements_kind(), kind)); DCHECK(kind != map->elements_kind()); } bool insert_transition = flag == INSERT_TRANSITION && !map->HasElementsTransition(); if (insert_transition && map->owns_descriptors()) { // In case the map owned its own descriptors, share the descriptors and // transfer ownership to the new map. Handle<Map> new_map = CopyDropDescriptors(map); ConnectElementsTransition(map, new_map); new_map->set_elements_kind(kind); new_map->InitializeDescriptors(map->instance_descriptors()); return new_map; } // In case the map did not own its own descriptors, a split is forced by // copying the map; creating a new descriptor array cell. // Create a new free-floating map only if we are not allowed to store it. Handle<Map> new_map = Copy(map); new_map->set_elements_kind(kind); if (insert_transition) { ConnectElementsTransition(map, new_map); } return new_map; } Handle<Map> Map::CopyForObserved(Handle<Map> map) { DCHECK(!map->is_observed()); Isolate* isolate = map->GetIsolate(); // In case the map owned its own descriptors, share the descriptors and // transfer ownership to the new map. Handle<Map> new_map; if (map->owns_descriptors()) { new_map = CopyDropDescriptors(map); } else { DCHECK(!map->is_prototype_map()); new_map = Copy(map); } new_map->set_is_observed(); if (map->owns_descriptors()) { new_map->InitializeDescriptors(map->instance_descriptors()); } Handle<Name> name = isolate->factory()->observed_symbol(); ConnectTransition(map, new_map, name, FULL_TRANSITION); return new_map; } Handle<Map> Map::Copy(Handle<Map> map) { Handle<DescriptorArray> descriptors(map->instance_descriptors()); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors); return CopyReplaceDescriptors( map, new_descriptors, OMIT_TRANSITION, MaybeHandle<Name>()); } Handle<Map> Map::Create(Isolate* isolate, int inobject_properties) { Handle<Map> copy = Copy(handle(isolate->object_function()->initial_map())); // Check that we do not overflow the instance size when adding the extra // inobject properties. If the instance size overflows, we allocate as many // properties as we can as inobject properties. int max_extra_properties = (JSObject::kMaxInstanceSize - JSObject::kHeaderSize) >> kPointerSizeLog2; if (inobject_properties > max_extra_properties) { inobject_properties = max_extra_properties; } int new_instance_size = JSObject::kHeaderSize + kPointerSize * inobject_properties; // Adjust the map with the extra inobject properties. copy->set_inobject_properties(inobject_properties); copy->set_unused_property_fields(inobject_properties); copy->set_instance_size(new_instance_size); copy->set_visitor_id(StaticVisitorBase::GetVisitorId(*copy)); return copy; } Handle<Map> Map::CopyForFreeze(Handle<Map> map) { int num_descriptors = map->NumberOfOwnDescriptors(); Isolate* isolate = map->GetIsolate(); Handle<DescriptorArray> new_desc = DescriptorArray::CopyUpToAddAttributes( handle(map->instance_descriptors(), isolate), num_descriptors, FROZEN); Handle<Map> new_map = CopyReplaceDescriptors( map, new_desc, INSERT_TRANSITION, isolate->factory()->frozen_symbol()); new_map->freeze(); new_map->set_is_extensible(false); new_map->set_elements_kind(DICTIONARY_ELEMENTS); return new_map; } bool DescriptorArray::CanHoldValue(int descriptor, Object* value) { PropertyDetails details = GetDetails(descriptor); switch (details.type()) { case FIELD: return value->FitsRepresentation(details.representation()) && GetFieldType(descriptor)->NowContains(value); case CONSTANT: DCHECK(GetConstant(descriptor) != value || value->FitsRepresentation(details.representation())); return GetConstant(descriptor) == value; case CALLBACKS: return false; case NORMAL: UNREACHABLE(); break; } UNREACHABLE(); return false; } Handle<Map> Map::PrepareForDataProperty(Handle<Map> map, int descriptor, Handle<Object> value) { // Dictionaries can store any property value. if (map->is_dictionary_map()) return map; // Migrate to the newest map before storing the property. map = Update(map); Handle<DescriptorArray> descriptors(map->instance_descriptors()); if (descriptors->CanHoldValue(descriptor, *value)) return map; Isolate* isolate = map->GetIsolate(); Representation representation = value->OptimalRepresentation(); Handle<HeapType> type = value->OptimalType(isolate, representation); return GeneralizeRepresentation(map, descriptor, representation, type, FORCE_FIELD); } Handle<Map> Map::TransitionToDataProperty(Handle<Map> map, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StoreFromKeyed store_mode) { // Dictionary maps can always have additional data properties. if (map->is_dictionary_map()) return map; // Migrate to the newest map before storing the property. map = Update(map); int index = map->SearchTransition(*name); if (index != TransitionArray::kNotFound) { Handle<Map> transition(map->GetTransition(index)); int descriptor = transition->LastAdded(); // TODO(verwaest): Handle attributes better. DescriptorArray* descriptors = transition->instance_descriptors(); if (descriptors->GetDetails(descriptor).attributes() != attributes) { return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES); } return Map::PrepareForDataProperty(transition, descriptor, value); } TransitionFlag flag = INSERT_TRANSITION; MaybeHandle<Map> maybe_map; if (value->IsJSFunction()) { maybe_map = Map::CopyWithConstant(map, name, value, attributes, flag); } else if (!map->TooManyFastProperties(store_mode)) { Isolate* isolate = name->GetIsolate(); Representation representation = value->OptimalRepresentation(); Handle<HeapType> type = value->OptimalType(isolate, representation); maybe_map = Map::CopyWithField(map, name, type, attributes, representation, flag); } Handle<Map> result; if (!maybe_map.ToHandle(&result)) { return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES); } return result; } Handle<Map> Map::ReconfigureDataProperty(Handle<Map> map, int descriptor, PropertyAttributes attributes) { // Dictionaries have to be reconfigured in-place. DCHECK(!map->is_dictionary_map()); // For now, give up on transitioning and just create a unique map. // TODO(verwaest/ishell): Cache transitions with different attributes. return CopyGeneralizeAllRepresentations(map, descriptor, FORCE_FIELD, attributes, "attributes mismatch"); } Handle<Map> Map::TransitionToAccessorProperty(Handle<Map> map, Handle<Name> name, AccessorComponent component, Handle<Object> accessor, PropertyAttributes attributes) { Isolate* isolate = name->GetIsolate(); // Dictionary maps can always have additional data properties. if (map->is_dictionary_map()) { // For global objects, property cells are inlined. We need to change the // map. if (map->IsGlobalObjectMap()) return Copy(map); return map; } // Migrate to the newest map before transitioning to the new property. map = Update(map); PropertyNormalizationMode mode = map->is_prototype_map() ? KEEP_INOBJECT_PROPERTIES : CLEAR_INOBJECT_PROPERTIES; int index = map->SearchTransition(*name); if (index != TransitionArray::kNotFound) { Handle<Map> transition(map->GetTransition(index)); DescriptorArray* descriptors = transition->instance_descriptors(); // Fast path, assume that we're modifying the last added descriptor. int descriptor = transition->LastAdded(); if (descriptors->GetKey(descriptor) != *name) { // If not, search for the descriptor. descriptor = descriptors->SearchWithCache(*name, *transition); } if (descriptors->GetDetails(descriptor).type() != CALLBACKS) { return Map::Normalize(map, mode); } // TODO(verwaest): Handle attributes better. if (descriptors->GetDetails(descriptor).attributes() != attributes) { return Map::Normalize(map, mode); } Handle<Object> maybe_pair(descriptors->GetValue(descriptor), isolate); if (!maybe_pair->IsAccessorPair()) { return Map::Normalize(map, mode); } Handle<AccessorPair> pair = Handle<AccessorPair>::cast(maybe_pair); if (pair->get(component) != *accessor) { return Map::Normalize(map, mode); } return transition; } Handle<AccessorPair> pair; DescriptorArray* old_descriptors = map->instance_descriptors(); int descriptor = old_descriptors->SearchWithCache(*name, *map); if (descriptor != DescriptorArray::kNotFound) { PropertyDetails old_details = old_descriptors->GetDetails(descriptor); if (old_details.type() != CALLBACKS) { return Map::Normalize(map, mode); } if (old_details.attributes() != attributes) { return Map::Normalize(map, mode); } Handle<Object> maybe_pair(old_descriptors->GetValue(descriptor), isolate); if (!maybe_pair->IsAccessorPair()) { return Map::Normalize(map, mode); } Object* current = Handle<AccessorPair>::cast(maybe_pair)->get(component); if (current == *accessor) return map; if (!current->IsTheHole()) { return Map::Normalize(map, mode); } pair = AccessorPair::Copy(Handle<AccessorPair>::cast(maybe_pair)); } else if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors || map->TooManyFastProperties(CERTAINLY_NOT_STORE_FROM_KEYED)) { return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES); } else { pair = isolate->factory()->NewAccessorPair(); } pair->set(component, *accessor); TransitionFlag flag = INSERT_TRANSITION; CallbacksDescriptor new_desc(name, pair, attributes); return Map::CopyInsertDescriptor(map, &new_desc, flag); } Handle<Map> Map::CopyAddDescriptor(Handle<Map> map, Descriptor* descriptor, TransitionFlag flag) { Handle<DescriptorArray> descriptors(map->instance_descriptors()); // Ensure the key is unique. descriptor->KeyToUniqueName(); if (flag == INSERT_TRANSITION && map->owns_descriptors() && map->CanHaveMoreTransitions()) { return ShareDescriptor(map, descriptors, descriptor); } Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo( descriptors, map->NumberOfOwnDescriptors(), 1); new_descriptors->Append(descriptor); return CopyReplaceDescriptors( map, new_descriptors, flag, descriptor->GetKey(), SIMPLE_TRANSITION); } Handle<Map> Map::CopyInsertDescriptor(Handle<Map> map, Descriptor* descriptor, TransitionFlag flag) { Handle<DescriptorArray> old_descriptors(map->instance_descriptors()); // Ensure the key is unique. descriptor->KeyToUniqueName(); // We replace the key if it is already present. int index = old_descriptors->SearchWithCache(*descriptor->GetKey(), *map); if (index != DescriptorArray::kNotFound) { return CopyReplaceDescriptor(map, old_descriptors, descriptor, index, flag); } return CopyAddDescriptor(map, descriptor, flag); } Handle<DescriptorArray> DescriptorArray::CopyUpTo( Handle<DescriptorArray> desc, int enumeration_index, int slack) { return DescriptorArray::CopyUpToAddAttributes( desc, enumeration_index, NONE, slack); } Handle<DescriptorArray> DescriptorArray::CopyUpToAddAttributes( Handle<DescriptorArray> desc, int enumeration_index, PropertyAttributes attributes, int slack) { if (enumeration_index + slack == 0) { return desc->GetIsolate()->factory()->empty_descriptor_array(); } int size = enumeration_index; Handle<DescriptorArray> descriptors = DescriptorArray::Allocate(desc->GetIsolate(), size, slack); DescriptorArray::WhitenessWitness witness(*descriptors); if (attributes != NONE) { for (int i = 0; i < size; ++i) { Object* value = desc->GetValue(i); Name* key = desc->GetKey(i); PropertyDetails details = desc->GetDetails(i); // Bulk attribute changes never affect private properties. if (!key->IsSymbol() || !Symbol::cast(key)->is_private()) { int mask = DONT_DELETE | DONT_ENUM; // READ_ONLY is an invalid attribute for JS setters/getters. if (details.type() != CALLBACKS || !value->IsAccessorPair()) { mask |= READ_ONLY; } details = details.CopyAddAttributes( static_cast<PropertyAttributes>(attributes & mask)); } Descriptor inner_desc( handle(key), handle(value, desc->GetIsolate()), details); descriptors->Set(i, &inner_desc, witness); } } else { for (int i = 0; i < size; ++i) { descriptors->CopyFrom(i, *desc, witness); } } if (desc->number_of_descriptors() != enumeration_index) descriptors->Sort(); return descriptors; } Handle<Map> Map::CopyReplaceDescriptor(Handle<Map> map, Handle<DescriptorArray> descriptors, Descriptor* descriptor, int insertion_index, TransitionFlag flag) { // Ensure the key is unique. descriptor->KeyToUniqueName(); Handle<Name> key = descriptor->GetKey(); DCHECK(*key == descriptors->GetKey(insertion_index)); Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo( descriptors, map->NumberOfOwnDescriptors()); new_descriptors->Replace(insertion_index, descriptor); SimpleTransitionFlag simple_flag = (insertion_index == descriptors->number_of_descriptors() - 1) ? SIMPLE_TRANSITION : FULL_TRANSITION; return CopyReplaceDescriptors(map, new_descriptors, flag, key, simple_flag); } void Map::UpdateCodeCache(Handle<Map> map, Handle<Name> name, Handle<Code> code) { Isolate* isolate = map->GetIsolate(); HandleScope scope(isolate); // Allocate the code cache if not present. if (map->code_cache()->IsFixedArray()) { Handle<Object> result = isolate->factory()->NewCodeCache(); map->set_code_cache(*result); } // Update the code cache. Handle<CodeCache> code_cache(CodeCache::cast(map->code_cache()), isolate); CodeCache::Update(code_cache, name, code); } Object* Map::FindInCodeCache(Name* name, Code::Flags flags) { // Do a lookup if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int Map::IndexInCodeCache(Object* name, Code* code) { // Get the internal index if a code cache exists. if (!code_cache()->IsFixedArray()) { return CodeCache::cast(code_cache())->GetIndex(name, code); } return -1; } void Map::RemoveFromCodeCache(Name* name, Code* code, int index) { // No GC is supposed to happen between a call to IndexInCodeCache and // RemoveFromCodeCache so the code cache must be there. DCHECK(!code_cache()->IsFixedArray()); CodeCache::cast(code_cache())->RemoveByIndex(name, code, index); } // An iterator over all map transitions in an descriptor array, reusing the // constructor field of the map while it is running. Negative values in // the constructor field indicate an active map transition iteration. The // original constructor is restored after iterating over all entries. class IntrusiveMapTransitionIterator { public: IntrusiveMapTransitionIterator( Map* map, TransitionArray* transition_array, Object* constructor) : map_(map), transition_array_(transition_array), constructor_(constructor) { } void StartIfNotStarted() { DCHECK(!(*IteratorField())->IsSmi() || IsIterating()); if (!(*IteratorField())->IsSmi()) { DCHECK(*IteratorField() == constructor_); *IteratorField() = Smi::FromInt(-1); } } bool IsIterating() { return (*IteratorField())->IsSmi() && Smi::cast(*IteratorField())->value() < 0; } Map* Next() { DCHECK(IsIterating()); int value = Smi::cast(*IteratorField())->value(); int index = -value - 1; int number_of_transitions = transition_array_->number_of_transitions(); while (index < number_of_transitions) { *IteratorField() = Smi::FromInt(value - 1); return transition_array_->GetTarget(index); } *IteratorField() = constructor_; return NULL; } private: Object** IteratorField() { return HeapObject::RawField(map_, Map::kConstructorOffset); } Map* map_; TransitionArray* transition_array_; Object* constructor_; }; // An iterator over all prototype transitions, reusing the constructor field // of the map while it is running. Positive values in the constructor field // indicate an active prototype transition iteration. The original constructor // is restored after iterating over all entries. class IntrusivePrototypeTransitionIterator { public: IntrusivePrototypeTransitionIterator( Map* map, HeapObject* proto_trans, Object* constructor) : map_(map), proto_trans_(proto_trans), constructor_(constructor) { } void StartIfNotStarted() { if (!(*IteratorField())->IsSmi()) { DCHECK(*IteratorField() == constructor_); *IteratorField() = Smi::FromInt(0); } } bool IsIterating() { return (*IteratorField())->IsSmi() && Smi::cast(*IteratorField())->value() >= 0; } Map* Next() { DCHECK(IsIterating()); int transitionNumber = Smi::cast(*IteratorField())->value(); if (transitionNumber < NumberOfTransitions()) { *IteratorField() = Smi::FromInt(transitionNumber + 1); return GetTransition(transitionNumber); } *IteratorField() = constructor_; return NULL; } private: Object** IteratorField() { return HeapObject::RawField(map_, Map::kConstructorOffset); } int NumberOfTransitions() { FixedArray* proto_trans = reinterpret_cast<FixedArray*>(proto_trans_); Object* num = proto_trans->get(Map::kProtoTransitionNumberOfEntriesOffset); return Smi::cast(num)->value(); } Map* GetTransition(int transitionNumber) { FixedArray* proto_trans = reinterpret_cast<FixedArray*>(proto_trans_); return Map::cast(proto_trans->get(IndexFor(transitionNumber))); } int IndexFor(int transitionNumber) { return Map::kProtoTransitionHeaderSize + Map::kProtoTransitionMapOffset + transitionNumber * Map::kProtoTransitionElementsPerEntry; } Map* map_; HeapObject* proto_trans_; Object* constructor_; }; // To traverse the transition tree iteratively, we have to store two kinds of // information in a map: The parent map in the traversal and which children of a // node have already been visited. To do this without additional memory, we // temporarily reuse two fields with known values: // // (1) The map of the map temporarily holds the parent, and is restored to the // meta map afterwards. // // (2) The info which children have already been visited depends on which part // of the map we currently iterate. We use the constructor field of the // map to store the current index. We can do that because the constructor // is the same for all involved maps. // // (a) If we currently follow normal map transitions, we temporarily store // the current index in the constructor field, and restore it to the // original constructor afterwards. Note that a single descriptor can // have 0, 1, or 2 transitions. // // (b) If we currently follow prototype transitions, we temporarily store // the current index in the constructor field, and restore it to the // original constructor afterwards. // // Note that the child iterator is just a concatenation of two iterators: One // iterating over map transitions and one iterating over prototype transisitons. class TraversableMap : public Map { public: // Record the parent in the traversal within this map. Note that this destroys // this map's map! void SetParent(TraversableMap* parent) { set_map_no_write_barrier(parent); } // Reset the current map's map, returning the parent previously stored in it. TraversableMap* GetAndResetParent() { TraversableMap* old_parent = static_cast<TraversableMap*>(map()); set_map_no_write_barrier(GetHeap()->meta_map()); return old_parent; } // If we have an unvisited child map, return that one and advance. If we have // none, return NULL and restore the overwritten constructor field. TraversableMap* ChildIteratorNext(Object* constructor) { if (!HasTransitionArray()) return NULL; TransitionArray* transition_array = transitions(); if (transition_array->HasPrototypeTransitions()) { HeapObject* proto_transitions = transition_array->GetPrototypeTransitions(); IntrusivePrototypeTransitionIterator proto_iterator(this, proto_transitions, constructor); proto_iterator.StartIfNotStarted(); if (proto_iterator.IsIterating()) { Map* next = proto_iterator.Next(); if (next != NULL) return static_cast<TraversableMap*>(next); } } IntrusiveMapTransitionIterator transition_iterator(this, transition_array, constructor); transition_iterator.StartIfNotStarted(); if (transition_iterator.IsIterating()) { Map* next = transition_iterator.Next(); if (next != NULL) return static_cast<TraversableMap*>(next); } return NULL; } }; // Traverse the transition tree in postorder without using the C++ stack by // doing pointer reversal. void Map::TraverseTransitionTree(TraverseCallback callback, void* data) { // Make sure that we do not allocate in the callback. DisallowHeapAllocation no_allocation; TraversableMap* current = static_cast<TraversableMap*>(this); // Get the root constructor here to restore it later when finished iterating // over maps. Object* root_constructor = constructor(); while (true) { TraversableMap* child = current->ChildIteratorNext(root_constructor); if (child != NULL) { child->SetParent(current); current = child; } else { TraversableMap* parent = current->GetAndResetParent(); callback(current, data); if (current == this) break; current = parent; } } } void CodeCache::Update( Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code) { // The number of monomorphic stubs for normal load/store/call IC's can grow to // a large number and therefore they need to go into a hash table. They are // used to load global properties from cells. if (code->type() == Code::NORMAL) { // Make sure that a hash table is allocated for the normal load code cache. if (code_cache->normal_type_cache()->IsUndefined()) { Handle<Object> result = CodeCacheHashTable::New(code_cache->GetIsolate(), CodeCacheHashTable::kInitialSize); code_cache->set_normal_type_cache(*result); } UpdateNormalTypeCache(code_cache, name, code); } else { DCHECK(code_cache->default_cache()->IsFixedArray()); UpdateDefaultCache(code_cache, name, code); } } void CodeCache::UpdateDefaultCache( Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code) { // When updating the default code cache we disregard the type encoded in the // flags. This allows call constant stubs to overwrite call field // stubs, etc. Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); // First check whether we can update existing code cache without // extending it. Handle<FixedArray> cache = handle(code_cache->default_cache()); int length = cache->length(); { DisallowHeapAllocation no_alloc; int deleted_index = -1; for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i); if (key->IsNull()) { if (deleted_index < 0) deleted_index = i; continue; } if (key->IsUndefined()) { if (deleted_index >= 0) i = deleted_index; cache->set(i + kCodeCacheEntryNameOffset, *name); cache->set(i + kCodeCacheEntryCodeOffset, *code); return; } if (name->Equals(Name::cast(key))) { Code::Flags found = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags(); if (Code::RemoveTypeFromFlags(found) == flags) { cache->set(i + kCodeCacheEntryCodeOffset, *code); return; } } } // Reached the end of the code cache. If there were deleted // elements, reuse the space for the first of them. if (deleted_index >= 0) { cache->set(deleted_index + kCodeCacheEntryNameOffset, *name); cache->set(deleted_index + kCodeCacheEntryCodeOffset, *code); return; } } // Extend the code cache with some new entries (at least one). Must be a // multiple of the entry size. int new_length = length + ((length >> 1)) + kCodeCacheEntrySize; new_length = new_length - new_length % kCodeCacheEntrySize; DCHECK((new_length % kCodeCacheEntrySize) == 0); cache = FixedArray::CopySize(cache, new_length); // Add the (name, code) pair to the new cache. cache->set(length + kCodeCacheEntryNameOffset, *name); cache->set(length + kCodeCacheEntryCodeOffset, *code); code_cache->set_default_cache(*cache); } void CodeCache::UpdateNormalTypeCache( Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code) { // Adding a new entry can cause a new cache to be allocated. Handle<CodeCacheHashTable> cache( CodeCacheHashTable::cast(code_cache->normal_type_cache())); Handle<Object> new_cache = CodeCacheHashTable::Put(cache, name, code); code_cache->set_normal_type_cache(*new_cache); } Object* CodeCache::Lookup(Name* name, Code::Flags flags) { Object* result = LookupDefaultCache(name, Code::RemoveTypeFromFlags(flags)); if (result->IsCode()) { if (Code::cast(result)->flags() == flags) return result; return GetHeap()->undefined_value(); } return LookupNormalTypeCache(name, flags); } Object* CodeCache::LookupDefaultCache(Name* name, Code::Flags flags) { FixedArray* cache = default_cache(); int length = cache->length(); for (int i = 0; i < length; i += kCodeCacheEntrySize) { Object* key = cache->get(i + kCodeCacheEntryNameOffset); // Skip deleted elements. if (key->IsNull()) continue; if (key->IsUndefined()) return key; if (name->Equals(Name::cast(key))) { Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset)); if (Code::RemoveTypeFromFlags(code->flags()) == flags) { return code; } } } return GetHeap()->undefined_value(); } Object* CodeCache::LookupNormalTypeCache(Name* name, Code::Flags flags) { if (!normal_type_cache()->IsUndefined()) { CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->Lookup(name, flags); } else { return GetHeap()->undefined_value(); } } int CodeCache::GetIndex(Object* name, Code* code) { if (code->type() == Code::NORMAL) { if (normal_type_cache()->IsUndefined()) return -1; CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); return cache->GetIndex(Name::cast(name), code->flags()); } FixedArray* array = default_cache(); int len = array->length(); for (int i = 0; i < len; i += kCodeCacheEntrySize) { if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1; } return -1; } void CodeCache::RemoveByIndex(Object* name, Code* code, int index) { if (code->type() == Code::NORMAL) { DCHECK(!normal_type_cache()->IsUndefined()); CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); DCHECK(cache->GetIndex(Name::cast(name), code->flags()) == index); cache->RemoveByIndex(index); } else { FixedArray* array = default_cache(); DCHECK(array->length() >= index && array->get(index)->IsCode()); // Use null instead of undefined for deleted elements to distinguish // deleted elements from unused elements. This distinction is used // when looking up in the cache and when updating the cache. DCHECK_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset); array->set_null(index - 1); // Name. array->set_null(index); // Code. } } // The key in the code cache hash table consists of the property name and the // code object. The actual match is on the name and the code flags. If a key // is created using the flags and not a code object it can only be used for // lookup not to create a new entry. class CodeCacheHashTableKey : public HashTableKey { public: CodeCacheHashTableKey(Handle<Name> name, Code::Flags flags) : name_(name), flags_(flags), code_() { } CodeCacheHashTableKey(Handle<Name> name, Handle<Code> code) : name_(name), flags_(code->flags()), code_(code) { } bool IsMatch(Object* other) OVERRIDE { if (!other->IsFixedArray()) return false; FixedArray* pair = FixedArray::cast(other); Name* name = Name::cast(pair->get(0)); Code::Flags flags = Code::cast(pair->get(1))->flags(); if (flags != flags_) { return false; } return name_->Equals(name); } static uint32_t NameFlagsHashHelper(Name* name, Code::Flags flags) { return name->Hash() ^ flags; } uint32_t Hash() OVERRIDE { return NameFlagsHashHelper(*name_, flags_); } uint32_t HashForObject(Object* obj) OVERRIDE { FixedArray* pair = FixedArray::cast(obj); Name* name = Name::cast(pair->get(0)); Code* code = Code::cast(pair->get(1)); return NameFlagsHashHelper(name, code->flags()); } MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) OVERRIDE { Handle<Code> code = code_.ToHandleChecked(); Handle<FixedArray> pair = isolate->factory()->NewFixedArray(2); pair->set(0, *name_); pair->set(1, *code); return pair; } private: Handle<Name> name_; Code::Flags flags_; // TODO(jkummerow): We should be able to get by without this. MaybeHandle<Code> code_; }; Object* CodeCacheHashTable::Lookup(Name* name, Code::Flags flags) { DisallowHeapAllocation no_alloc; CodeCacheHashTableKey key(handle(name), flags); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } Handle<CodeCacheHashTable> CodeCacheHashTable::Put( Handle<CodeCacheHashTable> cache, Handle<Name> name, Handle<Code> code) { CodeCacheHashTableKey key(name, code); Handle<CodeCacheHashTable> new_cache = EnsureCapacity(cache, 1, &key); int entry = new_cache->FindInsertionEntry(key.Hash()); Handle<Object> k = key.AsHandle(cache->GetIsolate()); new_cache->set(EntryToIndex(entry), *k); new_cache->set(EntryToIndex(entry) + 1, *code); new_cache->ElementAdded(); return new_cache; } int CodeCacheHashTable::GetIndex(Name* name, Code::Flags flags) { DisallowHeapAllocation no_alloc; CodeCacheHashTableKey key(handle(name), flags); int entry = FindEntry(&key); return (entry == kNotFound) ? -1 : entry; } void CodeCacheHashTable::RemoveByIndex(int index) { DCHECK(index >= 0); Heap* heap = GetHeap(); set(EntryToIndex(index), heap->the_hole_value()); set(EntryToIndex(index) + 1, heap->the_hole_value()); ElementRemoved(); } void PolymorphicCodeCache::Update(Handle<PolymorphicCodeCache> code_cache, MapHandleList* maps, Code::Flags flags, Handle<Code> code) { Isolate* isolate = code_cache->GetIsolate(); if (code_cache->cache()->IsUndefined()) { Handle<PolymorphicCodeCacheHashTable> result = PolymorphicCodeCacheHashTable::New( isolate, PolymorphicCodeCacheHashTable::kInitialSize); code_cache->set_cache(*result); } else { // This entry shouldn't be contained in the cache yet. DCHECK(PolymorphicCodeCacheHashTable::cast(code_cache->cache()) ->Lookup(maps, flags)->IsUndefined()); } Handle<PolymorphicCodeCacheHashTable> hash_table = handle(PolymorphicCodeCacheHashTable::cast(code_cache->cache())); Handle<PolymorphicCodeCacheHashTable> new_cache = PolymorphicCodeCacheHashTable::Put(hash_table, maps, flags, code); code_cache->set_cache(*new_cache); } Handle<Object> PolymorphicCodeCache::Lookup(MapHandleList* maps, Code::Flags flags) { if (!cache()->IsUndefined()) { PolymorphicCodeCacheHashTable* hash_table = PolymorphicCodeCacheHashTable::cast(cache()); return Handle<Object>(hash_table->Lookup(maps, flags), GetIsolate()); } else { return GetIsolate()->factory()->undefined_value(); } } // Despite their name, object of this class are not stored in the actual // hash table; instead they're temporarily used for lookups. It is therefore // safe to have a weak (non-owning) pointer to a MapList as a member field. class PolymorphicCodeCacheHashTableKey : public HashTableKey { public: // Callers must ensure that |maps| outlives the newly constructed object. PolymorphicCodeCacheHashTableKey(MapHandleList* maps, int code_flags) : maps_(maps), code_flags_(code_flags) {} bool IsMatch(Object* other) OVERRIDE { MapHandleList other_maps(kDefaultListAllocationSize); int other_flags; FromObject(other, &other_flags, &other_maps); if (code_flags_ != other_flags) return false; if (maps_->length() != other_maps.length()) return false; // Compare just the hashes first because it's faster. int this_hash = MapsHashHelper(maps_, code_flags_); int other_hash = MapsHashHelper(&other_maps, other_flags); if (this_hash != other_hash) return false; // Full comparison: for each map in maps_, look for an equivalent map in // other_maps. This implementation is slow, but probably good enough for // now because the lists are short (<= 4 elements currently). for (int i = 0; i < maps_->length(); ++i) { bool match_found = false; for (int j = 0; j < other_maps.length(); ++j) { if (*(maps_->at(i)) == *(other_maps.at(j))) { match_found = true; break; } } if (!match_found) return false; } return true; } static uint32_t MapsHashHelper(MapHandleList* maps, int code_flags) { uint32_t hash = code_flags; for (int i = 0; i < maps->length(); ++i) { hash ^= maps->at(i)->Hash(); } return hash; } uint32_t Hash() OVERRIDE { return MapsHashHelper(maps_, code_flags_); } uint32_t HashForObject(Object* obj) OVERRIDE { MapHandleList other_maps(kDefaultListAllocationSize); int other_flags; FromObject(obj, &other_flags, &other_maps); return MapsHashHelper(&other_maps, other_flags); } MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) OVERRIDE { // The maps in |maps_| must be copied to a newly allocated FixedArray, // both because the referenced MapList is short-lived, and because C++ // objects can't be stored in the heap anyway. Handle<FixedArray> list = isolate->factory()->NewUninitializedFixedArray(maps_->length() + 1); list->set(0, Smi::FromInt(code_flags_)); for (int i = 0; i < maps_->length(); ++i) { list->set(i + 1, *maps_->at(i)); } return list; } private: static MapHandleList* FromObject(Object* obj, int* code_flags, MapHandleList* maps) { FixedArray* list = FixedArray::cast(obj); maps->Rewind(0); *code_flags = Smi::cast(list->get(0))->value(); for (int i = 1; i < list->length(); ++i) { maps->Add(Handle<Map>(Map::cast(list->get(i)))); } return maps; } MapHandleList* maps_; // weak. int code_flags_; static const int kDefaultListAllocationSize = kMaxKeyedPolymorphism + 1; }; Object* PolymorphicCodeCacheHashTable::Lookup(MapHandleList* maps, int code_kind) { DisallowHeapAllocation no_alloc; PolymorphicCodeCacheHashTableKey key(maps, code_kind); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } Handle<PolymorphicCodeCacheHashTable> PolymorphicCodeCacheHashTable::Put( Handle<PolymorphicCodeCacheHashTable> hash_table, MapHandleList* maps, int code_kind, Handle<Code> code) { PolymorphicCodeCacheHashTableKey key(maps, code_kind); Handle<PolymorphicCodeCacheHashTable> cache = EnsureCapacity(hash_table, 1, &key); int entry = cache->FindInsertionEntry(key.Hash()); Handle<Object> obj = key.AsHandle(hash_table->GetIsolate()); cache->set(EntryToIndex(entry), *obj); cache->set(EntryToIndex(entry) + 1, *code); cache->ElementAdded(); return cache; } void FixedArray::Shrink(int new_length) { DCHECK(0 <= new_length && new_length <= length()); if (new_length < length()) { GetHeap()->RightTrimFixedArray<Heap::FROM_MUTATOR>( this, length() - new_length); } } MaybeHandle<FixedArray> FixedArray::AddKeysFromArrayLike( Handle<FixedArray> content, Handle<JSObject> array) { DCHECK(array->IsJSArray() || array->HasSloppyArgumentsElements()); ElementsAccessor* accessor = array->GetElementsAccessor(); Handle<FixedArray> result; ASSIGN_RETURN_ON_EXCEPTION( array->GetIsolate(), result, accessor->AddElementsToFixedArray(array, array, content), FixedArray); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { DisallowHeapAllocation no_allocation; for (int i = 0; i < result->length(); i++) { Object* current = result->get(i); DCHECK(current->IsNumber() || current->IsName()); } } #endif return result; } MaybeHandle<FixedArray> FixedArray::UnionOfKeys(Handle<FixedArray> first, Handle<FixedArray> second) { ElementsAccessor* accessor = ElementsAccessor::ForArray(second); Handle<FixedArray> result; ASSIGN_RETURN_ON_EXCEPTION( first->GetIsolate(), result, accessor->AddElementsToFixedArray( Handle<Object>::null(), // receiver Handle<JSObject>::null(), // holder first, Handle<FixedArrayBase>::cast(second)), FixedArray); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { DisallowHeapAllocation no_allocation; for (int i = 0; i < result->length(); i++) { Object* current = result->get(i); DCHECK(current->IsNumber() || current->IsName()); } } #endif return result; } Handle<FixedArray> FixedArray::CopySize( Handle<FixedArray> array, int new_length, PretenureFlag pretenure) { Isolate* isolate = array->GetIsolate(); if (new_length == 0) return isolate->factory()->empty_fixed_array(); Handle<FixedArray> result = isolate->factory()->NewFixedArray(new_length, pretenure); // Copy the content DisallowHeapAllocation no_gc; int len = array->length(); if (new_length < len) len = new_length; // We are taking the map from the old fixed array so the map is sure to // be an immortal immutable object. result->set_map_no_write_barrier(array->map()); WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) { result->set(i, array->get(i), mode); } return result; } void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) { DisallowHeapAllocation no_gc; WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); for (int index = 0; index < len; index++) { dest->set(dest_pos+index, get(pos+index), mode); } } #ifdef DEBUG bool FixedArray::IsEqualTo(FixedArray* other) { if (length() != other->length()) return false; for (int i = 0 ; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif Handle<DescriptorArray> DescriptorArray::Allocate(Isolate* isolate, int number_of_descriptors, int slack) { DCHECK(0 <= number_of_descriptors); Factory* factory = isolate->factory(); // Do not use DescriptorArray::cast on incomplete object. int size = number_of_descriptors + slack; if (size == 0) return factory->empty_descriptor_array(); // Allocate the array of keys. Handle<FixedArray> result = factory->NewFixedArray(LengthFor(size)); result->set(kDescriptorLengthIndex, Smi::FromInt(number_of_descriptors)); result->set(kEnumCacheIndex, Smi::FromInt(0)); return Handle<DescriptorArray>::cast(result); } void DescriptorArray::ClearEnumCache() { set(kEnumCacheIndex, Smi::FromInt(0)); } void DescriptorArray::Replace(int index, Descriptor* descriptor) { descriptor->SetSortedKeyIndex(GetSortedKeyIndex(index)); Set(index, descriptor); } void DescriptorArray::SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache, Object* new_index_cache) { DCHECK(bridge_storage->length() >= kEnumCacheBridgeLength); DCHECK(new_index_cache->IsSmi() || new_index_cache->IsFixedArray()); DCHECK(!IsEmpty()); DCHECK(!HasEnumCache() || new_cache->length() > GetEnumCache()->length()); FixedArray::cast(bridge_storage)-> set(kEnumCacheBridgeCacheIndex, new_cache); FixedArray::cast(bridge_storage)-> set(kEnumCacheBridgeIndicesCacheIndex, new_index_cache); set(kEnumCacheIndex, bridge_storage); } void DescriptorArray::CopyFrom(int index, DescriptorArray* src, const WhitenessWitness& witness) { Object* value = src->GetValue(index); PropertyDetails details = src->GetDetails(index); Descriptor desc(handle(src->GetKey(index)), handle(value, src->GetIsolate()), details); Set(index, &desc, witness); } // We need the whiteness witness since sort will reshuffle the entries in the // descriptor array. If the descriptor array were to be black, the shuffling // would move a slot that was already recorded as pointing into an evacuation // candidate. This would result in missing updates upon evacuation. void DescriptorArray::Sort() { // In-place heap sort. int len = number_of_descriptors(); // Reset sorting since the descriptor array might contain invalid pointers. for (int i = 0; i < len; ++i) SetSortedKey(i, i); // Bottom-up max-heap construction. // Index of the last node with children const int max_parent_index = (len / 2) - 1; for (int i = max_parent_index; i >= 0; --i) { int parent_index = i; const uint32_t parent_hash = GetSortedKey(i)->Hash(); while (parent_index <= max_parent_index) { int child_index = 2 * parent_index + 1; uint32_t child_hash = GetSortedKey(child_index)->Hash(); if (child_index + 1 < len) { uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; SwapSortedKeys(parent_index, child_index); // Now element at child_index could be < its children. parent_index = child_index; // parent_hash remains correct. } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. SwapSortedKeys(0, i); // Shift down the new top element. int parent_index = 0; const uint32_t parent_hash = GetSortedKey(parent_index)->Hash(); const int max_parent_index = (i / 2) - 1; while (parent_index <= max_parent_index) { int child_index = parent_index * 2 + 1; uint32_t child_hash = GetSortedKey(child_index)->Hash(); if (child_index + 1 < i) { uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; SwapSortedKeys(parent_index, child_index); parent_index = child_index; } } DCHECK(IsSortedNoDuplicates()); } Handle<AccessorPair> AccessorPair::Copy(Handle<AccessorPair> pair) { Handle<AccessorPair> copy = pair->GetIsolate()->factory()->NewAccessorPair(); copy->set_getter(pair->getter()); copy->set_setter(pair->setter()); return copy; } Object* AccessorPair::GetComponent(AccessorComponent component) { Object* accessor = get(component); return accessor->IsTheHole() ? GetHeap()->undefined_value() : accessor; } Handle<DeoptimizationInputData> DeoptimizationInputData::New( Isolate* isolate, int deopt_entry_count, PretenureFlag pretenure) { DCHECK(deopt_entry_count > 0); return Handle<DeoptimizationInputData>::cast( isolate->factory()->NewFixedArray(LengthFor(deopt_entry_count), pretenure)); } Handle<DeoptimizationOutputData> DeoptimizationOutputData::New( Isolate* isolate, int number_of_deopt_points, PretenureFlag pretenure) { Handle<FixedArray> result; if (number_of_deopt_points == 0) { result = isolate->factory()->empty_fixed_array(); } else { result = isolate->factory()->NewFixedArray( LengthOfFixedArray(number_of_deopt_points), pretenure); } return Handle<DeoptimizationOutputData>::cast(result); } #ifdef DEBUG bool DescriptorArray::IsEqualTo(DescriptorArray* other) { if (IsEmpty()) return other->IsEmpty(); if (other->IsEmpty()) return false; if (length() != other->length()) return false; for (int i = 0; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif bool String::LooksValid() { if (!GetIsolate()->heap()->Contains(this)) return false; return true; } String::FlatContent String::GetFlatContent() { DCHECK(!AllowHeapAllocation::IsAllowed()); int length = this->length(); StringShape shape(this); String* string = this; int offset = 0; if (shape.representation_tag() == kConsStringTag) { ConsString* cons = ConsString::cast(string); if (cons->second()->length() != 0) { return FlatContent(); } string = cons->first(); shape = StringShape(string); } if (shape.representation_tag() == kSlicedStringTag) { SlicedString* slice = SlicedString::cast(string); offset = slice->offset(); string = slice->parent(); shape = StringShape(string); DCHECK(shape.representation_tag() != kConsStringTag && shape.representation_tag() != kSlicedStringTag); } if (shape.encoding_tag() == kOneByteStringTag) { const uint8_t* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqOneByteString::cast(string)->GetChars(); } else { start = ExternalOneByteString::cast(string)->GetChars(); } return FlatContent(start + offset, length); } else { DCHECK(shape.encoding_tag() == kTwoByteStringTag); const uc16* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqTwoByteString::cast(string)->GetChars(); } else { start = ExternalTwoByteString::cast(string)->GetChars(); } return FlatContent(start + offset, length); } } SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int offset, int length, int* length_return) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return SmartArrayPointer<char>(NULL); } Heap* heap = GetHeap(); // Negative length means the to the end of the string. if (length < 0) length = kMaxInt - offset; // Compute the size of the UTF-8 string. Start at the specified offset. Access<ConsStringIteratorOp> op( heap->isolate()->objects_string_iterator()); StringCharacterStream stream(this, op.value(), offset); int character_position = offset; int utf8_bytes = 0; int last = unibrow::Utf16::kNoPreviousCharacter; while (stream.HasMore() && character_position++ < offset + length) { uint16_t character = stream.GetNext(); utf8_bytes += unibrow::Utf8::Length(character, last); last = character; } if (length_return) { *length_return = utf8_bytes; } char* result = NewArray<char>(utf8_bytes + 1); // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. stream.Reset(this, offset); character_position = offset; int utf8_byte_position = 0; last = unibrow::Utf16::kNoPreviousCharacter; while (stream.HasMore() && character_position++ < offset + length) { uint16_t character = stream.GetNext(); if (allow_nulls == DISALLOW_NULLS && character == 0) { character = ' '; } utf8_byte_position += unibrow::Utf8::Encode(result + utf8_byte_position, character, last); last = character; } result[utf8_byte_position] = 0; return SmartArrayPointer<char>(result); } SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int* length_return) { return ToCString(allow_nulls, robust_flag, 0, -1, length_return); } const uc16* String::GetTwoByteData(unsigned start) { DCHECK(!IsOneByteRepresentationUnderneath()); switch (StringShape(this).representation_tag()) { case kSeqStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); case kExternalStringTag: return ExternalTwoByteString::cast(this)-> ExternalTwoByteStringGetData(start); case kSlicedStringTag: { SlicedString* slice = SlicedString::cast(this); return slice->parent()->GetTwoByteData(start + slice->offset()); } case kConsStringTag: UNREACHABLE(); return NULL; } UNREACHABLE(); return NULL; } SmartArrayPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return SmartArrayPointer<uc16>(); } Heap* heap = GetHeap(); Access<ConsStringIteratorOp> op( heap->isolate()->objects_string_iterator()); StringCharacterStream stream(this, op.value()); uc16* result = NewArray<uc16>(length() + 1); int i = 0; while (stream.HasMore()) { uint16_t character = stream.GetNext(); result[i++] = character; } result[i] = 0; return SmartArrayPointer<uc16>(result); } const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { return reinterpret_cast<uc16*>( reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start; } void Relocatable::PostGarbageCollectionProcessing(Isolate* isolate) { Relocatable* current = isolate->relocatable_top(); while (current != NULL) { current->PostGarbageCollection(); current = current->prev_; } } // Reserve space for statics needing saving and restoring. int Relocatable::ArchiveSpacePerThread() { return sizeof(Relocatable*); // NOLINT } // Archive statics that are thread-local. char* Relocatable::ArchiveState(Isolate* isolate, char* to) { *reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top(); isolate->set_relocatable_top(NULL); return to + ArchiveSpacePerThread(); } // Restore statics that are thread-local. char* Relocatable::RestoreState(Isolate* isolate, char* from) { isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from)); return from + ArchiveSpacePerThread(); } char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) { Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage); Iterate(v, top); return thread_storage + ArchiveSpacePerThread(); } void Relocatable::Iterate(Isolate* isolate, ObjectVisitor* v) { Iterate(v, isolate->relocatable_top()); } void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) { Relocatable* current = top; while (current != NULL) { current->IterateInstance(v); current = current->prev_; } } FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str) : Relocatable(isolate), str_(str.location()), length_(str->length()) { PostGarbageCollection(); } FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input) : Relocatable(isolate), str_(0), is_one_byte_(true), length_(input.length()), start_(input.start()) {} void FlatStringReader::PostGarbageCollection() { if (str_ == NULL) return; Handle<String> str(str_); DCHECK(str->IsFlat()); DisallowHeapAllocation no_gc; // This does not actually prevent the vector from being relocated later. String::FlatContent content = str->GetFlatContent(); DCHECK(content.IsFlat()); is_one_byte_ = content.IsOneByte(); if (is_one_byte_) { start_ = content.ToOneByteVector().start(); } else { start_ = content.ToUC16Vector().start(); } } void ConsStringIteratorOp::Initialize(ConsString* cons_string, int offset) { DCHECK(cons_string != NULL); root_ = cons_string; consumed_ = offset; // Force stack blown condition to trigger restart. depth_ = 1; maximum_depth_ = kStackSize + depth_; DCHECK(StackBlown()); } String* ConsStringIteratorOp::Continue(int* offset_out) { DCHECK(depth_ != 0); DCHECK_EQ(0, *offset_out); bool blew_stack = StackBlown(); String* string = NULL; // Get the next leaf if there is one. if (!blew_stack) string = NextLeaf(&blew_stack); // Restart search from root. if (blew_stack) { DCHECK(string == NULL); string = Search(offset_out); } // Ensure future calls return null immediately. if (string == NULL) Reset(NULL); return string; } String* ConsStringIteratorOp::Search(int* offset_out) { ConsString* cons_string = root_; // Reset the stack, pushing the root string. depth_ = 1; maximum_depth_ = 1; frames_[0] = cons_string; const int consumed = consumed_; int offset = 0; while (true) { // Loop until the string is found which contains the target offset. String* string = cons_string->first(); int length = string->length(); int32_t type; if (consumed < offset + length) { // Target offset is in the left branch. // Keep going if we're still in a ConString. type = string->map()->instance_type(); if ((type & kStringRepresentationMask) == kConsStringTag) { cons_string = ConsString::cast(string); PushLeft(cons_string); continue; } // Tell the stack we're done descending. AdjustMaximumDepth(); } else { // Descend right. // Update progress through the string. offset += length; // Keep going if we're still in a ConString. string = cons_string->second(); type = string->map()->instance_type(); if ((type & kStringRepresentationMask) == kConsStringTag) { cons_string = ConsString::cast(string); PushRight(cons_string); continue; } // Need this to be updated for the current string. length = string->length(); // Account for the possibility of an empty right leaf. // This happens only if we have asked for an offset outside the string. if (length == 0) { // Reset so future operations will return null immediately. Reset(NULL); return NULL; } // Tell the stack we're done descending. AdjustMaximumDepth(); // Pop stack so next iteration is in correct place. Pop(); } DCHECK(length != 0); // Adjust return values and exit. consumed_ = offset + length; *offset_out = consumed - offset; return string; } UNREACHABLE(); return NULL; } String* ConsStringIteratorOp::NextLeaf(bool* blew_stack) { while (true) { // Tree traversal complete. if (depth_ == 0) { *blew_stack = false; return NULL; } // We've lost track of higher nodes. if (StackBlown()) { *blew_stack = true; return NULL; } // Go right. ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)]; String* string = cons_string->second(); int32_t type = string->map()->instance_type(); if ((type & kStringRepresentationMask) != kConsStringTag) { // Pop stack so next iteration is in correct place. Pop(); int length = string->length(); // Could be a flattened ConsString. if (length == 0) continue; consumed_ += length; return string; } cons_string = ConsString::cast(string); PushRight(cons_string); // Need to traverse all the way left. while (true) { // Continue left. string = cons_string->first(); type = string->map()->instance_type(); if ((type & kStringRepresentationMask) != kConsStringTag) { AdjustMaximumDepth(); int length = string->length(); DCHECK(length != 0); consumed_ += length; return string; } cons_string = ConsString::cast(string); PushLeft(cons_string); } } UNREACHABLE(); return NULL; } uint16_t ConsString::ConsStringGet(int index) { DCHECK(index >= 0 && index < this->length()); // Check for a flattened cons string if (second()->length() == 0) { String* left = first(); return left->Get(index); } String* string = String::cast(this); while (true) { if (StringShape(string).IsCons()) { ConsString* cons_string = ConsString::cast(string); String* left = cons_string->first(); if (left->length() > index) { string = left; } else { index -= left->length(); string = cons_string->second(); } } else { return string->Get(index); } } UNREACHABLE(); return 0; } uint16_t SlicedString::SlicedStringGet(int index) { return parent()->Get(offset() + index); } template <typename sinkchar> void String::WriteToFlat(String* src, sinkchar* sink, int f, int t) { String* source = src; int from = f; int to = t; while (true) { DCHECK(0 <= from && from <= to && to <= source->length()); switch (StringShape(source).full_representation_tag()) { case kOneByteStringTag | kExternalStringTag: { CopyChars(sink, ExternalOneByteString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kExternalStringTag: { const uc16* data = ExternalTwoByteString::cast(source)->GetChars(); CopyChars(sink, data + from, to - from); return; } case kOneByteStringTag | kSeqStringTag: { CopyChars(sink, SeqOneByteString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kSeqStringTag: { CopyChars(sink, SeqTwoByteString::cast(source)->GetChars() + from, to - from); return; } case kOneByteStringTag | kConsStringTag: case kTwoByteStringTag | kConsStringTag: { ConsString* cons_string = ConsString::cast(source); String* first = cons_string->first(); int boundary = first->length(); if (to - boundary >= boundary - from) { // Right hand side is longer. Recurse over left. if (from < boundary) { WriteToFlat(first, sink, from, boundary); sink += boundary - from; from = 0; } else { from -= boundary; } to -= boundary; source = cons_string->second(); } else { // Left hand side is longer. Recurse over right. if (to > boundary) { String* second = cons_string->second(); // When repeatedly appending to a string, we get a cons string that // is unbalanced to the left, a list, essentially. We inline the // common case of sequential one-byte right child. if (to - boundary == 1) { sink[boundary - from] = static_cast<sinkchar>(second->Get(0)); } else if (second->IsSeqOneByteString()) { CopyChars(sink + boundary - from, SeqOneByteString::cast(second)->GetChars(), to - boundary); } else { WriteToFlat(second, sink + boundary - from, 0, to - boundary); } to = boundary; } source = first; } break; } case kOneByteStringTag | kSlicedStringTag: case kTwoByteStringTag | kSlicedStringTag: { SlicedString* slice = SlicedString::cast(source); unsigned offset = slice->offset(); WriteToFlat(slice->parent(), sink, from + offset, to + offset); return; } } } } template <typename SourceChar> static void CalculateLineEndsImpl(Isolate* isolate, List<int>* line_ends, Vector<const SourceChar> src, bool include_ending_line) { const int src_len = src.length(); StringSearch<uint8_t, SourceChar> search(isolate, STATIC_CHAR_VECTOR("\n")); // Find and record line ends. int position = 0; while (position != -1 && position < src_len) { position = search.Search(src, position); if (position != -1) { line_ends->Add(position); position++; } else if (include_ending_line) { // Even if the last line misses a line end, it is counted. line_ends->Add(src_len); return; } } } Handle<FixedArray> String::CalculateLineEnds(Handle<String> src, bool include_ending_line) { src = Flatten(src); // Rough estimate of line count based on a roughly estimated average // length of (unpacked) code. int line_count_estimate = src->length() >> 4; List<int> line_ends(line_count_estimate); Isolate* isolate = src->GetIsolate(); { DisallowHeapAllocation no_allocation; // ensure vectors stay valid. // Dispatch on type of strings. String::FlatContent content = src->GetFlatContent(); DCHECK(content.IsFlat()); if (content.IsOneByte()) { CalculateLineEndsImpl(isolate, &line_ends, content.ToOneByteVector(), include_ending_line); } else { CalculateLineEndsImpl(isolate, &line_ends, content.ToUC16Vector(), include_ending_line); } } int line_count = line_ends.length(); Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count); for (int i = 0; i < line_count; i++) { array->set(i, Smi::FromInt(line_ends[i])); } return array; } // Compares the contents of two strings by reading and comparing // int-sized blocks of characters. template <typename Char> static inline bool CompareRawStringContents(const Char* const a, const Char* const b, int length) { return CompareChars(a, b, length) == 0; } template<typename Chars1, typename Chars2> class RawStringComparator : public AllStatic { public: static inline bool compare(const Chars1* a, const Chars2* b, int len) { DCHECK(sizeof(Chars1) != sizeof(Chars2)); for (int i = 0; i < len; i++) { if (a[i] != b[i]) { return false; } } return true; } }; template<> class RawStringComparator<uint16_t, uint16_t> { public: static inline bool compare(const uint16_t* a, const uint16_t* b, int len) { return CompareRawStringContents(a, b, len); } }; template<> class RawStringComparator<uint8_t, uint8_t> { public: static inline bool compare(const uint8_t* a, const uint8_t* b, int len) { return CompareRawStringContents(a, b, len); } }; class StringComparator { class State { public: explicit inline State(ConsStringIteratorOp* op) : op_(op), is_one_byte_(true), length_(0), buffer8_(NULL) {} inline void Init(String* string) { ConsString* cons_string = String::VisitFlat(this, string); op_->Reset(cons_string); if (cons_string != NULL) { int offset; string = op_->Next(&offset); String::VisitFlat(this, string, offset); } } inline void VisitOneByteString(const uint8_t* chars, int length) { is_one_byte_ = true; buffer8_ = chars; length_ = length; } inline void VisitTwoByteString(const uint16_t* chars, int length) { is_one_byte_ = false; buffer16_ = chars; length_ = length; } void Advance(int consumed) { DCHECK(consumed <= length_); // Still in buffer. if (length_ != consumed) { if (is_one_byte_) { buffer8_ += consumed; } else { buffer16_ += consumed; } length_ -= consumed; return; } // Advance state. int offset; String* next = op_->Next(&offset); DCHECK_EQ(0, offset); DCHECK(next != NULL); String::VisitFlat(this, next); } ConsStringIteratorOp* const op_; bool is_one_byte_; int length_; union { const uint8_t* buffer8_; const uint16_t* buffer16_; }; private: DISALLOW_IMPLICIT_CONSTRUCTORS(State); }; public: inline StringComparator(ConsStringIteratorOp* op_1, ConsStringIteratorOp* op_2) : state_1_(op_1), state_2_(op_2) { } template<typename Chars1, typename Chars2> static inline bool Equals(State* state_1, State* state_2, int to_check) { const Chars1* a = reinterpret_cast<const Chars1*>(state_1->buffer8_); const Chars2* b = reinterpret_cast<const Chars2*>(state_2->buffer8_); return RawStringComparator<Chars1, Chars2>::compare(a, b, to_check); } bool Equals(String* string_1, String* string_2) { int length = string_1->length(); state_1_.Init(string_1); state_2_.Init(string_2); while (true) { int to_check = Min(state_1_.length_, state_2_.length_); DCHECK(to_check > 0 && to_check <= length); bool is_equal; if (state_1_.is_one_byte_) { if (state_2_.is_one_byte_) { is_equal = Equals<uint8_t, uint8_t>(&state_1_, &state_2_, to_check); } else { is_equal = Equals<uint8_t, uint16_t>(&state_1_, &state_2_, to_check); } } else { if (state_2_.is_one_byte_) { is_equal = Equals<uint16_t, uint8_t>(&state_1_, &state_2_, to_check); } else { is_equal = Equals<uint16_t, uint16_t>(&state_1_, &state_2_, to_check); } } // Looping done. if (!is_equal) return false; length -= to_check; // Exit condition. Strings are equal. if (length == 0) return true; state_1_.Advance(to_check); state_2_.Advance(to_check); } } private: State state_1_; State state_2_; DISALLOW_IMPLICIT_CONSTRUCTORS(StringComparator); }; bool String::SlowEquals(String* other) { DisallowHeapAllocation no_gc; // Fast check: negative check with lengths. int len = length(); if (len != other->length()) return false; if (len == 0) return true; // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (HasHashCode() && other->HasHashCode()) { #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { if (Hash() != other->Hash()) { bool found_difference = false; for (int i = 0; i < len; i++) { if (Get(i) != other->Get(i)) { found_difference = true; break; } } DCHECK(found_difference); } } #endif if (Hash() != other->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (this->Get(0) != other->Get(0)) return false; if (IsSeqOneByteString() && other->IsSeqOneByteString()) { const uint8_t* str1 = SeqOneByteString::cast(this)->GetChars(); const uint8_t* str2 = SeqOneByteString::cast(other)->GetChars(); return CompareRawStringContents(str1, str2, len); } Isolate* isolate = GetIsolate(); StringComparator comparator(isolate->objects_string_compare_iterator_a(), isolate->objects_string_compare_iterator_b()); return comparator.Equals(this, other); } bool String::SlowEquals(Handle<String> one, Handle<String> two) { // Fast check: negative check with lengths. int one_length = one->length(); if (one_length != two->length()) return false; if (one_length == 0) return true; // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (one->HasHashCode() && two->HasHashCode()) { #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { if (one->Hash() != two->Hash()) { bool found_difference = false; for (int i = 0; i < one_length; i++) { if (one->Get(i) != two->Get(i)) { found_difference = true; break; } } DCHECK(found_difference); } } #endif if (one->Hash() != two->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (one->Get(0) != two->Get(0)) return false; one = String::Flatten(one); two = String::Flatten(two); DisallowHeapAllocation no_gc; String::FlatContent flat1 = one->GetFlatContent(); String::FlatContent flat2 = two->GetFlatContent(); if (flat1.IsOneByte() && flat2.IsOneByte()) { return CompareRawStringContents(flat1.ToOneByteVector().start(), flat2.ToOneByteVector().start(), one_length); } else { for (int i = 0; i < one_length; i++) { if (flat1.Get(i) != flat2.Get(i)) return false; } return true; } } bool String::MarkAsUndetectable() { if (StringShape(this).IsInternalized()) return false; Map* map = this->map(); Heap* heap = GetHeap(); if (map == heap->string_map()) { this->set_map(heap->undetectable_string_map()); return true; } else if (map == heap->one_byte_string_map()) { this->set_map(heap->undetectable_one_byte_string_map()); return true; } // Rest cannot be marked as undetectable return false; } bool String::IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match) { int slen = length(); // Can't check exact length equality, but we can check bounds. int str_len = str.length(); if (!allow_prefix_match && (str_len < slen || str_len > slen*static_cast<int>(unibrow::Utf8::kMaxEncodedSize))) { return false; } int i; unsigned remaining_in_str = static_cast<unsigned>(str_len); const uint8_t* utf8_data = reinterpret_cast<const uint8_t*>(str.start()); for (i = 0; i < slen && remaining_in_str > 0; i++) { unsigned cursor = 0; uint32_t r = unibrow::Utf8::ValueOf(utf8_data, remaining_in_str, &cursor); DCHECK(cursor > 0 && cursor <= remaining_in_str); if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) { if (i > slen - 1) return false; if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false; if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false; } else { if (Get(i) != r) return false; } utf8_data += cursor; remaining_in_str -= cursor; } return (allow_prefix_match || i == slen) && remaining_in_str == 0; } bool String::IsOneByteEqualTo(Vector<const uint8_t> str) { int slen = length(); if (str.length() != slen) return false; DisallowHeapAllocation no_gc; FlatContent content = GetFlatContent(); if (content.IsOneByte()) { return CompareChars(content.ToOneByteVector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != static_cast<uint16_t>(str[i])) return false; } return true; } bool String::IsTwoByteEqualTo(Vector<const uc16> str) { int slen = length(); if (str.length() != slen) return false; DisallowHeapAllocation no_gc; FlatContent content = GetFlatContent(); if (content.IsTwoByte()) { return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != str[i]) return false; } return true; } uint32_t String::ComputeAndSetHash() { // Should only be called if hash code has not yet been computed. DCHECK(!HasHashCode()); // Store the hash code in the object. uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed()); set_hash_field(field); // Check the hash code is there. DCHECK(HasHashCode()); uint32_t result = field >> kHashShift; DCHECK(result != 0); // Ensure that the hash value of 0 is never computed. return result; } bool String::ComputeArrayIndex(uint32_t* index) { int length = this->length(); if (length == 0 || length > kMaxArrayIndexSize) return false; ConsStringIteratorOp op; StringCharacterStream stream(this, &op); return StringToArrayIndex(&stream, index); } bool String::SlowAsArrayIndex(uint32_t* index) { if (length() <= kMaxCachedArrayIndexLength) { Hash(); // force computation of hash code uint32_t field = hash_field(); if ((field & kIsNotArrayIndexMask) != 0) return false; // Isolate the array index form the full hash field. *index = ArrayIndexValueBits::decode(field); return true; } else { return ComputeArrayIndex(index); } } Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) { int new_size, old_size; int old_length = string->length(); if (old_length <= new_length) return string; if (string->IsSeqOneByteString()) { old_size = SeqOneByteString::SizeFor(old_length); new_size = SeqOneByteString::SizeFor(new_length); } else { DCHECK(string->IsSeqTwoByteString()); old_size = SeqTwoByteString::SizeFor(old_length); new_size = SeqTwoByteString::SizeFor(new_length); } int delta = old_size - new_size; Address start_of_string = string->address(); DCHECK_OBJECT_ALIGNED(start_of_string); DCHECK_OBJECT_ALIGNED(start_of_string + new_size); Heap* heap = string->GetHeap(); NewSpace* newspace = heap->new_space(); if (newspace->Contains(start_of_string) && newspace->top() == start_of_string + old_size) { // Last allocated object in new space. Simply lower allocation top. newspace->set_top(start_of_string + new_size); } else { // Sizes are pointer size aligned, so that we can use filler objects // that are a multiple of pointer size. heap->CreateFillerObjectAt(start_of_string + new_size, delta); } heap->AdjustLiveBytes(start_of_string, -delta, Heap::FROM_MUTATOR); // We are storing the new length using release store after creating a filler // for the left-over space to avoid races with the sweeper thread. string->synchronized_set_length(new_length); if (new_length == 0) return heap->isolate()->factory()->empty_string(); return string; } uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { // For array indexes mix the length into the hash as an array index could // be zero. DCHECK(length > 0); DCHECK(length <= String::kMaxArrayIndexSize); DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); value <<= String::ArrayIndexValueBits::kShift; value |= length << String::ArrayIndexLengthBits::kShift; DCHECK((value & String::kIsNotArrayIndexMask) == 0); DCHECK((length > String::kMaxCachedArrayIndexLength) || (value & String::kContainsCachedArrayIndexMask) == 0); return value; } uint32_t StringHasher::GetHashField() { if (length_ <= String::kMaxHashCalcLength) { if (is_array_index_) { return MakeArrayIndexHash(array_index_, length_); } return (GetHashCore(raw_running_hash_) << String::kHashShift) | String::kIsNotArrayIndexMask; } else { return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; } } uint32_t StringHasher::ComputeUtf8Hash(Vector<const char> chars, uint32_t seed, int* utf16_length_out) { int vector_length = chars.length(); // Handle some edge cases if (vector_length <= 1) { DCHECK(vector_length == 0 || static_cast<uint8_t>(chars.start()[0]) <= unibrow::Utf8::kMaxOneByteChar); *utf16_length_out = vector_length; return HashSequentialString(chars.start(), vector_length, seed); } // Start with a fake length which won't affect computation. // It will be updated later. StringHasher hasher(String::kMaxArrayIndexSize, seed); unsigned remaining = static_cast<unsigned>(vector_length); const uint8_t* stream = reinterpret_cast<const uint8_t*>(chars.start()); int utf16_length = 0; bool is_index = true; DCHECK(hasher.is_array_index_); while (remaining > 0) { unsigned consumed = 0; uint32_t c = unibrow::Utf8::ValueOf(stream, remaining, &consumed); DCHECK(consumed > 0 && consumed <= remaining); stream += consumed; remaining -= consumed; bool is_two_characters = c > unibrow::Utf16::kMaxNonSurrogateCharCode; utf16_length += is_two_characters ? 2 : 1; // No need to keep hashing. But we do need to calculate utf16_length. if (utf16_length > String::kMaxHashCalcLength) continue; if (is_two_characters) { uint16_t c1 = unibrow::Utf16::LeadSurrogate(c); uint16_t c2 = unibrow::Utf16::TrailSurrogate(c); hasher.AddCharacter(c1); hasher.AddCharacter(c2); if (is_index) is_index = hasher.UpdateIndex(c1); if (is_index) is_index = hasher.UpdateIndex(c2); } else { hasher.AddCharacter(c); if (is_index) is_index = hasher.UpdateIndex(c); } } *utf16_length_out = static_cast<int>(utf16_length); // Must set length here so that hash computation is correct. hasher.length_ = utf16_length; return hasher.GetHashField(); } void String::PrintOn(FILE* file) { int length = this->length(); for (int i = 0; i < length; i++) { PrintF(file, "%c", Get(i)); } } int Map::Hash() { // For performance reasons we only hash the 3 most variable fields of a map: // constructor, prototype and bit_field2. // Shift away the tag. int hash = (static_cast<uint32_t>( reinterpret_cast<uintptr_t>(constructor())) >> 2); // XOR-ing the prototype and constructor directly yields too many zero bits // when the two pointers are close (which is fairly common). // To avoid this we shift the prototype 4 bits relatively to the constructor. hash ^= (static_cast<uint32_t>( reinterpret_cast<uintptr_t>(prototype())) << 2); return hash ^ (hash >> 16) ^ bit_field2(); } static bool CheckEquivalent(Map* first, Map* second) { return first->constructor() == second->constructor() && first->prototype() == second->prototype() && first->instance_type() == second->instance_type() && first->bit_field() == second->bit_field() && first->bit_field2() == second->bit_field2() && first->is_frozen() == second->is_frozen() && first->has_instance_call_handler() == second->has_instance_call_handler(); } bool Map::EquivalentToForTransition(Map* other) { return CheckEquivalent(this, other); } bool Map::EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode) { int properties = mode == CLEAR_INOBJECT_PROPERTIES ? 0 : other->inobject_properties(); return CheckEquivalent(this, other) && inobject_properties() == properties; } void ConstantPoolArray::ConstantPoolIterateBody(ObjectVisitor* v) { // Unfortunately the serializer relies on pointers within an object being // visited in-order, so we have to iterate both the code and heap pointers in // the small section before doing so in the extended section. for (int s = 0; s <= final_section(); ++s) { LayoutSection section = static_cast<LayoutSection>(s); ConstantPoolArray::Iterator code_iter(this, ConstantPoolArray::CODE_PTR, section); while (!code_iter.is_finished()) { v->VisitCodeEntry(reinterpret_cast<Address>( RawFieldOfElementAt(code_iter.next_index()))); } ConstantPoolArray::Iterator heap_iter(this, ConstantPoolArray::HEAP_PTR, section); while (!heap_iter.is_finished()) { v->VisitPointer(RawFieldOfElementAt(heap_iter.next_index())); } } } void ConstantPoolArray::ClearPtrEntries(Isolate* isolate) { Type type[] = { CODE_PTR, HEAP_PTR }; Address default_value[] = { isolate->builtins()->builtin(Builtins::kIllegal)->entry(), reinterpret_cast<Address>(isolate->heap()->undefined_value()) }; for (int i = 0; i < 2; ++i) { for (int s = 0; s <= final_section(); ++s) { LayoutSection section = static_cast<LayoutSection>(s); if (number_of_entries(type[i], section) > 0) { int offset = OffsetOfElementAt(first_index(type[i], section)); MemsetPointer( reinterpret_cast<Address*>(HeapObject::RawField(this, offset)), default_value[i], number_of_entries(type[i], section)); } } } } void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) { // Iterate over all fields in the body but take care in dealing with // the code entry. IteratePointers(v, kPropertiesOffset, kCodeEntryOffset); v->VisitCodeEntry(this->address() + kCodeEntryOffset); IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size); } void JSFunction::MarkForOptimization() { DCHECK(!IsOptimized()); DCHECK(shared()->allows_lazy_compilation() || code()->optimizable()); DCHECK(!shared()->is_generator()); set_code_no_write_barrier( GetIsolate()->builtins()->builtin(Builtins::kCompileOptimized)); // No write barrier required, since the builtin is part of the root set. } void JSFunction::MarkForConcurrentOptimization() { DCHECK(is_compiled() || GetIsolate()->DebuggerHasBreakPoints()); DCHECK(!IsOptimized()); DCHECK(shared()->allows_lazy_compilation() || code()->optimizable()); DCHECK(!shared()->is_generator()); DCHECK(GetIsolate()->concurrent_recompilation_enabled()); if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Marking "); ShortPrint(); PrintF(" for concurrent recompilation.\n"); } set_code_no_write_barrier( GetIsolate()->builtins()->builtin(Builtins::kCompileOptimizedConcurrent)); // No write barrier required, since the builtin is part of the root set. } void JSFunction::MarkInOptimizationQueue() { // We can only arrive here via the concurrent-recompilation builtin. If // break points were set, the code would point to the lazy-compile builtin. DCHECK(!GetIsolate()->DebuggerHasBreakPoints()); DCHECK(IsMarkedForConcurrentOptimization() && !IsOptimized()); DCHECK(shared()->allows_lazy_compilation() || code()->optimizable()); DCHECK(GetIsolate()->concurrent_recompilation_enabled()); if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Queueing "); ShortPrint(); PrintF(" for concurrent recompilation.\n"); } set_code_no_write_barrier( GetIsolate()->builtins()->builtin(Builtins::kInOptimizationQueue)); // No write barrier required, since the builtin is part of the root set. } Handle<JSFunction> JSFunction::CloneClosure(Handle<JSFunction> function) { Isolate* isolate = function->GetIsolate(); Handle<Map> map(function->map()); Handle<SharedFunctionInfo> shared(function->shared()); Handle<Context> context(function->context()); Handle<JSFunction> clone = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context); if (shared->bound()) { clone->set_function_bindings(function->function_bindings()); } // In typical case, __proto__ of ``function`` is the default Function // prototype, which means that SetPrototype below is a no-op. // In rare cases when that is not true, we mutate the clone's __proto__. Handle<Object> original_prototype(map->prototype(), isolate); if (*original_prototype != clone->map()->prototype()) { JSObject::SetPrototype(clone, original_prototype, false).Assert(); } return clone; } void SharedFunctionInfo::AddToOptimizedCodeMap( Handle<SharedFunctionInfo> shared, Handle<Context> native_context, Handle<Code> code, Handle<FixedArray> literals, BailoutId osr_ast_id) { Isolate* isolate = shared->GetIsolate(); DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION); DCHECK(native_context->IsNativeContext()); STATIC_ASSERT(kEntryLength == 4); Handle<FixedArray> new_code_map; Handle<Object> value(shared->optimized_code_map(), isolate); int old_length; if (value->IsSmi()) { // No optimized code map. DCHECK_EQ(0, Smi::cast(*value)->value()); // Create 3 entries per context {context, code, literals}. new_code_map = isolate->factory()->NewFixedArray(kInitialLength); old_length = kEntriesStart; } else { // Copy old map and append one new entry. Handle<FixedArray> old_code_map = Handle<FixedArray>::cast(value); DCHECK_EQ(-1, shared->SearchOptimizedCodeMap(*native_context, osr_ast_id)); old_length = old_code_map->length(); new_code_map = FixedArray::CopySize( old_code_map, old_length + kEntryLength); // Zap the old map for the sake of the heap verifier. if (Heap::ShouldZapGarbage()) { Object** data = old_code_map->data_start(); MemsetPointer(data, isolate->heap()->the_hole_value(), old_length); } } new_code_map->set(old_length + kContextOffset, *native_context); new_code_map->set(old_length + kCachedCodeOffset, *code); new_code_map->set(old_length + kLiteralsOffset, *literals); new_code_map->set(old_length + kOsrAstIdOffset, Smi::FromInt(osr_ast_id.ToInt())); #ifdef DEBUG for (int i = kEntriesStart; i < new_code_map->length(); i += kEntryLength) { DCHECK(new_code_map->get(i + kContextOffset)->IsNativeContext()); DCHECK(new_code_map->get(i + kCachedCodeOffset)->IsCode()); DCHECK(Code::cast(new_code_map->get(i + kCachedCodeOffset))->kind() == Code::OPTIMIZED_FUNCTION); DCHECK(new_code_map->get(i + kLiteralsOffset)->IsFixedArray()); DCHECK(new_code_map->get(i + kOsrAstIdOffset)->IsSmi()); } #endif shared->set_optimized_code_map(*new_code_map); } FixedArray* SharedFunctionInfo::GetLiteralsFromOptimizedCodeMap(int index) { DCHECK(index > kEntriesStart); FixedArray* code_map = FixedArray::cast(optimized_code_map()); if (!bound()) { FixedArray* cached_literals = FixedArray::cast(code_map->get(index + 1)); DCHECK_NE(NULL, cached_literals); return cached_literals; } return NULL; } Code* SharedFunctionInfo::GetCodeFromOptimizedCodeMap(int index) { DCHECK(index > kEntriesStart); FixedArray* code_map = FixedArray::cast(optimized_code_map()); Code* code = Code::cast(code_map->get(index)); DCHECK_NE(NULL, code); return code; } void SharedFunctionInfo::ClearOptimizedCodeMap() { FixedArray* code_map = FixedArray::cast(optimized_code_map()); // If the next map link slot is already used then the function was // enqueued with code flushing and we remove it now. if (!code_map->get(kNextMapIndex)->IsUndefined()) { CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher(); flusher->EvictOptimizedCodeMap(this); } DCHECK(code_map->get(kNextMapIndex)->IsUndefined()); set_optimized_code_map(Smi::FromInt(0)); } void SharedFunctionInfo::EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason) { DisallowHeapAllocation no_gc; if (optimized_code_map()->IsSmi()) return; FixedArray* code_map = FixedArray::cast(optimized_code_map()); int dst = kEntriesStart; int length = code_map->length(); for (int src = kEntriesStart; src < length; src += kEntryLength) { DCHECK(code_map->get(src)->IsNativeContext()); if (Code::cast(code_map->get(src + kCachedCodeOffset)) == optimized_code) { // Evict the src entry by not copying it to the dst entry. if (FLAG_trace_opt) { PrintF("[evicting entry from optimizing code map (%s) for ", reason); ShortPrint(); BailoutId osr(Smi::cast(code_map->get(src + kOsrAstIdOffset))->value()); if (osr.IsNone()) { PrintF("]\n"); } else { PrintF(" (osr ast id %d)]\n", osr.ToInt()); } } } else { // Keep the src entry by copying it to the dst entry. if (dst != src) { code_map->set(dst + kContextOffset, code_map->get(src + kContextOffset)); code_map->set(dst + kCachedCodeOffset, code_map->get(src + kCachedCodeOffset)); code_map->set(dst + kLiteralsOffset, code_map->get(src + kLiteralsOffset)); code_map->set(dst + kOsrAstIdOffset, code_map->get(src + kOsrAstIdOffset)); } dst += kEntryLength; } } if (dst != length) { // Always trim even when array is cleared because of heap verifier. GetHeap()->RightTrimFixedArray<Heap::FROM_MUTATOR>(code_map, length - dst); if (code_map->length() == kEntriesStart) ClearOptimizedCodeMap(); } } void SharedFunctionInfo::TrimOptimizedCodeMap(int shrink_by) { FixedArray* code_map = FixedArray::cast(optimized_code_map()); DCHECK(shrink_by % kEntryLength == 0); DCHECK(shrink_by <= code_map->length() - kEntriesStart); // Always trim even when array is cleared because of heap verifier. GetHeap()->RightTrimFixedArray<Heap::FROM_GC>(code_map, shrink_by); if (code_map->length() == kEntriesStart) { ClearOptimizedCodeMap(); } } void JSObject::OptimizeAsPrototype(Handle<JSObject> object, PrototypeOptimizationMode mode) { if (object->IsGlobalObject()) return; if (object->IsJSGlobalProxy()) return; if (mode == FAST_PROTOTYPE && !object->map()->is_prototype_map()) { // First normalize to ensure all JSFunctions are CONSTANT. JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0); } if (!object->HasFastProperties()) { JSObject::MigrateSlowToFast(object, 0); } if (mode == FAST_PROTOTYPE && object->HasFastProperties() && !object->map()->is_prototype_map()) { Handle<Map> new_map = Map::Copy(handle(object->map())); JSObject::MigrateToMap(object, new_map); object->map()->set_is_prototype_map(true); } } void JSObject::ReoptimizeIfPrototype(Handle<JSObject> object) { if (!object->map()->is_prototype_map()) return; OptimizeAsPrototype(object, FAST_PROTOTYPE); } Handle<Object> CacheInitialJSArrayMaps( Handle<Context> native_context, Handle<Map> initial_map) { // Replace all of the cached initial array maps in the native context with // the appropriate transitioned elements kind maps. Factory* factory = native_context->GetIsolate()->factory(); Handle<FixedArray> maps = factory->NewFixedArrayWithHoles( kElementsKindCount, TENURED); Handle<Map> current_map = initial_map; ElementsKind kind = current_map->elements_kind(); DCHECK(kind == GetInitialFastElementsKind()); maps->set(kind, *current_map); for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1; i < kFastElementsKindCount; ++i) { Handle<Map> new_map; ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i); if (current_map->HasElementsTransition()) { new_map = handle(current_map->elements_transition_map()); DCHECK(new_map->elements_kind() == next_kind); } else { new_map = Map::CopyAsElementsKind( current_map, next_kind, INSERT_TRANSITION); } maps->set(next_kind, *new_map); current_map = new_map; } native_context->set_js_array_maps(*maps); return initial_map; } void JSFunction::SetInstancePrototype(Handle<JSFunction> function, Handle<Object> value) { Isolate* isolate = function->GetIsolate(); DCHECK(value->IsJSReceiver()); // Now some logic for the maps of the objects that are created by using this // function as a constructor. if (function->has_initial_map()) { // If the function has allocated the initial map replace it with a // copy containing the new prototype. Also complete any in-object // slack tracking that is in progress at this point because it is // still tracking the old copy. if (function->IsInobjectSlackTrackingInProgress()) { function->CompleteInobjectSlackTracking(); } Handle<Map> initial_map(function->initial_map(), isolate); if (!initial_map->GetIsolate()->bootstrapper()->IsActive() && initial_map->instance_type() == JS_OBJECT_TYPE) { // Put the value in the initial map field until an initial map is needed. // At that point, a new initial map is created and the prototype is put // into the initial map where it belongs. function->set_prototype_or_initial_map(*value); } else { Handle<Map> new_map = Map::Copy(initial_map); JSFunction::SetInitialMap(function, new_map, value); // If the function is used as the global Array function, cache the // initial map (and transitioned versions) in the native context. Context* native_context = function->context()->native_context(); Object* array_function = native_context->get(Context::ARRAY_FUNCTION_INDEX); if (array_function->IsJSFunction() && *function == JSFunction::cast(array_function)) { CacheInitialJSArrayMaps(handle(native_context, isolate), new_map); } } // Deoptimize all code that embeds the previous initial map. initial_map->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kInitialMapChangedGroup); } else { // Put the value in the initial map field until an initial map is // needed. At that point, a new initial map is created and the // prototype is put into the initial map where it belongs. function->set_prototype_or_initial_map(*value); } isolate->heap()->ClearInstanceofCache(); } void JSFunction::SetPrototype(Handle<JSFunction> function, Handle<Object> value) { DCHECK(function->should_have_prototype()); Handle<Object> construct_prototype = value; // If the value is not a JSReceiver, store the value in the map's // constructor field so it can be accessed. Also, set the prototype // used for constructing objects to the original object prototype. // See ECMA-262 13.2.2. if (!value->IsJSReceiver()) { // Copy the map so this does not affect unrelated functions. // Remove map transitions because they point to maps with a // different prototype. Handle<Map> new_map = Map::Copy(handle(function->map())); JSObject::MigrateToMap(function, new_map); new_map->set_constructor(*value); new_map->set_non_instance_prototype(true); Isolate* isolate = new_map->GetIsolate(); construct_prototype = handle( isolate->context()->native_context()->initial_object_prototype(), isolate); } else { function->map()->set_non_instance_prototype(false); } return SetInstancePrototype(function, construct_prototype); } bool JSFunction::RemovePrototype() { Context* native_context = context()->native_context(); Map* no_prototype_map = shared()->strict_mode() == SLOPPY ? native_context->sloppy_function_without_prototype_map() : native_context->strict_function_without_prototype_map(); if (map() == no_prototype_map) return true; #ifdef DEBUG if (map() != (shared()->strict_mode() == SLOPPY ? native_context->sloppy_function_map() : native_context->strict_function_map())) { return false; } #endif set_map(no_prototype_map); set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value()); return true; } void JSFunction::SetInitialMap(Handle<JSFunction> function, Handle<Map> map, Handle<Object> prototype) { if (prototype->IsJSObject()) { Handle<JSObject> js_proto = Handle<JSObject>::cast(prototype); JSObject::OptimizeAsPrototype(js_proto, FAST_PROTOTYPE); } map->set_prototype(*prototype); function->set_prototype_or_initial_map(*map); map->set_constructor(*function); } void JSFunction::EnsureHasInitialMap(Handle<JSFunction> function) { if (function->has_initial_map()) return; Isolate* isolate = function->GetIsolate(); // First create a new map with the size and number of in-object properties // suggested by the function. InstanceType instance_type; int instance_size; int in_object_properties; if (function->shared()->is_generator()) { instance_type = JS_GENERATOR_OBJECT_TYPE; instance_size = JSGeneratorObject::kSize; in_object_properties = 0; } else { instance_type = JS_OBJECT_TYPE; instance_size = function->shared()->CalculateInstanceSize(); in_object_properties = function->shared()->CalculateInObjectProperties(); } Handle<Map> map = isolate->factory()->NewMap(instance_type, instance_size); // Fetch or allocate prototype. Handle<Object> prototype; if (function->has_instance_prototype()) { prototype = handle(function->instance_prototype(), isolate); } else { prototype = isolate->factory()->NewFunctionPrototype(function); } map->set_inobject_properties(in_object_properties); map->set_unused_property_fields(in_object_properties); DCHECK(map->has_fast_object_elements()); // Finally link initial map and constructor function. JSFunction::SetInitialMap(function, map, Handle<JSReceiver>::cast(prototype)); if (!function->shared()->is_generator()) { function->StartInobjectSlackTracking(); } } void JSFunction::SetInstanceClassName(String* name) { shared()->set_instance_class_name(name); } void JSFunction::PrintName(FILE* out) { SmartArrayPointer<char> name = shared()->DebugName()->ToCString(); PrintF(out, "%s", name.get()); } Context* JSFunction::NativeContextFromLiterals(FixedArray* literals) { return Context::cast(literals->get(JSFunction::kLiteralNativeContextIndex)); } // The filter is a pattern that matches function names in this way: // "*" all; the default // "-" all but the top-level function // "-name" all but the function "name" // "" only the top-level function // "name" only the function "name" // "name*" only functions starting with "name" // "~" none; the tilde is not an identifier bool JSFunction::PassesFilter(const char* raw_filter) { if (*raw_filter == '*') return true; String* name = shared()->DebugName(); Vector<const char> filter = CStrVector(raw_filter); if (filter.length() == 0) return name->length() == 0; if (filter[0] == '-') { // Negative filter. if (filter.length() == 1) { return (name->length() != 0); } else if (name->IsUtf8EqualTo(filter.SubVector(1, filter.length()))) { return false; } if (filter[filter.length() - 1] == '*' && name->IsUtf8EqualTo(filter.SubVector(1, filter.length() - 1), true)) { return false; } return true; } else if (name->IsUtf8EqualTo(filter)) { return true; } if (filter[filter.length() - 1] == '*' && name->IsUtf8EqualTo(filter.SubVector(0, filter.length() - 1), true)) { return true; } return false; } void Oddball::Initialize(Isolate* isolate, Handle<Oddball> oddball, const char* to_string, Handle<Object> to_number, byte kind) { Handle<String> internalized_to_string = isolate->factory()->InternalizeUtf8String(to_string); oddball->set_to_string(*internalized_to_string); oddball->set_to_number(*to_number); oddball->set_kind(kind); } void Script::InitLineEnds(Handle<Script> script) { if (!script->line_ends()->IsUndefined()) return; Isolate* isolate = script->GetIsolate(); if (!script->source()->IsString()) { DCHECK(script->source()->IsUndefined()); Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0); script->set_line_ends(*empty); DCHECK(script->line_ends()->IsFixedArray()); return; } Handle<String> src(String::cast(script->source()), isolate); Handle<FixedArray> array = String::CalculateLineEnds(src, true); if (*array != isolate->heap()->empty_fixed_array()) { array->set_map(isolate->heap()->fixed_cow_array_map()); } script->set_line_ends(*array); DCHECK(script->line_ends()->IsFixedArray()); } int Script::GetColumnNumber(Handle<Script> script, int code_pos) { int line_number = GetLineNumber(script, code_pos); if (line_number == -1) return -1; DisallowHeapAllocation no_allocation; FixedArray* line_ends_array = FixedArray::cast(script->line_ends()); line_number = line_number - script->line_offset()->value(); if (line_number == 0) return code_pos + script->column_offset()->value(); int prev_line_end_pos = Smi::cast(line_ends_array->get(line_number - 1))->value(); return code_pos - (prev_line_end_pos + 1); } int Script::GetLineNumberWithArray(int code_pos) { DisallowHeapAllocation no_allocation; DCHECK(line_ends()->IsFixedArray()); FixedArray* line_ends_array = FixedArray::cast(line_ends()); int line_ends_len = line_ends_array->length(); if (line_ends_len == 0) return -1; if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) { return line_offset()->value(); } int left = 0; int right = line_ends_len; while (int half = (right - left) / 2) { if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) { right -= half; } else { left += half; } } return right + line_offset()->value(); } int Script::GetLineNumber(Handle<Script> script, int code_pos) { InitLineEnds(script); return script->GetLineNumberWithArray(code_pos); } int Script::GetLineNumber(int code_pos) { DisallowHeapAllocation no_allocation; if (!line_ends()->IsUndefined()) return GetLineNumberWithArray(code_pos); // Slow mode: we do not have line_ends. We have to iterate through source. if (!source()->IsString()) return -1; String* source_string = String::cast(source()); int line = 0; int len = source_string->length(); for (int pos = 0; pos < len; pos++) { if (pos == code_pos) break; if (source_string->Get(pos) == '\n') line++; } return line; } Handle<Object> Script::GetNameOrSourceURL(Handle<Script> script) { Isolate* isolate = script->GetIsolate(); Handle<String> name_or_source_url_key = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("nameOrSourceURL")); Handle<JSObject> script_wrapper = Script::GetWrapper(script); Handle<Object> property = Object::GetProperty( script_wrapper, name_or_source_url_key).ToHandleChecked(); DCHECK(property->IsJSFunction()); Handle<JSFunction> method = Handle<JSFunction>::cast(property); Handle<Object> result; // Do not check against pending exception, since this function may be called // when an exception has already been pending. if (!Execution::TryCall(method, script_wrapper, 0, NULL).ToHandle(&result)) { return isolate->factory()->undefined_value(); } return result; } // Wrappers for scripts are kept alive and cached in weak global // handles referred from foreign objects held by the scripts as long as // they are used. When they are not used anymore, the garbage // collector will call the weak callback on the global handle // associated with the wrapper and get rid of both the wrapper and the // handle. static void ClearWrapperCacheWeakCallback( const v8::WeakCallbackData<v8::Value, void>& data) { Object** location = reinterpret_cast<Object**>(data.GetParameter()); JSValue* wrapper = JSValue::cast(*location); Script::cast(wrapper->value())->ClearWrapperCache(); } void Script::ClearWrapperCache() { Foreign* foreign = wrapper(); Object** location = reinterpret_cast<Object**>(foreign->foreign_address()); DCHECK_EQ(foreign->foreign_address(), reinterpret_cast<Address>(location)); foreign->set_foreign_address(0); GlobalHandles::Destroy(location); GetIsolate()->counters()->script_wrappers()->Decrement(); } Handle<JSObject> Script::GetWrapper(Handle<Script> script) { if (script->wrapper()->foreign_address() != NULL) { // Return a handle for the existing script wrapper from the cache. return Handle<JSValue>( *reinterpret_cast<JSValue**>(script->wrapper()->foreign_address())); } Isolate* isolate = script->GetIsolate(); // Construct a new script wrapper. isolate->counters()->script_wrappers()->Increment(); Handle<JSFunction> constructor = isolate->script_function(); Handle<JSValue> result = Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor)); result->set_value(*script); // Create a new weak global handle and use it to cache the wrapper // for future use. The cache will automatically be cleared by the // garbage collector when it is not used anymore. Handle<Object> handle = isolate->global_handles()->Create(*result); GlobalHandles::MakeWeak(handle.location(), reinterpret_cast<void*>(handle.location()), &ClearWrapperCacheWeakCallback); script->wrapper()->set_foreign_address( reinterpret_cast<Address>(handle.location())); return result; } String* SharedFunctionInfo::DebugName() { Object* n = name(); if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name(); return String::cast(n); } bool SharedFunctionInfo::HasSourceCode() const { return !script()->IsUndefined() && !reinterpret_cast<Script*>(script())->source()->IsUndefined(); } Handle<Object> SharedFunctionInfo::GetSourceCode() { if (!HasSourceCode()) return GetIsolate()->factory()->undefined_value(); Handle<String> source(String::cast(Script::cast(script())->source())); return GetIsolate()->factory()->NewSubString( source, start_position(), end_position()); } bool SharedFunctionInfo::IsInlineable() { // Check that the function has a script associated with it. if (!script()->IsScript()) return false; if (optimization_disabled()) return false; // If we never ran this (unlikely) then lets try to optimize it. if (code()->kind() != Code::FUNCTION) return true; return code()->optimizable(); } int SharedFunctionInfo::SourceSize() { return end_position() - start_position(); } int SharedFunctionInfo::CalculateInstanceSize() { int instance_size = JSObject::kHeaderSize + expected_nof_properties() * kPointerSize; if (instance_size > JSObject::kMaxInstanceSize) { instance_size = JSObject::kMaxInstanceSize; } return instance_size; } int SharedFunctionInfo::CalculateInObjectProperties() { return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize; } // Output the source code without any allocation in the heap. OStream& operator<<(OStream& os, const SourceCodeOf& v) { const SharedFunctionInfo* s = v.value; // For some native functions there is no source. if (!s->HasSourceCode()) return os << "<No Source>"; // Get the source for the script which this function came from. // Don't use String::cast because we don't want more assertion errors while // we are already creating a stack dump. String* script_source = reinterpret_cast<String*>(Script::cast(s->script())->source()); if (!script_source->LooksValid()) return os << "<Invalid Source>"; if (!s->is_toplevel()) { os << "function "; Object* name = s->name(); if (name->IsString() && String::cast(name)->length() > 0) { String::cast(name)->PrintUC16(os); } } int len = s->end_position() - s->start_position(); if (len <= v.max_length || v.max_length < 0) { script_source->PrintUC16(os, s->start_position(), s->end_position()); return os; } else { script_source->PrintUC16(os, s->start_position(), s->start_position() + v.max_length); return os << "...\n"; } } static bool IsCodeEquivalent(Code* code, Code* recompiled) { if (code->instruction_size() != recompiled->instruction_size()) return false; ByteArray* code_relocation = code->relocation_info(); ByteArray* recompiled_relocation = recompiled->relocation_info(); int length = code_relocation->length(); if (length != recompiled_relocation->length()) return false; int compare = memcmp(code_relocation->GetDataStartAddress(), recompiled_relocation->GetDataStartAddress(), length); return compare == 0; } void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) { DCHECK(!has_deoptimization_support()); DisallowHeapAllocation no_allocation; Code* code = this->code(); if (IsCodeEquivalent(code, recompiled)) { // Copy the deoptimization data from the recompiled code. code->set_deoptimization_data(recompiled->deoptimization_data()); code->set_has_deoptimization_support(true); } else { // TODO(3025757): In case the recompiled isn't equivalent to the // old code, we have to replace it. We should try to avoid this // altogether because it flushes valuable type feedback by // effectively resetting all IC state. ReplaceCode(recompiled); } DCHECK(has_deoptimization_support()); } void SharedFunctionInfo::DisableOptimization(BailoutReason reason) { // Disable optimization for the shared function info and mark the // code as non-optimizable. The marker on the shared function info // is there because we flush non-optimized code thereby loosing the // non-optimizable information for the code. When the code is // regenerated and set on the shared function info it is marked as // non-optimizable if optimization is disabled for the shared // function info. set_optimization_disabled(true); set_bailout_reason(reason); // Code should be the lazy compilation stub or else unoptimized. If the // latter, disable optimization for the code too. DCHECK(code()->kind() == Code::FUNCTION || code()->kind() == Code::BUILTIN); if (code()->kind() == Code::FUNCTION) { code()->set_optimizable(false); } PROFILE(GetIsolate(), CodeDisableOptEvent(code(), this)); if (FLAG_trace_opt) { PrintF("[disabled optimization for "); ShortPrint(); PrintF(", reason: %s]\n", GetBailoutReason(reason)); } } bool SharedFunctionInfo::VerifyBailoutId(BailoutId id) { DCHECK(!id.IsNone()); Code* unoptimized = code(); DeoptimizationOutputData* data = DeoptimizationOutputData::cast(unoptimized->deoptimization_data()); unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this); USE(ignore); return true; // Return true if there was no DCHECK. } void JSFunction::StartInobjectSlackTracking() { DCHECK(has_initial_map() && !IsInobjectSlackTrackingInProgress()); if (!FLAG_clever_optimizations) return; Map* map = initial_map(); // Only initiate the tracking the first time. if (map->done_inobject_slack_tracking()) return; map->set_done_inobject_slack_tracking(true); // No tracking during the snapshot construction phase. Isolate* isolate = GetIsolate(); if (isolate->serializer_enabled()) return; if (map->unused_property_fields() == 0) return; map->set_construction_count(kGenerousAllocationCount); } void SharedFunctionInfo::ResetForNewContext(int new_ic_age) { code()->ClearInlineCaches(); // If we clear ICs, we need to clear the type feedback vector too, since // CallICs are synced with a feedback vector slot. ClearTypeFeedbackInfo(); set_ic_age(new_ic_age); if (code()->kind() == Code::FUNCTION) { code()->set_profiler_ticks(0); if (optimization_disabled() && opt_count() >= FLAG_max_opt_count) { // Re-enable optimizations if they were disabled due to opt_count limit. set_optimization_disabled(false); code()->set_optimizable(true); } set_opt_count(0); set_deopt_count(0); } } static void GetMinInobjectSlack(Map* map, void* data) { int slack = map->unused_property_fields(); if (*reinterpret_cast<int*>(data) > slack) { *reinterpret_cast<int*>(data) = slack; } } static void ShrinkInstanceSize(Map* map, void* data) { int slack = *reinterpret_cast<int*>(data); map->set_inobject_properties(map->inobject_properties() - slack); map->set_unused_property_fields(map->unused_property_fields() - slack); map->set_instance_size(map->instance_size() - slack * kPointerSize); // Visitor id might depend on the instance size, recalculate it. map->set_visitor_id(StaticVisitorBase::GetVisitorId(map)); } void JSFunction::CompleteInobjectSlackTracking() { DCHECK(has_initial_map()); Map* map = initial_map(); DCHECK(map->done_inobject_slack_tracking()); map->set_construction_count(kNoSlackTracking); int slack = map->unused_property_fields(); map->TraverseTransitionTree(&GetMinInobjectSlack, &slack); if (slack != 0) { // Resize the initial map and all maps in its transition tree. map->TraverseTransitionTree(&ShrinkInstanceSize, &slack); } } int SharedFunctionInfo::SearchOptimizedCodeMap(Context* native_context, BailoutId osr_ast_id) { DisallowHeapAllocation no_gc; DCHECK(native_context->IsNativeContext()); if (!FLAG_cache_optimized_code) return -1; Object* value = optimized_code_map(); if (!value->IsSmi()) { FixedArray* optimized_code_map = FixedArray::cast(value); int length = optimized_code_map->length(); Smi* osr_ast_id_smi = Smi::FromInt(osr_ast_id.ToInt()); for (int i = kEntriesStart; i < length; i += kEntryLength) { if (optimized_code_map->get(i + kContextOffset) == native_context && optimized_code_map->get(i + kOsrAstIdOffset) == osr_ast_id_smi) { return i + kCachedCodeOffset; } } if (FLAG_trace_opt) { PrintF("[didn't find optimized code in optimized code map for "); ShortPrint(); PrintF("]\n"); } } return -1; } #define DECLARE_TAG(ignore1, name, ignore2) name, const char* const VisitorSynchronization::kTags[ VisitorSynchronization::kNumberOfSyncTags] = { VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG) }; #undef DECLARE_TAG #define DECLARE_TAG(ignore1, ignore2, name) name, const char* const VisitorSynchronization::kTagNames[ VisitorSynchronization::kNumberOfSyncTags] = { VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG) }; #undef DECLARE_TAG void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) { DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode())); Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); Object* old_target = target; VisitPointer(&target); CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target. } void ObjectVisitor::VisitCodeAgeSequence(RelocInfo* rinfo) { DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode())); Object* stub = rinfo->code_age_stub(); if (stub) { VisitPointer(&stub); } } void ObjectVisitor::VisitCodeEntry(Address entry_address) { Object* code = Code::GetObjectFromEntryAddress(entry_address); Object* old_code = code; VisitPointer(&code); if (code != old_code) { Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry(); } } void ObjectVisitor::VisitCell(RelocInfo* rinfo) { DCHECK(rinfo->rmode() == RelocInfo::CELL); Object* cell = rinfo->target_cell(); Object* old_cell = cell; VisitPointer(&cell); if (cell != old_cell) { rinfo->set_target_cell(reinterpret_cast<Cell*>(cell)); } } void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) { DCHECK((RelocInfo::IsJSReturn(rinfo->rmode()) && rinfo->IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && rinfo->IsPatchedDebugBreakSlotSequence())); Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address()); Object* old_target = target; VisitPointer(&target); CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target. } void ObjectVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) { DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT); Object* p = rinfo->target_object(); VisitPointer(&p); } void ObjectVisitor::VisitExternalReference(RelocInfo* rinfo) { Address p = rinfo->target_reference(); VisitExternalReference(&p); } void Code::InvalidateRelocation() { InvalidateEmbeddedObjects(); set_relocation_info(GetHeap()->empty_byte_array()); } void Code::InvalidateEmbeddedObjects() { Object* undefined = GetHeap()->undefined_value(); Cell* undefined_cell = GetHeap()->undefined_cell(); int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::CELL); for (RelocIterator it(this, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER); } else if (mode == RelocInfo::CELL) { it.rinfo()->set_target_cell(undefined_cell, SKIP_WRITE_BARRIER); } } } void Code::Relocate(intptr_t delta) { for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) { it.rinfo()->apply(delta, SKIP_ICACHE_FLUSH); } CpuFeatures::FlushICache(instruction_start(), instruction_size()); } void Code::CopyFrom(const CodeDesc& desc) { DCHECK(Marking::Color(this) == Marking::WHITE_OBJECT); // copy code CopyBytes(instruction_start(), desc.buffer, static_cast<size_t>(desc.instr_size)); // copy reloc info CopyBytes(relocation_start(), desc.buffer + desc.buffer_size - desc.reloc_size, static_cast<size_t>(desc.reloc_size)); // unbox handles and relocate intptr_t delta = instruction_start() - desc.buffer; int mode_mask = RelocInfo::kCodeTargetMask | RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::CELL) | RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | RelocInfo::kApplyMask; // Needed to find target_object and runtime_entry on X64 Assembler* origin = desc.origin; AllowDeferredHandleDereference embedding_raw_address; for (RelocIterator it(this, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { Handle<Object> p = it.rinfo()->target_object_handle(origin); it.rinfo()->set_target_object(*p, SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH); } else if (mode == RelocInfo::CELL) { Handle<Cell> cell = it.rinfo()->target_cell_handle(); it.rinfo()->set_target_cell(*cell, SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH); } else if (RelocInfo::IsCodeTarget(mode)) { // rewrite code handles in inline cache targets to direct // pointers to the first instruction in the code object Handle<Object> p = it.rinfo()->target_object_handle(origin); Code* code = Code::cast(*p); it.rinfo()->set_target_address(code->instruction_start(), SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH); } else if (RelocInfo::IsRuntimeEntry(mode)) { Address p = it.rinfo()->target_runtime_entry(origin); it.rinfo()->set_target_runtime_entry(p, SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH); } else if (mode == RelocInfo::CODE_AGE_SEQUENCE) { Handle<Object> p = it.rinfo()->code_age_stub_handle(origin); Code* code = Code::cast(*p); it.rinfo()->set_code_age_stub(code, SKIP_ICACHE_FLUSH); } else { it.rinfo()->apply(delta, SKIP_ICACHE_FLUSH); } } CpuFeatures::FlushICache(instruction_start(), instruction_size()); } // Locate the source position which is closest to the address in the code. This // is using the source position information embedded in the relocation info. // The position returned is relative to the beginning of the script where the // source for this function is found. int Code::SourcePosition(Address pc) { int distance = kMaxInt; int position = RelocInfo::kNoPosition; // Initially no position found. // Run through all the relocation info to find the best matching source // position. All the code needs to be considered as the sequence of the // instructions in the code does not necessarily follow the same order as the // source. RelocIterator it(this, RelocInfo::kPositionMask); while (!it.done()) { // Only look at positions after the current pc. if (it.rinfo()->pc() < pc) { // Get position and distance. int dist = static_cast<int>(pc - it.rinfo()->pc()); int pos = static_cast<int>(it.rinfo()->data()); // If this position is closer than the current candidate or if it has the // same distance as the current candidate and the position is higher then // this position is the new candidate. if ((dist < distance) || (dist == distance && pos > position)) { position = pos; distance = dist; } } it.next(); } return position; } // Same as Code::SourcePosition above except it only looks for statement // positions. int Code::SourceStatementPosition(Address pc) { // First find the position as close as possible using all position // information. int position = SourcePosition(pc); // Now find the closest statement position before the position. int statement_position = 0; RelocIterator it(this, RelocInfo::kPositionMask); while (!it.done()) { if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) { int p = static_cast<int>(it.rinfo()->data()); if (statement_position < p && p <= position) { statement_position = p; } } it.next(); } return statement_position; } SafepointEntry Code::GetSafepointEntry(Address pc) { SafepointTable table(this); return table.FindEntry(pc); } Object* Code::FindNthObject(int n, Map* match_map) { DCHECK(is_inline_cache_stub()); DisallowHeapAllocation no_allocation; int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Object* object = info->target_object(); if (object->IsHeapObject()) { if (HeapObject::cast(object)->map() == match_map) { if (--n == 0) return object; } } } return NULL; } AllocationSite* Code::FindFirstAllocationSite() { Object* result = FindNthObject(1, GetHeap()->allocation_site_map()); return (result != NULL) ? AllocationSite::cast(result) : NULL; } Map* Code::FindFirstMap() { Object* result = FindNthObject(1, GetHeap()->meta_map()); return (result != NULL) ? Map::cast(result) : NULL; } void Code::FindAndReplace(const FindAndReplacePattern& pattern) { DCHECK(is_inline_cache_stub() || is_handler()); DisallowHeapAllocation no_allocation; int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); STATIC_ASSERT(FindAndReplacePattern::kMaxCount < 32); int current_pattern = 0; for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Object* object = info->target_object(); if (object->IsHeapObject()) { Map* map = HeapObject::cast(object)->map(); if (map == *pattern.find_[current_pattern]) { info->set_target_object(*pattern.replace_[current_pattern]); if (++current_pattern == pattern.count_) return; } } } UNREACHABLE(); } void Code::FindAllMaps(MapHandleList* maps) { DCHECK(is_inline_cache_stub()); DisallowHeapAllocation no_allocation; int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Object* object = info->target_object(); if (object->IsMap()) maps->Add(handle(Map::cast(object))); } } Code* Code::FindFirstHandler() { DCHECK(is_inline_cache_stub()); DisallowHeapAllocation no_allocation; int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Code* code = Code::GetCodeFromTargetAddress(info->target_address()); if (code->kind() == Code::HANDLER) return code; } return NULL; } bool Code::FindHandlers(CodeHandleList* code_list, int length) { DCHECK(is_inline_cache_stub()); DisallowHeapAllocation no_allocation; int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET); int i = 0; for (RelocIterator it(this, mask); !it.done(); it.next()) { if (i == length) return true; RelocInfo* info = it.rinfo(); Code* code = Code::GetCodeFromTargetAddress(info->target_address()); // IC stubs with handlers never contain non-handler code objects before // handler targets. if (code->kind() != Code::HANDLER) break; code_list->Add(Handle<Code>(code)); i++; } return i == length; } MaybeHandle<Code> Code::FindHandlerForMap(Map* map) { DCHECK(is_inline_cache_stub()); int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); bool return_next = false; for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); if (info->rmode() == RelocInfo::EMBEDDED_OBJECT) { Object* object = info->target_object(); if (object == map) return_next = true; } else if (return_next) { Code* code = Code::GetCodeFromTargetAddress(info->target_address()); DCHECK(code->kind() == Code::HANDLER); return handle(code); } } return MaybeHandle<Code>(); } Name* Code::FindFirstName() { DCHECK(is_inline_cache_stub()); DisallowHeapAllocation no_allocation; int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Object* object = info->target_object(); if (object->IsName()) return Name::cast(object); } return NULL; } void Code::ClearInlineCaches() { ClearInlineCaches(NULL); } void Code::ClearInlineCaches(Code::Kind kind) { ClearInlineCaches(&kind); } void Code::ClearInlineCaches(Code::Kind* kind) { int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | RelocInfo::ModeMask(RelocInfo::CONSTRUCT_CALL) | RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Code* target(Code::GetCodeFromTargetAddress(info->target_address())); if (target->is_inline_cache_stub()) { if (kind == NULL || *kind == target->kind()) { IC::Clear(this->GetIsolate(), info->pc(), info->host()->constant_pool()); } } } } void SharedFunctionInfo::ClearTypeFeedbackInfo() { TypeFeedbackVector* vector = feedback_vector(); Heap* heap = GetHeap(); int length = vector->length(); for (int i = 0; i < length; i++) { Object* obj = vector->get(i); if (obj->IsHeapObject()) { InstanceType instance_type = HeapObject::cast(obj)->map()->instance_type(); switch (instance_type) { case ALLOCATION_SITE_TYPE: // AllocationSites are not cleared because they do not store // information that leaks. break; // Fall through... default: vector->set(i, TypeFeedbackVector::RawUninitializedSentinel(heap), SKIP_WRITE_BARRIER); } } } } BailoutId Code::TranslatePcOffsetToAstId(uint32_t pc_offset) { DisallowHeapAllocation no_gc; DCHECK(kind() == FUNCTION); BackEdgeTable back_edges(this, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { if (back_edges.pc_offset(i) == pc_offset) return back_edges.ast_id(i); } return BailoutId::None(); } uint32_t Code::TranslateAstIdToPcOffset(BailoutId ast_id) { DisallowHeapAllocation no_gc; DCHECK(kind() == FUNCTION); BackEdgeTable back_edges(this, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { if (back_edges.ast_id(i) == ast_id) return back_edges.pc_offset(i); } UNREACHABLE(); // We expect to find the back edge. return 0; } void Code::MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate) { PatchPlatformCodeAge(isolate, sequence, kNoAgeCodeAge, NO_MARKING_PARITY); } void Code::MarkCodeAsExecuted(byte* sequence, Isolate* isolate) { PatchPlatformCodeAge(isolate, sequence, kExecutedOnceCodeAge, NO_MARKING_PARITY); } static Code::Age EffectiveAge(Code::Age age) { if (age == Code::kNotExecutedCodeAge) { // Treat that's never been executed as old immediately. age = Code::kIsOldCodeAge; } else if (age == Code::kExecutedOnceCodeAge) { // Pre-age code that has only been executed once. age = Code::kPreAgedCodeAge; } return age; } void Code::MakeOlder(MarkingParity current_parity) { byte* sequence = FindCodeAgeSequence(); if (sequence != NULL) { Age age; MarkingParity code_parity; Isolate* isolate = GetIsolate(); GetCodeAgeAndParity(isolate, sequence, &age, &code_parity); age = EffectiveAge(age); if (age != kLastCodeAge && code_parity != current_parity) { PatchPlatformCodeAge(isolate, sequence, static_cast<Age>(age + 1), current_parity); } } } bool Code::IsOld() { return GetAge() >= kIsOldCodeAge; } byte* Code::FindCodeAgeSequence() { return FLAG_age_code && prologue_offset() != Code::kPrologueOffsetNotSet && (kind() == OPTIMIZED_FUNCTION || (kind() == FUNCTION && !has_debug_break_slots())) ? instruction_start() + prologue_offset() : NULL; } Code::Age Code::GetAge() { return EffectiveAge(GetRawAge()); } Code::Age Code::GetRawAge() { byte* sequence = FindCodeAgeSequence(); if (sequence == NULL) { return kNoAgeCodeAge; } Age age; MarkingParity parity; GetCodeAgeAndParity(GetIsolate(), sequence, &age, &parity); return age; } void Code::GetCodeAgeAndParity(Code* code, Age* age, MarkingParity* parity) { Isolate* isolate = code->GetIsolate(); Builtins* builtins = isolate->builtins(); Code* stub = NULL; #define HANDLE_CODE_AGE(AGE) \ stub = *builtins->Make##AGE##CodeYoungAgainEvenMarking(); \ if (code == stub) { \ *age = k##AGE##CodeAge; \ *parity = EVEN_MARKING_PARITY; \ return; \ } \ stub = *builtins->Make##AGE##CodeYoungAgainOddMarking(); \ if (code == stub) { \ *age = k##AGE##CodeAge; \ *parity = ODD_MARKING_PARITY; \ return; \ } CODE_AGE_LIST(HANDLE_CODE_AGE) #undef HANDLE_CODE_AGE stub = *builtins->MarkCodeAsExecutedOnce(); if (code == stub) { *age = kNotExecutedCodeAge; *parity = NO_MARKING_PARITY; return; } stub = *builtins->MarkCodeAsExecutedTwice(); if (code == stub) { *age = kExecutedOnceCodeAge; *parity = NO_MARKING_PARITY; return; } UNREACHABLE(); } Code* Code::GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity) { Builtins* builtins = isolate->builtins(); switch (age) { #define HANDLE_CODE_AGE(AGE) \ case k##AGE##CodeAge: { \ Code* stub = parity == EVEN_MARKING_PARITY \ ? *builtins->Make##AGE##CodeYoungAgainEvenMarking() \ : *builtins->Make##AGE##CodeYoungAgainOddMarking(); \ return stub; \ } CODE_AGE_LIST(HANDLE_CODE_AGE) #undef HANDLE_CODE_AGE case kNotExecutedCodeAge: { DCHECK(parity == NO_MARKING_PARITY); return *builtins->MarkCodeAsExecutedOnce(); } case kExecutedOnceCodeAge: { DCHECK(parity == NO_MARKING_PARITY); return *builtins->MarkCodeAsExecutedTwice(); } default: UNREACHABLE(); break; } return NULL; } void Code::PrintDeoptLocation(FILE* out, int bailout_id) { const char* last_comment = NULL; int mask = RelocInfo::ModeMask(RelocInfo::COMMENT) | RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); if (info->rmode() == RelocInfo::COMMENT) { last_comment = reinterpret_cast<const char*>(info->data()); } else if (last_comment != NULL) { if ((bailout_id == Deoptimizer::GetDeoptimizationId( GetIsolate(), info->target_address(), Deoptimizer::EAGER)) || (bailout_id == Deoptimizer::GetDeoptimizationId( GetIsolate(), info->target_address(), Deoptimizer::SOFT)) || (bailout_id == Deoptimizer::GetDeoptimizationId( GetIsolate(), info->target_address(), Deoptimizer::LAZY))) { CHECK(RelocInfo::IsRuntimeEntry(info->rmode())); PrintF(out, " %s\n", last_comment); return; } } } } bool Code::CanDeoptAt(Address pc) { DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(deoptimization_data()); Address code_start_address = instruction_start(); for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; Address address = code_start_address + deopt_data->Pc(i)->value(); if (address == pc) return true; } return false; } // Identify kind of code. const char* Code::Kind2String(Kind kind) { switch (kind) { #define CASE(name) case name: return #name; CODE_KIND_LIST(CASE) #undef CASE case NUMBER_OF_KINDS: break; } UNREACHABLE(); return NULL; } #ifdef ENABLE_DISASSEMBLER void DeoptimizationInputData::DeoptimizationInputDataPrint( OStream& os) { // NOLINT disasm::NameConverter converter; int deopt_count = DeoptCount(); os << "Deoptimization Input Data (deopt points = " << deopt_count << ")\n"; if (0 != deopt_count) { os << " index ast id argc pc"; if (FLAG_print_code_verbose) os << " commands"; os << "\n"; } for (int i = 0; i < deopt_count; i++) { // TODO(svenpanne) Add some basic formatting to our streams. Vector<char> buf1 = Vector<char>::New(128); SNPrintF(buf1, "%6d %6d %6d %6d", i, AstId(i).ToInt(), ArgumentsStackHeight(i)->value(), Pc(i)->value()); os << buf1.start(); if (!FLAG_print_code_verbose) { os << "\n"; continue; } // Print details of the frame translation. int translation_index = TranslationIndex(i)->value(); TranslationIterator iterator(TranslationByteArray(), translation_index); Translation::Opcode opcode = static_cast<Translation::Opcode>(iterator.Next()); DCHECK(Translation::BEGIN == opcode); int frame_count = iterator.Next(); int jsframe_count = iterator.Next(); os << " " << Translation::StringFor(opcode) << " {frame count=" << frame_count << ", js frame count=" << jsframe_count << "}\n"; while (iterator.HasNext() && Translation::BEGIN != (opcode = static_cast<Translation::Opcode>(iterator.Next()))) { Vector<char> buf2 = Vector<char>::New(128); SNPrintF(buf2, "%27s %s ", "", Translation::StringFor(opcode)); os << buf2.start(); switch (opcode) { case Translation::BEGIN: UNREACHABLE(); break; case Translation::JS_FRAME: { int ast_id = iterator.Next(); int function_id = iterator.Next(); unsigned height = iterator.Next(); os << "{ast_id=" << ast_id << ", function="; if (function_id != Translation::kSelfLiteralId) { Object* function = LiteralArray()->get(function_id); os << Brief(JSFunction::cast(function)->shared()->DebugName()); } else { os << "<self>"; } os << ", height=" << height << "}"; break; } case Translation::COMPILED_STUB_FRAME: { Code::Kind stub_kind = static_cast<Code::Kind>(iterator.Next()); os << "{kind=" << stub_kind << "}"; break; } case Translation::ARGUMENTS_ADAPTOR_FRAME: case Translation::CONSTRUCT_STUB_FRAME: { int function_id = iterator.Next(); JSFunction* function = JSFunction::cast(LiteralArray()->get(function_id)); unsigned height = iterator.Next(); os << "{function=" << Brief(function->shared()->DebugName()) << ", height=" << height << "}"; break; } case Translation::GETTER_STUB_FRAME: case Translation::SETTER_STUB_FRAME: { int function_id = iterator.Next(); JSFunction* function = JSFunction::cast(LiteralArray()->get(function_id)); os << "{function=" << Brief(function->shared()->DebugName()) << "}"; break; } case Translation::REGISTER: { int reg_code = iterator.Next(); os << "{input=" << converter.NameOfCPURegister(reg_code) << "}"; break; } case Translation::INT32_REGISTER: { int reg_code = iterator.Next(); os << "{input=" << converter.NameOfCPURegister(reg_code) << "}"; break; } case Translation::UINT32_REGISTER: { int reg_code = iterator.Next(); os << "{input=" << converter.NameOfCPURegister(reg_code) << " (unsigned)}"; break; } case Translation::DOUBLE_REGISTER: { int reg_code = iterator.Next(); os << "{input=" << DoubleRegister::AllocationIndexToString(reg_code) << "}"; break; } case Translation::STACK_SLOT: { int input_slot_index = iterator.Next(); os << "{input=" << input_slot_index << "}"; break; } case Translation::INT32_STACK_SLOT: { int input_slot_index = iterator.Next(); os << "{input=" << input_slot_index << "}"; break; } case Translation::UINT32_STACK_SLOT: { int input_slot_index = iterator.Next(); os << "{input=" << input_slot_index << " (unsigned)}"; break; } case Translation::DOUBLE_STACK_SLOT: { int input_slot_index = iterator.Next(); os << "{input=" << input_slot_index << "}"; break; } case Translation::LITERAL: { unsigned literal_index = iterator.Next(); os << "{literal_id=" << literal_index << "}"; break; } case Translation::DUPLICATED_OBJECT: { int object_index = iterator.Next(); os << "{object_index=" << object_index << "}"; break; } case Translation::ARGUMENTS_OBJECT: case Translation::CAPTURED_OBJECT: { int args_length = iterator.Next(); os << "{length=" << args_length << "}"; break; } } os << "\n"; } } } void DeoptimizationOutputData::DeoptimizationOutputDataPrint( OStream& os) { // NOLINT os << "Deoptimization Output Data (deopt points = " << this->DeoptPoints() << ")\n"; if (this->DeoptPoints() == 0) return; os << "ast id pc state\n"; for (int i = 0; i < this->DeoptPoints(); i++) { int pc_and_state = this->PcAndState(i)->value(); // TODO(svenpanne) Add some basic formatting to our streams. Vector<char> buf = Vector<char>::New(100); SNPrintF(buf, "%6d %8d %s\n", this->AstId(i).ToInt(), FullCodeGenerator::PcField::decode(pc_and_state), FullCodeGenerator::State2String( FullCodeGenerator::StateField::decode(pc_and_state))); os << buf.start(); } } const char* Code::ICState2String(InlineCacheState state) { switch (state) { case UNINITIALIZED: return "UNINITIALIZED"; case PREMONOMORPHIC: return "PREMONOMORPHIC"; case MONOMORPHIC: return "MONOMORPHIC"; case PROTOTYPE_FAILURE: return "PROTOTYPE_FAILURE"; case POLYMORPHIC: return "POLYMORPHIC"; case MEGAMORPHIC: return "MEGAMORPHIC"; case GENERIC: return "GENERIC"; case DEBUG_STUB: return "DEBUG_STUB"; case DEFAULT: return "DEFAULT"; } UNREACHABLE(); return NULL; } const char* Code::StubType2String(StubType type) { switch (type) { case NORMAL: return "NORMAL"; case FAST: return "FAST"; } UNREACHABLE(); // keep the compiler happy return NULL; } void Code::PrintExtraICState(OStream& os, // NOLINT Kind kind, ExtraICState extra) { os << "extra_ic_state = "; if ((kind == STORE_IC || kind == KEYED_STORE_IC) && (extra == STRICT)) { os << "STRICT\n"; } else { os << extra << "\n"; } } void Code::Disassemble(const char* name, OStream& os) { // NOLINT os << "kind = " << Kind2String(kind()) << "\n"; if (IsCodeStubOrIC()) { const char* n = CodeStub::MajorName(CodeStub::GetMajorKey(this), true); os << "major_key = " << (n == NULL ? "null" : n) << "\n"; } if (is_inline_cache_stub()) { os << "ic_state = " << ICState2String(ic_state()) << "\n"; PrintExtraICState(os, kind(), extra_ic_state()); if (ic_state() == MONOMORPHIC) { os << "type = " << StubType2String(type()) << "\n"; } if (is_compare_ic_stub()) { DCHECK(CodeStub::GetMajorKey(this) == CodeStub::CompareIC); CompareICStub stub(stub_key(), GetIsolate()); os << "compare_state = " << CompareICState::GetStateName(stub.left()) << "*" << CompareICState::GetStateName(stub.right()) << " -> " << CompareICState::GetStateName(stub.state()) << "\n"; os << "compare_operation = " << Token::Name(stub.op()) << "\n"; } } if ((name != NULL) && (name[0] != '\0')) { os << "name = " << name << "\n"; } if (kind() == OPTIMIZED_FUNCTION) { os << "stack_slots = " << stack_slots() << "\n"; } os << "Instructions (size = " << instruction_size() << ")\n"; // TODO(svenpanne) The Disassembler should use streams, too! { CodeTracer::Scope trace_scope(GetIsolate()->GetCodeTracer()); Disassembler::Decode(trace_scope.file(), this); } os << "\n"; if (kind() == FUNCTION) { DeoptimizationOutputData* data = DeoptimizationOutputData::cast(this->deoptimization_data()); data->DeoptimizationOutputDataPrint(os); } else if (kind() == OPTIMIZED_FUNCTION) { DeoptimizationInputData* data = DeoptimizationInputData::cast(this->deoptimization_data()); data->DeoptimizationInputDataPrint(os); } os << "\n"; if (is_crankshafted()) { SafepointTable table(this); os << "Safepoints (size = " << table.size() << ")\n"; for (unsigned i = 0; i < table.length(); i++) { unsigned pc_offset = table.GetPcOffset(i); os << (instruction_start() + pc_offset) << " "; // TODO(svenpanne) Add some basic formatting to our streams. Vector<char> buf1 = Vector<char>::New(30); SNPrintF(buf1, "%4d", pc_offset); os << buf1.start() << " "; table.PrintEntry(i, os); os << " (sp -> fp) "; SafepointEntry entry = table.GetEntry(i); if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) { Vector<char> buf2 = Vector<char>::New(30); SNPrintF(buf2, "%6d", entry.deoptimization_index()); os << buf2.start(); } else { os << "<none>"; } if (entry.argument_count() > 0) { os << " argc: " << entry.argument_count(); } os << "\n"; } os << "\n"; } else if (kind() == FUNCTION) { unsigned offset = back_edge_table_offset(); // If there is no back edge table, the "table start" will be at or after // (due to alignment) the end of the instruction stream. if (static_cast<int>(offset) < instruction_size()) { DisallowHeapAllocation no_gc; BackEdgeTable back_edges(this, &no_gc); os << "Back edges (size = " << back_edges.length() << ")\n"; os << "ast_id pc_offset loop_depth\n"; for (uint32_t i = 0; i < back_edges.length(); i++) { Vector<char> buf = Vector<char>::New(100); SNPrintF(buf, "%6d %9u %10u\n", back_edges.ast_id(i).ToInt(), back_edges.pc_offset(i), back_edges.loop_depth(i)); os << buf.start(); } os << "\n"; } #ifdef OBJECT_PRINT if (!type_feedback_info()->IsUndefined()) { OFStream os(stdout); TypeFeedbackInfo::cast(type_feedback_info())->TypeFeedbackInfoPrint(os); os << "\n"; } #endif } os << "RelocInfo (size = " << relocation_size() << ")\n"; for (RelocIterator it(this); !it.done(); it.next()) { it.rinfo()->Print(GetIsolate(), os); } os << "\n"; } #endif // ENABLE_DISASSEMBLER Handle<FixedArray> JSObject::SetFastElementsCapacityAndLength( Handle<JSObject> object, int capacity, int length, SetFastElementsCapacitySmiMode smi_mode) { // We should never end in here with a pixel or external array. DCHECK(!object->HasExternalArrayElements()); // Allocate a new fast elements backing store. Handle<FixedArray> new_elements = object->GetIsolate()->factory()->NewUninitializedFixedArray(capacity); ElementsKind elements_kind = object->GetElementsKind(); ElementsKind new_elements_kind; // The resized array has FAST_*_SMI_ELEMENTS if the capacity mode forces it, // or if it's allowed and the old elements array contained only SMIs. bool has_fast_smi_elements = (smi_mode == kForceSmiElements) || ((smi_mode == kAllowSmiElements) && object->HasFastSmiElements()); if (has_fast_smi_elements) { if (IsHoleyElementsKind(elements_kind)) { new_elements_kind = FAST_HOLEY_SMI_ELEMENTS; } else { new_elements_kind = FAST_SMI_ELEMENTS; } } else { if (IsHoleyElementsKind(elements_kind)) { new_elements_kind = FAST_HOLEY_ELEMENTS; } else { new_elements_kind = FAST_ELEMENTS; } } Handle<FixedArrayBase> old_elements(object->elements()); ElementsAccessor* accessor = ElementsAccessor::ForKind(new_elements_kind); accessor->CopyElements(object, new_elements, elements_kind); if (elements_kind != SLOPPY_ARGUMENTS_ELEMENTS) { Handle<Map> new_map = (new_elements_kind != elements_kind) ? GetElementsTransitionMap(object, new_elements_kind) : handle(object->map()); JSObject::ValidateElements(object); JSObject::SetMapAndElements(object, new_map, new_elements); // Transition through the allocation site as well if present. JSObject::UpdateAllocationSite(object, new_elements_kind); } else { Handle<FixedArray> parameter_map = Handle<FixedArray>::cast(old_elements); parameter_map->set(1, *new_elements); } if (FLAG_trace_elements_transitions) { PrintElementsTransition(stdout, object, elements_kind, old_elements, object->GetElementsKind(), new_elements); } if (object->IsJSArray()) { Handle<JSArray>::cast(object)->set_length(Smi::FromInt(length)); } return new_elements; } void JSObject::SetFastDoubleElementsCapacityAndLength(Handle<JSObject> object, int capacity, int length) { // We should never end in here with a pixel or external array. DCHECK(!object->HasExternalArrayElements()); Handle<FixedArrayBase> elems = object->GetIsolate()->factory()->NewFixedDoubleArray(capacity); ElementsKind elements_kind = object->GetElementsKind(); CHECK(elements_kind != SLOPPY_ARGUMENTS_ELEMENTS); ElementsKind new_elements_kind = elements_kind; if (IsHoleyElementsKind(elements_kind)) { new_elements_kind = FAST_HOLEY_DOUBLE_ELEMENTS; } else { new_elements_kind = FAST_DOUBLE_ELEMENTS; } Handle<Map> new_map = GetElementsTransitionMap(object, new_elements_kind); Handle<FixedArrayBase> old_elements(object->elements()); ElementsAccessor* accessor = ElementsAccessor::ForKind(FAST_DOUBLE_ELEMENTS); accessor->CopyElements(object, elems, elements_kind); JSObject::ValidateElements(object); JSObject::SetMapAndElements(object, new_map, elems); if (FLAG_trace_elements_transitions) { PrintElementsTransition(stdout, object, elements_kind, old_elements, object->GetElementsKind(), elems); } if (object->IsJSArray()) { Handle<JSArray>::cast(object)->set_length(Smi::FromInt(length)); } } // static void JSArray::Initialize(Handle<JSArray> array, int capacity, int length) { DCHECK(capacity >= 0); array->GetIsolate()->factory()->NewJSArrayStorage( array, length, capacity, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); } void JSArray::Expand(Handle<JSArray> array, int required_size) { ElementsAccessor* accessor = array->GetElementsAccessor(); accessor->SetCapacityAndLength(array, required_size, required_size); } // Returns false if the passed-in index is marked non-configurable, // which will cause the ES5 truncation operation to halt, and thus // no further old values need be collected. static bool GetOldValue(Isolate* isolate, Handle<JSObject> object, uint32_t index, List<Handle<Object> >* old_values, List<uint32_t>* indices) { Maybe<PropertyAttributes> maybe = JSReceiver::GetOwnElementAttribute(object, index); DCHECK(maybe.has_value); DCHECK(maybe.value != ABSENT); if (maybe.value == DONT_DELETE) return false; Handle<Object> value; if (!JSObject::GetOwnElementAccessorPair(object, index).is_null()) { value = Handle<Object>::cast(isolate->factory()->the_hole_value()); } else { value = Object::GetElement(isolate, object, index).ToHandleChecked(); } old_values->Add(value); indices->Add(index); return true; } static void EnqueueSpliceRecord(Handle<JSArray> object, uint32_t index, Handle<JSArray> deleted, uint32_t add_count) { Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle<Object> index_object = isolate->factory()->NewNumberFromUint(index); Handle<Object> add_count_object = isolate->factory()->NewNumberFromUint(add_count); Handle<Object> args[] = { object, index_object, deleted, add_count_object }; Execution::Call(isolate, Handle<JSFunction>(isolate->observers_enqueue_splice()), isolate->factory()->undefined_value(), arraysize(args), args).Assert(); } static void BeginPerformSplice(Handle<JSArray> object) { Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle<Object> args[] = { object }; Execution::Call(isolate, Handle<JSFunction>(isolate->observers_begin_perform_splice()), isolate->factory()->undefined_value(), arraysize(args), args).Assert(); } static void EndPerformSplice(Handle<JSArray> object) { Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle<Object> args[] = { object }; Execution::Call(isolate, Handle<JSFunction>(isolate->observers_end_perform_splice()), isolate->factory()->undefined_value(), arraysize(args), args).Assert(); } MaybeHandle<Object> JSArray::SetElementsLength( Handle<JSArray> array, Handle<Object> new_length_handle) { if (array->HasFastElements()) { // If the new array won't fit in a some non-trivial fraction of the max old // space size, then force it to go dictionary mode. int max_fast_array_size = static_cast<int>( (array->GetHeap()->MaxOldGenerationSize() / kDoubleSize) / 4); if (new_length_handle->IsNumber() && NumberToInt32(*new_length_handle) >= max_fast_array_size) { NormalizeElements(array); } } // We should never end in here with a pixel or external array. DCHECK(array->AllowsSetElementsLength()); if (!array->map()->is_observed()) { return array->GetElementsAccessor()->SetLength(array, new_length_handle); } Isolate* isolate = array->GetIsolate(); List<uint32_t> indices; List<Handle<Object> > old_values; Handle<Object> old_length_handle(array->length(), isolate); uint32_t old_length = 0; CHECK(old_length_handle->ToArrayIndex(&old_length)); uint32_t new_length = 0; CHECK(new_length_handle->ToArrayIndex(&new_length)); static const PropertyAttributes kNoAttrFilter = NONE; int num_elements = array->NumberOfOwnElements(kNoAttrFilter); if (num_elements > 0) { if (old_length == static_cast<uint32_t>(num_elements)) { // Simple case for arrays without holes. for (uint32_t i = old_length - 1; i + 1 > new_length; --i) { if (!GetOldValue(isolate, array, i, &old_values, &indices)) break; } } else { // For sparse arrays, only iterate over existing elements. // TODO(rafaelw): For fast, sparse arrays, we can avoid iterating over // the to-be-removed indices twice. Handle<FixedArray> keys = isolate->factory()->NewFixedArray(num_elements); array->GetOwnElementKeys(*keys, kNoAttrFilter); while (num_elements-- > 0) { uint32_t index = NumberToUint32(keys->get(num_elements)); if (index < new_length) break; if (!GetOldValue(isolate, array, index, &old_values, &indices)) break; } } } Handle<Object> hresult; ASSIGN_RETURN_ON_EXCEPTION( isolate, hresult, array->GetElementsAccessor()->SetLength(array, new_length_handle), Object); CHECK(array->length()->ToArrayIndex(&new_length)); if (old_length == new_length) return hresult; BeginPerformSplice(array); for (int i = 0; i < indices.length(); ++i) { // For deletions where the property was an accessor, old_values[i] // will be the hole, which instructs EnqueueChangeRecord to elide // the "oldValue" property. JSObject::EnqueueChangeRecord( array, "delete", isolate->factory()->Uint32ToString(indices[i]), old_values[i]); } JSObject::EnqueueChangeRecord( array, "update", isolate->factory()->length_string(), old_length_handle); EndPerformSplice(array); uint32_t index = Min(old_length, new_length); uint32_t add_count = new_length > old_length ? new_length - old_length : 0; uint32_t delete_count = new_length < old_length ? old_length - new_length : 0; Handle<JSArray> deleted = isolate->factory()->NewJSArray(0); if (delete_count > 0) { for (int i = indices.length() - 1; i >= 0; i--) { // Skip deletions where the property was an accessor, leaving holes // in the array of old values. if (old_values[i]->IsTheHole()) continue; JSObject::SetElement( deleted, indices[i] - index, old_values[i], NONE, SLOPPY).Assert(); } SetProperty(deleted, isolate->factory()->length_string(), isolate->factory()->NewNumberFromUint(delete_count), STRICT).Assert(); } EnqueueSpliceRecord(array, index, deleted, add_count); return hresult; } Handle<Map> Map::GetPrototypeTransition(Handle<Map> map, Handle<Object> prototype) { FixedArray* cache = map->GetPrototypeTransitions(); int number_of_transitions = map->NumberOfProtoTransitions(); const int proto_offset = kProtoTransitionHeaderSize + kProtoTransitionPrototypeOffset; const int map_offset = kProtoTransitionHeaderSize + kProtoTransitionMapOffset; const int step = kProtoTransitionElementsPerEntry; for (int i = 0; i < number_of_transitions; i++) { if (cache->get(proto_offset + i * step) == *prototype) { Object* result = cache->get(map_offset + i * step); return Handle<Map>(Map::cast(result)); } } return Handle<Map>(); } Handle<Map> Map::PutPrototypeTransition(Handle<Map> map, Handle<Object> prototype, Handle<Map> target_map) { DCHECK(target_map->IsMap()); DCHECK(HeapObject::cast(*prototype)->map()->IsMap()); // Don't cache prototype transition if this map is either shared, or a map of // a prototype. if (map->is_prototype_map()) return map; if (map->is_dictionary_map() || !FLAG_cache_prototype_transitions) return map; const int step = kProtoTransitionElementsPerEntry; const int header = kProtoTransitionHeaderSize; Handle<FixedArray> cache(map->GetPrototypeTransitions()); int capacity = (cache->length() - header) / step; int transitions = map->NumberOfProtoTransitions() + 1; if (transitions > capacity) { if (capacity > kMaxCachedPrototypeTransitions) return map; // Grow array by factor 2 over and above what we need. cache = FixedArray::CopySize(cache, transitions * 2 * step + header); SetPrototypeTransitions(map, cache); } // Reload number of transitions as GC might shrink them. int last = map->NumberOfProtoTransitions(); int entry = header + last * step; cache->set(entry + kProtoTransitionPrototypeOffset, *prototype); cache->set(entry + kProtoTransitionMapOffset, *target_map); map->SetNumberOfProtoTransitions(last + 1); return map; } void Map::ZapTransitions() { TransitionArray* transition_array = transitions(); // TODO(mstarzinger): Temporarily use a slower version instead of the faster // MemsetPointer to investigate a crasher. Switch back to MemsetPointer. Object** data = transition_array->data_start(); Object* the_hole = GetHeap()->the_hole_value(); int length = transition_array->length(); for (int i = 0; i < length; i++) { data[i] = the_hole; } } void Map::ZapPrototypeTransitions() { FixedArray* proto_transitions = GetPrototypeTransitions(); MemsetPointer(proto_transitions->data_start(), GetHeap()->the_hole_value(), proto_transitions->length()); } // static void Map::AddDependentCompilationInfo(Handle<Map> map, DependentCode::DependencyGroup group, CompilationInfo* info) { Handle<DependentCode> codes = DependentCode::Insert(handle(map->dependent_code(), info->isolate()), group, info->object_wrapper()); if (*codes != map->dependent_code()) map->set_dependent_code(*codes); info->dependencies(group)->Add(map, info->zone()); } // static void Map::AddDependentCode(Handle<Map> map, DependentCode::DependencyGroup group, Handle<Code> code) { Handle<DependentCode> codes = DependentCode::Insert( Handle<DependentCode>(map->dependent_code()), group, code); if (*codes != map->dependent_code()) map->set_dependent_code(*codes); } // static void Map::AddDependentIC(Handle<Map> map, Handle<Code> stub) { DCHECK(stub->next_code_link()->IsUndefined()); int n = map->dependent_code()->number_of_entries(DependentCode::kWeakICGroup); if (n == 0) { // Slow path: insert the head of the list with possible heap allocation. Map::AddDependentCode(map, DependentCode::kWeakICGroup, stub); } else { // Fast path: link the stub to the existing head of the list without any // heap allocation. DCHECK(n == 1); map->dependent_code()->AddToDependentICList(stub); } } DependentCode::GroupStartIndexes::GroupStartIndexes(DependentCode* entries) { Recompute(entries); } void DependentCode::GroupStartIndexes::Recompute(DependentCode* entries) { start_indexes_[0] = 0; for (int g = 1; g <= kGroupCount; g++) { int count = entries->number_of_entries(static_cast<DependencyGroup>(g - 1)); start_indexes_[g] = start_indexes_[g - 1] + count; } } DependentCode* DependentCode::ForObject(Handle<HeapObject> object, DependencyGroup group) { AllowDeferredHandleDereference dependencies_are_safe; if (group == DependentCode::kPropertyCellChangedGroup) { return Handle<PropertyCell>::cast(object)->dependent_code(); } else if (group == DependentCode::kAllocationSiteTenuringChangedGroup || group == DependentCode::kAllocationSiteTransitionChangedGroup) { return Handle<AllocationSite>::cast(object)->dependent_code(); } return Handle<Map>::cast(object)->dependent_code(); } Handle<DependentCode> DependentCode::Insert(Handle<DependentCode> entries, DependencyGroup group, Handle<Object> object) { GroupStartIndexes starts(*entries); int start = starts.at(group); int end = starts.at(group + 1); int number_of_entries = starts.number_of_entries(); // Check for existing entry to avoid duplicates. for (int i = start; i < end; i++) { if (entries->object_at(i) == *object) return entries; } if (entries->length() < kCodesStartIndex + number_of_entries + 1) { int capacity = kCodesStartIndex + number_of_entries + 1; if (capacity > 5) capacity = capacity * 5 / 4; Handle<DependentCode> new_entries = Handle<DependentCode>::cast( FixedArray::CopySize(entries, capacity, TENURED)); // The number of codes can change after GC. starts.Recompute(*entries); start = starts.at(group); end = starts.at(group + 1); number_of_entries = starts.number_of_entries(); for (int i = 0; i < number_of_entries; i++) { entries->clear_at(i); } // If the old fixed array was empty, we need to reset counters of the // new array. if (number_of_entries == 0) { for (int g = 0; g < kGroupCount; g++) { new_entries->set_number_of_entries(static_cast<DependencyGroup>(g), 0); } } entries = new_entries; } entries->ExtendGroup(group); entries->set_object_at(end, *object); entries->set_number_of_entries(group, end + 1 - start); return entries; } void DependentCode::UpdateToFinishedCode(DependencyGroup group, CompilationInfo* info, Code* code) { DisallowHeapAllocation no_gc; AllowDeferredHandleDereference get_object_wrapper; Foreign* info_wrapper = *info->object_wrapper(); GroupStartIndexes starts(this); int start = starts.at(group); int end = starts.at(group + 1); for (int i = start; i < end; i++) { if (object_at(i) == info_wrapper) { set_object_at(i, code); break; } } #ifdef DEBUG for (int i = start; i < end; i++) { DCHECK(is_code_at(i) || compilation_info_at(i) != info); } #endif } void DependentCode::RemoveCompilationInfo(DependentCode::DependencyGroup group, CompilationInfo* info) { DisallowHeapAllocation no_allocation; AllowDeferredHandleDereference get_object_wrapper; Foreign* info_wrapper = *info->object_wrapper(); GroupStartIndexes starts(this); int start = starts.at(group); int end = starts.at(group + 1); // Find compilation info wrapper. int info_pos = -1; for (int i = start; i < end; i++) { if (object_at(i) == info_wrapper) { info_pos = i; break; } } if (info_pos == -1) return; // Not found. int gap = info_pos; // Use the last of each group to fill the gap in the previous group. for (int i = group; i < kGroupCount; i++) { int last_of_group = starts.at(i + 1) - 1; DCHECK(last_of_group >= gap); if (last_of_group == gap) continue; copy(last_of_group, gap); gap = last_of_group; } DCHECK(gap == starts.number_of_entries() - 1); clear_at(gap); // Clear last gap. set_number_of_entries(group, end - start - 1); #ifdef DEBUG for (int i = start; i < end - 1; i++) { DCHECK(is_code_at(i) || compilation_info_at(i) != info); } #endif } static bool CodeListContains(Object* head, Code* code) { while (!head->IsUndefined()) { if (head == code) return true; head = Code::cast(head)->next_code_link(); } return false; } bool DependentCode::Contains(DependencyGroup group, Code* code) { GroupStartIndexes starts(this); int start = starts.at(group); int end = starts.at(group + 1); if (group == kWeakICGroup) { return CodeListContains(object_at(start), code); } for (int i = start; i < end; i++) { if (object_at(i) == code) return true; } return false; } bool DependentCode::MarkCodeForDeoptimization( Isolate* isolate, DependentCode::DependencyGroup group) { DisallowHeapAllocation no_allocation_scope; DependentCode::GroupStartIndexes starts(this); int start = starts.at(group); int end = starts.at(group + 1); int code_entries = starts.number_of_entries(); if (start == end) return false; // Mark all the code that needs to be deoptimized. bool marked = false; for (int i = start; i < end; i++) { if (is_code_at(i)) { Code* code = code_at(i); if (!code->marked_for_deoptimization()) { SetMarkedForDeoptimization(code, group); marked = true; } } else { CompilationInfo* info = compilation_info_at(i); info->AbortDueToDependencyChange(); } } // Compact the array by moving all subsequent groups to fill in the new holes. for (int src = end, dst = start; src < code_entries; src++, dst++) { copy(src, dst); } // Now the holes are at the end of the array, zap them for heap-verifier. int removed = end - start; for (int i = code_entries - removed; i < code_entries; i++) { clear_at(i); } set_number_of_entries(group, 0); return marked; } void DependentCode::DeoptimizeDependentCodeGroup( Isolate* isolate, DependentCode::DependencyGroup group) { DCHECK(AllowCodeDependencyChange::IsAllowed()); DisallowHeapAllocation no_allocation_scope; bool marked = MarkCodeForDeoptimization(isolate, group); if (marked) Deoptimizer::DeoptimizeMarkedCode(isolate); } void DependentCode::AddToDependentICList(Handle<Code> stub) { DisallowHeapAllocation no_heap_allocation; GroupStartIndexes starts(this); int i = starts.at(kWeakICGroup); Object* head = object_at(i); // Try to insert the stub after the head of the list to minimize number of // writes to the DependentCode array, since a write to the array can make it // strong if it was alread marked by incremental marker. if (head->IsCode()) { stub->set_next_code_link(Code::cast(head)->next_code_link()); Code::cast(head)->set_next_code_link(*stub); } else { stub->set_next_code_link(head); set_object_at(i, *stub); } } void DependentCode::SetMarkedForDeoptimization(Code* code, DependencyGroup group) { code->set_marked_for_deoptimization(true); if (FLAG_trace_deopt && (code->deoptimization_data() != code->GetHeap()->empty_fixed_array())) { DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer()); PrintF(scope.file(), "[marking dependent code 0x%08" V8PRIxPTR " (opt #%d) for deoptimization, reason: %s]\n", reinterpret_cast<intptr_t>(code), deopt_data->OptimizationId()->value(), DependencyGroupName(group)); } } const char* DependentCode::DependencyGroupName(DependencyGroup group) { switch (group) { case kWeakICGroup: return "weak-ic"; case kWeakCodeGroup: return "weak-code"; case kTransitionGroup: return "transition"; case kPrototypeCheckGroup: return "prototype-check"; case kElementsCantBeAddedGroup: return "elements-cant-be-added"; case kPropertyCellChangedGroup: return "property-cell-changed"; case kFieldTypeGroup: return "field-type"; case kInitialMapChangedGroup: return "initial-map-changed"; case kAllocationSiteTenuringChangedGroup: return "allocation-site-tenuring-changed"; case kAllocationSiteTransitionChangedGroup: return "allocation-site-transition-changed"; } UNREACHABLE(); return "?"; } Handle<Map> Map::TransitionToPrototype(Handle<Map> map, Handle<Object> prototype) { Handle<Map> new_map = GetPrototypeTransition(map, prototype); if (new_map.is_null()) { new_map = Copy(map); PutPrototypeTransition(map, prototype, new_map); new_map->set_prototype(*prototype); } return new_map; } MaybeHandle<Object> JSObject::SetPrototype(Handle<JSObject> object, Handle<Object> value, bool from_javascript) { #ifdef DEBUG int size = object->Size(); #endif Isolate* isolate = object->GetIsolate(); Heap* heap = isolate->heap(); // Silently ignore the change if value is not a JSObject or null. // SpiderMonkey behaves this way. if (!value->IsJSReceiver() && !value->IsNull()) return value; // From 8.6.2 Object Internal Methods // ... // In addition, if [[Extensible]] is false the value of the [[Class]] and // [[Prototype]] internal properties of the object may not be modified. // ... // Implementation specific extensions that modify [[Class]], [[Prototype]] // or [[Extensible]] must not violate the invariants defined in the preceding // paragraph. if (!object->map()->is_extensible()) { Handle<Object> args[] = { object }; THROW_NEW_ERROR(isolate, NewTypeError("non_extensible_proto", HandleVector(args, arraysize(args))), Object); } // Before we can set the prototype we need to be sure // prototype cycles are prevented. // It is sufficient to validate that the receiver is not in the new prototype // chain. for (PrototypeIterator iter(isolate, *value, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(); iter.Advance()) { if (JSReceiver::cast(iter.GetCurrent()) == *object) { // Cycle detected. THROW_NEW_ERROR(isolate, NewError("cyclic_proto", HandleVector<Object>(NULL, 0)), Object); } } bool dictionary_elements_in_chain = object->map()->DictionaryElementsInPrototypeChainOnly(); Handle<JSObject> real_receiver = object; if (from_javascript) { // Find the first object in the chain whose prototype object is not // hidden and set the new prototype on that object. PrototypeIterator iter(isolate, real_receiver); while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) { real_receiver = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); iter.Advance(); } } // Set the new prototype of the object. Handle<Map> map(real_receiver->map()); // Nothing to do if prototype is already set. if (map->prototype() == *value) return value; if (value->IsJSObject()) { PrototypeOptimizationMode mode = from_javascript ? REGULAR_PROTOTYPE : FAST_PROTOTYPE; JSObject::OptimizeAsPrototype(Handle<JSObject>::cast(value), mode); } Handle<Map> new_map = Map::TransitionToPrototype(map, value); DCHECK(new_map->prototype() == *value); JSObject::MigrateToMap(real_receiver, new_map); if (!dictionary_elements_in_chain && new_map->DictionaryElementsInPrototypeChainOnly()) { // If the prototype chain didn't previously have element callbacks, then // KeyedStoreICs need to be cleared to ensure any that involve this // map go generic. object->GetHeap()->ClearAllICsByKind(Code::KEYED_STORE_IC); } heap->ClearInstanceofCache(); DCHECK(size == object->Size()); return value; } void JSObject::EnsureCanContainElements(Handle<JSObject> object, Arguments* args, uint32_t first_arg, uint32_t arg_count, EnsureElementsMode mode) { // Elements in |Arguments| are ordered backwards (because they're on the // stack), but the method that's called here iterates over them in forward // direction. return EnsureCanContainElements( object, args->arguments() - first_arg - (arg_count - 1), arg_count, mode); } MaybeHandle<AccessorPair> JSObject::GetOwnElementAccessorPair( Handle<JSObject> object, uint32_t index) { if (object->IsJSGlobalProxy()) { PrototypeIterator iter(object->GetIsolate(), object); if (iter.IsAtEnd()) return MaybeHandle<AccessorPair>(); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return GetOwnElementAccessorPair( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), index); } // Check for lookup interceptor. if (object->HasIndexedInterceptor()) return MaybeHandle<AccessorPair>(); return object->GetElementsAccessor()->GetAccessorPair(object, object, index); } MaybeHandle<Object> JSObject::SetElementWithInterceptor( Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool check_prototype, SetPropertyMode set_mode) { Isolate* isolate = object->GetIsolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc(isolate); Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor()); if (!interceptor->setter()->IsUndefined()) { v8::IndexedPropertySetterCallback setter = v8::ToCData<v8::IndexedPropertySetterCallback>(interceptor->setter()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-set", *object, index)); PropertyCallbackArguments args(isolate, interceptor->data(), *object, *object); v8::Handle<v8::Value> result = args.Call(setter, index, v8::Utils::ToLocal(value)); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (!result.IsEmpty()) return value; } return SetElementWithoutInterceptor(object, index, value, attributes, strict_mode, check_prototype, set_mode); } MaybeHandle<Object> JSObject::GetElementWithCallback( Handle<JSObject> object, Handle<Object> receiver, Handle<Object> structure, uint32_t index, Handle<Object> holder) { Isolate* isolate = object->GetIsolate(); DCHECK(!structure->IsForeign()); // api style callbacks. if (structure->IsExecutableAccessorInfo()) { Handle<ExecutableAccessorInfo> data = Handle<ExecutableAccessorInfo>::cast(structure); Object* fun_obj = data->getter(); v8::AccessorNameGetterCallback call_fun = v8::ToCData<v8::AccessorNameGetterCallback>(fun_obj); if (call_fun == NULL) return isolate->factory()->undefined_value(); Handle<JSObject> holder_handle = Handle<JSObject>::cast(holder); Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<String> key = isolate->factory()->NumberToString(number); LOG(isolate, ApiNamedPropertyAccess("load", *holder_handle, *key)); PropertyCallbackArguments args(isolate, data->data(), *receiver, *holder_handle); v8::Handle<v8::Value> result = args.Call(call_fun, v8::Utils::ToLocal(key)); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.IsEmpty()) return isolate->factory()->undefined_value(); Handle<Object> result_internal = v8::Utils::OpenHandle(*result); result_internal->VerifyApiCallResultType(); // Rebox handle before return. return handle(*result_internal, isolate); } // __defineGetter__ callback if (structure->IsAccessorPair()) { Handle<Object> getter(Handle<AccessorPair>::cast(structure)->getter(), isolate); if (getter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return GetPropertyWithDefinedGetter( receiver, Handle<JSReceiver>::cast(getter)); } // Getter is not a function. return isolate->factory()->undefined_value(); } if (structure->IsDeclaredAccessorInfo()) { return GetDeclaredAccessorProperty( receiver, Handle<DeclaredAccessorInfo>::cast(structure), isolate); } UNREACHABLE(); return MaybeHandle<Object>(); } MaybeHandle<Object> JSObject::SetElementWithCallback(Handle<JSObject> object, Handle<Object> structure, uint32_t index, Handle<Object> value, Handle<JSObject> holder, StrictMode strict_mode) { Isolate* isolate = object->GetIsolate(); // We should never get here to initialize a const with the hole // value since a const declaration would conflict with the setter. DCHECK(!value->IsTheHole()); DCHECK(!structure->IsForeign()); if (structure->IsExecutableAccessorInfo()) { // api style callbacks Handle<ExecutableAccessorInfo> data = Handle<ExecutableAccessorInfo>::cast(structure); Object* call_obj = data->setter(); v8::AccessorNameSetterCallback call_fun = v8::ToCData<v8::AccessorNameSetterCallback>(call_obj); if (call_fun == NULL) return value; Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<String> key(isolate->factory()->NumberToString(number)); LOG(isolate, ApiNamedPropertyAccess("store", *object, *key)); PropertyCallbackArguments args(isolate, data->data(), *object, *holder); args.Call(call_fun, v8::Utils::ToLocal(key), v8::Utils::ToLocal(value)); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return value; } if (structure->IsAccessorPair()) { Handle<Object> setter(AccessorPair::cast(*structure)->setter(), isolate); if (setter->IsSpecFunction()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return SetPropertyWithDefinedSetter( object, Handle<JSReceiver>::cast(setter), value); } else { if (strict_mode == SLOPPY) return value; Handle<Object> key(isolate->factory()->NewNumberFromUint(index)); Handle<Object> args[2] = { key, holder }; THROW_NEW_ERROR( isolate, NewTypeError("no_setter_in_callback", HandleVector(args, 2)), Object); } } // TODO(dcarney): Handle correctly. if (structure->IsDeclaredAccessorInfo()) return value; UNREACHABLE(); return MaybeHandle<Object>(); } bool JSObject::HasFastArgumentsElements() { Heap* heap = GetHeap(); if (!elements()->IsFixedArray()) return false; FixedArray* elements = FixedArray::cast(this->elements()); if (elements->map() != heap->sloppy_arguments_elements_map()) { return false; } FixedArray* arguments = FixedArray::cast(elements->get(1)); return !arguments->IsDictionary(); } bool JSObject::HasDictionaryArgumentsElements() { Heap* heap = GetHeap(); if (!elements()->IsFixedArray()) return false; FixedArray* elements = FixedArray::cast(this->elements()); if (elements->map() != heap->sloppy_arguments_elements_map()) { return false; } FixedArray* arguments = FixedArray::cast(elements->get(1)); return arguments->IsDictionary(); } // Adding n elements in fast case is O(n*n). // Note: revisit design to have dual undefined values to capture absent // elements. MaybeHandle<Object> JSObject::SetFastElement(Handle<JSObject> object, uint32_t index, Handle<Object> value, StrictMode strict_mode, bool check_prototype) { DCHECK(object->HasFastSmiOrObjectElements() || object->HasFastArgumentsElements()); Isolate* isolate = object->GetIsolate(); // Array optimizations rely on the prototype lookups of Array objects always // returning undefined. If there is a store to the initial prototype object, // make sure all of these optimizations are invalidated. if (isolate->is_initial_object_prototype(*object) || isolate->is_initial_array_prototype(*object)) { object->map()->dependent_code()->DeoptimizeDependentCodeGroup(isolate, DependentCode::kElementsCantBeAddedGroup); } Handle<FixedArray> backing_store(FixedArray::cast(object->elements())); if (backing_store->map() == isolate->heap()->sloppy_arguments_elements_map()) { backing_store = handle(FixedArray::cast(backing_store->get(1))); } else { backing_store = EnsureWritableFastElements(object); } uint32_t capacity = static_cast<uint32_t>(backing_store->length()); if (check_prototype && (index >= capacity || backing_store->get(index)->IsTheHole())) { bool found; MaybeHandle<Object> result = SetElementWithCallbackSetterInPrototypes( object, index, value, &found, strict_mode); if (found) return result; } uint32_t new_capacity = capacity; // Check if the length property of this object needs to be updated. uint32_t array_length = 0; bool must_update_array_length = false; bool introduces_holes = true; if (object->IsJSArray()) { CHECK(Handle<JSArray>::cast(object)->length()->ToArrayIndex(&array_length)); introduces_holes = index > array_length; if (index >= array_length) { must_update_array_length = true; array_length = index + 1; } } else { introduces_holes = index >= capacity; } // If the array is growing, and it's not growth by a single element at the // end, make sure that the ElementsKind is HOLEY. ElementsKind elements_kind = object->GetElementsKind(); if (introduces_holes && IsFastElementsKind(elements_kind) && !IsFastHoleyElementsKind(elements_kind)) { ElementsKind transitioned_kind = GetHoleyElementsKind(elements_kind); TransitionElementsKind(object, transitioned_kind); } // Check if the capacity of the backing store needs to be increased, or if // a transition to slow elements is necessary. if (index >= capacity) { bool convert_to_slow = true; if ((index - capacity) < kMaxGap) { new_capacity = NewElementsCapacity(index + 1); DCHECK(new_capacity > index); if (!object->ShouldConvertToSlowElements(new_capacity)) { convert_to_slow = false; } } if (convert_to_slow) { NormalizeElements(object); return SetDictionaryElement(object, index, value, NONE, strict_mode, check_prototype); } } // Convert to fast double elements if appropriate. if (object->HasFastSmiElements() && !value->IsSmi() && value->IsNumber()) { // Consider fixing the boilerplate as well if we have one. ElementsKind to_kind = IsHoleyElementsKind(elements_kind) ? FAST_HOLEY_DOUBLE_ELEMENTS : FAST_DOUBLE_ELEMENTS; UpdateAllocationSite(object, to_kind); SetFastDoubleElementsCapacityAndLength(object, new_capacity, array_length); FixedDoubleArray::cast(object->elements())->set(index, value->Number()); JSObject::ValidateElements(object); return value; } // Change elements kind from Smi-only to generic FAST if necessary. if (object->HasFastSmiElements() && !value->IsSmi()) { ElementsKind kind = object->HasFastHoleyElements() ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; UpdateAllocationSite(object, kind); Handle<Map> new_map = GetElementsTransitionMap(object, kind); JSObject::MigrateToMap(object, new_map); DCHECK(IsFastObjectElementsKind(object->GetElementsKind())); } // Increase backing store capacity if that's been decided previously. if (new_capacity != capacity) { SetFastElementsCapacitySmiMode smi_mode = value->IsSmi() && object->HasFastSmiElements() ? kAllowSmiElements : kDontAllowSmiElements; Handle<FixedArray> new_elements = SetFastElementsCapacityAndLength(object, new_capacity, array_length, smi_mode); new_elements->set(index, *value); JSObject::ValidateElements(object); return value; } // Finally, set the new element and length. DCHECK(object->elements()->IsFixedArray()); backing_store->set(index, *value); if (must_update_array_length) { Handle<JSArray>::cast(object)->set_length(Smi::FromInt(array_length)); } return value; } MaybeHandle<Object> JSObject::SetDictionaryElement( Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool check_prototype, SetPropertyMode set_mode) { DCHECK(object->HasDictionaryElements() || object->HasDictionaryArgumentsElements()); Isolate* isolate = object->GetIsolate(); // Insert element in the dictionary. Handle<FixedArray> elements(FixedArray::cast(object->elements())); bool is_arguments = (elements->map() == isolate->heap()->sloppy_arguments_elements_map()); Handle<SeededNumberDictionary> dictionary(is_arguments ? SeededNumberDictionary::cast(elements->get(1)) : SeededNumberDictionary::cast(*elements)); int entry = dictionary->FindEntry(index); if (entry != SeededNumberDictionary::kNotFound) { Handle<Object> element(dictionary->ValueAt(entry), isolate); PropertyDetails details = dictionary->DetailsAt(entry); if (details.type() == CALLBACKS && set_mode == SET_PROPERTY) { return SetElementWithCallback(object, element, index, value, object, strict_mode); } else { dictionary->UpdateMaxNumberKey(index); // If a value has not been initialized we allow writing to it even if it // is read-only (a declared const that has not been initialized). If a // value is being defined we skip attribute checks completely. if (set_mode == DEFINE_PROPERTY) { details = PropertyDetails( attributes, NORMAL, details.dictionary_index()); dictionary->DetailsAtPut(entry, details); } else if (details.IsReadOnly() && !element->IsTheHole()) { if (strict_mode == SLOPPY) { return isolate->factory()->undefined_value(); } else { Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<Object> args[2] = { number, object }; THROW_NEW_ERROR(isolate, NewTypeError("strict_read_only_property", HandleVector(args, 2)), Object); } } // Elements of the arguments object in slow mode might be slow aliases. if (is_arguments && element->IsAliasedArgumentsEntry()) { Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(element); Handle<Context> context(Context::cast(elements->get(0))); int context_index = entry->aliased_context_slot(); DCHECK(!context->get(context_index)->IsTheHole()); context->set(context_index, *value); // For elements that are still writable we keep slow aliasing. if (!details.IsReadOnly()) value = element; } dictionary->ValueAtPut(entry, *value); } } else { // Index not already used. Look for an accessor in the prototype chain. // Can cause GC! if (check_prototype) { bool found; MaybeHandle<Object> result = SetElementWithCallbackSetterInPrototypes( object, index, value, &found, strict_mode); if (found) return result; } // When we set the is_extensible flag to false we always force the // element into dictionary mode (and force them to stay there). if (!object->map()->is_extensible()) { if (strict_mode == SLOPPY) { return isolate->factory()->undefined_value(); } else { Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<String> name = isolate->factory()->NumberToString(number); Handle<Object> args[1] = { name }; THROW_NEW_ERROR(isolate, NewTypeError("object_not_extensible", HandleVector(args, 1)), Object); } } PropertyDetails details = PropertyDetails(attributes, NORMAL, 0); Handle<SeededNumberDictionary> new_dictionary = SeededNumberDictionary::AddNumberEntry(dictionary, index, value, details); if (*dictionary != *new_dictionary) { if (is_arguments) { elements->set(1, *new_dictionary); } else { object->set_elements(*new_dictionary); } dictionary = new_dictionary; } } // Update the array length if this JSObject is an array. if (object->IsJSArray()) { JSArray::JSArrayUpdateLengthFromIndex(Handle<JSArray>::cast(object), index, value); } // Attempt to put this object back in fast case. if (object->ShouldConvertToFastElements()) { uint32_t new_length = 0; if (object->IsJSArray()) { CHECK(Handle<JSArray>::cast(object)->length()->ToArrayIndex(&new_length)); } else { new_length = dictionary->max_number_key() + 1; } bool has_smi_only_elements = false; bool should_convert_to_fast_double_elements = object->ShouldConvertToFastDoubleElements(&has_smi_only_elements); SetFastElementsCapacitySmiMode smi_mode = has_smi_only_elements ? kForceSmiElements : kAllowSmiElements; if (should_convert_to_fast_double_elements) { SetFastDoubleElementsCapacityAndLength(object, new_length, new_length); } else { SetFastElementsCapacityAndLength(object, new_length, new_length, smi_mode); } JSObject::ValidateElements(object); #ifdef DEBUG if (FLAG_trace_normalization) { OFStream os(stdout); os << "Object elements are fast case again:\n"; object->Print(os); } #endif } return value; } MaybeHandle<Object> JSObject::SetFastDoubleElement( Handle<JSObject> object, uint32_t index, Handle<Object> value, StrictMode strict_mode, bool check_prototype) { DCHECK(object->HasFastDoubleElements()); Handle<FixedArrayBase> base_elms(FixedArrayBase::cast(object->elements())); uint32_t elms_length = static_cast<uint32_t>(base_elms->length()); // If storing to an element that isn't in the array, pass the store request // up the prototype chain before storing in the receiver's elements. if (check_prototype && (index >= elms_length || Handle<FixedDoubleArray>::cast(base_elms)->is_the_hole(index))) { bool found; MaybeHandle<Object> result = SetElementWithCallbackSetterInPrototypes( object, index, value, &found, strict_mode); if (found) return result; } // If the value object is not a heap number, switch to fast elements and try // again. bool value_is_smi = value->IsSmi(); bool introduces_holes = true; uint32_t length = elms_length; if (object->IsJSArray()) { CHECK(Handle<JSArray>::cast(object)->length()->ToArrayIndex(&length)); introduces_holes = index > length; } else { introduces_holes = index >= elms_length; } if (!value->IsNumber()) { SetFastElementsCapacityAndLength(object, elms_length, length, kDontAllowSmiElements); Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( object->GetIsolate(), result, SetFastElement(object, index, value, strict_mode, check_prototype), Object); JSObject::ValidateElements(object); return result; } double double_value = value_is_smi ? static_cast<double>(Handle<Smi>::cast(value)->value()) : Handle<HeapNumber>::cast(value)->value(); // If the array is growing, and it's not growth by a single element at the // end, make sure that the ElementsKind is HOLEY. ElementsKind elements_kind = object->GetElementsKind(); if (introduces_holes && !IsFastHoleyElementsKind(elements_kind)) { ElementsKind transitioned_kind = GetHoleyElementsKind(elements_kind); TransitionElementsKind(object, transitioned_kind); } // Check whether there is extra space in the fixed array. if (index < elms_length) { Handle<FixedDoubleArray> elms(FixedDoubleArray::cast(object->elements())); elms->set(index, double_value); if (object->IsJSArray()) { // Update the length of the array if needed. uint32_t array_length = 0; CHECK( Handle<JSArray>::cast(object)->length()->ToArrayIndex(&array_length)); if (index >= array_length) { Handle<JSArray>::cast(object)->set_length(Smi::FromInt(index + 1)); } } return value; } // Allow gap in fast case. if ((index - elms_length) < kMaxGap) { // Try allocating extra space. int new_capacity = NewElementsCapacity(index+1); if (!object->ShouldConvertToSlowElements(new_capacity)) { DCHECK(static_cast<uint32_t>(new_capacity) > index); SetFastDoubleElementsCapacityAndLength(object, new_capacity, index + 1); FixedDoubleArray::cast(object->elements())->set(index, double_value); JSObject::ValidateElements(object); return value; } } // Otherwise default to slow case. DCHECK(object->HasFastDoubleElements()); DCHECK(object->map()->has_fast_double_elements()); DCHECK(object->elements()->IsFixedDoubleArray() || object->elements()->length() == 0); NormalizeElements(object); DCHECK(object->HasDictionaryElements()); return SetElement(object, index, value, NONE, strict_mode, check_prototype); } MaybeHandle<Object> JSReceiver::SetElement(Handle<JSReceiver> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode) { if (object->IsJSProxy()) { return JSProxy::SetElementWithHandler( Handle<JSProxy>::cast(object), object, index, value, strict_mode); } return JSObject::SetElement( Handle<JSObject>::cast(object), index, value, attributes, strict_mode); } MaybeHandle<Object> JSObject::SetOwnElement(Handle<JSObject> object, uint32_t index, Handle<Object> value, StrictMode strict_mode) { DCHECK(!object->HasExternalArrayElements()); return JSObject::SetElement(object, index, value, NONE, strict_mode, false); } MaybeHandle<Object> JSObject::SetElement(Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool check_prototype, SetPropertyMode set_mode) { Isolate* isolate = object->GetIsolate(); if (object->HasExternalArrayElements() || object->HasFixedTypedArrayElements()) { if (!value->IsNumber() && !value->IsUndefined()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, value, Execution::ToNumber(isolate, value), Object); } } // Check access rights if needed. if (object->IsAccessCheckNeeded()) { if (!isolate->MayIndexedAccess(object, index, v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(object, v8::ACCESS_SET); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return value; } } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return value; DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return SetElement( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), index, value, attributes, strict_mode, check_prototype, set_mode); } // Don't allow element properties to be redefined for external arrays. if ((object->HasExternalArrayElements() || object->HasFixedTypedArrayElements()) && set_mode == DEFINE_PROPERTY) { Handle<Object> number = isolate->factory()->NewNumberFromUint(index); Handle<Object> args[] = { object, number }; THROW_NEW_ERROR(isolate, NewTypeError("redef_external_array_element", HandleVector(args, arraysize(args))), Object); } // Normalize the elements to enable attributes on the property. if ((attributes & (DONT_DELETE | DONT_ENUM | READ_ONLY)) != 0) { Handle<SeededNumberDictionary> dictionary = NormalizeElements(object); // Make sure that we never go back to fast case. dictionary->set_requires_slow_elements(); } if (!object->map()->is_observed()) { return object->HasIndexedInterceptor() ? SetElementWithInterceptor(object, index, value, attributes, strict_mode, check_prototype, set_mode) : SetElementWithoutInterceptor(object, index, value, attributes, strict_mode, check_prototype, set_mode); } Maybe<PropertyAttributes> maybe = JSReceiver::GetOwnElementAttribute(object, index); if (!maybe.has_value) return MaybeHandle<Object>(); PropertyAttributes old_attributes = maybe.value; Handle<Object> old_value = isolate->factory()->the_hole_value(); Handle<Object> old_length_handle; Handle<Object> new_length_handle; if (old_attributes != ABSENT) { if (GetOwnElementAccessorPair(object, index).is_null()) { old_value = Object::GetElement(isolate, object, index).ToHandleChecked(); } } else if (object->IsJSArray()) { // Store old array length in case adding an element grows the array. old_length_handle = handle(Handle<JSArray>::cast(object)->length(), isolate); } // Check for lookup interceptor Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, object->HasIndexedInterceptor() ? SetElementWithInterceptor( object, index, value, attributes, strict_mode, check_prototype, set_mode) : SetElementWithoutInterceptor( object, index, value, attributes, strict_mode, check_prototype, set_mode), Object); Handle<String> name = isolate->factory()->Uint32ToString(index); maybe = GetOwnElementAttribute(object, index); if (!maybe.has_value) return MaybeHandle<Object>(); PropertyAttributes new_attributes = maybe.value; if (old_attributes == ABSENT) { if (object->IsJSArray() && !old_length_handle->SameValue( Handle<JSArray>::cast(object)->length())) { new_length_handle = handle(Handle<JSArray>::cast(object)->length(), isolate); uint32_t old_length = 0; uint32_t new_length = 0; CHECK(old_length_handle->ToArrayIndex(&old_length)); CHECK(new_length_handle->ToArrayIndex(&new_length)); BeginPerformSplice(Handle<JSArray>::cast(object)); EnqueueChangeRecord(object, "add", name, old_value); EnqueueChangeRecord(object, "update", isolate->factory()->length_string(), old_length_handle); EndPerformSplice(Handle<JSArray>::cast(object)); Handle<JSArray> deleted = isolate->factory()->NewJSArray(0); EnqueueSpliceRecord(Handle<JSArray>::cast(object), old_length, deleted, new_length - old_length); } else { EnqueueChangeRecord(object, "add", name, old_value); } } else if (old_value->IsTheHole()) { EnqueueChangeRecord(object, "reconfigure", name, old_value); } else { Handle<Object> new_value = Object::GetElement(isolate, object, index).ToHandleChecked(); bool value_changed = !old_value->SameValue(*new_value); if (old_attributes != new_attributes) { if (!value_changed) old_value = isolate->factory()->the_hole_value(); EnqueueChangeRecord(object, "reconfigure", name, old_value); } else if (value_changed) { EnqueueChangeRecord(object, "update", name, old_value); } } return result; } MaybeHandle<Object> JSObject::SetElementWithoutInterceptor( Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, StrictMode strict_mode, bool check_prototype, SetPropertyMode set_mode) { DCHECK(object->HasDictionaryElements() || object->HasDictionaryArgumentsElements() || (attributes & (DONT_DELETE | DONT_ENUM | READ_ONLY)) == 0); Isolate* isolate = object->GetIsolate(); if (FLAG_trace_external_array_abuse && IsExternalArrayElementsKind(object->GetElementsKind())) { CheckArrayAbuse(object, "external elements write", index); } if (FLAG_trace_js_array_abuse && !IsExternalArrayElementsKind(object->GetElementsKind())) { if (object->IsJSArray()) { CheckArrayAbuse(object, "elements write", index, true); } } if (object->IsJSArray() && JSArray::WouldChangeReadOnlyLength( Handle<JSArray>::cast(object), index)) { if (strict_mode == SLOPPY) { return value; } else { return JSArray::ReadOnlyLengthError(Handle<JSArray>::cast(object)); } } switch (object->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: return SetFastElement(object, index, value, strict_mode, check_prototype); case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: return SetFastDoubleElement(object, index, value, strict_mode, check_prototype); #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ELEMENTS: { \ Handle<External##Type##Array> array( \ External##Type##Array::cast(object->elements())); \ return External##Type##Array::SetValue(array, index, value); \ } \ case TYPE##_ELEMENTS: { \ Handle<Fixed##Type##Array> array( \ Fixed##Type##Array::cast(object->elements())); \ return Fixed##Type##Array::SetValue(array, index, value); \ } TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE case DICTIONARY_ELEMENTS: return SetDictionaryElement(object, index, value, attributes, strict_mode, check_prototype, set_mode); case SLOPPY_ARGUMENTS_ELEMENTS: { Handle<FixedArray> parameter_map(FixedArray::cast(object->elements())); uint32_t length = parameter_map->length(); Handle<Object> probe = index < length - 2 ? Handle<Object>(parameter_map->get(index + 2), isolate) : Handle<Object>(); if (!probe.is_null() && !probe->IsTheHole()) { Handle<Context> context(Context::cast(parameter_map->get(0))); int context_index = Handle<Smi>::cast(probe)->value(); DCHECK(!context->get(context_index)->IsTheHole()); context->set(context_index, *value); // Redefining attributes of an aliased element destroys fast aliasing. if (set_mode == SET_PROPERTY || attributes == NONE) return value; parameter_map->set_the_hole(index + 2); // For elements that are still writable we re-establish slow aliasing. if ((attributes & READ_ONLY) == 0) { value = Handle<Object>::cast( isolate->factory()->NewAliasedArgumentsEntry(context_index)); } } Handle<FixedArray> arguments(FixedArray::cast(parameter_map->get(1))); if (arguments->IsDictionary()) { return SetDictionaryElement(object, index, value, attributes, strict_mode, check_prototype, set_mode); } else { return SetFastElement(object, index, value, strict_mode, check_prototype); } } } // All possible cases have been handled above. Add a return to avoid the // complaints from the compiler. UNREACHABLE(); return isolate->factory()->null_value(); } const double AllocationSite::kPretenureRatio = 0.85; void AllocationSite::ResetPretenureDecision() { set_pretenure_decision(kUndecided); set_memento_found_count(0); set_memento_create_count(0); } PretenureFlag AllocationSite::GetPretenureMode() { PretenureDecision mode = pretenure_decision(); // Zombie objects "decide" to be untenured. return mode == kTenure ? TENURED : NOT_TENURED; } bool AllocationSite::IsNestedSite() { DCHECK(FLAG_trace_track_allocation_sites); Object* current = GetHeap()->allocation_sites_list(); while (current->IsAllocationSite()) { AllocationSite* current_site = AllocationSite::cast(current); if (current_site->nested_site() == this) { return true; } current = current_site->weak_next(); } return false; } void AllocationSite::DigestTransitionFeedback(Handle<AllocationSite> site, ElementsKind to_kind) { Isolate* isolate = site->GetIsolate(); if (site->SitePointsToLiteral() && site->transition_info()->IsJSArray()) { Handle<JSArray> transition_info = handle(JSArray::cast(site->transition_info())); ElementsKind kind = transition_info->GetElementsKind(); // if kind is holey ensure that to_kind is as well. if (IsHoleyElementsKind(kind)) { to_kind = GetHoleyElementsKind(to_kind); } if (IsMoreGeneralElementsKindTransition(kind, to_kind)) { // If the array is huge, it's not likely to be defined in a local // function, so we shouldn't make new instances of it very often. uint32_t length = 0; CHECK(transition_info->length()->ToArrayIndex(&length)); if (length <= kMaximumArrayBytesToPretransition) { if (FLAG_trace_track_allocation_sites) { bool is_nested = site->IsNestedSite(); PrintF( "AllocationSite: JSArray %p boilerplate %s updated %s->%s\n", reinterpret_cast<void*>(*site), is_nested ? "(nested)" : "", ElementsKindToString(kind), ElementsKindToString(to_kind)); } JSObject::TransitionElementsKind(transition_info, to_kind); site->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kAllocationSiteTransitionChangedGroup); } } } else { ElementsKind kind = site->GetElementsKind(); // if kind is holey ensure that to_kind is as well. if (IsHoleyElementsKind(kind)) { to_kind = GetHoleyElementsKind(to_kind); } if (IsMoreGeneralElementsKindTransition(kind, to_kind)) { if (FLAG_trace_track_allocation_sites) { PrintF("AllocationSite: JSArray %p site updated %s->%s\n", reinterpret_cast<void*>(*site), ElementsKindToString(kind), ElementsKindToString(to_kind)); } site->SetElementsKind(to_kind); site->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kAllocationSiteTransitionChangedGroup); } } } // static void AllocationSite::AddDependentCompilationInfo(Handle<AllocationSite> site, Reason reason, CompilationInfo* info) { DependentCode::DependencyGroup group = site->ToDependencyGroup(reason); Handle<DependentCode> dep(site->dependent_code()); Handle<DependentCode> codes = DependentCode::Insert(dep, group, info->object_wrapper()); if (*codes != site->dependent_code()) site->set_dependent_code(*codes); info->dependencies(group)->Add(Handle<HeapObject>(*site), info->zone()); } const char* AllocationSite::PretenureDecisionName(PretenureDecision decision) { switch (decision) { case kUndecided: return "undecided"; case kDontTenure: return "don't tenure"; case kMaybeTenure: return "maybe tenure"; case kTenure: return "tenure"; case kZombie: return "zombie"; default: UNREACHABLE(); } return NULL; } void JSObject::UpdateAllocationSite(Handle<JSObject> object, ElementsKind to_kind) { if (!object->IsJSArray()) return; Heap* heap = object->GetHeap(); if (!heap->InNewSpace(*object)) return; Handle<AllocationSite> site; { DisallowHeapAllocation no_allocation; AllocationMemento* memento = heap->FindAllocationMemento(*object); if (memento == NULL) return; // Walk through to the Allocation Site site = handle(memento->GetAllocationSite()); } AllocationSite::DigestTransitionFeedback(site, to_kind); } void JSObject::TransitionElementsKind(Handle<JSObject> object, ElementsKind to_kind) { ElementsKind from_kind = object->map()->elements_kind(); if (IsFastHoleyElementsKind(from_kind)) { to_kind = GetHoleyElementsKind(to_kind); } if (from_kind == to_kind) return; // Don't update the site if to_kind isn't fast if (IsFastElementsKind(to_kind)) { UpdateAllocationSite(object, to_kind); } Isolate* isolate = object->GetIsolate(); if (object->elements() == isolate->heap()->empty_fixed_array() || (IsFastSmiOrObjectElementsKind(from_kind) && IsFastSmiOrObjectElementsKind(to_kind)) || (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_HOLEY_DOUBLE_ELEMENTS)) { DCHECK(from_kind != TERMINAL_FAST_ELEMENTS_KIND); // No change is needed to the elements() buffer, the transition // only requires a map change. Handle<Map> new_map = GetElementsTransitionMap(object, to_kind); MigrateToMap(object, new_map); if (FLAG_trace_elements_transitions) { Handle<FixedArrayBase> elms(object->elements()); PrintElementsTransition(stdout, object, from_kind, elms, to_kind, elms); } return; } Handle<FixedArrayBase> elms(object->elements()); uint32_t capacity = static_cast<uint32_t>(elms->length()); uint32_t length = capacity; if (object->IsJSArray()) { Object* raw_length = Handle<JSArray>::cast(object)->length(); if (raw_length->IsUndefined()) { // If length is undefined, then JSArray is being initialized and has no // elements, assume a length of zero. length = 0; } else { CHECK(raw_length->ToArrayIndex(&length)); } } if (IsFastSmiElementsKind(from_kind) && IsFastDoubleElementsKind(to_kind)) { SetFastDoubleElementsCapacityAndLength(object, capacity, length); JSObject::ValidateElements(object); return; } if (IsFastDoubleElementsKind(from_kind) && IsFastObjectElementsKind(to_kind)) { SetFastElementsCapacityAndLength(object, capacity, length, kDontAllowSmiElements); JSObject::ValidateElements(object); return; } // This method should never be called for any other case than the ones // handled above. UNREACHABLE(); } // static bool Map::IsValidElementsTransition(ElementsKind from_kind, ElementsKind to_kind) { // Transitions can't go backwards. if (!IsMoreGeneralElementsKindTransition(from_kind, to_kind)) { return false; } // Transitions from HOLEY -> PACKED are not allowed. return !IsFastHoleyElementsKind(from_kind) || IsFastHoleyElementsKind(to_kind); } void JSArray::JSArrayUpdateLengthFromIndex(Handle<JSArray> array, uint32_t index, Handle<Object> value) { uint32_t old_len = 0; CHECK(array->length()->ToArrayIndex(&old_len)); // Check to see if we need to update the length. For now, we make // sure that the length stays within 32-bits (unsigned). if (index >= old_len && index != 0xffffffff) { Handle<Object> len = array->GetIsolate()->factory()->NewNumber( static_cast<double>(index) + 1); array->set_length(*len); } } bool JSArray::IsReadOnlyLengthDescriptor(Handle<Map> jsarray_map) { Isolate* isolate = jsarray_map->GetIsolate(); DCHECK(!jsarray_map->is_dictionary_map()); LookupResult lookup(isolate); Handle<Name> length_string = isolate->factory()->length_string(); jsarray_map->LookupDescriptor(NULL, *length_string, &lookup); return lookup.IsReadOnly(); } bool JSArray::WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index) { uint32_t length = 0; CHECK(array->length()->ToArrayIndex(&length)); if (length <= index) { LookupIterator it(array, array->GetIsolate()->factory()->length_string(), LookupIterator::OWN_SKIP_INTERCEPTOR); CHECK_NE(LookupIterator::ACCESS_CHECK, it.state()); CHECK(it.IsFound()); CHECK_EQ(LookupIterator::ACCESSOR, it.state()); return it.IsReadOnly(); } return false; } MaybeHandle<Object> JSArray::ReadOnlyLengthError(Handle<JSArray> array) { Isolate* isolate = array->GetIsolate(); Handle<Name> length = isolate->factory()->length_string(); Handle<Object> args[2] = { length, array }; THROW_NEW_ERROR(isolate, NewTypeError("strict_read_only_property", HandleVector(args, arraysize(args))), Object); } MaybeHandle<Object> JSObject::GetElementWithInterceptor( Handle<JSObject> object, Handle<Object> receiver, uint32_t index) { Isolate* isolate = object->GetIsolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc(isolate); Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor(), isolate); if (!interceptor->getter()->IsUndefined()) { v8::IndexedPropertyGetterCallback getter = v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter()); LOG(isolate, ApiIndexedPropertyAccess("interceptor-indexed-get", *object, index)); PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *object); v8::Handle<v8::Value> result = args.Call(getter, index); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (!result.IsEmpty()) { Handle<Object> result_internal = v8::Utils::OpenHandle(*result); result_internal->VerifyApiCallResultType(); // Rebox handle before return. return handle(*result_internal, isolate); } } ElementsAccessor* handler = object->GetElementsAccessor(); Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, handler->Get(receiver, object, index), Object); if (!result->IsTheHole()) return result; PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return isolate->factory()->undefined_value(); return Object::GetElementWithReceiver( isolate, PrototypeIterator::GetCurrent(iter), receiver, index); } bool JSObject::HasDenseElements() { int capacity = 0; int used = 0; GetElementsCapacityAndUsage(&capacity, &used); return (capacity == 0) || (used > (capacity / 2)); } void JSObject::GetElementsCapacityAndUsage(int* capacity, int* used) { *capacity = 0; *used = 0; FixedArrayBase* backing_store_base = FixedArrayBase::cast(elements()); FixedArray* backing_store = NULL; switch (GetElementsKind()) { case SLOPPY_ARGUMENTS_ELEMENTS: backing_store_base = FixedArray::cast(FixedArray::cast(backing_store_base)->get(1)); backing_store = FixedArray::cast(backing_store_base); if (backing_store->IsDictionary()) { SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(backing_store); *capacity = dictionary->Capacity(); *used = dictionary->NumberOfElements(); break; } // Fall through. case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: if (IsJSArray()) { *capacity = backing_store_base->length(); *used = Smi::cast(JSArray::cast(this)->length())->value(); break; } // Fall through if packing is not guaranteed. case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: backing_store = FixedArray::cast(backing_store_base); *capacity = backing_store->length(); for (int i = 0; i < *capacity; ++i) { if (!backing_store->get(i)->IsTheHole()) ++(*used); } break; case DICTIONARY_ELEMENTS: { SeededNumberDictionary* dictionary = element_dictionary(); *capacity = dictionary->Capacity(); *used = dictionary->NumberOfElements(); break; } case FAST_DOUBLE_ELEMENTS: if (IsJSArray()) { *capacity = backing_store_base->length(); *used = Smi::cast(JSArray::cast(this)->length())->value(); break; } // Fall through if packing is not guaranteed. case FAST_HOLEY_DOUBLE_ELEMENTS: { *capacity = elements()->length(); if (*capacity == 0) break; FixedDoubleArray * elms = FixedDoubleArray::cast(elements()); for (int i = 0; i < *capacity; i++) { if (!elms->is_the_hole(i)) ++(*used); } break; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ELEMENTS: \ case TYPE##_ELEMENTS: \ TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE { // External arrays are considered 100% used. FixedArrayBase* external_array = FixedArrayBase::cast(elements()); *capacity = external_array->length(); *used = external_array->length(); break; } } } bool JSObject::WouldConvertToSlowElements(Handle<Object> key) { uint32_t index; if (HasFastElements() && key->ToArrayIndex(&index)) { Handle<FixedArrayBase> backing_store(FixedArrayBase::cast(elements())); uint32_t capacity = static_cast<uint32_t>(backing_store->length()); if (index >= capacity) { if ((index - capacity) >= kMaxGap) return true; uint32_t new_capacity = NewElementsCapacity(index + 1); return ShouldConvertToSlowElements(new_capacity); } } return false; } bool JSObject::ShouldConvertToSlowElements(int new_capacity) { STATIC_ASSERT(kMaxUncheckedOldFastElementsLength <= kMaxUncheckedFastElementsLength); if (new_capacity <= kMaxUncheckedOldFastElementsLength || (new_capacity <= kMaxUncheckedFastElementsLength && GetHeap()->InNewSpace(this))) { return false; } // If the fast-case backing storage takes up roughly three times as // much space (in machine words) as a dictionary backing storage // would, the object should have slow elements. int old_capacity = 0; int used_elements = 0; GetElementsCapacityAndUsage(&old_capacity, &used_elements); int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) * SeededNumberDictionary::kEntrySize; return 3 * dictionary_size <= new_capacity; } bool JSObject::ShouldConvertToFastElements() { DCHECK(HasDictionaryElements() || HasDictionaryArgumentsElements()); // If the elements are sparse, we should not go back to fast case. if (!HasDenseElements()) return false; // An object requiring access checks is never allowed to have fast // elements. If it had fast elements we would skip security checks. if (IsAccessCheckNeeded()) return false; // Observed objects may not go to fast mode because they rely on map checks, // and for fast element accesses we sometimes check element kinds only. if (map()->is_observed()) return false; FixedArray* elements = FixedArray::cast(this->elements()); SeededNumberDictionary* dictionary = NULL; if (elements->map() == GetHeap()->sloppy_arguments_elements_map()) { dictionary = SeededNumberDictionary::cast(elements->get(1)); } else { dictionary = SeededNumberDictionary::cast(elements); } // If an element has been added at a very high index in the elements // dictionary, we cannot go back to fast case. if (dictionary->requires_slow_elements()) return false; // If the dictionary backing storage takes up roughly half as much // space (in machine words) as a fast-case backing storage would, // the object should have fast elements. uint32_t array_size = 0; if (IsJSArray()) { CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_size)); } else { array_size = dictionary->max_number_key(); } uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) * SeededNumberDictionary::kEntrySize; return 2 * dictionary_size >= array_size; } bool JSObject::ShouldConvertToFastDoubleElements( bool* has_smi_only_elements) { *has_smi_only_elements = false; if (HasSloppyArgumentsElements()) return false; if (FLAG_unbox_double_arrays) { DCHECK(HasDictionaryElements()); SeededNumberDictionary* dictionary = element_dictionary(); bool found_double = false; for (int i = 0; i < dictionary->Capacity(); i++) { Object* key = dictionary->KeyAt(i); if (key->IsNumber()) { Object* value = dictionary->ValueAt(i); if (!value->IsNumber()) return false; if (!value->IsSmi()) { found_double = true; } } } *has_smi_only_elements = !found_double; return found_double; } else { return false; } } // Certain compilers request function template instantiation when they // see the definition of the other template functions in the // class. This requires us to have the template functions put // together, so even though this function belongs in objects-debug.cc, // we keep it here instead to satisfy certain compilers. #ifdef OBJECT_PRINT template <typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::Print(OStream& os) { // NOLINT int capacity = DerivedHashTable::Capacity(); for (int i = 0; i < capacity; i++) { Object* k = DerivedHashTable::KeyAt(i); if (DerivedHashTable::IsKey(k)) { os << " "; if (k->IsString()) { String::cast(k)->StringPrint(os); } else { os << Brief(k); } os << ": " << Brief(ValueAt(i)) << "\n"; } } } #endif template<typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::CopyValuesTo(FixedArray* elements) { int pos = 0; int capacity = DerivedHashTable::Capacity(); DisallowHeapAllocation no_gc; WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); for (int i = 0; i < capacity; i++) { Object* k = Dictionary::KeyAt(i); if (Dictionary::IsKey(k)) { elements->set(pos++, ValueAt(i), mode); } } DCHECK(pos == elements->length()); } InterceptorInfo* JSObject::GetNamedInterceptor() { DCHECK(map()->has_named_interceptor()); JSFunction* constructor = JSFunction::cast(map()->constructor()); DCHECK(constructor->shared()->IsApiFunction()); Object* result = constructor->shared()->get_api_func_data()->named_property_handler(); return InterceptorInfo::cast(result); } InterceptorInfo* JSObject::GetIndexedInterceptor() { DCHECK(map()->has_indexed_interceptor()); JSFunction* constructor = JSFunction::cast(map()->constructor()); DCHECK(constructor->shared()->IsApiFunction()); Object* result = constructor->shared()->get_api_func_data()->indexed_property_handler(); return InterceptorInfo::cast(result); } MaybeHandle<Object> JSObject::GetPropertyWithInterceptor( Handle<JSObject> holder, Handle<Object> receiver, Handle<Name> name) { Isolate* isolate = holder->GetIsolate(); // TODO(rossberg): Support symbols in the API. if (name->IsSymbol()) return isolate->factory()->undefined_value(); Handle<InterceptorInfo> interceptor(holder->GetNamedInterceptor(), isolate); Handle<String> name_string = Handle<String>::cast(name); if (interceptor->getter()->IsUndefined()) return MaybeHandle<Object>(); v8::NamedPropertyGetterCallback getter = v8::ToCData<v8::NamedPropertyGetterCallback>(interceptor->getter()); LOG(isolate, ApiNamedPropertyAccess("interceptor-named-get", *holder, *name)); PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *holder); v8::Handle<v8::Value> result = args.Call(getter, v8::Utils::ToLocal(name_string)); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.IsEmpty()) return MaybeHandle<Object>(); Handle<Object> result_internal = v8::Utils::OpenHandle(*result); result_internal->VerifyApiCallResultType(); // Rebox handle before return return handle(*result_internal, isolate); } // Compute the property keys from the interceptor. // TODO(rossberg): support symbols in API, and filter here if needed. MaybeHandle<JSObject> JSObject::GetKeysForNamedInterceptor( Handle<JSObject> object, Handle<JSReceiver> receiver) { Isolate* isolate = receiver->GetIsolate(); Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor()); PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *object); v8::Handle<v8::Object> result; if (!interceptor->enumerator()->IsUndefined()) { v8::NamedPropertyEnumeratorCallback enum_fun = v8::ToCData<v8::NamedPropertyEnumeratorCallback>( interceptor->enumerator()); LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object)); result = args.Call(enum_fun); } if (result.IsEmpty()) return MaybeHandle<JSObject>(); #if ENABLE_EXTRA_CHECKS CHECK(v8::Utils::OpenHandle(*result)->IsJSArray() || v8::Utils::OpenHandle(*result)->HasSloppyArgumentsElements()); #endif // Rebox before returning. return handle(*v8::Utils::OpenHandle(*result), isolate); } // Compute the element keys from the interceptor. MaybeHandle<JSObject> JSObject::GetKeysForIndexedInterceptor( Handle<JSObject> object, Handle<JSReceiver> receiver) { Isolate* isolate = receiver->GetIsolate(); Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor()); PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *object); v8::Handle<v8::Object> result; if (!interceptor->enumerator()->IsUndefined()) { v8::IndexedPropertyEnumeratorCallback enum_fun = v8::ToCData<v8::IndexedPropertyEnumeratorCallback>( interceptor->enumerator()); LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object)); result = args.Call(enum_fun); } if (result.IsEmpty()) return MaybeHandle<JSObject>(); #if ENABLE_EXTRA_CHECKS CHECK(v8::Utils::OpenHandle(*result)->IsJSArray() || v8::Utils::OpenHandle(*result)->HasSloppyArgumentsElements()); #endif // Rebox before returning. return handle(*v8::Utils::OpenHandle(*result), isolate); } Maybe<bool> JSObject::HasRealNamedProperty(Handle<JSObject> object, Handle<Name> key) { LookupIterator it(object, key, LookupIterator::OWN_SKIP_INTERCEPTOR); Maybe<PropertyAttributes> maybe_result = GetPropertyAttributes(&it); if (!maybe_result.has_value) return Maybe<bool>(); return maybe(it.IsFound()); } Maybe<bool> JSObject::HasRealElementProperty(Handle<JSObject> object, uint32_t index) { Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); // Check access rights if needed. if (object->IsAccessCheckNeeded()) { if (!isolate->MayIndexedAccess(object, index, v8::ACCESS_HAS)) { isolate->ReportFailedAccessCheck(object, v8::ACCESS_HAS); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Maybe<bool>()); return maybe(false); } } if (object->IsJSGlobalProxy()) { HandleScope scope(isolate); PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return maybe(false); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return HasRealElementProperty( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), index); } Maybe<PropertyAttributes> result = GetElementAttributeWithoutInterceptor(object, object, index, false); if (!result.has_value) return Maybe<bool>(); return maybe(result.value != ABSENT); } Maybe<bool> JSObject::HasRealNamedCallbackProperty(Handle<JSObject> object, Handle<Name> key) { LookupIterator it(object, key, LookupIterator::OWN_SKIP_INTERCEPTOR); Maybe<PropertyAttributes> maybe_result = GetPropertyAttributes(&it); if (!maybe_result.has_value) return Maybe<bool>(); return maybe(it.state() == LookupIterator::ACCESSOR); } int JSObject::NumberOfOwnProperties(PropertyAttributes filter) { if (HasFastProperties()) { Map* map = this->map(); if (filter == NONE) return map->NumberOfOwnDescriptors(); if (filter & DONT_ENUM) { int result = map->EnumLength(); if (result != kInvalidEnumCacheSentinel) return result; } return map->NumberOfDescribedProperties(OWN_DESCRIPTORS, filter); } return property_dictionary()->NumberOfElementsFilterAttributes(filter); } void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) { Object* temp = get(i); set(i, get(j)); set(j, temp); if (this != numbers) { temp = numbers->get(i); numbers->set(i, Smi::cast(numbers->get(j))); numbers->set(j, Smi::cast(temp)); } } static void InsertionSortPairs(FixedArray* content, FixedArray* numbers, int len) { for (int i = 1; i < len; i++) { int j = i; while (j > 0 && (NumberToUint32(numbers->get(j - 1)) > NumberToUint32(numbers->get(j)))) { content->SwapPairs(numbers, j - 1, j); j--; } } } void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) { // In-place heap sort. DCHECK(content->length() == numbers->length()); // Bottom-up max-heap construction. for (int i = 1; i < len; ++i) { int child_index = i; while (child_index > 0) { int parent_index = ((child_index + 1) >> 1) - 1; uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); uint32_t child_value = NumberToUint32(numbers->get(child_index)); if (parent_value < child_value) { content->SwapPairs(numbers, parent_index, child_index); } else { break; } child_index = parent_index; } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. content->SwapPairs(numbers, 0, i); // Sift down the new top element. int parent_index = 0; while (true) { int child_index = ((parent_index + 1) << 1) - 1; if (child_index >= i) break; uint32_t child1_value = NumberToUint32(numbers->get(child_index)); uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1)); uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); if (child_index + 1 >= i || child1_value > child2_value) { if (parent_value > child1_value) break; content->SwapPairs(numbers, parent_index, child_index); parent_index = child_index; } else { if (parent_value > child2_value) break; content->SwapPairs(numbers, parent_index, child_index + 1); parent_index = child_index + 1; } } } } // Sort this array and the numbers as pairs wrt. the (distinct) numbers. void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) { DCHECK(this->length() == numbers->length()); // For small arrays, simply use insertion sort. if (len <= 10) { InsertionSortPairs(this, numbers, len); return; } // Check the range of indices. uint32_t min_index = NumberToUint32(numbers->get(0)); uint32_t max_index = min_index; uint32_t i; for (i = 1; i < len; i++) { if (NumberToUint32(numbers->get(i)) < min_index) { min_index = NumberToUint32(numbers->get(i)); } else if (NumberToUint32(numbers->get(i)) > max_index) { max_index = NumberToUint32(numbers->get(i)); } } if (max_index - min_index + 1 == len) { // Indices form a contiguous range, unless there are duplicates. // Do an in-place linear time sort assuming distinct numbers, but // avoid hanging in case they are not. for (i = 0; i < len; i++) { uint32_t p; uint32_t j = 0; // While the current element at i is not at its correct position p, // swap the elements at these two positions. while ((p = NumberToUint32(numbers->get(i)) - min_index) != i && j++ < len) { SwapPairs(numbers, i, p); } } } else { HeapSortPairs(this, numbers, len); return; } } // Fill in the names of own properties into the supplied storage. The main // purpose of this function is to provide reflection information for the object // mirrors. void JSObject::GetOwnPropertyNames( FixedArray* storage, int index, PropertyAttributes filter) { DCHECK(storage->length() >= (NumberOfOwnProperties(filter) - index)); if (HasFastProperties()) { int real_size = map()->NumberOfOwnDescriptors(); DescriptorArray* descs = map()->instance_descriptors(); for (int i = 0; i < real_size; i++) { if ((descs->GetDetails(i).attributes() & filter) == 0 && !FilterKey(descs->GetKey(i), filter)) { storage->set(index++, descs->GetKey(i)); } } } else { property_dictionary()->CopyKeysTo(storage, index, filter, NameDictionary::UNSORTED); } } int JSObject::NumberOfOwnElements(PropertyAttributes filter) { return GetOwnElementKeys(NULL, filter); } int JSObject::NumberOfEnumElements() { // Fast case for objects with no elements. if (!IsJSValue() && HasFastObjectElements()) { uint32_t length = IsJSArray() ? static_cast<uint32_t>( Smi::cast(JSArray::cast(this)->length())->value()) : static_cast<uint32_t>(FixedArray::cast(elements())->length()); if (length == 0) return 0; } // Compute the number of enumerable elements. return NumberOfOwnElements(static_cast<PropertyAttributes>(DONT_ENUM)); } int JSObject::GetOwnElementKeys(FixedArray* storage, PropertyAttributes filter) { int counter = 0; switch (GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : FixedArray::cast(elements())->length(); for (int i = 0; i < length; i++) { if (!FixedArray::cast(elements())->get(i)->IsTheHole()) { if (storage != NULL) { storage->set(counter, Smi::FromInt(i)); } counter++; } } DCHECK(!storage || storage->length() >= counter); break; } case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : FixedArrayBase::cast(elements())->length(); for (int i = 0; i < length; i++) { if (!FixedDoubleArray::cast(elements())->is_the_hole(i)) { if (storage != NULL) { storage->set(counter, Smi::FromInt(i)); } counter++; } } DCHECK(!storage || storage->length() >= counter); break; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ELEMENTS: \ case TYPE##_ELEMENTS: \ TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE { int length = FixedArrayBase::cast(elements())->length(); while (counter < length) { if (storage != NULL) { storage->set(counter, Smi::FromInt(counter)); } counter++; } DCHECK(!storage || storage->length() >= counter); break; } case DICTIONARY_ELEMENTS: { if (storage != NULL) { element_dictionary()->CopyKeysTo(storage, filter, SeededNumberDictionary::SORTED); } counter += element_dictionary()->NumberOfElementsFilterAttributes(filter); break; } case SLOPPY_ARGUMENTS_ELEMENTS: { FixedArray* parameter_map = FixedArray::cast(elements()); int mapped_length = parameter_map->length() - 2; FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); if (arguments->IsDictionary()) { // Copy the keys from arguments first, because Dictionary::CopyKeysTo // will insert in storage starting at index 0. SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(arguments); if (storage != NULL) { dictionary->CopyKeysTo( storage, filter, SeededNumberDictionary::UNSORTED); } counter += dictionary->NumberOfElementsFilterAttributes(filter); for (int i = 0; i < mapped_length; ++i) { if (!parameter_map->get(i + 2)->IsTheHole()) { if (storage != NULL) storage->set(counter, Smi::FromInt(i)); ++counter; } } if (storage != NULL) storage->SortPairs(storage, counter); } else { int backing_length = arguments->length(); int i = 0; for (; i < mapped_length; ++i) { if (!parameter_map->get(i + 2)->IsTheHole()) { if (storage != NULL) storage->set(counter, Smi::FromInt(i)); ++counter; } else if (i < backing_length && !arguments->get(i)->IsTheHole()) { if (storage != NULL) storage->set(counter, Smi::FromInt(i)); ++counter; } } for (; i < backing_length; ++i) { if (storage != NULL) storage->set(counter, Smi::FromInt(i)); ++counter; } } break; } } if (this->IsJSValue()) { Object* val = JSValue::cast(this)->value(); if (val->IsString()) { String* str = String::cast(val); if (storage) { for (int i = 0; i < str->length(); i++) { storage->set(counter + i, Smi::FromInt(i)); } } counter += str->length(); } } DCHECK(!storage || storage->length() == counter); return counter; } int JSObject::GetEnumElementKeys(FixedArray* storage) { return GetOwnElementKeys(storage, static_cast<PropertyAttributes>(DONT_ENUM)); } // StringSharedKeys are used as keys in the eval cache. class StringSharedKey : public HashTableKey { public: StringSharedKey(Handle<String> source, Handle<SharedFunctionInfo> shared, StrictMode strict_mode, int scope_position) : source_(source), shared_(shared), strict_mode_(strict_mode), scope_position_(scope_position) { } bool IsMatch(Object* other) OVERRIDE { DisallowHeapAllocation no_allocation; if (!other->IsFixedArray()) return false; FixedArray* other_array = FixedArray::cast(other); SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0)); if (shared != *shared_) return false; int strict_unchecked = Smi::cast(other_array->get(2))->value(); DCHECK(strict_unchecked == SLOPPY || strict_unchecked == STRICT); StrictMode strict_mode = static_cast<StrictMode>(strict_unchecked); if (strict_mode != strict_mode_) return false; int scope_position = Smi::cast(other_array->get(3))->value(); if (scope_position != scope_position_) return false; String* source = String::cast(other_array->get(1)); return source->Equals(*source_); } static uint32_t StringSharedHashHelper(String* source, SharedFunctionInfo* shared, StrictMode strict_mode, int scope_position) { uint32_t hash = source->Hash(); if (shared->HasSourceCode()) { // Instead of using the SharedFunctionInfo pointer in the hash // code computation, we use a combination of the hash of the // script source code and the start position of the calling scope. // We do this to ensure that the cache entries can survive garbage // collection. Script* script(Script::cast(shared->script())); hash ^= String::cast(script->source())->Hash(); if (strict_mode == STRICT) hash ^= 0x8000; hash += scope_position; } return hash; } uint32_t Hash() OVERRIDE { return StringSharedHashHelper(*source_, *shared_, strict_mode_, scope_position_); } uint32_t HashForObject(Object* obj) OVERRIDE { DisallowHeapAllocation no_allocation; FixedArray* other_array = FixedArray::cast(obj); SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0)); String* source = String::cast(other_array->get(1)); int strict_unchecked = Smi::cast(other_array->get(2))->value(); DCHECK(strict_unchecked == SLOPPY || strict_unchecked == STRICT); StrictMode strict_mode = static_cast<StrictMode>(strict_unchecked); int scope_position = Smi::cast(other_array->get(3))->value(); return StringSharedHashHelper( source, shared, strict_mode, scope_position); } Handle<Object> AsHandle(Isolate* isolate) OVERRIDE { Handle<FixedArray> array = isolate->factory()->NewFixedArray(4); array->set(0, *shared_); array->set(1, *source_); array->set(2, Smi::FromInt(strict_mode_)); array->set(3, Smi::FromInt(scope_position_)); return array; } private: Handle<String> source_; Handle<SharedFunctionInfo> shared_; StrictMode strict_mode_; int scope_position_; }; // RegExpKey carries the source and flags of a regular expression as key. class RegExpKey : public HashTableKey { public: RegExpKey(Handle<String> string, JSRegExp::Flags flags) : string_(string), flags_(Smi::FromInt(flags.value())) { } // Rather than storing the key in the hash table, a pointer to the // stored value is stored where the key should be. IsMatch then // compares the search key to the found object, rather than comparing // a key to a key. bool IsMatch(Object* obj) OVERRIDE { FixedArray* val = FixedArray::cast(obj); return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex))) && (flags_ == val->get(JSRegExp::kFlagsIndex)); } uint32_t Hash() OVERRIDE { return RegExpHash(*string_, flags_); } Handle<Object> AsHandle(Isolate* isolate) OVERRIDE { // Plain hash maps, which is where regexp keys are used, don't // use this function. UNREACHABLE(); return MaybeHandle<Object>().ToHandleChecked(); } uint32_t HashForObject(Object* obj) OVERRIDE { FixedArray* val = FixedArray::cast(obj); return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)), Smi::cast(val->get(JSRegExp::kFlagsIndex))); } static uint32_t RegExpHash(String* string, Smi* flags) { return string->Hash() + flags->value(); } Handle<String> string_; Smi* flags_; }; Handle<Object> OneByteStringKey::AsHandle(Isolate* isolate) { if (hash_field_ == 0) Hash(); return isolate->factory()->NewOneByteInternalizedString(string_, hash_field_); } Handle<Object> TwoByteStringKey::AsHandle(Isolate* isolate) { if (hash_field_ == 0) Hash(); return isolate->factory()->NewTwoByteInternalizedString(string_, hash_field_); } Handle<Object> SeqOneByteSubStringKey::AsHandle(Isolate* isolate) { if (hash_field_ == 0) Hash(); return isolate->factory()->NewOneByteInternalizedSubString( string_, from_, length_, hash_field_); } bool SeqOneByteSubStringKey::IsMatch(Object* string) { Vector<const uint8_t> chars(string_->GetChars() + from_, length_); return String::cast(string)->IsOneByteEqualTo(chars); } // InternalizedStringKey carries a string/internalized-string object as key. class InternalizedStringKey : public HashTableKey { public: explicit InternalizedStringKey(Handle<String> string) : string_(string) { } virtual bool IsMatch(Object* string) OVERRIDE { return String::cast(string)->Equals(*string_); } virtual uint32_t Hash() OVERRIDE { return string_->Hash(); } virtual uint32_t HashForObject(Object* other) OVERRIDE { return String::cast(other)->Hash(); } virtual Handle<Object> AsHandle(Isolate* isolate) OVERRIDE { // Internalize the string if possible. MaybeHandle<Map> maybe_map = isolate->factory()->InternalizedStringMapForString(string_); Handle<Map> map; if (maybe_map.ToHandle(&map)) { string_->set_map_no_write_barrier(*map); DCHECK(string_->IsInternalizedString()); return string_; } // Otherwise allocate a new internalized string. return isolate->factory()->NewInternalizedStringImpl( string_, string_->length(), string_->hash_field()); } static uint32_t StringHash(Object* obj) { return String::cast(obj)->Hash(); } Handle<String> string_; }; template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::IteratePrefix(ObjectVisitor* v) { IteratePointers(v, 0, kElementsStartOffset); } template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::IterateElements(ObjectVisitor* v) { IteratePointers(v, kElementsStartOffset, kHeaderSize + length() * kPointerSize); } template<typename Derived, typename Shape, typename Key> Handle<Derived> HashTable<Derived, Shape, Key>::New( Isolate* isolate, int at_least_space_for, MinimumCapacity capacity_option, PretenureFlag pretenure) { DCHECK(0 <= at_least_space_for); DCHECK(!capacity_option || base::bits::IsPowerOfTwo32(at_least_space_for)); int capacity = (capacity_option == USE_CUSTOM_MINIMUM_CAPACITY) ? at_least_space_for : ComputeCapacity(at_least_space_for); if (capacity > HashTable::kMaxCapacity) { v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true); } Factory* factory = isolate->factory(); int length = EntryToIndex(capacity); Handle<FixedArray> array = factory->NewFixedArray(length, pretenure); array->set_map_no_write_barrier(*factory->hash_table_map()); Handle<Derived> table = Handle<Derived>::cast(array); table->SetNumberOfElements(0); table->SetNumberOfDeletedElements(0); table->SetCapacity(capacity); return table; } // Find entry for key otherwise return kNotFound. int NameDictionary::FindEntry(Handle<Name> key) { if (!key->IsUniqueName()) { return DerivedHashTable::FindEntry(key); } // Optimized for unique names. Knowledge of the key type allows: // 1. Move the check if the key is unique out of the loop. // 2. Avoid comparing hash codes in unique-to-unique comparison. // 3. Detect a case when a dictionary key is not unique but the key is. // In case of positive result the dictionary key may be replaced by the // internalized string with minimal performance penalty. It gives a chance // to perform further lookups in code stubs (and significant performance // boost a certain style of code). // EnsureCapacity will guarantee the hash table is never full. uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(key->Hash(), capacity); uint32_t count = 1; while (true) { int index = EntryToIndex(entry); Object* element = get(index); if (element->IsUndefined()) break; // Empty entry. if (*key == element) return entry; if (!element->IsUniqueName() && !element->IsTheHole() && Name::cast(element)->Equals(*key)) { // Replace a key that is a non-internalized string by the equivalent // internalized string for faster further lookups. set(index, *key); return entry; } DCHECK(element->IsTheHole() || !Name::cast(element)->Equals(*key)); entry = NextProbe(entry, count++, capacity); } return kNotFound; } template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::Rehash( Handle<Derived> new_table, Key key) { DCHECK(NumberOfElements() < new_table->Capacity()); DisallowHeapAllocation no_gc; WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc); // Copy prefix to new array. for (int i = kPrefixStartIndex; i < kPrefixStartIndex + Shape::kPrefixSize; i++) { new_table->set(i, get(i), mode); } // Rehash the elements. int capacity = Capacity(); for (int i = 0; i < capacity; i++) { uint32_t from_index = EntryToIndex(i); Object* k = get(from_index); if (IsKey(k)) { uint32_t hash = HashTable::HashForObject(key, k); uint32_t insertion_index = EntryToIndex(new_table->FindInsertionEntry(hash)); for (int j = 0; j < Shape::kEntrySize; j++) { new_table->set(insertion_index + j, get(from_index + j), mode); } } } new_table->SetNumberOfElements(NumberOfElements()); new_table->SetNumberOfDeletedElements(0); } template<typename Derived, typename Shape, typename Key> uint32_t HashTable<Derived, Shape, Key>::EntryForProbe( Key key, Object* k, int probe, uint32_t expected) { uint32_t hash = HashTable::HashForObject(key, k); uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(hash, capacity); for (int i = 1; i < probe; i++) { if (entry == expected) return expected; entry = NextProbe(entry, i, capacity); } return entry; } template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode) { int index1 = EntryToIndex(entry1); int index2 = EntryToIndex(entry2); Object* temp[Shape::kEntrySize]; for (int j = 0; j < Shape::kEntrySize; j++) { temp[j] = get(index1 + j); } for (int j = 0; j < Shape::kEntrySize; j++) { set(index1 + j, get(index2 + j), mode); } for (int j = 0; j < Shape::kEntrySize; j++) { set(index2 + j, temp[j], mode); } } template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::Rehash(Key key) { DisallowHeapAllocation no_gc; WriteBarrierMode mode = GetWriteBarrierMode(no_gc); uint32_t capacity = Capacity(); bool done = false; for (int probe = 1; !done; probe++) { // All elements at entries given by one of the first _probe_ probes // are placed correctly. Other elements might need to be moved. done = true; for (uint32_t current = 0; current < capacity; current++) { Object* current_key = get(EntryToIndex(current)); if (IsKey(current_key)) { uint32_t target = EntryForProbe(key, current_key, probe, current); if (current == target) continue; Object* target_key = get(EntryToIndex(target)); if (!IsKey(target_key) || EntryForProbe(key, target_key, probe, target) != target) { // Put the current element into the correct position. Swap(current, target, mode); // The other element will be processed on the next iteration. current--; } else { // The place for the current element is occupied. Leave the element // for the next probe. done = false; } } } } } template<typename Derived, typename Shape, typename Key> Handle<Derived> HashTable<Derived, Shape, Key>::EnsureCapacity( Handle<Derived> table, int n, Key key, PretenureFlag pretenure) { Isolate* isolate = table->GetIsolate(); int capacity = table->Capacity(); int nof = table->NumberOfElements() + n; int nod = table->NumberOfDeletedElements(); // Return if: // 50% is still free after adding n elements and // at most 50% of the free elements are deleted elements. if (nod <= (capacity - nof) >> 1) { int needed_free = nof >> 1; if (nof + needed_free <= capacity) return table; } const int kMinCapacityForPretenure = 256; bool should_pretenure = pretenure == TENURED || ((capacity > kMinCapacityForPretenure) && !isolate->heap()->InNewSpace(*table)); Handle<Derived> new_table = HashTable::New( isolate, nof * 2, USE_DEFAULT_MINIMUM_CAPACITY, should_pretenure ? TENURED : NOT_TENURED); table->Rehash(new_table, key); return new_table; } template<typename Derived, typename Shape, typename Key> Handle<Derived> HashTable<Derived, Shape, Key>::Shrink(Handle<Derived> table, Key key) { int capacity = table->Capacity(); int nof = table->NumberOfElements(); // Shrink to fit the number of elements if only a quarter of the // capacity is filled with elements. if (nof > (capacity >> 2)) return table; // Allocate a new dictionary with room for at least the current // number of elements. The allocation method will make sure that // there is extra room in the dictionary for additions. Don't go // lower than room for 16 elements. int at_least_room_for = nof; if (at_least_room_for < 16) return table; Isolate* isolate = table->GetIsolate(); const int kMinCapacityForPretenure = 256; bool pretenure = (at_least_room_for > kMinCapacityForPretenure) && !isolate->heap()->InNewSpace(*table); Handle<Derived> new_table = HashTable::New( isolate, at_least_room_for, USE_DEFAULT_MINIMUM_CAPACITY, pretenure ? TENURED : NOT_TENURED); table->Rehash(new_table, key); return new_table; } template<typename Derived, typename Shape, typename Key> uint32_t HashTable<Derived, Shape, Key>::FindInsertionEntry(uint32_t hash) { uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(hash, capacity); uint32_t count = 1; // EnsureCapacity will guarantee the hash table is never full. while (true) { Object* element = KeyAt(entry); if (element->IsUndefined() || element->IsTheHole()) break; entry = NextProbe(entry, count++, capacity); } return entry; } // Force instantiation of template instances class. // Please note this list is compiler dependent. template class HashTable<StringTable, StringTableShape, HashTableKey*>; template class HashTable<CompilationCacheTable, CompilationCacheShape, HashTableKey*>; template class HashTable<MapCache, MapCacheShape, HashTableKey*>; template class HashTable<ObjectHashTable, ObjectHashTableShape, Handle<Object> >; template class HashTable<WeakHashTable, WeakHashTableShape<2>, Handle<Object> >; template class Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >; template class Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>; template class Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>; template Handle<SeededNumberDictionary> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: New(Isolate*, int at_least_space_for, PretenureFlag pretenure); template Handle<UnseededNumberDictionary> Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>:: New(Isolate*, int at_least_space_for, PretenureFlag pretenure); template Handle<NameDictionary> Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: New(Isolate*, int n, PretenureFlag pretenure); template Handle<SeededNumberDictionary> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: AtPut(Handle<SeededNumberDictionary>, uint32_t, Handle<Object>); template Handle<UnseededNumberDictionary> Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>:: AtPut(Handle<UnseededNumberDictionary>, uint32_t, Handle<Object>); template Object* Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: SlowReverseLookup(Object* value); template Object* Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: SlowReverseLookup(Object* value); template void Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: CopyKeysTo( FixedArray*, PropertyAttributes, Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::SortMode); template Handle<Object> Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::DeleteProperty( Handle<NameDictionary>, int, JSObject::DeleteMode); template Handle<Object> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: DeleteProperty(Handle<SeededNumberDictionary>, int, JSObject::DeleteMode); template Handle<NameDictionary> HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >:: New(Isolate*, int, MinimumCapacity, PretenureFlag); template Handle<NameDictionary> HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >:: Shrink(Handle<NameDictionary>, Handle<Name>); template Handle<SeededNumberDictionary> HashTable<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: Shrink(Handle<SeededNumberDictionary>, uint32_t); template void Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: CopyKeysTo( FixedArray*, int, PropertyAttributes, Dictionary< NameDictionary, NameDictionaryShape, Handle<Name> >::SortMode); template int Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: NumberOfElementsFilterAttributes(PropertyAttributes); template Handle<NameDictionary> Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::Add( Handle<NameDictionary>, Handle<Name>, Handle<Object>, PropertyDetails); template void Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: GenerateNewEnumerationIndices(Handle<NameDictionary>); template int Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: NumberOfElementsFilterAttributes(PropertyAttributes); template Handle<SeededNumberDictionary> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: Add(Handle<SeededNumberDictionary>, uint32_t, Handle<Object>, PropertyDetails); template Handle<UnseededNumberDictionary> Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>:: Add(Handle<UnseededNumberDictionary>, uint32_t, Handle<Object>, PropertyDetails); template Handle<SeededNumberDictionary> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: EnsureCapacity(Handle<SeededNumberDictionary>, int, uint32_t); template Handle<UnseededNumberDictionary> Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>:: EnsureCapacity(Handle<UnseededNumberDictionary>, int, uint32_t); template Handle<NameDictionary> Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: EnsureCapacity(Handle<NameDictionary>, int, Handle<Name>); template int Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: NumberOfEnumElements(); template int Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: NumberOfEnumElements(); template int HashTable<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: FindEntry(uint32_t); Handle<Object> JSObject::PrepareSlowElementsForSort( Handle<JSObject> object, uint32_t limit) { DCHECK(object->HasDictionaryElements()); Isolate* isolate = object->GetIsolate(); // Must stay in dictionary mode, either because of requires_slow_elements, // or because we are not going to sort (and therefore compact) all of the // elements. Handle<SeededNumberDictionary> dict(object->element_dictionary(), isolate); Handle<SeededNumberDictionary> new_dict = SeededNumberDictionary::New(isolate, dict->NumberOfElements()); uint32_t pos = 0; uint32_t undefs = 0; int capacity = dict->Capacity(); Handle<Smi> bailout(Smi::FromInt(-1), isolate); // Entry to the new dictionary does not cause it to grow, as we have // allocated one that is large enough for all entries. DisallowHeapAllocation no_gc; for (int i = 0; i < capacity; i++) { Object* k = dict->KeyAt(i); if (!dict->IsKey(k)) continue; DCHECK(k->IsNumber()); DCHECK(!k->IsSmi() || Smi::cast(k)->value() >= 0); DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0); DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32); HandleScope scope(isolate); Handle<Object> value(dict->ValueAt(i), isolate); PropertyDetails details = dict->DetailsAt(i); if (details.type() == CALLBACKS || details.IsReadOnly()) { // Bail out and do the sorting of undefineds and array holes in JS. // Also bail out if the element is not supposed to be moved. return bailout; } uint32_t key = NumberToUint32(k); if (key < limit) { if (value->IsUndefined()) { undefs++; } else if (pos > static_cast<uint32_t>(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return bailout; } else { Handle<Object> result = SeededNumberDictionary::AddNumberEntry( new_dict, pos, value, details); DCHECK(result.is_identical_to(new_dict)); USE(result); pos++; } } else if (key > static_cast<uint32_t>(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return bailout; } else { Handle<Object> result = SeededNumberDictionary::AddNumberEntry( new_dict, key, value, details); DCHECK(result.is_identical_to(new_dict)); USE(result); } } uint32_t result = pos; PropertyDetails no_details = PropertyDetails(NONE, NORMAL, 0); while (undefs > 0) { if (pos > static_cast<uint32_t>(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return bailout; } HandleScope scope(isolate); Handle<Object> result = SeededNumberDictionary::AddNumberEntry( new_dict, pos, isolate->factory()->undefined_value(), no_details); DCHECK(result.is_identical_to(new_dict)); USE(result); pos++; undefs--; } object->set_elements(*new_dict); AllowHeapAllocation allocate_return_value; return isolate->factory()->NewNumberFromUint(result); } // Collects all defined (non-hole) and non-undefined (array) elements at // the start of the elements array. // If the object is in dictionary mode, it is converted to fast elements // mode. Handle<Object> JSObject::PrepareElementsForSort(Handle<JSObject> object, uint32_t limit) { Isolate* isolate = object->GetIsolate(); if (object->HasSloppyArgumentsElements() || object->map()->is_observed()) { return handle(Smi::FromInt(-1), isolate); } if (object->HasDictionaryElements()) { // Convert to fast elements containing only the existing properties. // Ordering is irrelevant, since we are going to sort anyway. Handle<SeededNumberDictionary> dict(object->element_dictionary()); if (object->IsJSArray() || dict->requires_slow_elements() || dict->max_number_key() >= limit) { return JSObject::PrepareSlowElementsForSort(object, limit); } // Convert to fast elements. Handle<Map> new_map = JSObject::GetElementsTransitionMap(object, FAST_HOLEY_ELEMENTS); PretenureFlag tenure = isolate->heap()->InNewSpace(*object) ? NOT_TENURED: TENURED; Handle<FixedArray> fast_elements = isolate->factory()->NewFixedArray(dict->NumberOfElements(), tenure); dict->CopyValuesTo(*fast_elements); JSObject::ValidateElements(object); JSObject::SetMapAndElements(object, new_map, fast_elements); } else if (object->HasExternalArrayElements() || object->HasFixedTypedArrayElements()) { // Typed arrays cannot have holes or undefined elements. return handle(Smi::FromInt( FixedArrayBase::cast(object->elements())->length()), isolate); } else if (!object->HasFastDoubleElements()) { EnsureWritableFastElements(object); } DCHECK(object->HasFastSmiOrObjectElements() || object->HasFastDoubleElements()); // Collect holes at the end, undefined before that and the rest at the // start, and return the number of non-hole, non-undefined values. Handle<FixedArrayBase> elements_base(object->elements()); uint32_t elements_length = static_cast<uint32_t>(elements_base->length()); if (limit > elements_length) { limit = elements_length ; } if (limit == 0) { return handle(Smi::FromInt(0), isolate); } uint32_t result = 0; if (elements_base->map() == isolate->heap()->fixed_double_array_map()) { FixedDoubleArray* elements = FixedDoubleArray::cast(*elements_base); // Split elements into defined and the_hole, in that order. unsigned int holes = limit; // Assume most arrays contain no holes and undefined values, so minimize the // number of stores of non-undefined, non-the-hole values. for (unsigned int i = 0; i < holes; i++) { if (elements->is_the_hole(i)) { holes--; } else { continue; } // Position i needs to be filled. while (holes > i) { if (elements->is_the_hole(holes)) { holes--; } else { elements->set(i, elements->get_scalar(holes)); break; } } } result = holes; while (holes < limit) { elements->set_the_hole(holes); holes++; } } else { FixedArray* elements = FixedArray::cast(*elements_base); DisallowHeapAllocation no_gc; // Split elements into defined, undefined and the_hole, in that order. Only // count locations for undefined and the hole, and fill them afterwards. WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc); unsigned int undefs = limit; unsigned int holes = limit; // Assume most arrays contain no holes and undefined values, so minimize the // number of stores of non-undefined, non-the-hole values. for (unsigned int i = 0; i < undefs; i++) { Object* current = elements->get(i); if (current->IsTheHole()) { holes--; undefs--; } else if (current->IsUndefined()) { undefs--; } else { continue; } // Position i needs to be filled. while (undefs > i) { current = elements->get(undefs); if (current->IsTheHole()) { holes--; undefs--; } else if (current->IsUndefined()) { undefs--; } else { elements->set(i, current, write_barrier); break; } } } result = undefs; while (undefs < holes) { elements->set_undefined(undefs); undefs++; } while (holes < limit) { elements->set_the_hole(holes); holes++; } } return isolate->factory()->NewNumberFromUint(result); } ExternalArrayType JSTypedArray::type() { switch (elements()->map()->instance_type()) { #define INSTANCE_TYPE_TO_ARRAY_TYPE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ARRAY_TYPE: \ case FIXED_##TYPE##_ARRAY_TYPE: \ return kExternal##Type##Array; TYPED_ARRAYS(INSTANCE_TYPE_TO_ARRAY_TYPE) #undef INSTANCE_TYPE_TO_ARRAY_TYPE default: UNREACHABLE(); return static_cast<ExternalArrayType>(-1); } } size_t JSTypedArray::element_size() { switch (elements()->map()->instance_type()) { #define INSTANCE_TYPE_TO_ELEMENT_SIZE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ARRAY_TYPE: \ return size; TYPED_ARRAYS(INSTANCE_TYPE_TO_ELEMENT_SIZE) #undef INSTANCE_TYPE_TO_ELEMENT_SIZE default: UNREACHABLE(); return 0; } } Handle<Object> ExternalUint8ClampedArray::SetValue( Handle<ExternalUint8ClampedArray> array, uint32_t index, Handle<Object> value) { uint8_t clamped_value = 0; if (index < static_cast<uint32_t>(array->length())) { if (value->IsSmi()) { int int_value = Handle<Smi>::cast(value)->value(); if (int_value < 0) { clamped_value = 0; } else if (int_value > 255) { clamped_value = 255; } else { clamped_value = static_cast<uint8_t>(int_value); } } else if (value->IsHeapNumber()) { double double_value = Handle<HeapNumber>::cast(value)->value(); if (!(double_value > 0)) { // NaN and less than zero clamp to zero. clamped_value = 0; } else if (double_value > 255) { // Greater than 255 clamp to 255. clamped_value = 255; } else { // Other doubles are rounded to the nearest integer. clamped_value = static_cast<uint8_t>(lrint(double_value)); } } else { // Clamp undefined to zero (default). All other types have been // converted to a number type further up in the call chain. DCHECK(value->IsUndefined()); } array->set(index, clamped_value); } return handle(Smi::FromInt(clamped_value), array->GetIsolate()); } template<typename ExternalArrayClass, typename ValueType> static Handle<Object> ExternalArrayIntSetter( Isolate* isolate, Handle<ExternalArrayClass> receiver, uint32_t index, Handle<Object> value) { ValueType cast_value = 0; if (index < static_cast<uint32_t>(receiver->length())) { if (value->IsSmi()) { int int_value = Handle<Smi>::cast(value)->value(); cast_value = static_cast<ValueType>(int_value); } else if (value->IsHeapNumber()) { double double_value = Handle<HeapNumber>::cast(value)->value(); cast_value = static_cast<ValueType>(DoubleToInt32(double_value)); } else { // Clamp undefined to zero (default). All other types have been // converted to a number type further up in the call chain. DCHECK(value->IsUndefined()); } receiver->set(index, cast_value); } return isolate->factory()->NewNumberFromInt(cast_value); } Handle<Object> ExternalInt8Array::SetValue(Handle<ExternalInt8Array> array, uint32_t index, Handle<Object> value) { return ExternalArrayIntSetter<ExternalInt8Array, int8_t>( array->GetIsolate(), array, index, value); } Handle<Object> ExternalUint8Array::SetValue(Handle<ExternalUint8Array> array, uint32_t index, Handle<Object> value) { return ExternalArrayIntSetter<ExternalUint8Array, uint8_t>( array->GetIsolate(), array, index, value); } Handle<Object> ExternalInt16Array::SetValue(Handle<ExternalInt16Array> array, uint32_t index, Handle<Object> value) { return ExternalArrayIntSetter<ExternalInt16Array, int16_t>( array->GetIsolate(), array, index, value); } Handle<Object> ExternalUint16Array::SetValue(Handle<ExternalUint16Array> array, uint32_t index, Handle<Object> value) { return ExternalArrayIntSetter<ExternalUint16Array, uint16_t>( array->GetIsolate(), array, index, value); } Handle<Object> ExternalInt32Array::SetValue(Handle<ExternalInt32Array> array, uint32_t index, Handle<Object> value) { return ExternalArrayIntSetter<ExternalInt32Array, int32_t>( array->GetIsolate(), array, index, value); } Handle<Object> ExternalUint32Array::SetValue( Handle<ExternalUint32Array> array, uint32_t index, Handle<Object> value) { uint32_t cast_value = 0; if (index < static_cast<uint32_t>(array->length())) { if (value->IsSmi()) { int int_value = Handle<Smi>::cast(value)->value(); cast_value = static_cast<uint32_t>(int_value); } else if (value->IsHeapNumber()) { double double_value = Handle<HeapNumber>::cast(value)->value(); cast_value = static_cast<uint32_t>(DoubleToUint32(double_value)); } else { // Clamp undefined to zero (default). All other types have been // converted to a number type further up in the call chain. DCHECK(value->IsUndefined()); } array->set(index, cast_value); } return array->GetIsolate()->factory()->NewNumberFromUint(cast_value); } Handle<Object> ExternalFloat32Array::SetValue( Handle<ExternalFloat32Array> array, uint32_t index, Handle<Object> value) { float cast_value = static_cast<float>(base::OS::nan_value()); if (index < static_cast<uint32_t>(array->length())) { if (value->IsSmi()) { int int_value = Handle<Smi>::cast(value)->value(); cast_value = static_cast<float>(int_value); } else if (value->IsHeapNumber()) { double double_value = Handle<HeapNumber>::cast(value)->value(); cast_value = static_cast<float>(double_value); } else { // Clamp undefined to NaN (default). All other types have been // converted to a number type further up in the call chain. DCHECK(value->IsUndefined()); } array->set(index, cast_value); } return array->GetIsolate()->factory()->NewNumber(cast_value); } Handle<Object> ExternalFloat64Array::SetValue( Handle<ExternalFloat64Array> array, uint32_t index, Handle<Object> value) { double double_value = base::OS::nan_value(); if (index < static_cast<uint32_t>(array->length())) { if (value->IsNumber()) { double_value = value->Number(); } else { // Clamp undefined to NaN (default). All other types have been // converted to a number type further up in the call chain. DCHECK(value->IsUndefined()); } array->set(index, double_value); } return array->GetIsolate()->factory()->NewNumber(double_value); } Handle<PropertyCell> JSGlobalObject::EnsurePropertyCell( Handle<JSGlobalObject> global, Handle<Name> name) { DCHECK(!global->HasFastProperties()); int entry = global->property_dictionary()->FindEntry(name); if (entry == NameDictionary::kNotFound) { Isolate* isolate = global->GetIsolate(); Handle<PropertyCell> cell = isolate->factory()->NewPropertyCell( isolate->factory()->the_hole_value()); PropertyDetails details(NONE, NORMAL, 0); details = details.AsDeleted(); Handle<NameDictionary> dictionary = NameDictionary::Add( handle(global->property_dictionary()), name, cell, details); global->set_properties(*dictionary); return cell; } else { Object* value = global->property_dictionary()->ValueAt(entry); DCHECK(value->IsPropertyCell()); return handle(PropertyCell::cast(value)); } } // This class is used for looking up two character strings in the string table. // If we don't have a hit we don't want to waste much time so we unroll the // string hash calculation loop here for speed. Doesn't work if the two // characters form a decimal integer, since such strings have a different hash // algorithm. class TwoCharHashTableKey : public HashTableKey { public: TwoCharHashTableKey(uint16_t c1, uint16_t c2, uint32_t seed) : c1_(c1), c2_(c2) { // Char 1. uint32_t hash = seed; hash += c1; hash += hash << 10; hash ^= hash >> 6; // Char 2. hash += c2; hash += hash << 10; hash ^= hash >> 6; // GetHash. hash += hash << 3; hash ^= hash >> 11; hash += hash << 15; if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash; hash_ = hash; #ifdef DEBUG // If this assert fails then we failed to reproduce the two-character // version of the string hashing algorithm above. One reason could be // that we were passed two digits as characters, since the hash // algorithm is different in that case. uint16_t chars[2] = {c1, c2}; uint32_t check_hash = StringHasher::HashSequentialString(chars, 2, seed); hash = (hash << String::kHashShift) | String::kIsNotArrayIndexMask; DCHECK_EQ(static_cast<int32_t>(hash), static_cast<int32_t>(check_hash)); #endif } bool IsMatch(Object* o) OVERRIDE { if (!o->IsString()) return false; String* other = String::cast(o); if (other->length() != 2) return false; if (other->Get(0) != c1_) return false; return other->Get(1) == c2_; } uint32_t Hash() OVERRIDE { return hash_; } uint32_t HashForObject(Object* key) OVERRIDE { if (!key->IsString()) return 0; return String::cast(key)->Hash(); } Handle<Object> AsHandle(Isolate* isolate) OVERRIDE { // The TwoCharHashTableKey is only used for looking in the string // table, not for adding to it. UNREACHABLE(); return MaybeHandle<Object>().ToHandleChecked(); } private: uint16_t c1_; uint16_t c2_; uint32_t hash_; }; MaybeHandle<String> StringTable::InternalizeStringIfExists( Isolate* isolate, Handle<String> string) { if (string->IsInternalizedString()) { return string; } return LookupStringIfExists(isolate, string); } MaybeHandle<String> StringTable::LookupStringIfExists( Isolate* isolate, Handle<String> string) { Handle<StringTable> string_table = isolate->factory()->string_table(); InternalizedStringKey key(string); int entry = string_table->FindEntry(&key); if (entry == kNotFound) { return MaybeHandle<String>(); } else { Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate); DCHECK(StringShape(*result).IsInternalized()); return result; } } MaybeHandle<String> StringTable::LookupTwoCharsStringIfExists( Isolate* isolate, uint16_t c1, uint16_t c2) { Handle<StringTable> string_table = isolate->factory()->string_table(); TwoCharHashTableKey key(c1, c2, isolate->heap()->HashSeed()); int entry = string_table->FindEntry(&key); if (entry == kNotFound) { return MaybeHandle<String>(); } else { Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate); DCHECK(StringShape(*result).IsInternalized()); return result; } } Handle<String> StringTable::LookupString(Isolate* isolate, Handle<String> string) { InternalizedStringKey key(string); return LookupKey(isolate, &key); } Handle<String> StringTable::LookupKey(Isolate* isolate, HashTableKey* key) { Handle<StringTable> table = isolate->factory()->string_table(); int entry = table->FindEntry(key); // String already in table. if (entry != kNotFound) { return handle(String::cast(table->KeyAt(entry)), isolate); } // Adding new string. Grow table if needed. table = StringTable::EnsureCapacity(table, 1, key); // Create string object. Handle<Object> string = key->AsHandle(isolate); // There must be no attempts to internalize strings that could throw // InvalidStringLength error. CHECK(!string.is_null()); // Add the new string and return it along with the string table. entry = table->FindInsertionEntry(key->Hash()); table->set(EntryToIndex(entry), *string); table->ElementAdded(); isolate->factory()->set_string_table(table); return Handle<String>::cast(string); } Handle<Object> CompilationCacheTable::Lookup(Handle<String> src, Handle<Context> context) { Isolate* isolate = GetIsolate(); Handle<SharedFunctionInfo> shared(context->closure()->shared()); StringSharedKey key(src, shared, FLAG_use_strict ? STRICT : SLOPPY, RelocInfo::kNoPosition); int entry = FindEntry(&key); if (entry == kNotFound) return isolate->factory()->undefined_value(); return Handle<Object>(get(EntryToIndex(entry) + 1), isolate); } Handle<Object> CompilationCacheTable::LookupEval( Handle<String> src, Handle<SharedFunctionInfo> outer_info, StrictMode strict_mode, int scope_position) { Isolate* isolate = GetIsolate(); // Cache key is the tuple (source, outer shared function info, scope position) // to unambiguously identify the context chain the cached eval code assumes. StringSharedKey key(src, outer_info, strict_mode, scope_position); int entry = FindEntry(&key); if (entry == kNotFound) return isolate->factory()->undefined_value(); return Handle<Object>(get(EntryToIndex(entry) + 1), isolate); } Handle<Object> CompilationCacheTable::LookupRegExp(Handle<String> src, JSRegExp::Flags flags) { Isolate* isolate = GetIsolate(); DisallowHeapAllocation no_allocation; RegExpKey key(src, flags); int entry = FindEntry(&key); if (entry == kNotFound) return isolate->factory()->undefined_value(); return Handle<Object>(get(EntryToIndex(entry) + 1), isolate); } Handle<CompilationCacheTable> CompilationCacheTable::Put( Handle<CompilationCacheTable> cache, Handle<String> src, Handle<Context> context, Handle<Object> value) { Isolate* isolate = cache->GetIsolate(); Handle<SharedFunctionInfo> shared(context->closure()->shared()); StringSharedKey key(src, shared, FLAG_use_strict ? STRICT : SLOPPY, RelocInfo::kNoPosition); cache = EnsureCapacity(cache, 1, &key); Handle<Object> k = key.AsHandle(isolate); int entry = cache->FindInsertionEntry(key.Hash()); cache->set(EntryToIndex(entry), *k); cache->set(EntryToIndex(entry) + 1, *value); cache->ElementAdded(); return cache; } Handle<CompilationCacheTable> CompilationCacheTable::PutEval( Handle<CompilationCacheTable> cache, Handle<String> src, Handle<SharedFunctionInfo> outer_info, Handle<SharedFunctionInfo> value, int scope_position) { Isolate* isolate = cache->GetIsolate(); StringSharedKey key(src, outer_info, value->strict_mode(), scope_position); cache = EnsureCapacity(cache, 1, &key); Handle<Object> k = key.AsHandle(isolate); int entry = cache->FindInsertionEntry(key.Hash()); cache->set(EntryToIndex(entry), *k); cache->set(EntryToIndex(entry) + 1, *value); cache->ElementAdded(); return cache; } Handle<CompilationCacheTable> CompilationCacheTable::PutRegExp( Handle<CompilationCacheTable> cache, Handle<String> src, JSRegExp::Flags flags, Handle<FixedArray> value) { RegExpKey key(src, flags); cache = EnsureCapacity(cache, 1, &key); int entry = cache->FindInsertionEntry(key.Hash()); // We store the value in the key slot, and compare the search key // to the stored value with a custon IsMatch function during lookups. cache->set(EntryToIndex(entry), *value); cache->set(EntryToIndex(entry) + 1, *value); cache->ElementAdded(); return cache; } void CompilationCacheTable::Remove(Object* value) { DisallowHeapAllocation no_allocation; Object* the_hole_value = GetHeap()->the_hole_value(); for (int entry = 0, size = Capacity(); entry < size; entry++) { int entry_index = EntryToIndex(entry); int value_index = entry_index + 1; if (get(value_index) == value) { NoWriteBarrierSet(this, entry_index, the_hole_value); NoWriteBarrierSet(this, value_index, the_hole_value); ElementRemoved(); } } return; } // StringsKey used for HashTable where key is array of internalized strings. class StringsKey : public HashTableKey { public: explicit StringsKey(Handle<FixedArray> strings) : strings_(strings) { } bool IsMatch(Object* strings) OVERRIDE { FixedArray* o = FixedArray::cast(strings); int len = strings_->length(); if (o->length() != len) return false; for (int i = 0; i < len; i++) { if (o->get(i) != strings_->get(i)) return false; } return true; } uint32_t Hash() OVERRIDE { return HashForObject(*strings_); } uint32_t HashForObject(Object* obj) OVERRIDE { FixedArray* strings = FixedArray::cast(obj); int len = strings->length(); uint32_t hash = 0; for (int i = 0; i < len; i++) { hash ^= String::cast(strings->get(i))->Hash(); } return hash; } Handle<Object> AsHandle(Isolate* isolate) OVERRIDE { return strings_; } private: Handle<FixedArray> strings_; }; Object* MapCache::Lookup(FixedArray* array) { DisallowHeapAllocation no_alloc; StringsKey key(handle(array)); int entry = FindEntry(&key); if (entry == kNotFound) return GetHeap()->undefined_value(); return get(EntryToIndex(entry) + 1); } Handle<MapCache> MapCache::Put( Handle<MapCache> map_cache, Handle<FixedArray> array, Handle<Map> value) { StringsKey key(array); Handle<MapCache> new_cache = EnsureCapacity(map_cache, 1, &key); int entry = new_cache->FindInsertionEntry(key.Hash()); new_cache->set(EntryToIndex(entry), *array); new_cache->set(EntryToIndex(entry) + 1, *value); new_cache->ElementAdded(); return new_cache; } template<typename Derived, typename Shape, typename Key> Handle<Derived> Dictionary<Derived, Shape, Key>::New( Isolate* isolate, int at_least_space_for, PretenureFlag pretenure) { DCHECK(0 <= at_least_space_for); Handle<Derived> dict = DerivedHashTable::New(isolate, at_least_space_for, USE_DEFAULT_MINIMUM_CAPACITY, pretenure); // Initialize the next enumeration index. dict->SetNextEnumerationIndex(PropertyDetails::kInitialIndex); return dict; } template<typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::GenerateNewEnumerationIndices( Handle<Derived> dictionary) { Factory* factory = dictionary->GetIsolate()->factory(); int length = dictionary->NumberOfElements(); // Allocate and initialize iteration order array. Handle<FixedArray> iteration_order = factory->NewFixedArray(length); for (int i = 0; i < length; i++) { iteration_order->set(i, Smi::FromInt(i)); } // Allocate array with enumeration order. Handle<FixedArray> enumeration_order = factory->NewFixedArray(length); // Fill the enumeration order array with property details. int capacity = dictionary->Capacity(); int pos = 0; for (int i = 0; i < capacity; i++) { if (dictionary->IsKey(dictionary->KeyAt(i))) { int index = dictionary->DetailsAt(i).dictionary_index(); enumeration_order->set(pos++, Smi::FromInt(index)); } } // Sort the arrays wrt. enumeration order. iteration_order->SortPairs(*enumeration_order, enumeration_order->length()); // Overwrite the enumeration_order with the enumeration indices. for (int i = 0; i < length; i++) { int index = Smi::cast(iteration_order->get(i))->value(); int enum_index = PropertyDetails::kInitialIndex + i; enumeration_order->set(index, Smi::FromInt(enum_index)); } // Update the dictionary with new indices. capacity = dictionary->Capacity(); pos = 0; for (int i = 0; i < capacity; i++) { if (dictionary->IsKey(dictionary->KeyAt(i))) { int enum_index = Smi::cast(enumeration_order->get(pos++))->value(); PropertyDetails details = dictionary->DetailsAt(i); PropertyDetails new_details = PropertyDetails( details.attributes(), details.type(), enum_index); dictionary->DetailsAtPut(i, new_details); } } // Set the next enumeration index. dictionary->SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length); } template<typename Derived, typename Shape, typename Key> Handle<Derived> Dictionary<Derived, Shape, Key>::EnsureCapacity( Handle<Derived> dictionary, int n, Key key) { // Check whether there are enough enumeration indices to add n elements. if (Shape::kIsEnumerable && !PropertyDetails::IsValidIndex(dictionary->NextEnumerationIndex() + n)) { // If not, we generate new indices for the properties. GenerateNewEnumerationIndices(dictionary); } return DerivedHashTable::EnsureCapacity(dictionary, n, key); } template<typename Derived, typename Shape, typename Key> Handle<Object> Dictionary<Derived, Shape, Key>::DeleteProperty( Handle<Derived> dictionary, int entry, JSObject::DeleteMode mode) { Factory* factory = dictionary->GetIsolate()->factory(); PropertyDetails details = dictionary->DetailsAt(entry); // Ignore attributes if forcing a deletion. if (!details.IsConfigurable() && mode != JSReceiver::FORCE_DELETION) { return factory->false_value(); } dictionary->SetEntry( entry, factory->the_hole_value(), factory->the_hole_value()); dictionary->ElementRemoved(); return factory->true_value(); } template<typename Derived, typename Shape, typename Key> Handle<Derived> Dictionary<Derived, Shape, Key>::AtPut( Handle<Derived> dictionary, Key key, Handle<Object> value) { int entry = dictionary->FindEntry(key); // If the entry is present set the value; if (entry != Dictionary::kNotFound) { dictionary->ValueAtPut(entry, *value); return dictionary; } // Check whether the dictionary should be extended. dictionary = EnsureCapacity(dictionary, 1, key); #ifdef DEBUG USE(Shape::AsHandle(dictionary->GetIsolate(), key)); #endif PropertyDetails details = PropertyDetails(NONE, NORMAL, 0); AddEntry(dictionary, key, value, details, dictionary->Hash(key)); return dictionary; } template<typename Derived, typename Shape, typename Key> Handle<Derived> Dictionary<Derived, Shape, Key>::Add( Handle<Derived> dictionary, Key key, Handle<Object> value, PropertyDetails details) { // Valdate key is absent. SLOW_DCHECK((dictionary->FindEntry(key) == Dictionary::kNotFound)); // Check whether the dictionary should be extended. dictionary = EnsureCapacity(dictionary, 1, key); AddEntry(dictionary, key, value, details, dictionary->Hash(key)); return dictionary; } // Add a key, value pair to the dictionary. template<typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::AddEntry( Handle<Derived> dictionary, Key key, Handle<Object> value, PropertyDetails details, uint32_t hash) { // Compute the key object. Handle<Object> k = Shape::AsHandle(dictionary->GetIsolate(), key); uint32_t entry = dictionary->FindInsertionEntry(hash); // Insert element at empty or deleted entry if (!details.IsDeleted() && details.dictionary_index() == 0 && Shape::kIsEnumerable) { // Assign an enumeration index to the property and update // SetNextEnumerationIndex. int index = dictionary->NextEnumerationIndex(); details = PropertyDetails(details.attributes(), details.type(), index); dictionary->SetNextEnumerationIndex(index + 1); } dictionary->SetEntry(entry, k, value, details); DCHECK((dictionary->KeyAt(entry)->IsNumber() || dictionary->KeyAt(entry)->IsName())); dictionary->ElementAdded(); } void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key) { DisallowHeapAllocation no_allocation; // If the dictionary requires slow elements an element has already // been added at a high index. if (requires_slow_elements()) return; // Check if this index is high enough that we should require slow // elements. if (key > kRequiresSlowElementsLimit) { set_requires_slow_elements(); return; } // Update max key value. Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi() || max_number_key() < key) { FixedArray::set(kMaxNumberKeyIndex, Smi::FromInt(key << kRequiresSlowElementsTagSize)); } } Handle<SeededNumberDictionary> SeededNumberDictionary::AddNumberEntry( Handle<SeededNumberDictionary> dictionary, uint32_t key, Handle<Object> value, PropertyDetails details) { dictionary->UpdateMaxNumberKey(key); SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound); return Add(dictionary, key, value, details); } Handle<UnseededNumberDictionary> UnseededNumberDictionary::AddNumberEntry( Handle<UnseededNumberDictionary> dictionary, uint32_t key, Handle<Object> value) { SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound); return Add(dictionary, key, value, PropertyDetails(NONE, NORMAL, 0)); } Handle<SeededNumberDictionary> SeededNumberDictionary::AtNumberPut( Handle<SeededNumberDictionary> dictionary, uint32_t key, Handle<Object> value) { dictionary->UpdateMaxNumberKey(key); return AtPut(dictionary, key, value); } Handle<UnseededNumberDictionary> UnseededNumberDictionary::AtNumberPut( Handle<UnseededNumberDictionary> dictionary, uint32_t key, Handle<Object> value) { return AtPut(dictionary, key, value); } Handle<SeededNumberDictionary> SeededNumberDictionary::Set( Handle<SeededNumberDictionary> dictionary, uint32_t key, Handle<Object> value, PropertyDetails details) { int entry = dictionary->FindEntry(key); if (entry == kNotFound) { return AddNumberEntry(dictionary, key, value, details); } // Preserve enumeration index. details = PropertyDetails(details.attributes(), details.type(), dictionary->DetailsAt(entry).dictionary_index()); Handle<Object> object_key = SeededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key); dictionary->SetEntry(entry, object_key, value, details); return dictionary; } Handle<UnseededNumberDictionary> UnseededNumberDictionary::Set( Handle<UnseededNumberDictionary> dictionary, uint32_t key, Handle<Object> value) { int entry = dictionary->FindEntry(key); if (entry == kNotFound) return AddNumberEntry(dictionary, key, value); Handle<Object> object_key = UnseededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key); dictionary->SetEntry(entry, object_key, value); return dictionary; } template<typename Derived, typename Shape, typename Key> int Dictionary<Derived, Shape, Key>::NumberOfElementsFilterAttributes( PropertyAttributes filter) { int capacity = DerivedHashTable::Capacity(); int result = 0; for (int i = 0; i < capacity; i++) { Object* k = DerivedHashTable::KeyAt(i); if (DerivedHashTable::IsKey(k) && !FilterKey(k, filter)) { PropertyDetails details = DetailsAt(i); if (details.IsDeleted()) continue; PropertyAttributes attr = details.attributes(); if ((attr & filter) == 0) result++; } } return result; } template<typename Derived, typename Shape, typename Key> int Dictionary<Derived, Shape, Key>::NumberOfEnumElements() { return NumberOfElementsFilterAttributes( static_cast<PropertyAttributes>(DONT_ENUM | SYMBOLIC)); } template<typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::CopyKeysTo( FixedArray* storage, PropertyAttributes filter, typename Dictionary<Derived, Shape, Key>::SortMode sort_mode) { DCHECK(storage->length() >= NumberOfElementsFilterAttributes(filter)); int capacity = DerivedHashTable::Capacity(); int index = 0; for (int i = 0; i < capacity; i++) { Object* k = DerivedHashTable::KeyAt(i); if (DerivedHashTable::IsKey(k) && !FilterKey(k, filter)) { PropertyDetails details = DetailsAt(i); if (details.IsDeleted()) continue; PropertyAttributes attr = details.attributes(); if ((attr & filter) == 0) storage->set(index++, k); } } if (sort_mode == Dictionary::SORTED) { storage->SortPairs(storage, index); } DCHECK(storage->length() >= index); } struct EnumIndexComparator { explicit EnumIndexComparator(NameDictionary* dict) : dict(dict) { } bool operator() (Smi* a, Smi* b) { PropertyDetails da(dict->DetailsAt(a->value())); PropertyDetails db(dict->DetailsAt(b->value())); return da.dictionary_index() < db.dictionary_index(); } NameDictionary* dict; }; void NameDictionary::CopyEnumKeysTo(FixedArray* storage) { int length = storage->length(); int capacity = Capacity(); int properties = 0; for (int i = 0; i < capacity; i++) { Object* k = KeyAt(i); if (IsKey(k) && !k->IsSymbol()) { PropertyDetails details = DetailsAt(i); if (details.IsDeleted() || details.IsDontEnum()) continue; storage->set(properties, Smi::FromInt(i)); properties++; if (properties == length) break; } } CHECK_EQ(length, properties); EnumIndexComparator cmp(this); Smi** start = reinterpret_cast<Smi**>(storage->GetFirstElementAddress()); std::sort(start, start + length, cmp); for (int i = 0; i < length; i++) { int index = Smi::cast(storage->get(i))->value(); storage->set(i, KeyAt(index)); } } template<typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::CopyKeysTo( FixedArray* storage, int index, PropertyAttributes filter, typename Dictionary<Derived, Shape, Key>::SortMode sort_mode) { DCHECK(storage->length() >= NumberOfElementsFilterAttributes(filter)); int capacity = DerivedHashTable::Capacity(); for (int i = 0; i < capacity; i++) { Object* k = DerivedHashTable::KeyAt(i); if (DerivedHashTable::IsKey(k) && !FilterKey(k, filter)) { PropertyDetails details = DetailsAt(i); if (details.IsDeleted()) continue; PropertyAttributes attr = details.attributes(); if ((attr & filter) == 0) storage->set(index++, k); } } if (sort_mode == Dictionary::SORTED) { storage->SortPairs(storage, index); } DCHECK(storage->length() >= index); } // Backwards lookup (slow). template<typename Derived, typename Shape, typename Key> Object* Dictionary<Derived, Shape, Key>::SlowReverseLookup(Object* value) { int capacity = DerivedHashTable::Capacity(); for (int i = 0; i < capacity; i++) { Object* k = DerivedHashTable::KeyAt(i); if (Dictionary::IsKey(k)) { Object* e = ValueAt(i); if (e->IsPropertyCell()) { e = PropertyCell::cast(e)->value(); } if (e == value) return k; } } Heap* heap = Dictionary::GetHeap(); return heap->undefined_value(); } Object* ObjectHashTable::Lookup(Handle<Object> key) { DisallowHeapAllocation no_gc; DCHECK(IsKey(*key)); // If the object does not have an identity hash, it was never used as a key. Object* hash = key->GetHash(); if (hash->IsUndefined()) { return GetHeap()->the_hole_value(); } int entry = FindEntry(key); if (entry == kNotFound) return GetHeap()->the_hole_value(); return get(EntryToIndex(entry) + 1); } Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table, Handle<Object> key, Handle<Object> value) { DCHECK(table->IsKey(*key)); DCHECK(!value->IsTheHole()); Isolate* isolate = table->GetIsolate(); // Make sure the key object has an identity hash code. Handle<Smi> hash = Object::GetOrCreateHash(isolate, key); int entry = table->FindEntry(key); // Key is already in table, just overwrite value. if (entry != kNotFound) { table->set(EntryToIndex(entry) + 1, *value); return table; } // Check whether the hash table should be extended. table = EnsureCapacity(table, 1, key); table->AddEntry(table->FindInsertionEntry(hash->value()), *key, *value); return table; } Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table, Handle<Object> key, bool* was_present) { DCHECK(table->IsKey(*key)); Object* hash = key->GetHash(); if (hash->IsUndefined()) { *was_present = false; return table; } int entry = table->FindEntry(key); if (entry == kNotFound) { *was_present = false; return table; } *was_present = true; table->RemoveEntry(entry); return Shrink(table, key); } void ObjectHashTable::AddEntry(int entry, Object* key, Object* value) { set(EntryToIndex(entry), key); set(EntryToIndex(entry) + 1, value); ElementAdded(); } void ObjectHashTable::RemoveEntry(int entry) { set_the_hole(EntryToIndex(entry)); set_the_hole(EntryToIndex(entry) + 1); ElementRemoved(); } Object* WeakHashTable::Lookup(Handle<Object> key) { DisallowHeapAllocation no_gc; DCHECK(IsKey(*key)); int entry = FindEntry(key); if (entry == kNotFound) return GetHeap()->the_hole_value(); return get(EntryToValueIndex(entry)); } Handle<WeakHashTable> WeakHashTable::Put(Handle<WeakHashTable> table, Handle<Object> key, Handle<Object> value) { DCHECK(table->IsKey(*key)); int entry = table->FindEntry(key); // Key is already in table, just overwrite value. if (entry != kNotFound) { // TODO(ulan): Skipping write barrier is a temporary solution to avoid // memory leaks. Remove this once we have special visitor for weak fixed // arrays. table->set(EntryToValueIndex(entry), *value, SKIP_WRITE_BARRIER); return table; } // Check whether the hash table should be extended. table = EnsureCapacity(table, 1, key, TENURED); table->AddEntry(table->FindInsertionEntry(table->Hash(key)), key, value); return table; } void WeakHashTable::AddEntry(int entry, Handle<Object> key, Handle<Object> value) { DisallowHeapAllocation no_allocation; // TODO(ulan): Skipping write barrier is a temporary solution to avoid // memory leaks. Remove this once we have special visitor for weak fixed // arrays. set(EntryToIndex(entry), *key, SKIP_WRITE_BARRIER); set(EntryToValueIndex(entry), *value, SKIP_WRITE_BARRIER); ElementAdded(); } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Allocate( Isolate* isolate, int capacity, PretenureFlag pretenure) { // Capacity must be a power of two, since we depend on being able // to divide and multiple by 2 (kLoadFactor) to derive capacity // from number of buckets. If we decide to change kLoadFactor // to something other than 2, capacity should be stored as another // field of this object. capacity = base::bits::RoundUpToPowerOfTwo32(Max(kMinCapacity, capacity)); if (capacity > kMaxCapacity) { v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true); } int num_buckets = capacity / kLoadFactor; Handle<FixedArray> backing_store = isolate->factory()->NewFixedArray( kHashTableStartIndex + num_buckets + (capacity * kEntrySize), pretenure); backing_store->set_map_no_write_barrier( isolate->heap()->ordered_hash_table_map()); Handle<Derived> table = Handle<Derived>::cast(backing_store); for (int i = 0; i < num_buckets; ++i) { table->set(kHashTableStartIndex + i, Smi::FromInt(kNotFound)); } table->SetNumberOfBuckets(num_buckets); table->SetNumberOfElements(0); table->SetNumberOfDeletedElements(0); return table; } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::EnsureGrowable( Handle<Derived> table) { DCHECK(!table->IsObsolete()); int nof = table->NumberOfElements(); int nod = table->NumberOfDeletedElements(); int capacity = table->Capacity(); if ((nof + nod) < capacity) return table; // Don't need to grow if we can simply clear out deleted entries instead. // Note that we can't compact in place, though, so we always allocate // a new table. return Rehash(table, (nod < (capacity >> 1)) ? capacity << 1 : capacity); } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Shrink( Handle<Derived> table) { DCHECK(!table->IsObsolete()); int nof = table->NumberOfElements(); int capacity = table->Capacity(); if (nof >= (capacity >> 2)) return table; return Rehash(table, capacity / 2); } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Clear( Handle<Derived> table) { DCHECK(!table->IsObsolete()); Handle<Derived> new_table = Allocate(table->GetIsolate(), kMinCapacity, table->GetHeap()->InNewSpace(*table) ? NOT_TENURED : TENURED); table->SetNextTable(*new_table); table->SetNumberOfDeletedElements(-1); return new_table; } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Remove( Handle<Derived> table, Handle<Object> key, bool* was_present) { int entry = table->FindEntry(key); if (entry == kNotFound) { *was_present = false; return table; } *was_present = true; table->RemoveEntry(entry); return Shrink(table); } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Rehash( Handle<Derived> table, int new_capacity) { DCHECK(!table->IsObsolete()); Handle<Derived> new_table = Allocate(table->GetIsolate(), new_capacity, table->GetHeap()->InNewSpace(*table) ? NOT_TENURED : TENURED); int nof = table->NumberOfElements(); int nod = table->NumberOfDeletedElements(); int new_buckets = new_table->NumberOfBuckets(); int new_entry = 0; int removed_holes_index = 0; for (int old_entry = 0; old_entry < (nof + nod); ++old_entry) { Object* key = table->KeyAt(old_entry); if (key->IsTheHole()) { table->SetRemovedIndexAt(removed_holes_index++, old_entry); continue; } Object* hash = key->GetHash(); int bucket = Smi::cast(hash)->value() & (new_buckets - 1); Object* chain_entry = new_table->get(kHashTableStartIndex + bucket); new_table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry)); int new_index = new_table->EntryToIndex(new_entry); int old_index = table->EntryToIndex(old_entry); for (int i = 0; i < entrysize; ++i) { Object* value = table->get(old_index + i); new_table->set(new_index + i, value); } new_table->set(new_index + kChainOffset, chain_entry); ++new_entry; } DCHECK_EQ(nod, removed_holes_index); new_table->SetNumberOfElements(nof); table->SetNextTable(*new_table); return new_table; } template <class Derived, class Iterator, int entrysize> int OrderedHashTable<Derived, Iterator, entrysize>::FindEntry( Handle<Object> key, int hash) { DCHECK(!IsObsolete()); DisallowHeapAllocation no_gc; DCHECK(!key->IsTheHole()); for (int entry = HashToEntry(hash); entry != kNotFound; entry = ChainAt(entry)) { Object* candidate = KeyAt(entry); if (candidate->SameValueZero(*key)) return entry; } return kNotFound; } template <class Derived, class Iterator, int entrysize> int OrderedHashTable<Derived, Iterator, entrysize>::FindEntry( Handle<Object> key) { DisallowHeapAllocation no_gc; Object* hash = key->GetHash(); if (!hash->IsSmi()) return kNotFound; return FindEntry(key, Smi::cast(hash)->value()); } template <class Derived, class Iterator, int entrysize> int OrderedHashTable<Derived, Iterator, entrysize>::AddEntry(int hash) { DCHECK(!IsObsolete()); int entry = UsedCapacity(); int bucket = HashToBucket(hash); int index = EntryToIndex(entry); Object* chain_entry = get(kHashTableStartIndex + bucket); set(kHashTableStartIndex + bucket, Smi::FromInt(entry)); set(index + kChainOffset, chain_entry); SetNumberOfElements(NumberOfElements() + 1); return index; } template<class Derived, class Iterator, int entrysize> void OrderedHashTable<Derived, Iterator, entrysize>::RemoveEntry(int entry) { DCHECK(!IsObsolete()); int index = EntryToIndex(entry); for (int i = 0; i < entrysize; ++i) { set_the_hole(index + i); } SetNumberOfElements(NumberOfElements() - 1); SetNumberOfDeletedElements(NumberOfDeletedElements() + 1); } template Handle<OrderedHashSet> OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Allocate( Isolate* isolate, int capacity, PretenureFlag pretenure); template Handle<OrderedHashSet> OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::EnsureGrowable( Handle<OrderedHashSet> table); template Handle<OrderedHashSet> OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Shrink( Handle<OrderedHashSet> table); template Handle<OrderedHashSet> OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Clear( Handle<OrderedHashSet> table); template Handle<OrderedHashSet> OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Remove( Handle<OrderedHashSet> table, Handle<Object> key, bool* was_present); template int OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::FindEntry( Handle<Object> key, int hash); template int OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::FindEntry( Handle<Object> key); template int OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::AddEntry(int hash); template void OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::RemoveEntry(int entry); template Handle<OrderedHashMap> OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Allocate( Isolate* isolate, int capacity, PretenureFlag pretenure); template Handle<OrderedHashMap> OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::EnsureGrowable( Handle<OrderedHashMap> table); template Handle<OrderedHashMap> OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Shrink( Handle<OrderedHashMap> table); template Handle<OrderedHashMap> OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Clear( Handle<OrderedHashMap> table); template Handle<OrderedHashMap> OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Remove( Handle<OrderedHashMap> table, Handle<Object> key, bool* was_present); template int OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::FindEntry( Handle<Object> key, int hash); template int OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::FindEntry( Handle<Object> key); template int OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::AddEntry(int hash); template void OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::RemoveEntry(int entry); bool OrderedHashSet::Contains(Handle<Object> key) { return FindEntry(key) != kNotFound; } Handle<OrderedHashSet> OrderedHashSet::Add(Handle<OrderedHashSet> table, Handle<Object> key) { int hash = GetOrCreateHash(table->GetIsolate(), key)->value(); if (table->FindEntry(key, hash) != kNotFound) return table; table = EnsureGrowable(table); int index = table->AddEntry(hash); table->set(index, *key); return table; } Object* OrderedHashMap::Lookup(Handle<Object> key) { DisallowHeapAllocation no_gc; int entry = FindEntry(key); if (entry == kNotFound) return GetHeap()->the_hole_value(); return ValueAt(entry); } Handle<OrderedHashMap> OrderedHashMap::Put(Handle<OrderedHashMap> table, Handle<Object> key, Handle<Object> value) { DCHECK(!key->IsTheHole()); int hash = GetOrCreateHash(table->GetIsolate(), key)->value(); int entry = table->FindEntry(key, hash); if (entry != kNotFound) { table->set(table->EntryToIndex(entry) + kValueOffset, *value); return table; } table = EnsureGrowable(table); int index = table->AddEntry(hash); table->set(index, *key); table->set(index + kValueOffset, *value); return table; } template<class Derived, class TableType> void OrderedHashTableIterator<Derived, TableType>::Transition() { DisallowHeapAllocation no_allocation; TableType* table = TableType::cast(this->table()); if (!table->IsObsolete()) return; int index = Smi::cast(this->index())->value(); while (table->IsObsolete()) { TableType* next_table = table->NextTable(); if (index > 0) { int nod = table->NumberOfDeletedElements(); // When we clear the table we set the number of deleted elements to -1. if (nod == -1) { index = 0; } else { int old_index = index; for (int i = 0; i < nod; ++i) { int removed_index = table->RemovedIndexAt(i); if (removed_index >= old_index) break; --index; } } } table = next_table; } set_table(table); set_index(Smi::FromInt(index)); } template<class Derived, class TableType> bool OrderedHashTableIterator<Derived, TableType>::HasMore() { DisallowHeapAllocation no_allocation; if (this->table()->IsUndefined()) return false; Transition(); TableType* table = TableType::cast(this->table()); int index = Smi::cast(this->index())->value(); int used_capacity = table->UsedCapacity(); while (index < used_capacity && table->KeyAt(index)->IsTheHole()) { index++; } set_index(Smi::FromInt(index)); if (index < used_capacity) return true; set_table(GetHeap()->undefined_value()); return false; } template<class Derived, class TableType> Smi* OrderedHashTableIterator<Derived, TableType>::Next(JSArray* value_array) { DisallowHeapAllocation no_allocation; if (HasMore()) { FixedArray* array = FixedArray::cast(value_array->elements()); static_cast<Derived*>(this)->PopulateValueArray(array); MoveNext(); return Smi::cast(kind()); } return Smi::FromInt(0); } template Smi* OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Next( JSArray* value_array); template bool OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::HasMore(); template void OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::MoveNext(); template Object* OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::CurrentKey(); template void OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Transition(); template Smi* OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Next( JSArray* value_array); template bool OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::HasMore(); template void OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::MoveNext(); template Object* OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::CurrentKey(); template void OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Transition(); DeclaredAccessorDescriptorIterator::DeclaredAccessorDescriptorIterator( DeclaredAccessorDescriptor* descriptor) : array_(descriptor->serialized_data()->GetDataStartAddress()), length_(descriptor->serialized_data()->length()), offset_(0) { } const DeclaredAccessorDescriptorData* DeclaredAccessorDescriptorIterator::Next() { DCHECK(offset_ < length_); uint8_t* ptr = &array_[offset_]; DCHECK(reinterpret_cast<uintptr_t>(ptr) % sizeof(uintptr_t) == 0); const DeclaredAccessorDescriptorData* data = reinterpret_cast<const DeclaredAccessorDescriptorData*>(ptr); offset_ += sizeof(*data); DCHECK(offset_ <= length_); return data; } Handle<DeclaredAccessorDescriptor> DeclaredAccessorDescriptor::Create( Isolate* isolate, const DeclaredAccessorDescriptorData& descriptor, Handle<DeclaredAccessorDescriptor> previous) { int previous_length = previous.is_null() ? 0 : previous->serialized_data()->length(); int length = sizeof(descriptor) + previous_length; Handle<ByteArray> serialized_descriptor = isolate->factory()->NewByteArray(length); Handle<DeclaredAccessorDescriptor> value = isolate->factory()->NewDeclaredAccessorDescriptor(); value->set_serialized_data(*serialized_descriptor); // Copy in the data. { DisallowHeapAllocation no_allocation; uint8_t* array = serialized_descriptor->GetDataStartAddress(); if (previous_length != 0) { uint8_t* previous_array = previous->serialized_data()->GetDataStartAddress(); MemCopy(array, previous_array, previous_length); array += previous_length; } DCHECK(reinterpret_cast<uintptr_t>(array) % sizeof(uintptr_t) == 0); DeclaredAccessorDescriptorData* data = reinterpret_cast<DeclaredAccessorDescriptorData*>(array); *data = descriptor; } return value; } // Check if there is a break point at this code position. bool DebugInfo::HasBreakPoint(int code_position) { // Get the break point info object for this code position. Object* break_point_info = GetBreakPointInfo(code_position); // If there is no break point info object or no break points in the break // point info object there is no break point at this code position. if (break_point_info->IsUndefined()) return false; return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0; } // Get the break point info object for this code position. Object* DebugInfo::GetBreakPointInfo(int code_position) { // Find the index of the break point info object for this code position. int index = GetBreakPointInfoIndex(code_position); // Return the break point info object if any. if (index == kNoBreakPointInfo) return GetHeap()->undefined_value(); return BreakPointInfo::cast(break_points()->get(index)); } // Clear a break point at the specified code position. void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info, int code_position, Handle<Object> break_point_object) { Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position), debug_info->GetIsolate()); if (break_point_info->IsUndefined()) return; BreakPointInfo::ClearBreakPoint( Handle<BreakPointInfo>::cast(break_point_info), break_point_object); } void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info, int code_position, int source_position, int statement_position, Handle<Object> break_point_object) { Isolate* isolate = debug_info->GetIsolate(); Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position), isolate); if (!break_point_info->IsUndefined()) { BreakPointInfo::SetBreakPoint( Handle<BreakPointInfo>::cast(break_point_info), break_point_object); return; } // Adding a new break point for a code position which did not have any // break points before. Try to find a free slot. int index = kNoBreakPointInfo; for (int i = 0; i < debug_info->break_points()->length(); i++) { if (debug_info->break_points()->get(i)->IsUndefined()) { index = i; break; } } if (index == kNoBreakPointInfo) { // No free slot - extend break point info array. Handle<FixedArray> old_break_points = Handle<FixedArray>(FixedArray::cast(debug_info->break_points())); Handle<FixedArray> new_break_points = isolate->factory()->NewFixedArray( old_break_points->length() + DebugInfo::kEstimatedNofBreakPointsInFunction); debug_info->set_break_points(*new_break_points); for (int i = 0; i < old_break_points->length(); i++) { new_break_points->set(i, old_break_points->get(i)); } index = old_break_points->length(); } DCHECK(index != kNoBreakPointInfo); // Allocate new BreakPointInfo object and set the break point. Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast( isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE)); new_break_point_info->set_code_position(Smi::FromInt(code_position)); new_break_point_info->set_source_position(Smi::FromInt(source_position)); new_break_point_info-> set_statement_position(Smi::FromInt(statement_position)); new_break_point_info->set_break_point_objects( isolate->heap()->undefined_value()); BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object); debug_info->break_points()->set(index, *new_break_point_info); } // Get the break point objects for a code position. Object* DebugInfo::GetBreakPointObjects(int code_position) { Object* break_point_info = GetBreakPointInfo(code_position); if (break_point_info->IsUndefined()) { return GetHeap()->undefined_value(); } return BreakPointInfo::cast(break_point_info)->break_point_objects(); } // Get the total number of break points. int DebugInfo::GetBreakPointCount() { if (break_points()->IsUndefined()) return 0; int count = 0; for (int i = 0; i < break_points()->length(); i++) { if (!break_points()->get(i)->IsUndefined()) { BreakPointInfo* break_point_info = BreakPointInfo::cast(break_points()->get(i)); count += break_point_info->GetBreakPointCount(); } } return count; } Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info, Handle<Object> break_point_object) { Heap* heap = debug_info->GetHeap(); if (debug_info->break_points()->IsUndefined()) return heap->undefined_value(); for (int i = 0; i < debug_info->break_points()->length(); i++) { if (!debug_info->break_points()->get(i)->IsUndefined()) { Handle<BreakPointInfo> break_point_info = Handle<BreakPointInfo>(BreakPointInfo::cast( debug_info->break_points()->get(i))); if (BreakPointInfo::HasBreakPointObject(break_point_info, break_point_object)) { return *break_point_info; } } } return heap->undefined_value(); } // Find the index of the break point info object for the specified code // position. int DebugInfo::GetBreakPointInfoIndex(int code_position) { if (break_points()->IsUndefined()) return kNoBreakPointInfo; for (int i = 0; i < break_points()->length(); i++) { if (!break_points()->get(i)->IsUndefined()) { BreakPointInfo* break_point_info = BreakPointInfo::cast(break_points()->get(i)); if (break_point_info->code_position()->value() == code_position) { return i; } } } return kNoBreakPointInfo; } // Remove the specified break point object. void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info, Handle<Object> break_point_object) { Isolate* isolate = break_point_info->GetIsolate(); // If there are no break points just ignore. if (break_point_info->break_point_objects()->IsUndefined()) return; // If there is a single break point clear it if it is the same. if (!break_point_info->break_point_objects()->IsFixedArray()) { if (break_point_info->break_point_objects() == *break_point_object) { break_point_info->set_break_point_objects( isolate->heap()->undefined_value()); } return; } // If there are multiple break points shrink the array DCHECK(break_point_info->break_point_objects()->IsFixedArray()); Handle<FixedArray> old_array = Handle<FixedArray>( FixedArray::cast(break_point_info->break_point_objects())); Handle<FixedArray> new_array = isolate->factory()->NewFixedArray(old_array->length() - 1); int found_count = 0; for (int i = 0; i < old_array->length(); i++) { if (old_array->get(i) == *break_point_object) { DCHECK(found_count == 0); found_count++; } else { new_array->set(i - found_count, old_array->get(i)); } } // If the break point was found in the list change it. if (found_count > 0) break_point_info->set_break_point_objects(*new_array); } // Add the specified break point object. void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info, Handle<Object> break_point_object) { Isolate* isolate = break_point_info->GetIsolate(); // If there was no break point objects before just set it. if (break_point_info->break_point_objects()->IsUndefined()) { break_point_info->set_break_point_objects(*break_point_object); return; } // If the break point object is the same as before just ignore. if (break_point_info->break_point_objects() == *break_point_object) return; // If there was one break point object before replace with array. if (!break_point_info->break_point_objects()->IsFixedArray()) { Handle<FixedArray> array = isolate->factory()->NewFixedArray(2); array->set(0, break_point_info->break_point_objects()); array->set(1, *break_point_object); break_point_info->set_break_point_objects(*array); return; } // If there was more than one break point before extend array. Handle<FixedArray> old_array = Handle<FixedArray>( FixedArray::cast(break_point_info->break_point_objects())); Handle<FixedArray> new_array = isolate->factory()->NewFixedArray(old_array->length() + 1); for (int i = 0; i < old_array->length(); i++) { // If the break point was there before just ignore. if (old_array->get(i) == *break_point_object) return; new_array->set(i, old_array->get(i)); } // Add the new break point. new_array->set(old_array->length(), *break_point_object); break_point_info->set_break_point_objects(*new_array); } bool BreakPointInfo::HasBreakPointObject( Handle<BreakPointInfo> break_point_info, Handle<Object> break_point_object) { // No break point. if (break_point_info->break_point_objects()->IsUndefined()) return false; // Single break point. if (!break_point_info->break_point_objects()->IsFixedArray()) { return break_point_info->break_point_objects() == *break_point_object; } // Multiple break points. FixedArray* array = FixedArray::cast(break_point_info->break_point_objects()); for (int i = 0; i < array->length(); i++) { if (array->get(i) == *break_point_object) { return true; } } return false; } // Get the number of break points. int BreakPointInfo::GetBreakPointCount() { // No break point. if (break_point_objects()->IsUndefined()) return 0; // Single break point. if (!break_point_objects()->IsFixedArray()) return 1; // Multiple break points. return FixedArray::cast(break_point_objects())->length(); } Object* JSDate::GetField(Object* object, Smi* index) { return JSDate::cast(object)->DoGetField( static_cast<FieldIndex>(index->value())); } Object* JSDate::DoGetField(FieldIndex index) { DCHECK(index != kDateValue); DateCache* date_cache = GetIsolate()->date_cache(); if (index < kFirstUncachedField) { Object* stamp = cache_stamp(); if (stamp != date_cache->stamp() && stamp->IsSmi()) { // Since the stamp is not NaN, the value is also not NaN. int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(value()->Number())); SetCachedFields(local_time_ms, date_cache); } switch (index) { case kYear: return year(); case kMonth: return month(); case kDay: return day(); case kWeekday: return weekday(); case kHour: return hour(); case kMinute: return min(); case kSecond: return sec(); default: UNREACHABLE(); } } if (index >= kFirstUTCField) { return GetUTCField(index, value()->Number(), date_cache); } double time = value()->Number(); if (std::isnan(time)) return GetIsolate()->heap()->nan_value(); int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(time)); int days = DateCache::DaysFromTime(local_time_ms); if (index == kDays) return Smi::FromInt(days); int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days); if (index == kMillisecond) return Smi::FromInt(time_in_day_ms % 1000); DCHECK(index == kTimeInDay); return Smi::FromInt(time_in_day_ms); } Object* JSDate::GetUTCField(FieldIndex index, double value, DateCache* date_cache) { DCHECK(index >= kFirstUTCField); if (std::isnan(value)) return GetIsolate()->heap()->nan_value(); int64_t time_ms = static_cast<int64_t>(value); if (index == kTimezoneOffset) { return Smi::FromInt(date_cache->TimezoneOffset(time_ms)); } int days = DateCache::DaysFromTime(time_ms); if (index == kWeekdayUTC) return Smi::FromInt(date_cache->Weekday(days)); if (index <= kDayUTC) { int year, month, day; date_cache->YearMonthDayFromDays(days, &year, &month, &day); if (index == kYearUTC) return Smi::FromInt(year); if (index == kMonthUTC) return Smi::FromInt(month); DCHECK(index == kDayUTC); return Smi::FromInt(day); } int time_in_day_ms = DateCache::TimeInDay(time_ms, days); switch (index) { case kHourUTC: return Smi::FromInt(time_in_day_ms / (60 * 60 * 1000)); case kMinuteUTC: return Smi::FromInt((time_in_day_ms / (60 * 1000)) % 60); case kSecondUTC: return Smi::FromInt((time_in_day_ms / 1000) % 60); case kMillisecondUTC: return Smi::FromInt(time_in_day_ms % 1000); case kDaysUTC: return Smi::FromInt(days); case kTimeInDayUTC: return Smi::FromInt(time_in_day_ms); default: UNREACHABLE(); } UNREACHABLE(); return NULL; } void JSDate::SetValue(Object* value, bool is_value_nan) { set_value(value); if (is_value_nan) { HeapNumber* nan = GetIsolate()->heap()->nan_value(); set_cache_stamp(nan, SKIP_WRITE_BARRIER); set_year(nan, SKIP_WRITE_BARRIER); set_month(nan, SKIP_WRITE_BARRIER); set_day(nan, SKIP_WRITE_BARRIER); set_hour(nan, SKIP_WRITE_BARRIER); set_min(nan, SKIP_WRITE_BARRIER); set_sec(nan, SKIP_WRITE_BARRIER); set_weekday(nan, SKIP_WRITE_BARRIER); } else { set_cache_stamp(Smi::FromInt(DateCache::kInvalidStamp), SKIP_WRITE_BARRIER); } } void JSDate::SetCachedFields(int64_t local_time_ms, DateCache* date_cache) { int days = DateCache::DaysFromTime(local_time_ms); int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days); int year, month, day; date_cache->YearMonthDayFromDays(days, &year, &month, &day); int weekday = date_cache->Weekday(days); int hour = time_in_day_ms / (60 * 60 * 1000); int min = (time_in_day_ms / (60 * 1000)) % 60; int sec = (time_in_day_ms / 1000) % 60; set_cache_stamp(date_cache->stamp()); set_year(Smi::FromInt(year), SKIP_WRITE_BARRIER); set_month(Smi::FromInt(month), SKIP_WRITE_BARRIER); set_day(Smi::FromInt(day), SKIP_WRITE_BARRIER); set_weekday(Smi::FromInt(weekday), SKIP_WRITE_BARRIER); set_hour(Smi::FromInt(hour), SKIP_WRITE_BARRIER); set_min(Smi::FromInt(min), SKIP_WRITE_BARRIER); set_sec(Smi::FromInt(sec), SKIP_WRITE_BARRIER); } void JSArrayBuffer::Neuter() { DCHECK(is_external()); set_backing_store(NULL); set_byte_length(Smi::FromInt(0)); } void JSArrayBufferView::NeuterView() { set_byte_offset(Smi::FromInt(0)); set_byte_length(Smi::FromInt(0)); } void JSDataView::Neuter() { NeuterView(); } void JSTypedArray::Neuter() { NeuterView(); set_length(Smi::FromInt(0)); set_elements(GetHeap()->EmptyExternalArrayForMap(map())); } static ElementsKind FixedToExternalElementsKind(ElementsKind elements_kind) { switch (elements_kind) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: return EXTERNAL_##TYPE##_ELEMENTS; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE default: UNREACHABLE(); return FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND; } } Handle<JSArrayBuffer> JSTypedArray::MaterializeArrayBuffer( Handle<JSTypedArray> typed_array) { Handle<Map> map(typed_array->map()); Isolate* isolate = typed_array->GetIsolate(); DCHECK(IsFixedTypedArrayElementsKind(map->elements_kind())); Handle<Map> new_map = Map::TransitionElementsTo( map, FixedToExternalElementsKind(map->elements_kind())); Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer(); Handle<FixedTypedArrayBase> fixed_typed_array( FixedTypedArrayBase::cast(typed_array->elements())); Runtime::SetupArrayBufferAllocatingData(isolate, buffer, fixed_typed_array->DataSize(), false); memcpy(buffer->backing_store(), fixed_typed_array->DataPtr(), fixed_typed_array->DataSize()); Handle<ExternalArray> new_elements = isolate->factory()->NewExternalArray( fixed_typed_array->length(), typed_array->type(), static_cast<uint8_t*>(buffer->backing_store())); buffer->set_weak_first_view(*typed_array); DCHECK(typed_array->weak_next() == isolate->heap()->undefined_value()); typed_array->set_buffer(*buffer); JSObject::SetMapAndElements(typed_array, new_map, new_elements); return buffer; } Handle<JSArrayBuffer> JSTypedArray::GetBuffer() { Handle<Object> result(buffer(), GetIsolate()); if (*result != Smi::FromInt(0)) { DCHECK(IsExternalArrayElementsKind(map()->elements_kind())); return Handle<JSArrayBuffer>::cast(result); } Handle<JSTypedArray> self(this); return MaterializeArrayBuffer(self); } HeapType* PropertyCell::type() { return static_cast<HeapType*>(type_raw()); } void PropertyCell::set_type(HeapType* type, WriteBarrierMode ignored) { DCHECK(IsPropertyCell()); set_type_raw(type, ignored); } Handle<HeapType> PropertyCell::UpdatedType(Handle<PropertyCell> cell, Handle<Object> value) { Isolate* isolate = cell->GetIsolate(); Handle<HeapType> old_type(cell->type(), isolate); Handle<HeapType> new_type = HeapType::Constant(value, isolate); if (new_type->Is(old_type)) return old_type; cell->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kPropertyCellChangedGroup); if (old_type->Is(HeapType::None()) || old_type->Is(HeapType::Undefined())) { return new_type; } return HeapType::Any(isolate); } void PropertyCell::SetValueInferType(Handle<PropertyCell> cell, Handle<Object> value) { cell->set_value(*value); if (!HeapType::Any()->Is(cell->type())) { Handle<HeapType> new_type = UpdatedType(cell, value); cell->set_type(*new_type); } } // static void PropertyCell::AddDependentCompilationInfo(Handle<PropertyCell> cell, CompilationInfo* info) { Handle<DependentCode> codes = DependentCode::Insert(handle(cell->dependent_code(), info->isolate()), DependentCode::kPropertyCellChangedGroup, info->object_wrapper()); if (*codes != cell->dependent_code()) cell->set_dependent_code(*codes); info->dependencies(DependentCode::kPropertyCellChangedGroup)->Add( cell, info->zone()); } } } // namespace v8::internal