/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 2.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Shader control statement performance tests. *//*--------------------------------------------------------------------*/ #include "es2pShaderControlStatementTests.hpp" #include "glsShaderPerformanceCase.hpp" #include "tcuTestLog.hpp" #include "glwEnums.hpp" #include "glwFunctions.hpp" #include <string> #include <vector> namespace deqp { namespace gles2 { namespace Performance { using namespace gls; using namespace glw; // GL types using tcu::Vec4; using tcu::TestLog; using std::string; using std::vector; // Writes the workload expression used in conditional tests. static void writeConditionalWorkload (std::ostringstream& stream, const char* resultName, const char* operandName) { const int numMultiplications = 64; stream << resultName << " = "; for (int i = 0; i < numMultiplications; i++) { if (i > 0) stream << "*"; stream << operandName; } stream << ";"; } // Writes the workload expression used in loop tests (one iteration). static void writeLoopWorkload (std::ostringstream& stream, const char* resultName, const char* operandName) { const int numMultiplications = 8; stream << resultName << " = "; for (int i = 0; i < numMultiplications; i++) { if (i > 0) stream << " * "; stream << "(" << resultName << " + " << operandName << ")"; } stream << ";"; } // The type of decision to be made in a conditional expression. // \note In fragment cases with DECISION_ATTRIBUTE, the value in the expression will actually be a varying. enum DecisionType { DECISION_STATIC = 0, DECISION_UNIFORM, DECISION_ATTRIBUTE, DECISION_LAST }; class ControlStatementCase : public ShaderPerformanceCase { public: ControlStatementCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description, gls::PerfCaseType caseType) : ShaderPerformanceCase(testCtx, renderCtx, name, description, caseType) { } void init (void) { m_testCtx.getLog() << TestLog::Message << "Using additive blending." << TestLog::EndMessage; ShaderPerformanceCase::init(); } void setupRenderState (void) { const glw::Functions& gl = m_renderCtx.getFunctions(); gl.enable(GL_BLEND); gl.blendEquation(GL_FUNC_ADD); gl.blendFunc(GL_ONE, GL_ONE); } }; class ConditionalCase : public ControlStatementCase { public: enum BranchResult { BRANCH_TRUE = 0, BRANCH_FALSE, BRANCH_MIXED, BRANCH_LAST }; enum WorkloadDivision { WORKLOAD_DIVISION_EVEN = 0, //! Both true and false branches contain same amount of computation. WORKLOAD_DIVISION_TRUE_HEAVY, //! True branch contains more computation. WORKLOAD_DIVISION_FALSE_HEAVY, //! False branch contains more computation. WORKLOAD_DIVISION_LAST }; ConditionalCase (Context& context, const char* name, const char* description, DecisionType decisionType, BranchResult branchType, WorkloadDivision workloadDivision, bool isVertex); ~ConditionalCase (void); void init (void); void deinit (void); void setupProgram (deUint32 program); private: DecisionType m_decisionType; BranchResult m_branchType; WorkloadDivision m_workloadDivision; vector<float> m_comparisonValueArray; // Will contain per-vertex comparison values if using mixed branch type in vertex case. deUint32 m_arrayBuffer; }; ConditionalCase::ConditionalCase (Context& context, const char* name, const char* description, DecisionType decisionType, BranchResult branchType, WorkloadDivision workloadDivision, bool isVertex) : ControlStatementCase (context.getTestContext(), context.getRenderContext(), name, description, isVertex ? CASETYPE_VERTEX : CASETYPE_FRAGMENT) , m_decisionType (decisionType) , m_branchType (branchType) , m_workloadDivision (workloadDivision) , m_arrayBuffer (0) { } void ConditionalCase::init (void) { bool isVertexCase = m_caseType == CASETYPE_VERTEX; bool isStaticCase = m_decisionType == DECISION_STATIC; bool isUniformCase = m_decisionType == DECISION_UNIFORM; bool isAttributeCase = m_decisionType == DECISION_ATTRIBUTE; DE_ASSERT(isStaticCase || isUniformCase || isAttributeCase); bool isConditionTrue = m_branchType == BRANCH_TRUE; bool isConditionFalse = m_branchType == BRANCH_FALSE; bool isConditionMixed = m_branchType == BRANCH_MIXED; DE_ASSERT(isConditionTrue || isConditionFalse || isConditionMixed); DE_UNREF(isConditionFalse); DE_ASSERT(isAttributeCase || !isConditionMixed); // The branch taken can vary between executions only if using attribute input. const char* staticCompareValueStr = isConditionTrue ? "1.0" : "-1.0"; const char* compareValueStr = isStaticCase ? staticCompareValueStr : isUniformCase ? "u_compareValue" : isVertexCase ? "a_compareValue" : "v_compareValue"; std::ostringstream vtx; std::ostringstream frag; std::ostringstream& op = isVertexCase ? vtx : frag; vtx << "attribute highp vec4 a_position;\n"; // Position attribute. vtx << "attribute mediump vec4 a_value0;\n"; // Input for workload calculations of "true" branch. vtx << "attribute mediump vec4 a_value1;\n"; // Input for workload calculations of "false" branch. // Value to be used in the conditional expression. if (isAttributeCase) vtx << "attribute mediump float a_compareValue;\n"; else if (isUniformCase) op << "uniform mediump float u_compareValue;\n"; // Varyings. if (isVertexCase) { vtx << "varying mediump vec4 v_color;\n"; frag << "varying mediump vec4 v_color;\n"; } else { vtx << "varying mediump vec4 v_value0;\n"; vtx << "varying mediump vec4 v_value1;\n"; frag << "varying mediump vec4 v_value0;\n"; frag << "varying mediump vec4 v_value1;\n"; if (isAttributeCase) { vtx << "varying mediump float v_compareValue;\n"; frag << "varying mediump float v_compareValue;\n"; } } vtx << "\n"; vtx << "void main()\n"; vtx << "{\n"; vtx << " gl_Position = a_position;\n"; frag << "\n"; frag << "void main()\n"; frag << "{\n"; op << " mediump vec4 res;\n"; string condition; if (isConditionMixed && !isVertexCase) condition = string("") + "fract(" + compareValueStr + ") < 0.5"; // Comparison result varies with high frequency. else condition = string("") + compareValueStr + " > 0.0"; op << " if (" << condition << ")\n"; op << " {\n"; op << "\t\t"; if (m_workloadDivision == WORKLOAD_DIVISION_EVEN || m_workloadDivision == WORKLOAD_DIVISION_TRUE_HEAVY) writeConditionalWorkload(op, "res", isVertexCase ? "a_value0" : "v_value0"); // Workload calculation for the "true" branch. else op << "res = " << (isVertexCase ? "a_value0" : "v_value0") << ";"; op << "\n"; op << " }\n"; op << " else\n"; op << " {\n"; op << "\t\t"; if (m_workloadDivision == WORKLOAD_DIVISION_EVEN || m_workloadDivision == WORKLOAD_DIVISION_FALSE_HEAVY) writeConditionalWorkload(op, "res", isVertexCase ? "a_value1" : "v_value1"); // Workload calculations for the "false" branch. else op << "res = " << (isVertexCase ? "a_value1" : "v_value1") << ";"; op << "\n"; op << " }\n"; if (isVertexCase) { // Put result to color variable. vtx << " v_color = res;\n"; frag << " gl_FragColor = v_color;\n"; } else { // Transfer inputs to fragment shader through varyings. if (isAttributeCase) vtx << " v_compareValue = a_compareValue;\n"; vtx << " v_value0 = a_value0;\n"; vtx << " v_value1 = a_value1;\n"; frag << " gl_FragColor = res;\n"; // Put result to color variable. } vtx << "}\n"; frag << "}\n"; m_vertShaderSource = vtx.str(); m_fragShaderSource = frag.str(); if (isAttributeCase) { if (!isConditionMixed) { // Every execution takes the same branch. float value = isConditionTrue ? +1.0f : -1.0f; m_attributes.push_back(AttribSpec("a_compareValue", Vec4(value, 0.0f, 0.0f, 0.0f), Vec4(value, 0.0f, 0.0f, 0.0f), Vec4(value, 0.0f, 0.0f, 0.0f), Vec4(value, 0.0f, 0.0f, 0.0f))); } else if (isVertexCase) { // Vertex case, not every execution takes the same branch. const int numComponents = 4; int numVertices = (getGridWidth() + 1) * (getGridHeight() + 1); // setupProgram() will later bind this array as an attribute. m_comparisonValueArray.resize(numVertices * numComponents); // Make every second vertex take the true branch, and every second the false branch. for (int i = 0; i < (int)m_comparisonValueArray.size(); i++) { if (i % numComponents == 0) m_comparisonValueArray[i] = (i / numComponents) % 2 == 0 ? +1.0f : -1.0f; else m_comparisonValueArray[i] = 0.0f; } } else // isConditionMixed && !isVertexCase { // Fragment case, not every execution takes the same branch. // \note fract(a_compareValue) < 0.5 will be true for every second column of fragments. float minValue = 0.0f; float maxValue = (float)getViewportWidth()*0.5f; m_attributes.push_back(AttribSpec("a_compareValue", Vec4(minValue, 0.0f, 0.0f, 0.0f), Vec4(maxValue, 0.0f, 0.0f, 0.0f), Vec4(minValue, 0.0f, 0.0f, 0.0f), Vec4(maxValue, 0.0f, 0.0f, 0.0f))); } } m_attributes.push_back(AttribSpec("a_value0", Vec4(0.0f, 0.1f, 0.2f, 0.3f), Vec4(0.4f, 0.5f, 0.6f, 0.7f), Vec4(0.8f, 0.9f, 1.0f, 1.1f), Vec4(1.2f, 1.3f, 1.4f, 1.5f))); m_attributes.push_back(AttribSpec("a_value1", Vec4(0.0f, 0.1f, 0.2f, 0.3f), Vec4(0.4f, 0.5f, 0.6f, 0.7f), Vec4(0.8f, 0.9f, 1.0f, 1.1f), Vec4(1.2f, 1.3f, 1.4f, 1.5f))); ControlStatementCase::init(); } void ConditionalCase::setupProgram (deUint32 program) { const glw::Functions& gl = m_renderCtx.getFunctions(); if (m_decisionType == DECISION_UNIFORM) { int location = gl.getUniformLocation(program, "u_compareValue"); gl.uniform1f(location, m_branchType == BRANCH_TRUE ? +1.0f : -1.0f); } else if (m_decisionType == DECISION_ATTRIBUTE && m_branchType == BRANCH_MIXED && m_caseType == CASETYPE_VERTEX) { // Setup per-vertex comparison values calculated in init(). const int numComponents = 4; int compareAttribLocation = gl.getAttribLocation(program, "a_compareValue"); DE_ASSERT((int)m_comparisonValueArray.size() == numComponents * (getGridWidth() + 1) * (getGridHeight() + 1)); gl.genBuffers(1, &m_arrayBuffer); gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuffer); gl.bufferData(GL_ARRAY_BUFFER, (GLsizeiptr)(m_comparisonValueArray.size()*sizeof(float)), &m_comparisonValueArray[0], GL_STATIC_DRAW); gl.enableVertexAttribArray(compareAttribLocation); gl.vertexAttribPointer(compareAttribLocation, (GLint)numComponents, GL_FLOAT, GL_FALSE, 0, DE_NULL); } GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state"); } ConditionalCase::~ConditionalCase (void) { const glw::Functions& gl = m_renderCtx.getFunctions(); if (m_arrayBuffer != 0) { gl.deleteBuffers(1, &m_arrayBuffer); m_arrayBuffer = 0; } } void ConditionalCase::deinit (void) { const glw::Functions& gl = m_renderCtx.getFunctions(); m_comparisonValueArray.clear(); if (m_arrayBuffer != 0) { gl.deleteBuffers(1, &m_arrayBuffer); m_arrayBuffer = 0; } ShaderPerformanceCase::deinit(); } class LoopCase : public ControlStatementCase { public: enum LoopType { LOOP_FOR = 0, LOOP_WHILE, LOOP_DO_WHILE, LOOP_LAST }; LoopCase (Context& context, const char* name, const char* description, LoopType type, DecisionType decisionType, bool isLoopBoundStable, bool isVertex); ~LoopCase (void); void init (void); void deinit (void); void setupProgram (deUint32 program); private: DecisionType m_decisionType; LoopType m_type; bool m_isLoopBoundStable; // Whether loop bound is same in all executions. vector<float> m_boundArray; // Will contain per-vertex loop bounds if using non-stable attribute in vertex case. deUint32 m_arrayBuffer; }; LoopCase::LoopCase (Context& context, const char* name, const char* description, LoopType type, DecisionType decisionType, bool isLoopBoundStable, bool isVertex) : ControlStatementCase (context.getTestContext(), context.getRenderContext(), name, description, isVertex ? CASETYPE_VERTEX : CASETYPE_FRAGMENT) , m_decisionType (decisionType) , m_type (type) , m_isLoopBoundStable (isLoopBoundStable) , m_arrayBuffer (0) { } void LoopCase::init (void) { bool isVertexCase = m_caseType == CASETYPE_VERTEX; bool isStaticCase = m_decisionType == DECISION_STATIC; bool isUniformCase = m_decisionType == DECISION_UNIFORM; bool isAttributeCase = m_decisionType == DECISION_ATTRIBUTE; DE_ASSERT(isStaticCase || isUniformCase || isAttributeCase); DE_ASSERT(m_type == LOOP_FOR || m_type == LOOP_WHILE || m_type == LOOP_DO_WHILE); DE_ASSERT(isAttributeCase || m_isLoopBoundStable); // The loop bound count can vary between executions only if using attribute input. // \note The fractional part is .5 (instead of .0) so that these can be safely used as loop bounds. const float loopBound = 10.5f; const float unstableBoundLow = 5.5f; const float unstableBoundHigh = 15.5f; static const char* loopBoundStr = "10.5"; static const char* unstableBoundLowStr = "5.5"; static const char* unstableBoundHighStr = "15.5"; const char* boundValueStr = isStaticCase ? loopBoundStr : isUniformCase ? "u_bound" : isVertexCase ? "a_bound" : m_isLoopBoundStable ? "v_bound" : "loopBound"; std::ostringstream vtx; std::ostringstream frag; std::ostringstream& op = isVertexCase ? vtx : frag; vtx << "attribute highp vec4 a_position;\n"; // Position attribute. vtx << "attribute mediump vec4 a_value;\n"; // Input for workload calculations. // Value to be used as the loop iteration count. if (isAttributeCase) vtx << "attribute mediump float a_bound;\n"; else if (isUniformCase) op << "uniform mediump float u_bound;\n"; // Varyings. if (isVertexCase) { vtx << "varying mediump vec4 v_color;\n"; frag << "varying mediump vec4 v_color;\n"; } else { vtx << "varying mediump vec4 v_value;\n"; frag << "varying mediump vec4 v_value;\n"; if (isAttributeCase) { vtx << "varying mediump float v_bound;\n"; frag << "varying mediump float v_bound;\n"; } } vtx << "\n"; vtx << "void main()\n"; vtx << "{\n"; vtx << " gl_Position = a_position;\n"; frag << "\n"; frag << "void main()\n"; frag << "{\n"; op << " mediump vec4 res = vec4(0.0);\n"; if (!m_isLoopBoundStable && !isVertexCase) { // Choose the actual loop bound based on v_bound. // \note Loop bound will vary with high frequency between fragment columns, given appropriate range for v_bound. op << " mediump float loopBound = fract(v_bound) < 0.5 ? " << unstableBoundLowStr << " : " << unstableBoundHighStr << ";\n"; } // Start a for, while or do-while loop. if (m_type == LOOP_FOR) op << " for (mediump float i = 0.0; i < " << boundValueStr << "; i++)\n"; else { op << " mediump float i = 0.0;\n"; if (m_type == LOOP_WHILE) op << " while (i < " << boundValueStr << ")\n"; else // LOOP_DO_WHILE op << " do\n"; } op << " {\n"; // Workload calculations inside the loop. op << "\t\t"; writeLoopWorkload(op, "res", isVertexCase ? "a_value" : "v_value"); op << "\n"; // Only "for" has counter increment in the loop head. if (m_type != LOOP_FOR) op << " i++;\n"; // End the loop. if (m_type == LOOP_DO_WHILE) op << " } while (i < " << boundValueStr << ");\n"; else op << " }\n"; if (isVertexCase) { // Put result to color variable. vtx << " v_color = res;\n"; frag << " gl_FragColor = v_color;\n"; } else { // Transfer inputs to fragment shader through varyings. if (isAttributeCase) vtx << " v_bound = a_bound;\n"; vtx << " v_value = a_value;\n"; frag << " gl_FragColor = res;\n"; // Put result to color variable. } vtx << "}\n"; frag << "}\n"; m_vertShaderSource = vtx.str(); m_fragShaderSource = frag.str(); if (isAttributeCase) { if (m_isLoopBoundStable) { // Every execution has same number of iterations. m_attributes.push_back(AttribSpec("a_bound", Vec4(loopBound, 0.0f, 0.0f, 0.0f), Vec4(loopBound, 0.0f, 0.0f, 0.0f), Vec4(loopBound, 0.0f, 0.0f, 0.0f), Vec4(loopBound, 0.0f, 0.0f, 0.0f))); } else if (isVertexCase) { // Vertex case, with non-constant number of iterations. const int numComponents = 4; int numVertices = (getGridWidth() + 1) * (getGridHeight() + 1); // setupProgram() will later bind this array as an attribute. m_boundArray.resize(numVertices * numComponents); // Vary between low and high loop bounds; they should average to loopBound however. for (int i = 0; i < (int)m_boundArray.size(); i++) { if (i % numComponents == 0) m_boundArray[i] = (i / numComponents) % 2 == 0 ? unstableBoundLow : unstableBoundHigh; else m_boundArray[i] = 0.0f; } } else // !m_isLoopBoundStable && !isVertexCase { // Fragment case, with non-constant number of iterations. // \note fract(a_bound) < 0.5 will be true for every second fragment. float minValue = 0.0f; float maxValue = (float)getViewportWidth()*0.5f; m_attributes.push_back(AttribSpec("a_bound", Vec4(minValue, 0.0f, 0.0f, 0.0f), Vec4(maxValue, 0.0f, 0.0f, 0.0f), Vec4(minValue, 0.0f, 0.0f, 0.0f), Vec4(maxValue, 0.0f, 0.0f, 0.0f))); } } m_attributes.push_back(AttribSpec("a_value", Vec4(0.0f, 0.1f, 0.2f, 0.3f), Vec4(0.4f, 0.5f, 0.6f, 0.7f), Vec4(0.8f, 0.9f, 1.0f, 1.1f), Vec4(1.2f, 1.3f, 1.4f, 1.5f))); ControlStatementCase::init(); } void LoopCase::setupProgram (deUint32 program) { const glw::Functions& gl = m_renderCtx.getFunctions(); if (m_decisionType == DECISION_UNIFORM) { const float loopBound = 10.5f; int location = gl.getUniformLocation(program, "u_bound"); gl.uniform1f(location, loopBound); } else if (m_decisionType == DECISION_ATTRIBUTE && !m_isLoopBoundStable && m_caseType == CASETYPE_VERTEX) { // Setup per-vertex loop bounds calculated in init(). const int numComponents = 4; int boundAttribLocation = gl.getAttribLocation(program, "a_bound"); DE_ASSERT((int)m_boundArray.size() == numComponents * (getGridWidth() + 1) * (getGridHeight() + 1)); gl.genBuffers(1, &m_arrayBuffer); gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuffer); gl.bufferData(GL_ARRAY_BUFFER, (GLsizeiptr)(m_boundArray.size()*sizeof(float)), &m_boundArray[0], GL_STATIC_DRAW); gl.enableVertexAttribArray(boundAttribLocation); gl.vertexAttribPointer(boundAttribLocation, (GLint)numComponents, GL_FLOAT, GL_FALSE, 0, DE_NULL); } GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state"); } LoopCase::~LoopCase (void) { const glw::Functions& gl = m_renderCtx.getFunctions(); if (m_arrayBuffer) { gl.deleteBuffers(1, &m_arrayBuffer); m_arrayBuffer = 0; } } void LoopCase::deinit (void) { const glw::Functions& gl = m_renderCtx.getFunctions(); m_boundArray.clear(); if (m_arrayBuffer) { gl.deleteBuffers(1, &m_arrayBuffer); m_arrayBuffer = 0; } ShaderPerformanceCase::deinit(); } // A reference case, same calculations as the actual tests but without control statements. class WorkloadReferenceCase : public ControlStatementCase { public: WorkloadReferenceCase (Context& context, const char* name, const char* description, bool isVertex); void init (void); protected: virtual void writeWorkload (std::ostringstream& dst, const char* resultVariableName, const char* inputVariableName) const = 0; }; WorkloadReferenceCase::WorkloadReferenceCase (Context& context, const char* name, const char* description, bool isVertex) : ControlStatementCase(context.getTestContext(), context.getRenderContext(), name, description, isVertex ? CASETYPE_VERTEX : CASETYPE_FRAGMENT) { } void WorkloadReferenceCase::init (void) { bool isVertexCase = m_caseType == CASETYPE_VERTEX; std::ostringstream vtx; std::ostringstream frag; std::ostringstream& op = isVertexCase ? vtx : frag; vtx << "attribute highp vec4 a_position;\n"; // Position attribute. vtx << "attribute mediump vec4 a_value;\n"; // Value for workload calculations. // Varyings. if (isVertexCase) { vtx << "varying mediump vec4 v_color;\n"; frag << "varying mediump vec4 v_color;\n"; } else { vtx << "varying mediump vec4 v_value;\n"; frag << "varying mediump vec4 v_value;\n"; } vtx << "\n"; vtx << "void main()\n"; vtx << "{\n"; vtx << " gl_Position = a_position;\n"; frag << "\n"; frag << "void main()\n"; frag << "{\n"; op << "\tmediump vec4 res;\n"; writeWorkload(op, "res", isVertexCase ? "a_value" : "v_value"); if (isVertexCase) { // Put result to color variable. vtx << " v_color = res;\n"; frag << " gl_FragColor = v_color;\n"; } else { vtx << " v_value = a_value;\n"; // Transfer input to fragment shader through varying. frag << " gl_FragColor = res;\n"; // Put result to color variable. } vtx << "}\n"; frag << "}\n"; m_vertShaderSource = vtx.str(); m_fragShaderSource = frag.str(); m_attributes.push_back(AttribSpec("a_value", Vec4(0.0f, 0.1f, 0.2f, 0.3f), Vec4(0.4f, 0.5f, 0.6f, 0.7f), Vec4(0.8f, 0.9f, 1.0f, 1.1f), Vec4(1.2f, 1.3f, 1.4f, 1.5f))); ControlStatementCase::init(); } class LoopWorkloadReferenceCase : public WorkloadReferenceCase { public: LoopWorkloadReferenceCase (Context& context, const char* name, const char* description, bool isAttributeStable, bool isVertex) : WorkloadReferenceCase (context, name, description, isVertex) , m_isAttributeStable (isAttributeStable) { } protected: void writeWorkload (std::ostringstream& dst, const char* resultVariableName, const char* inputVariableName) const; private: bool m_isAttributeStable; }; void LoopWorkloadReferenceCase::writeWorkload (std::ostringstream& dst, const char* resultVariableName, const char* inputVariableName) const { const int loopIterations = 11; bool isVertexCase = m_caseType == CASETYPE_VERTEX; dst << "\t" << resultVariableName << " = vec4(0.0);\n"; for (int i = 0; i < loopIterations; i++) { dst << "\t"; writeLoopWorkload(dst, resultVariableName, inputVariableName); dst << "\n"; } if (!isVertexCase && !m_isAttributeStable) { // Corresponds to the fract() done in a real test's fragment case with non-stable attribute. dst << " res.x = fract(res.x);\n"; } } class ConditionalWorkloadReferenceCase : public WorkloadReferenceCase { public: ConditionalWorkloadReferenceCase (Context& context, const char* name, const char* description, bool isAttributeStable, bool isVertex) : WorkloadReferenceCase (context, name, description, isVertex) , m_isAttributeStable (isAttributeStable) { } protected: void writeWorkload (std::ostringstream& dst, const char* resultVariableName, const char* inputVariableName) const; private: bool m_isAttributeStable; }; void ConditionalWorkloadReferenceCase::writeWorkload (std::ostringstream& dst, const char* resultVariableName, const char* inputVariableName) const { bool isVertexCase = m_caseType == CASETYPE_VERTEX; dst << "\t"; writeConditionalWorkload(dst, resultVariableName, inputVariableName); dst << "\n"; if (!isVertexCase && !m_isAttributeStable) { // Corresponds to the fract() done in a real test's fragment case with non-stable attribute. dst << " res.x = fract(res.x);\n"; } } // A workload reference case for e.g. a conditional case with a branch with no computation. class EmptyWorkloadReferenceCase : public WorkloadReferenceCase { public: EmptyWorkloadReferenceCase (Context& context, const char* name, const char* description, bool isVertex) : WorkloadReferenceCase (context, name, description, isVertex) { } protected: void writeWorkload (std::ostringstream& dst, const char* resultVariableName, const char* inputVariableName) const { dst << "\t" << resultVariableName << " = " << inputVariableName << ";\n"; } }; ShaderControlStatementTests::ShaderControlStatementTests (Context& context) : TestCaseGroup(context, "control_statement", "Control Statement Performance Tests") { } ShaderControlStatementTests::~ShaderControlStatementTests (void) { } void ShaderControlStatementTests::init (void) { // Conditional cases (if-else). tcu::TestCaseGroup* ifElseGroup = new tcu::TestCaseGroup(m_testCtx, "if_else", "if-else Conditional Performance Tests"); addChild(ifElseGroup); for (int isFrag = 0; isFrag <= 1; isFrag++) { bool isVertex = isFrag == 0; ShaderPerformanceCaseGroup* vertexOrFragmentGroup = new ShaderPerformanceCaseGroup(m_testCtx, isVertex ? "vertex" : "fragment", ""); ifElseGroup->addChild(vertexOrFragmentGroup); DE_STATIC_ASSERT(DECISION_STATIC == 0); for (int decisionType = (int)DECISION_STATIC; decisionType < (int)DECISION_LAST; decisionType++) { const char* decisionName = decisionType == (int)DECISION_STATIC ? "static" : decisionType == (int)DECISION_UNIFORM ? "uniform" : decisionType == (int)DECISION_ATTRIBUTE ? (isVertex ? "attribute" : "varying") : DE_NULL; DE_ASSERT(decisionName != DE_NULL); for (int workloadDivision = 0; workloadDivision < ConditionalCase::WORKLOAD_DIVISION_LAST; workloadDivision++) { const char* workloadDivisionSuffix = workloadDivision == (int)ConditionalCase::WORKLOAD_DIVISION_EVEN ? "" : workloadDivision == (int)ConditionalCase::WORKLOAD_DIVISION_TRUE_HEAVY ? "_with_heavier_true" : workloadDivision == (int)ConditionalCase::WORKLOAD_DIVISION_FALSE_HEAVY ? "_with_heavier_false" : DE_NULL; DE_ASSERT(workloadDivisionSuffix != DE_NULL); DE_STATIC_ASSERT(ConditionalCase::BRANCH_TRUE == 0); for (int branchResult = (int)ConditionalCase::BRANCH_TRUE; branchResult < (int)ConditionalCase::BRANCH_LAST; branchResult++) { if (decisionType != (int)DECISION_ATTRIBUTE && branchResult == (int)ConditionalCase::BRANCH_MIXED) continue; const char* branchResultName = branchResult == (int)ConditionalCase::BRANCH_TRUE ? "true" : branchResult == (int)ConditionalCase::BRANCH_FALSE ? "false" : branchResult == (int)ConditionalCase::BRANCH_MIXED ? "mixed" : DE_NULL; DE_ASSERT(branchResultName != DE_NULL); string caseName = string("") + decisionName + "_" + branchResultName + workloadDivisionSuffix; vertexOrFragmentGroup->addChild(new ConditionalCase(m_context, caseName.c_str(), "", (DecisionType)decisionType, (ConditionalCase::BranchResult)branchResult, (ConditionalCase::WorkloadDivision)workloadDivision, isVertex)); } } } if (isVertex) vertexOrFragmentGroup->addChild(new ConditionalWorkloadReferenceCase(m_context, "reference", "", true, isVertex)); else { // Only fragment case with BRANCH_MIXED has an additional fract() call. vertexOrFragmentGroup->addChild(new ConditionalWorkloadReferenceCase(m_context, "reference_unmixed", "", true, isVertex)); vertexOrFragmentGroup->addChild(new ConditionalWorkloadReferenceCase(m_context, "reference_mixed", "", false, isVertex)); } vertexOrFragmentGroup->addChild(new EmptyWorkloadReferenceCase(m_context, "reference_empty", "", isVertex)); } // Loop cases. static const struct { LoopCase::LoopType type; const char* name; const char* description; } loopGroups[] = { {LoopCase::LOOP_FOR, "for", "for Loop Performance Tests"}, {LoopCase::LOOP_WHILE, "while", "while Loop Performance Tests"}, {LoopCase::LOOP_DO_WHILE, "do_while", "do-while Loop Performance Tests"} }; for (int groupNdx = 0; groupNdx < DE_LENGTH_OF_ARRAY(loopGroups); groupNdx++) { tcu::TestCaseGroup* currentLoopGroup = new tcu::TestCaseGroup(m_testCtx, loopGroups[groupNdx].name, loopGroups[groupNdx].description); addChild(currentLoopGroup); for (int isFrag = 0; isFrag <= 1; isFrag++) { bool isVertex = isFrag == 0; ShaderPerformanceCaseGroup* vertexOrFragmentGroup = new ShaderPerformanceCaseGroup(m_testCtx, isVertex ? "vertex" : "fragment", ""); currentLoopGroup->addChild(vertexOrFragmentGroup); DE_STATIC_ASSERT(DECISION_STATIC == 0); for (int decisionType = (int)DECISION_STATIC; decisionType < (int)DECISION_LAST; decisionType++) { const char* decisionName = decisionType == (int)DECISION_STATIC ? "static" : decisionType == (int)DECISION_UNIFORM ? "uniform" : decisionType == (int)DECISION_ATTRIBUTE ? (isVertex ? "attribute" : "varying") : DE_NULL; DE_ASSERT(decisionName != DE_NULL); if (decisionType == (int)DECISION_ATTRIBUTE) { vertexOrFragmentGroup->addChild(new LoopCase(m_context, (string(decisionName) + "_stable").c_str(), "", loopGroups[groupNdx].type, (DecisionType)decisionType, true, isVertex)); vertexOrFragmentGroup->addChild(new LoopCase(m_context, (string(decisionName) + "_unstable").c_str(), "", loopGroups[groupNdx].type, (DecisionType)decisionType, false, isVertex)); } else vertexOrFragmentGroup->addChild(new LoopCase(m_context, decisionName, "", loopGroups[groupNdx].type, (DecisionType)decisionType, true, isVertex)); } if (isVertex) vertexOrFragmentGroup->addChild(new LoopWorkloadReferenceCase(m_context, "reference", "", true, isVertex)); else { // Only fragment case with unstable attribute has an additional fract() call. vertexOrFragmentGroup->addChild(new LoopWorkloadReferenceCase(m_context, "reference_stable", "", true, isVertex)); vertexOrFragmentGroup->addChild(new LoopWorkloadReferenceCase(m_context, "reference_unstable", "", false, isVertex)); } } } } } // Performance } // gles2 } // deqp