/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief ASTC decompression tests * * \todo Parts of the block-generation code are same as in decompression * code in tcuCompressedTexture.cpp ; could put them to some shared * ASTC utility file. * * \todo Tests for void extents with nontrivial extent coordinates. * * \todo Better checking of the error color. Currently legitimate error * pixels are just ignored in image comparison; however, spec says * that error color is either magenta or all-NaNs. Can NaNs cause * troubles, or can we assume that NaNs are well-supported in shader * if the implementation chooses NaNs as error color? *//*--------------------------------------------------------------------*/ #include "es3fASTCDecompressionCases.hpp" #include "gluTexture.hpp" #include "gluPixelTransfer.hpp" #include "gluStrUtil.hpp" #include "gluTextureUtil.hpp" #include "glsTextureTestUtil.hpp" #include "tcuCompressedTexture.hpp" #include "tcuTestLog.hpp" #include "tcuTextureUtil.hpp" #include "tcuSurface.hpp" #include "tcuVectorUtil.hpp" #include "tcuImageCompare.hpp" #include "deStringUtil.hpp" #include "deRandom.hpp" #include "deFloat16.h" #include "deString.h" #include "deMemory.h" #include "glwFunctions.hpp" #include "glwEnums.hpp" #include <vector> #include <string> #include <algorithm> using tcu::TestLog; using tcu::CompressedTexture; using tcu::IVec2; using tcu::IVec3; using tcu::IVec4; using tcu::Vec2; using tcu::Vec4; using tcu::Sampler; using tcu::Surface; using std::vector; using std::string; namespace deqp { using gls::TextureTestUtil::TextureRenderer; using gls::TextureTestUtil::RandomViewport; using gls::TextureTestUtil::ReferenceParams; namespace gles3 { namespace Functional { namespace ASTCDecompressionCaseInternal { static const int ASTC_BLOCK_SIZE_BYTES = 128/8; static inline int divRoundUp (int a, int b) { return a/b + ((a%b) ? 1 : 0); } namespace ASTCBlockGeneratorInternal { static inline deUint32 reverseBits (deUint32 src, int numBits) { DE_ASSERT(de::inRange(numBits, 0, 32)); deUint32 result = 0; for (int i = 0; i < numBits; i++) result |= ((src >> i) & 1) << (numBits-1-i); return result; } static inline deUint32 getBit (deUint32 src, int ndx) { DE_ASSERT(de::inBounds(ndx, 0, 32)); return (src >> ndx) & 1; } static inline deUint32 getBits (deUint32 src, int low, int high) { const int numBits = (high-low) + 1; if (numBits == 0) return 0; DE_ASSERT(de::inRange(numBits, 1, 32)); return (src >> low) & ((1u<<numBits)-1); } #if defined(DE_DEBUG) static inline bool isFloat16InfOrNan (deFloat16 v) { return getBits(v, 10, 14) == 31; } #endif template <typename T, typename Y> struct isSameType { enum { V = 0 }; }; template <typename T> struct isSameType<T, T> { enum { V = 1 }; }; // Helper class for setting bits in a 128-bit block. class AssignBlock128 { private: typedef deUint64 Word; enum { WORD_BYTES = sizeof(Word), WORD_BITS = 8*WORD_BYTES, NUM_WORDS = 128 / WORD_BITS }; DE_STATIC_ASSERT(128 % WORD_BITS == 0); public: AssignBlock128 (void) { for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) m_words[wordNdx] = 0; } void setBit (int ndx, deUint32 val) { DE_ASSERT(de::inBounds(ndx, 0, 128)); DE_ASSERT((val & 1) == val); const int wordNdx = ndx / WORD_BITS; const int bitNdx = ndx % WORD_BITS; m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx); } void setBits (int low, int high, deUint32 bits) { DE_ASSERT(de::inBounds(low, 0, 128)); DE_ASSERT(de::inBounds(high, 0, 128)); DE_ASSERT(de::inRange(high-low+1, 0, 32)); DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits); if (high-low+1 == 0) return; const int word0Ndx = low / WORD_BITS; const int word1Ndx = high / WORD_BITS; const int lowNdxInW0 = low % WORD_BITS; if (word0Ndx == word1Ndx) m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0); else { DE_ASSERT(word1Ndx == word0Ndx + 1); const int highNdxInW1 = high % WORD_BITS; const int numBitsToSetInW0 = WORD_BITS - lowNdxInW0; const Word bitsLowMask = ((Word)1 << numBitsToSetInW0) - 1; m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1)) | (((Word)bits & bitsLowMask) << lowNdxInW0); m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1)) | (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0); } } void assignToMemory (deUint8* dst) const { for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++) { for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++) dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff); } } void pushBytesToVector (vector<deUint8>& dst) const { const int assignStartIndex = (int)dst.size(); dst.resize(dst.size() + ASTC_BLOCK_SIZE_BYTES); assignToMemory(&dst[assignStartIndex]); } private: Word m_words[NUM_WORDS]; }; // A helper for sequential access into a AssignBlock128. class BitAssignAccessStream { public: BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward) : m_dst (dst) , m_startNdxInSrc (startNdxInSrc) , m_length (length) , m_forward (forward) , m_ndx (0) { } // Set the next num bits. Bits at positions greater than or equal to m_length are not touched. void setNext (int num, deUint32 bits) { DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits); if (num == 0 || m_ndx >= m_length) return; const int end = m_ndx + num; const int numBitsToDst = de::max(0, de::min(m_length, end) - m_ndx); const int low = m_ndx; const int high = m_ndx + numBitsToDst - 1; const deUint32 actualBits = getBits(bits, 0, numBitsToDst-1); m_ndx += num; return m_forward ? m_dst.setBits(m_startNdxInSrc + low, m_startNdxInSrc + high, actualBits) : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst)); } private: AssignBlock128& m_dst; const int m_startNdxInSrc; const int m_length; const bool m_forward; int m_ndx; }; struct VoidExtentParams { DE_STATIC_ASSERT((isSameType<deFloat16, deUint16>::V)); bool isHDR; deUint16 r; deUint16 g; deUint16 b; deUint16 a; // \note Currently extent coordinates are all set to all-ones. VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {} }; static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params) { AssignBlock128 block; block.setBits(0, 8, 0x1fc); // \note Marks void-extent block. block.setBit(9, params.isHDR); block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose. // Extent coordinates - currently all-ones. block.setBits(12, 24, 0x1fff); block.setBits(25, 37, 0x1fff); block.setBits(38, 50, 0x1fff); block.setBits(51, 63, 0x1fff); DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) && !isFloat16InfOrNan(params.g) && !isFloat16InfOrNan(params.b) && !isFloat16InfOrNan(params.a))); block.setBits(64, 79, params.r); block.setBits(80, 95, params.g); block.setBits(96, 111, params.b); block.setBits(112, 127, params.a); return block; } enum ISEMode { ISEMODE_TRIT = 0, ISEMODE_QUINT, ISEMODE_PLAIN_BIT, ISEMODE_LAST }; struct ISEParams { ISEMode mode; int numBits; ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {} }; // An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the // range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed // so we can test all possible values of T and Q in a block, since multiple T or Q values may map // to the same set of decoded values. struct ISEInput { struct Block { deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block. deUint32 bitValues[5]; }; bool isGivenInBlockForm; union { //!< \note 64 comes from the maximum number of weight values in an ASTC block. deUint32 plain[64]; Block block[64]; } value; ISEInput (void) : isGivenInBlockForm (false) { } }; static inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues) { switch (iseParams.mode) { case ISEMODE_TRIT: return divRoundUp(numValues*8, 5) + numValues*iseParams.numBits; case ISEMODE_QUINT: return divRoundUp(numValues*7, 3) + numValues*iseParams.numBits; case ISEMODE_PLAIN_BIT: return numValues*iseParams.numBits; default: DE_ASSERT(false); return -1; } } static inline deUint32 computeISERangeMax (const ISEParams& iseParams) { switch (iseParams.mode) { case ISEMODE_TRIT: return (1u << iseParams.numBits) * 3 - 1; case ISEMODE_QUINT: return (1u << iseParams.numBits) * 5 - 1; case ISEMODE_PLAIN_BIT: return (1u << iseParams.numBits) - 1; default: DE_ASSERT(false); return -1; } } struct NormalBlockParams { int weightGridWidth; int weightGridHeight; ISEParams weightISEParams; bool isDualPlane; deUint32 ccs; //! \note Irrelevant if !isDualPlane. int numPartitions; deUint32 colorEndpointModes[4]; // \note Below members are irrelevant if numPartitions == 1. bool isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0]. deUint32 partitionSeed; NormalBlockParams (void) : weightGridWidth (-1) , weightGridHeight (-1) , weightISEParams (ISEMODE_LAST, -1) , isDualPlane (true) , ccs ((deUint32)-1) , numPartitions (-1) , isMultiPartSingleCemMode (false) , partitionSeed ((deUint32)-1) { colorEndpointModes[0] = 0; colorEndpointModes[1] = 0; colorEndpointModes[2] = 0; colorEndpointModes[3] = 0; } }; struct NormalBlockISEInputs { ISEInput weight; ISEInput endpoint; NormalBlockISEInputs (void) : weight () , endpoint () { } }; static inline int computeNumWeights (const NormalBlockParams& params) { return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1); } static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params) { const int numWeightBits = computeNumRequiredBits(params.weightISEParams, computeNumWeights(params)); const int numConfigDataBits = (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) + (params.isDualPlane ? 2 : 0); return 128 - numWeightBits - numConfigDataBits; } static inline int computeNumColorEndpointValues (deUint32 endpointMode) { DE_ASSERT(endpointMode < 16); return (endpointMode/4 + 1) * 2; } static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode) { if (isMultiPartSingleCemMode) return numPartitions * computeNumColorEndpointValues(endpointModes[0]); else { int result = 0; for (int i = 0; i < numPartitions; i++) result += computeNumColorEndpointValues(endpointModes[i]); return result; } } static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight) { const int numWeights = computeNumWeights(params); const int numWeightBits = computeNumRequiredBits(params.weightISEParams, numWeights); const int numColorEndpointValues = computeNumColorEndpointValues(¶ms.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode); const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(params); return numWeights <= 64 && de::inRange(numWeightBits, 24, 96) && params.weightGridWidth <= blockWidth && params.weightGridHeight <= blockHeight && !(params.numPartitions == 4 && params.isDualPlane) && numColorEndpointValues <= 18 && numBitsForColorEndpoints >= divRoundUp(13*numColorEndpointValues, 5); } // Write bits 0 to 10 of an ASTC block. static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams) { const deUint32 d = blockParams.isDualPlane != 0; // r and h initialized in switch below. deUint32 r; deUint32 h; // a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below. deUint32 a = (deUint32)-1; deUint32 b = (deUint32)-1; int blockModeLayoutNdx; // Find the values of r and h (ISE range). switch (computeISERangeMax(blockParams.weightISEParams)) { case 1: r = 2; h = 0; break; case 2: r = 3; h = 0; break; case 3: r = 4; h = 0; break; case 4: r = 5; h = 0; break; case 5: r = 6; h = 0; break; case 7: r = 7; h = 0; break; case 9: r = 2; h = 1; break; case 11: r = 3; h = 1; break; case 15: r = 4; h = 1; break; case 19: r = 5; h = 1; break; case 23: r = 6; h = 1; break; case 31: r = 7; h = 1; break; default: DE_ASSERT(false); r = (deUint32)-1; h = (deUint32)-1; } // Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec. { enum BlockModeLayoutABVariable { Z=0, A=1, B=2 }; static const struct BlockModeLayout { int aNumBits; int bNumBits; BlockModeLayoutABVariable gridWidthVariableTerm; int gridWidthConstantTerm; BlockModeLayoutABVariable gridHeightVariableTerm; int gridHeightConstantTerm; } blockModeLayouts[] = { { 2, 2, B, 4, A, 2}, { 2, 2, B, 8, A, 2}, { 2, 2, A, 2, B, 8}, { 2, 1, A, 2, B, 6}, { 2, 1, B, 2, A, 2}, { 2, 0, Z, 12, A, 2}, { 2, 0, A, 2, Z, 12}, { 0, 0, Z, 6, Z, 10}, { 0, 0, Z, 10, Z, 6}, { 2, 2, A, 6, B, 6} }; for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++) { const BlockModeLayout& layout = blockModeLayouts[blockModeLayoutNdx]; const int aMax = (1 << layout.aNumBits) - 1; const int bMax = (1 << layout.bNumBits) - 1; const int variableOffsetsMax[3] = { 0, aMax, bMax }; const int widthMin = layout.gridWidthConstantTerm; const int heightMin = layout.gridHeightConstantTerm; const int widthMax = widthMin + variableOffsetsMax[layout.gridWidthVariableTerm]; const int heightMax = heightMin + variableOffsetsMax[layout.gridHeightVariableTerm]; DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z); if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) && de::inRange(blockParams.weightGridHeight, heightMin, heightMax)) { deUint32 dummy = 0; deUint32& widthVariable = layout.gridWidthVariableTerm == A ? a : layout.gridWidthVariableTerm == B ? b : dummy; deUint32& heightVariable = layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : dummy; widthVariable = blockParams.weightGridWidth - layout.gridWidthConstantTerm; heightVariable = blockParams.weightGridHeight - layout.gridHeightConstantTerm; break; } } } // Set block mode bits. const deUint32 a0 = getBit(a, 0); const deUint32 a1 = getBit(a, 1); const deUint32 b0 = getBit(b, 0); const deUint32 b1 = getBit(b, 1); const deUint32 r0 = getBit(r, 0); const deUint32 r1 = getBit(r, 1); const deUint32 r2 = getBit(r, 2); #define SB(NDX, VAL) dst.setBit((NDX), (VAL)) #define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false) switch (blockModeLayoutNdx) { case 0: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 0, r2, r1); break; case 1: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 1, r2, r1); break; case 2: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 1, 0, r2, r1); break; case 3: ASSIGN_BITS(d, h, 0, b, a1, a0, r0, 1, 1, r2, r1); break; case 4: ASSIGN_BITS(d, h, 1, b, a1, a0, r0, 1, 1, r2, r1); break; case 5: ASSIGN_BITS(d, h, 0, 0, a1, a0, r0, r2, r1, 0, 0); break; case 6: ASSIGN_BITS(d, h, 0, 1, a1, a0, r0, r2, r1, 0, 0); break; case 7: ASSIGN_BITS(d, h, 1, 1, 0, 0, r0, r2, r1, 0, 0); break; case 8: ASSIGN_BITS(d, h, 1, 1, 0, 1, r0, r2, r1, 0, 0); break; case 9: ASSIGN_BITS(b1, b0, 1, 0, a1, a0, r0, r2, r1, 0, 0); DE_ASSERT(d == 0 && h == 0); break; default: DE_ASSERT(false); } #undef ASSIGN_BITS #undef SB } // Write color endpoint mode data of an ASTC block. static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart) { if (numPartitions == 1) dst.setBits(13, 16, colorEndpointModes[0]); else { if (isMultiPartSingleCemMode) { dst.setBits(23, 24, 0); dst.setBits(25, 28, colorEndpointModes[0]); } else { DE_ASSERT(numPartitions > 0); const deUint32 minCem = *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]); const deUint32 maxCem = *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]); const deUint32 minCemClass = minCem/4; const deUint32 maxCemClass = maxCem/4; DE_ASSERT(maxCemClass - minCemClass <= 1); DE_UNREF(minCemClass); // \note For non-debug builds. const deUint32 highLevelSelector = de::max(1u, maxCemClass); dst.setBits(23, 24, highLevelSelector); for (int partNdx = 0; partNdx < numPartitions; partNdx++) { const deUint32 c = colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0; const deUint32 m = colorEndpointModes[partNdx] % 4; const deUint32 lowMBit0Ndx = numPartitions + 2*partNdx; const deUint32 lowMBit1Ndx = numPartitions + 2*partNdx + 1; dst.setBit(25 + partNdx, c); dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0)); dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1)); } } } } static ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence) { int curBitsForTritMode = 6; int curBitsForQuintMode = 5; int curBitsForPlainBitMode = 8; while (true) { DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0); const int tritRange = curBitsForTritMode > 0 ? (3 << curBitsForTritMode) - 1 : -1; const int quintRange = curBitsForQuintMode > 0 ? (5 << curBitsForQuintMode) - 1 : -1; const int plainBitRange = curBitsForPlainBitMode > 0 ? (1 << curBitsForPlainBitMode) - 1 : -1; const int maxRange = de::max(de::max(tritRange, quintRange), plainBitRange); if (maxRange == tritRange) { const ISEParams params(ISEMODE_TRIT, curBitsForTritMode); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_TRIT, curBitsForTritMode); curBitsForTritMode--; } else if (maxRange == quintRange) { const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_QUINT, curBitsForQuintMode); curBitsForQuintMode--; } else { const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); DE_ASSERT(maxRange == plainBitRange); if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits) return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode); curBitsForPlainBitMode--; } } } static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues) { // tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded. static const deUint32 tritBlockTValue[3][3][3][3][3] = { { {{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}}, {{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}}, {{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}} }, { {{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}}, {{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}}, {{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}} }, { {{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}}, {{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}}, {{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}} } }; DE_ASSERT(de::inRange(numValues, 1, 5)); deUint32 tritParts[5]; deUint32 bitParts[5]; for (int i = 0; i < 5; i++) { if (i < numValues) { if (fromExplicitInputBlock) { bitParts[i] = blockInput.bitValues[i]; tritParts[i] = -1; // \note Won't be used, but silences warning. } else { bitParts[i] = getBits(nonBlockInput[i], 0, numBits-1); tritParts[i] = nonBlockInput[i] >> numBits; } } else { bitParts[i] = 0; tritParts[i] = 0; } } const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]] [tritParts[1]] [tritParts[2]] [tritParts[3]] [tritParts[4]]; dst.setNext(numBits, bitParts[0]); dst.setNext(2, getBits(T, 0, 1)); dst.setNext(numBits, bitParts[1]); dst.setNext(2, getBits(T, 2, 3)); dst.setNext(numBits, bitParts[2]); dst.setNext(1, getBit(T, 4)); dst.setNext(numBits, bitParts[3]); dst.setNext(2, getBits(T, 5, 6)); dst.setNext(numBits, bitParts[4]); dst.setNext(1, getBit(T, 7)); } static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues) { // quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded. static const deUint32 quintBlockQValue[5][5][5] = { {{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}}, {{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}}, {{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}}, {{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}}, {{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}} }; DE_ASSERT(de::inRange(numValues, 1, 3)); deUint32 quintParts[3]; deUint32 bitParts[3]; for (int i = 0; i < 3; i++) { if (i < numValues) { if (fromExplicitInputBlock) { bitParts[i] = blockInput.bitValues[i]; quintParts[i] = -1; // \note Won't be used, but silences warning. } else { bitParts[i] = getBits(nonBlockInput[i], 0, numBits-1); quintParts[i] = nonBlockInput[i] >> numBits; } } else { bitParts[i] = 0; quintParts[i] = 0; } } const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]] [quintParts[1]] [quintParts[2]]; dst.setNext(numBits, bitParts[0]); dst.setNext(3, getBits(Q, 0, 2)); dst.setNext(numBits, bitParts[1]); dst.setNext(2, getBits(Q, 3, 4)); dst.setNext(numBits, bitParts[2]); dst.setNext(2, getBits(Q, 5, 6)); } static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value) { DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1)); dst.setNext(numBits, value); } static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues) { if (params.mode == ISEMODE_TRIT) { const int numBlocks = divRoundUp(numValues, 5); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5; encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm, input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(), input.isGivenInBlockForm ? DE_NULL : &input.value.plain[5*blockNdx], numValuesInBlock); } } else if (params.mode == ISEMODE_QUINT) { const int numBlocks = divRoundUp(numValues, 3); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3; encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm, input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(), input.isGivenInBlockForm ? DE_NULL : &input.value.plain[3*blockNdx], numValuesInBlock); } } else { DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT); for (int i = 0; i < numValues; i++) encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]); } } static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights) { const int numWeightBits = computeNumRequiredBits(iseParams, numWeights); BitAssignAccessStream access (dst, 127, numWeightBits, false); encodeISE(access, iseParams, input, numWeights); } static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx) { BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true); encodeISE(access, iseParams, input, numEndpoints); } static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs) { DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight)); DE_UNREF(blockWidth); // \note For non-debug builds. DE_UNREF(blockHeight); // \note For non-debug builds. AssignBlock128 block; const int numWeights = computeNumWeights(blockParams); const int numWeightBits = computeNumRequiredBits(blockParams.weightISEParams, numWeights); writeBlockMode(block, blockParams); block.setBits(11, 12, blockParams.numPartitions - 1); if (blockParams.numPartitions > 1) block.setBits(13, 22, blockParams.partitionSeed); { const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode ? -1 : blockParams.numPartitions == 4 ? 7 : blockParams.numPartitions == 3 ? 4 : blockParams.numPartitions == 2 ? 1 : 0); writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart); if (blockParams.isDualPlane) block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs); } writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights); { const int numColorEndpointValues = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode); const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams); const int colorEndpointDataStartNdx = blockParams.numPartitions == 1 ? 17 : 29; const ISEParams& colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues); writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx); } return block; } // Generate default ISE inputs for weight and endpoint data - gradient-ish values. static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams) { NormalBlockISEInputs result; { result.weight.isGivenInBlockForm = false; const int numWeights = computeNumWeights(blockParams); const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams); if (blockParams.isDualPlane) { for (int i = 0; i < numWeights; i += 2) result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1); for (int i = 1; i < numWeights; i += 2) result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1); } else { for (int i = 0; i < numWeights; i++) result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1); } } { result.endpoint.isGivenInBlockForm = false; const int numColorEndpointValues = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode); const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams); const ISEParams& colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues); const int colorEndpointRangeMax = computeISERangeMax(colorEndpointISEParams); for (int i = 0; i < numColorEndpointValues; i++) result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1); } return result; } } // ASTCBlockGeneratorInternal static Vec4 getBlockTestTypeColorScale (ASTCBlockTestType testType) { switch (testType) { case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR: return Vec4(0.5f/65504.0f); case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15: return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f); case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15: return Vec4(1.0f/65504.0f); default: return Vec4(1.0f); } } static Vec4 getBlockTestTypeColorBias (ASTCBlockTestType testType) { switch (testType) { case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR: return Vec4(0.5f); default: return Vec4(0.0f); } } // Generate block data for a given ASTCBlockTestType and format. static void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexture::Format format, ASTCBlockTestType testType) { using namespace ASTCBlockGeneratorInternal; static const ISEParams weightISEParamsCandidates[] = { ISEParams(ISEMODE_PLAIN_BIT, 1), ISEParams(ISEMODE_TRIT, 0), ISEParams(ISEMODE_PLAIN_BIT, 2), ISEParams(ISEMODE_QUINT, 0), ISEParams(ISEMODE_TRIT, 1), ISEParams(ISEMODE_PLAIN_BIT, 3), ISEParams(ISEMODE_QUINT, 1), ISEParams(ISEMODE_TRIT, 2), ISEParams(ISEMODE_PLAIN_BIT, 4), ISEParams(ISEMODE_QUINT, 2), ISEParams(ISEMODE_TRIT, 3), ISEParams(ISEMODE_PLAIN_BIT, 5) }; DE_ASSERT(tcu::isASTCFormat(format)); DE_ASSERT(!(tcu::isASTCSRGBFormat(format) && isBlockTestTypeHDROnly(testType))); const IVec3 blockSize = getASTCBlockSize(format); DE_ASSERT(blockSize.z() == 1); switch (testType) { case ASTCBLOCKTESTTYPE_VOID_EXTENT_LDR: // Generate a gradient-like set of LDR void-extent blocks. { const int numBlocks = 1<<13; const deUint32 numValues = 1<<16; dst.reserve(numBlocks*ASTC_BLOCK_SIZE_BYTES); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const deUint32 baseValue = blockNdx*(numValues-1) / (numBlocks-1); const deUint16 r = (deUint16)((baseValue + numValues*0/4) % numValues); const deUint16 g = (deUint16)((baseValue + numValues*1/4) % numValues); const deUint16 b = (deUint16)((baseValue + numValues*2/4) % numValues); const deUint16 a = (deUint16)((baseValue + numValues*3/4) % numValues); AssignBlock128 block; generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst); } break; } case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR: // Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16. { const float minValue = -65504.0f; const float maxValue = +65504.0f; const int numBlocks = 1<<13; dst.reserve(numBlocks*ASTC_BLOCK_SIZE_BYTES); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { const int rNdx = (blockNdx + numBlocks*0/4) % numBlocks; const int gNdx = (blockNdx + numBlocks*1/4) % numBlocks; const int bNdx = (blockNdx + numBlocks*2/4) % numBlocks; const int aNdx = (blockNdx + numBlocks*3/4) % numBlocks; const deFloat16 r = deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1)); const deFloat16 g = deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1)); const deFloat16 b = deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1)); const deFloat16 a = deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1)); generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst); } break; } case ASTCBLOCKTESTTYPE_WEIGHT_GRID: // Generate different combinations of plane count, weight ISE params, and grid size. { for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++) for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); iseParamsNdx++) for (int weightGridWidth = 2; weightGridWidth <= 12; weightGridWidth++) for (int weightGridHeight = 2; weightGridHeight <= 12; weightGridHeight++) { NormalBlockParams blockParams; NormalBlockISEInputs iseInputs; blockParams.weightGridWidth = weightGridWidth; blockParams.weightGridHeight = weightGridHeight; blockParams.isDualPlane = isDualPlane != 0; blockParams.weightISEParams = weightISEParamsCandidates[iseParamsNdx]; blockParams.ccs = 0; blockParams.numPartitions = 1; blockParams.colorEndpointModes[0] = 0; if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); } break; } case ASTCBLOCKTESTTYPE_WEIGHT_ISE: // For each weight ISE param set, generate blocks that cover: // - each single value of the ISE's range, at each position inside an ISE block // - for trit and quint ISEs, each single T or Q value of an ISE block { for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); iseParamsNdx++) { const ISEParams& iseParams = weightISEParamsCandidates[iseParamsNdx]; NormalBlockParams blockParams; blockParams.weightGridWidth = 4; blockParams.weightGridHeight = 4; blockParams.weightISEParams = iseParams; blockParams.numPartitions = 1; blockParams.isDualPlane = blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false; blockParams.ccs = 0; blockParams.colorEndpointModes[0] = 0; while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) { blockParams.weightGridWidth--; blockParams.weightGridHeight--; } const int numValuesInISEBlock = iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1; const int numWeights = computeNumWeights(blockParams); { const int numWeightValues = (int)computeISERangeMax(iseParams) + 1; const int numBlocks = divRoundUp(numWeightValues, numWeights); NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.weight.isGivenInBlockForm = false; for (int offset = 0; offset < numValuesInISEBlock; offset++) for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); } } if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT) { NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.weight.isGivenInBlockForm = true; const int numTQValues = 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7); const int numISEBlocksPerBlock = divRoundUp(numWeights, numValuesInISEBlock); const int numBlocks = divRoundUp(numTQValues, numISEBlocksPerBlock); for (int offset = 0; offset < numValuesInISEBlock; offset++) for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++) { for (int i = 0; i < numValuesInISEBlock; i++) iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0; iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues; } generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); } } } break; } case ASTCBLOCKTESTTYPE_CEMS: // For each plane count & partition count combination, generate all color endpoint mode combinations. { for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++) for (int numPartitions = 1; numPartitions <= (isDualPlane != 0 ? 3 : 4); numPartitions++) { // Multi-partition, single-CEM mode. if (numPartitions > 1) { for (deUint32 singleCem = 0; singleCem < 16; singleCem++) { NormalBlockParams blockParams; blockParams.weightGridWidth = 4; blockParams.weightGridHeight = 4; blockParams.isDualPlane = isDualPlane != 0; blockParams.ccs = 0; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = true; blockParams.colorEndpointModes[0] = singleCem; blockParams.partitionSeed = 634; for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); iseParamsNdx++) { blockParams.weightISEParams = weightISEParamsCandidates[iseParamsNdx]; if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) { generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); break; } } } } // Separate-CEM mode. for (deUint32 cem0 = 0; cem0 < 16; cem0++) for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++) for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++) for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++) { NormalBlockParams blockParams; blockParams.weightGridWidth = 4; blockParams.weightGridHeight = 4; blockParams.isDualPlane = isDualPlane != 0; blockParams.ccs = 0; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = false; blockParams.colorEndpointModes[0] = cem0; blockParams.colorEndpointModes[1] = cem1; blockParams.colorEndpointModes[2] = cem2; blockParams.colorEndpointModes[3] = cem3; blockParams.partitionSeed = 634; { const deUint32 minCem = *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]); const deUint32 maxCem = *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]); const deUint32 minCemClass = minCem/4; const deUint32 maxCemClass = maxCem/4; if (maxCemClass - minCemClass > 1) continue; } for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); iseParamsNdx++) { blockParams.weightISEParams = weightISEParamsCandidates[iseParamsNdx]; if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) { generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); break; } } } } break; } case ASTCBLOCKTESTTYPE_PARTITION_SEED: // Test all partition seeds ("partition pattern indices"). { for (int numPartitions = 2; numPartitions <= 4; numPartitions++) for (deUint32 partitionSeed = 0; partitionSeed < 1<<10; partitionSeed++) { NormalBlockParams blockParams; blockParams.weightGridWidth = 4; blockParams.weightGridHeight = 4; blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2); blockParams.isDualPlane = false; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = true; blockParams.colorEndpointModes[0] = 0; blockParams.partitionSeed = partitionSeed; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); } break; } // \note Fall-through. case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_LDR: case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15: case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15: // For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair. // \note Separate modes for HDR and mode 15 due to different color scales and biases. { for (deUint32 cem = 0; cem < 16; cem++) { const bool isHDRCem = cem == 2 || cem == 3 || cem == 7 || cem == 11 || cem == 14 || cem == 15; if ((testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_LDR && isHDRCem) || (testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15 && (!isHDRCem || cem == 15)) || (testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15 && cem != 15)) continue; NormalBlockParams blockParams; blockParams.weightGridWidth = 3; blockParams.weightGridHeight = 4; blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2); blockParams.isDualPlane = false; blockParams.numPartitions = 1; blockParams.colorEndpointModes[0] = cem; { const int numBitsForEndpoints = computeNumBitsForColorEndpoints(blockParams); const int numEndpointParts = computeNumColorEndpointValues(cem); const ISEParams endpointISE = computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts); const int endpointISERangeMax = computeISERangeMax(endpointISE); for (int endpointPartNdx0 = 0; endpointPartNdx0 < numEndpointParts; endpointPartNdx0++) for (int endpointPartNdx1 = endpointPartNdx0+1; endpointPartNdx1 < numEndpointParts; endpointPartNdx1++) { NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); const int numEndpointValues = de::min(10, endpointISERangeMax+1); for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++) for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++) { const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1); const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1); iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0; iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); } } } } break; } case ASTCBLOCKTESTTYPE_ENDPOINT_ISE: // Similar to ASTCBLOCKTESTTYPE_WEIGHT_ISE, see above. { static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 }; for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++) { bool validCaseGenerated = false; for (int numPartitions = 1; !validCaseGenerated && numPartitions <= 4; numPartitions++) for (int isDual = 0; !validCaseGenerated && isDual <= 1; isDual++) for (int weightISEParamsNdx = 0; !validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(weightISEParamsCandidates); weightISEParamsNdx++) for (int weightGridWidth = 2; !validCaseGenerated && weightGridWidth <= 12; weightGridWidth++) for (int weightGridHeight = 2; !validCaseGenerated && weightGridHeight <= 12; weightGridHeight++) { NormalBlockParams blockParams; blockParams.weightGridWidth = weightGridWidth; blockParams.weightGridHeight = weightGridHeight; blockParams.weightISEParams = weightISEParamsCandidates[weightISEParamsNdx]; blockParams.isDualPlane = isDual != 0; blockParams.ccs = 0; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = true; blockParams.colorEndpointModes[0] = 12; blockParams.partitionSeed = 634; if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y())) { const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true)); if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx]) { validCaseGenerated = true; const int numColorEndpoints = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode); const int numValuesInISEBlock = endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1; { const int numColorEndpointValues = (int)computeISERangeMax(endpointISEParams) + 1; const int numBlocks = divRoundUp(numColorEndpointValues, numColorEndpoints); NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.endpoint.isGivenInBlockForm = false; for (int offset = 0; offset < numValuesInISEBlock; offset++) for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++) iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); } } if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT) { NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.endpoint.isGivenInBlockForm = true; const int numTQValues = 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7); const int numISEBlocksPerBlock = divRoundUp(numColorEndpoints, numValuesInISEBlock); const int numBlocks = divRoundUp(numTQValues, numISEBlocksPerBlock); for (int offset = 0; offset < numValuesInISEBlock; offset++) for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++) { for (int i = 0; i < numValuesInISEBlock; i++) iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0; iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues; } generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); } } } } } DE_ASSERT(validCaseGenerated); } break; } case ASTCBLOCKTESTTYPE_CCS: // For all partition counts, test all values of the CCS (color component selector). { for (int numPartitions = 1; numPartitions <= 3; numPartitions++) for (deUint32 ccs = 0; ccs < 4; ccs++) { NormalBlockParams blockParams; blockParams.weightGridWidth = 3; blockParams.weightGridHeight = 3; blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2); blockParams.isDualPlane = true; blockParams.ccs = ccs; blockParams.numPartitions = numPartitions; blockParams.isMultiPartSingleCemMode = true; blockParams.colorEndpointModes[0] = 8; blockParams.partitionSeed = 634; generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst); } break; } case ASTCBLOCKTESTTYPE_RANDOM: // Generate a number of random (but valid) blocks. { const int numBlocks = 16384; de::Random rnd (1); int numBlocksGenerated = 0; dst.reserve(numBlocks*ASTC_BLOCK_SIZE_BYTES); for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++) { if (rnd.getFloat() < 0.1f) { // Void extent block. const bool isVoidExtentHDR = rnd.getBool(); const deUint16 r = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : rnd.getInt(0, 0xffff); const deUint16 g = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : rnd.getInt(0, 0xffff); const deUint16 b = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : rnd.getInt(0, 0xffff); const deUint16 a = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : rnd.getInt(0, 0xffff); generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).pushBytesToVector(dst); } else { // Not void extent block. // Generate block params. NormalBlockParams blockParams; do { blockParams.weightGridWidth = rnd.getInt(2, blockSize.x()); blockParams.weightGridHeight = rnd.getInt(2, blockSize.y()); blockParams.weightISEParams = weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(weightISEParamsCandidates)-1)]; blockParams.numPartitions = rnd.getInt(1, 4); blockParams.isMultiPartSingleCemMode = rnd.getFloat() < 0.25f; blockParams.isDualPlane = blockParams.numPartitions != 4 && rnd.getBool(); blockParams.ccs = rnd.getInt(0, 3); blockParams.partitionSeed = rnd.getInt(0, 1023); blockParams.colorEndpointModes[0] = rnd.getInt(0, 15); { const int cemDiff = blockParams.isMultiPartSingleCemMode ? 0 : blockParams.colorEndpointModes[0] == 0 ? 1 : blockParams.colorEndpointModes[0] == 15 ? -1 : rnd.getBool() ? 1 : -1; for (int i = 1; i < blockParams.numPartitions; i++) blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0); } } while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y())); // Generate ISE inputs for both weight and endpoint data. NormalBlockISEInputs iseInputs; for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++) { const bool setWeights = weightOrEndpoints == 0; const int numValues = setWeights ? computeNumWeights(blockParams) : computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode); const ISEParams iseParams = setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues); ISEInput& iseInput = setWeights ? iseInputs.weight : iseInputs.endpoint; iseInput.isGivenInBlockForm = rnd.getBool(); if (iseInput.isGivenInBlockForm) { const int numValuesPerISEBlock = iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1; const int iseBitMax = (1 << iseParams.numBits) - 1; const int numISEBlocks = divRoundUp(numValues, numValuesPerISEBlock); for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++) { iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255); for (int i = 0; i < numValuesPerISEBlock; i++) iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax); } } else { const int rangeMax = computeISERangeMax(iseParams); for (int valueNdx = 0; valueNdx < numValues; valueNdx++) iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax); } } generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst); } } break; } default: DE_ASSERT(false); } } // Get a string describing the data of an ASTC block. Currently contains just hex and bin dumps of the block. static string astcBlockDataStr (const deUint8* data) { string result; result += " Hexadecimal (big endian: upper left hex digit is block bits 127 to 124):"; { static const char* const hexDigits = "0123456789ABCDEF"; for (int i = ASTC_BLOCK_SIZE_BYTES-1; i >= 0; i--) { if ((i+1) % 2 == 0) result += "\n "; else result += " "; result += hexDigits[(data[i] & 0xf0) >> 4]; result += " "; result += hexDigits[(data[i] & 0x0f) >> 0]; } } result += "\n\n Binary (big endian: upper left bit is block bit 127):"; for (int i = ASTC_BLOCK_SIZE_BYTES-1; i >= 0; i--) { if ((i+1) % 2 == 0) result += "\n "; else result += " "; for (int j = 8-1; j >= 0; j--) { if (j == 3) result += " "; result += (data[i] >> j) & 1 ? "1" : "0"; } } result += "\n"; return result; } // Compare reference and result block images, reporting also the position of the first non-matching block. static bool compareBlockImages (const Surface& reference, const Surface& result, const tcu::RGBA& thresholdRGBA, const IVec2& blockSize, int numNonDummyBlocks, IVec2& firstFailedBlockCoordDst, Surface& errorMaskDst, IVec4& maxDiffDst) { TCU_CHECK_INTERNAL(reference.getWidth() == result.getWidth() && reference.getHeight() == result.getHeight()); const int width = result.getWidth(); const int height = result.getHeight(); const IVec4 threshold = thresholdRGBA.toIVec(); const int numXBlocks = width / blockSize.x(); DE_ASSERT(width % blockSize.x() == 0 && height % blockSize.y() == 0); errorMaskDst.setSize(width, height); firstFailedBlockCoordDst = IVec2(-1, -1); maxDiffDst = IVec4(0); for (int y = 0; y < height; y++) for (int x = 0; x < width; x++) { const IVec2 blockCoord = IVec2(x, y) / blockSize; if (blockCoord.y()*numXBlocks + blockCoord.x() < numNonDummyBlocks) { const IVec4 refPix = reference.getPixel(x, y).toIVec(); if (refPix == IVec4(255, 0, 255, 255)) { // ASTC error color - allow anything in result. errorMaskDst.setPixel(x, y, tcu::RGBA(255, 0, 255, 255)); continue; } const IVec4 resPix = result.getPixel(x, y).toIVec(); const IVec4 diff = tcu::abs(refPix - resPix); const bool isOk = tcu::boolAll(tcu::lessThanEqual(diff, threshold)); maxDiffDst = tcu::max(maxDiffDst, diff); errorMaskDst.setPixel(x, y, isOk ? tcu::RGBA::green : tcu::RGBA::red); if (!isOk && firstFailedBlockCoordDst.x() == -1) firstFailedBlockCoordDst = blockCoord; } } return boolAll(lessThanEqual(maxDiffDst, threshold)); } enum ASTCSupportLevel { // \note Ordered from smallest subset to full, for convenient comparison. ASTCSUPPORTLEVEL_NONE = 0, ASTCSUPPORTLEVEL_LDR, ASTCSUPPORTLEVEL_HDR, ASTCSUPPORTLEVEL_FULL }; static inline ASTCSupportLevel getASTCSupportLevel (const glu::ContextInfo& contextInfo) { const vector<string>& extensions = contextInfo.getExtensions(); ASTCSupportLevel maxLevel = ASTCSUPPORTLEVEL_NONE; for (int extNdx = 0; extNdx < (int)extensions.size(); extNdx++) { const string& ext = extensions[extNdx]; maxLevel = de::max(maxLevel, ext == "GL_KHR_texture_compression_astc_ldr" ? ASTCSUPPORTLEVEL_LDR : ext == "GL_KHR_texture_compression_astc_hdr" ? ASTCSUPPORTLEVEL_HDR : ext == "GL_OES_texture_compression_astc" ? ASTCSUPPORTLEVEL_FULL : ASTCSUPPORTLEVEL_NONE); } return maxLevel; } // Class handling the common rendering stuff of ASTC cases. class ASTCRenderer2D { public: ASTCRenderer2D (Context& context, CompressedTexture::Format format, deUint32 randomSeed); ~ASTCRenderer2D (void); void initialize (int minRenderWidth, int minRenderHeight, const Vec4& colorScale, const Vec4& colorBias); void clear (void); void render (Surface& referenceDst, Surface& resultDst, const glu::Texture2D& texture, const tcu::TextureFormat& uncompressedFormat); CompressedTexture::Format getFormat (void) const { return m_format; } IVec2 getBlockSize (void) const { return m_blockSize; } ASTCSupportLevel getASTCSupport (void) const { DE_ASSERT(m_initialized); return m_astcSupport; } private: Context& m_context; TextureRenderer m_renderer; const CompressedTexture::Format m_format; const IVec2 m_blockSize; ASTCSupportLevel m_astcSupport; Vec4 m_colorScale; Vec4 m_colorBias; de::Random m_rnd; bool m_initialized; }; } // ASTCDecompressionCaseInternal using namespace ASTCDecompressionCaseInternal; ASTCRenderer2D::ASTCRenderer2D (Context& context, CompressedTexture::Format format, deUint32 randomSeed) : m_context (context) , m_renderer (context.getRenderContext(), context.getTestContext(), glu::GLSL_VERSION_300_ES, glu::PRECISION_HIGHP) , m_format (format) , m_blockSize (tcu::getASTCBlockSize(format).xy()) , m_astcSupport (ASTCSUPPORTLEVEL_NONE) , m_colorScale (-1.0f) , m_colorBias (-1.0f) , m_rnd (randomSeed) , m_initialized (false) { DE_ASSERT(tcu::getASTCBlockSize(format).z() == 1); } ASTCRenderer2D::~ASTCRenderer2D (void) { clear(); } void ASTCRenderer2D::initialize (int minRenderWidth, int minRenderHeight, const Vec4& colorScale, const Vec4& colorBias) { DE_ASSERT(!m_initialized); const tcu::RenderTarget& renderTarget = m_context.getRenderTarget(); TestLog& log = m_context.getTestContext().getLog(); m_astcSupport = getASTCSupportLevel(m_context.getContextInfo()); m_colorScale = colorScale; m_colorBias = colorBias; switch (m_astcSupport) { case ASTCSUPPORTLEVEL_NONE: log << TestLog::Message << "No ASTC support detected" << TestLog::EndMessage; throw tcu::NotSupportedError("ASTC not supported"); case ASTCSUPPORTLEVEL_LDR: log << TestLog::Message << "LDR ASTC support detected" << TestLog::EndMessage; break; case ASTCSUPPORTLEVEL_HDR: log << TestLog::Message << "HDR ASTC support detected" << TestLog::EndMessage; break; case ASTCSUPPORTLEVEL_FULL: log << TestLog::Message << "Full ASTC support detected" << TestLog::EndMessage; break; default: DE_ASSERT(false); } if (renderTarget.getWidth() < minRenderWidth || renderTarget.getHeight() < minRenderHeight) throw tcu::NotSupportedError("Render target must be at least " + de::toString(minRenderWidth) + "x" + de::toString(minRenderHeight)); log << TestLog::Message << "Using color scale and bias: result = raw * " << colorScale << " + " << colorBias << TestLog::EndMessage; m_initialized = true; } void ASTCRenderer2D::clear (void) { m_renderer.clear(); } void ASTCRenderer2D::render (Surface& referenceDst, Surface& resultDst, const glu::Texture2D& texture, const tcu::TextureFormat& uncompressedFormat) { DE_ASSERT(m_initialized); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const glu::RenderContext& renderCtx = m_context.getRenderContext(); const int textureWidth = texture.getRefTexture().getWidth(); const int textureHeight = texture.getRefTexture().getHeight(); const RandomViewport viewport (renderCtx.getRenderTarget(), textureWidth, textureHeight, m_rnd.getUint32()); ReferenceParams renderParams (gls::TextureTestUtil::TEXTURETYPE_2D); vector<float> texCoord; gls::TextureTestUtil::computeQuadTexCoord2D(texCoord, Vec2(0.0f, 0.0f), Vec2(1.0f, 1.0f)); renderParams.samplerType = gls::TextureTestUtil::getSamplerType(uncompressedFormat); renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST); renderParams.colorScale = m_colorScale; renderParams.colorBias = m_colorBias; // Setup base viewport. gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height); // Bind to unit 0. gl.activeTexture(GL_TEXTURE0); gl.bindTexture(GL_TEXTURE_2D, texture.getGLTexture()); // Setup nearest neighbor filtering and clamp-to-edge. gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state"); // Issue GL draws. m_renderer.renderQuad(0, &texCoord[0], renderParams); gl.flush(); // Compute reference. sampleTexture(gls::TextureTestUtil::SurfaceAccess(referenceDst, renderCtx.getRenderTarget().getPixelFormat()), texture.getRefTexture(), &texCoord[0], renderParams); // Read GL-rendered image. glu::readPixels(renderCtx, viewport.x, viewport.y, resultDst.getAccess()); } ASTCBlockCase2D::ASTCBlockCase2D (Context& context, const char* name, const char* description, ASTCBlockTestType testType, CompressedTexture::Format format) : TestCase (context, name, description) , m_testType (testType) , m_format (format) , m_numBlocksTested (0) , m_currentIteration (0) , m_renderer (new ASTCRenderer2D(context, format, deStringHash(getName()))) { DE_ASSERT(!(tcu::isASTCSRGBFormat(m_format) && isBlockTestTypeHDROnly(m_testType))); // \note There is no HDR sRGB mode, so these would be redundant. } ASTCBlockCase2D::~ASTCBlockCase2D (void) { ASTCBlockCase2D::deinit(); } void ASTCBlockCase2D::init (void) { m_renderer->initialize(64, 64, getBlockTestTypeColorScale(m_testType), getBlockTestTypeColorBias(m_testType)); generateBlockCaseTestData(m_blockData, m_format, m_testType); DE_ASSERT(!m_blockData.empty()); DE_ASSERT(m_blockData.size() % ASTC_BLOCK_SIZE_BYTES == 0); m_testCtx.getLog() << TestLog::Message << "Total " << m_blockData.size() / ASTC_BLOCK_SIZE_BYTES << " blocks to test" << TestLog::EndMessage << TestLog::Message << "Note: Legitimate ASTC error pixels will be ignored when comparing to reference" << TestLog::EndMessage; } void ASTCBlockCase2D::deinit (void) { m_renderer->clear(); m_blockData.clear(); } ASTCBlockCase2D::IterateResult ASTCBlockCase2D::iterate (void) { TestLog& log = m_testCtx.getLog(); if (m_renderer->getASTCSupport() == ASTCSUPPORTLEVEL_LDR && isBlockTestTypeHDROnly(m_testType)) { log << TestLog::Message << "Passing the case immediately, since only LDR support was detected and test only contains HDR blocks" << TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); return STOP; } const IVec2 blockSize = m_renderer->getBlockSize(); const int totalNumBlocks = (int)m_blockData.size() / ASTC_BLOCK_SIZE_BYTES; const int numXBlocksPerImage = de::min(m_context.getRenderTarget().getWidth(), 512) / blockSize.x(); const int numYBlocksPerImage = de::min(m_context.getRenderTarget().getHeight(), 512) / blockSize.y(); const int numBlocksPerImage = numXBlocksPerImage * numYBlocksPerImage; const int imageWidth = numXBlocksPerImage * blockSize.x(); const int imageHeight = numYBlocksPerImage * blockSize.y(); const int numBlocksRemaining = totalNumBlocks - m_numBlocksTested; const int curNumNonDummyBlocks = de::min(numBlocksPerImage, numBlocksRemaining); const int curNumDummyBlocks = numBlocksPerImage - curNumNonDummyBlocks; const glu::RenderContext& renderCtx = m_context.getRenderContext(); const tcu::RGBA threshold = renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + (tcu::isASTCSRGBFormat(m_format) ? tcu::RGBA(2,2,2,2) : tcu::RGBA(1,1,1,1)); tcu::CompressedTexture compressed (m_format, imageWidth, imageHeight); if (m_currentIteration == 0) { log << TestLog::Message << "Using texture of size " << imageWidth << "x" << imageHeight << ", with " << numXBlocksPerImage << " block columns and " << numYBlocksPerImage << " block rows " << ", with block size " << blockSize.x() << "x" << blockSize.y() << TestLog::EndMessage; } DE_ASSERT(compressed.getDataSize() == numBlocksPerImage*ASTC_BLOCK_SIZE_BYTES); deMemcpy(compressed.getData(), &m_blockData[m_numBlocksTested*ASTC_BLOCK_SIZE_BYTES], curNumNonDummyBlocks*ASTC_BLOCK_SIZE_BYTES); if (curNumDummyBlocks > 1) generateDummyBlocks((deUint8*)compressed.getData() + curNumNonDummyBlocks*ASTC_BLOCK_SIZE_BYTES, curNumDummyBlocks); // Create texture and render. glu::Texture2D texture (renderCtx, m_context.getContextInfo(), 1, &compressed, tcu::CompressedTexture::DecompressionParams(m_renderer->getASTCSupport() == ASTCSUPPORTLEVEL_LDR)); Surface renderedFrame (imageWidth, imageHeight); Surface referenceFrame (imageWidth, imageHeight); m_renderer->render(referenceFrame, renderedFrame, texture, compressed.getUncompressedFormat()); // Compare and log. // \note Since a case can draw quite many images, only log the first iteration and failures. { Surface errorMask; IVec2 firstFailedBlockCoord; IVec4 maxDiff; const bool compareOk = compareBlockImages(referenceFrame, renderedFrame, threshold, blockSize, curNumNonDummyBlocks, firstFailedBlockCoord, errorMask, maxDiff); if (m_currentIteration == 0 || !compareOk) { const char* const imageSetName = "ComparisonResult"; const char* const imageSetDesc = "Comparison Result"; { tcu::ScopedLogSection section(log, "Iteration " + de::toString(m_currentIteration), "Blocks " + de::toString(m_numBlocksTested) + " to " + de::toString(m_numBlocksTested + curNumNonDummyBlocks - 1)); if (curNumDummyBlocks > 0) log << TestLog::Message << "Note: Only the first " << curNumNonDummyBlocks << " blocks in the image are relevant; rest " << curNumDummyBlocks << " are dummies and not checked" << TestLog::EndMessage; if (!compareOk) { log << TestLog::Message << "Image comparison failed: max difference = " << maxDiff << ", threshold = " << threshold << TestLog::EndMessage << TestLog::ImageSet(imageSetName, imageSetDesc) << TestLog::Image("Result", "Result", renderedFrame) << TestLog::Image("Reference", "Reference", referenceFrame) << TestLog::Image("ErrorMask", "Error mask", errorMask) << TestLog::EndImageSet; const int blockNdx = m_numBlocksTested + firstFailedBlockCoord.y()*numXBlocksPerImage + firstFailedBlockCoord.x(); DE_ASSERT(blockNdx < totalNumBlocks); log << TestLog::Message << "First failed block at column " << firstFailedBlockCoord.x() << " and row " << firstFailedBlockCoord.y() << TestLog::EndMessage << TestLog::Message << "Data of first failed block:\n" << astcBlockDataStr(&m_blockData[blockNdx*ASTC_BLOCK_SIZE_BYTES]) << TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed"); return STOP; } else { log << TestLog::ImageSet(imageSetName, imageSetDesc) << TestLog::Image("Result", "Result", renderedFrame) << TestLog::EndImageSet; } } if (m_numBlocksTested + curNumNonDummyBlocks < totalNumBlocks) log << TestLog::Message << "Note: not logging further images unless reference comparison fails" << TestLog::EndMessage; } } m_currentIteration++; m_numBlocksTested += curNumNonDummyBlocks; if (m_numBlocksTested >= totalNumBlocks) { DE_ASSERT(m_numBlocksTested == totalNumBlocks); m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); return STOP; } return CONTINUE; } // Generate a number of trivial dummy blocks to fill unneeded space in a texture. void ASTCBlockCase2D::generateDummyBlocks (deUint8* dst, int num) { using namespace ASTCBlockGeneratorInternal; AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0)); for (int i = 0; i < num; i++) block.assignToMemory(&dst[i * ASTC_BLOCK_SIZE_BYTES]); } ASTCBlockSizeRemainderCase2D::ASTCBlockSizeRemainderCase2D (Context& context, const char* name, const char* description, CompressedTexture::Format format) : TestCase (context, name, description) , m_format (format) , m_currentIteration (0) , m_renderer (new ASTCRenderer2D(context, format, deStringHash(getName()))) { } ASTCBlockSizeRemainderCase2D::~ASTCBlockSizeRemainderCase2D (void) { ASTCBlockSizeRemainderCase2D::deinit(); } void ASTCBlockSizeRemainderCase2D::init (void) { const IVec2 blockSize = m_renderer->getBlockSize(); m_renderer->initialize(MAX_NUM_BLOCKS_X*blockSize.x(), MAX_NUM_BLOCKS_Y*blockSize.y(), Vec4(1.0f), Vec4(0.0f)); } void ASTCBlockSizeRemainderCase2D::deinit (void) { m_renderer->clear(); } ASTCBlockSizeRemainderCase2D::IterateResult ASTCBlockSizeRemainderCase2D::iterate (void) { TestLog& log = m_testCtx.getLog(); const IVec2 blockSize = m_renderer->getBlockSize(); const int curRemainderX = m_currentIteration % blockSize.x(); const int curRemainderY = m_currentIteration / blockSize.x(); const int imageWidth = (MAX_NUM_BLOCKS_X-1)*blockSize.x() + curRemainderX; const int imageHeight = (MAX_NUM_BLOCKS_Y-1)*blockSize.y() + curRemainderY; const int numBlocksX = divRoundUp(imageWidth, blockSize.x()); const int numBlocksY = divRoundUp(imageHeight, blockSize.y()); const int totalNumBlocks = numBlocksX * numBlocksY; const glu::RenderContext& renderCtx = m_context.getRenderContext(); const tcu::RGBA threshold = renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + (tcu::isASTCSRGBFormat(m_format) ? tcu::RGBA(2,2,2,2) : tcu::RGBA(1,1,1,1)); tcu::CompressedTexture compressed (m_format, imageWidth, imageHeight); DE_ASSERT(compressed.getDataSize() == totalNumBlocks*ASTC_BLOCK_SIZE_BYTES); generateDefaultBlockData((deUint8*)compressed.getData(), totalNumBlocks, blockSize.x(), blockSize.y()); // Create texture and render. Surface renderedFrame (imageWidth, imageHeight); Surface referenceFrame (imageWidth, imageHeight); glu::Texture2D texture (renderCtx, m_context.getContextInfo(), 1, &compressed, tcu::CompressedTexture::DecompressionParams(m_renderer->getASTCSupport() == ASTCSUPPORTLEVEL_LDR)); m_renderer->render(referenceFrame, renderedFrame, texture, compressed.getUncompressedFormat()); { // Compare and log. tcu::ScopedLogSection section(log, "Iteration " + de::toString(m_currentIteration), "Remainder " + de::toString(curRemainderX) + "x" + de::toString(curRemainderY)); log << TestLog::Message << "Using texture of size " << imageWidth << "x" << imageHeight << " and block size " << blockSize.x() << "x" << blockSize.y() << "; the x and y remainders are " << curRemainderX << " and " << curRemainderY << " respectively" << TestLog::EndMessage; const bool compareOk = tcu::pixelThresholdCompare(m_testCtx.getLog(), "ComparisonResult", "Comparison Result", referenceFrame, renderedFrame, threshold, m_currentIteration == 0 ? tcu::COMPARE_LOG_RESULT : tcu::COMPARE_LOG_ON_ERROR); if (!compareOk) { m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed"); return STOP; } } if (m_currentIteration == 0 && m_currentIteration+1 < blockSize.x()*blockSize.y()) log << TestLog::Message << "Note: not logging further images unless reference comparison fails" << TestLog::EndMessage; m_currentIteration++; if (m_currentIteration >= blockSize.x()*blockSize.y()) { DE_ASSERT(m_currentIteration == blockSize.x()*blockSize.y()); m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); return STOP; } return CONTINUE; } void ASTCBlockSizeRemainderCase2D::generateDefaultBlockData (deUint8* dst, int numBlocks, int blockWidth, int blockHeight) { using namespace ASTCBlockGeneratorInternal; NormalBlockParams blockParams; blockParams.weightGridWidth = 3; blockParams.weightGridHeight = 3; blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 5); blockParams.isDualPlane = false; blockParams.numPartitions = 1; blockParams.colorEndpointModes[0] = 8; NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams); iseInputs.weight.isGivenInBlockForm = false; const int numWeights = computeNumWeights(blockParams); const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams); for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++) { for (int weightNdx = 0; weightNdx < numWeights; weightNdx++) iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1); generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*ASTC_BLOCK_SIZE_BYTES); } } const char* getBlockTestTypeName (ASTCBlockTestType testType) { switch (testType) { case ASTCBLOCKTESTTYPE_VOID_EXTENT_LDR: return "void_extent_ldr"; case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR: return "void_extent_hdr"; case ASTCBLOCKTESTTYPE_WEIGHT_GRID: return "weight_grid"; case ASTCBLOCKTESTTYPE_WEIGHT_ISE: return "weight_ise"; case ASTCBLOCKTESTTYPE_CEMS: return "color_endpoint_modes"; case ASTCBLOCKTESTTYPE_PARTITION_SEED: return "partition_pattern_index"; case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_LDR: return "endpoint_value_ldr"; case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15: return "endpoint_value_hdr_cem_not_15"; case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15: return "endpoint_value_hdr_cem_15"; case ASTCBLOCKTESTTYPE_ENDPOINT_ISE: return "endpoint_ise"; case ASTCBLOCKTESTTYPE_CCS: return "color_component_selector"; case ASTCBLOCKTESTTYPE_RANDOM: return "random"; default: DE_ASSERT(false); return DE_NULL; } } const char* getBlockTestTypeDescription (ASTCBlockTestType testType) { switch (testType) { case ASTCBLOCKTESTTYPE_VOID_EXTENT_LDR: return "Test void extent block, LDR mode"; case ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR: return "Test void extent block, HDR mode"; case ASTCBLOCKTESTTYPE_WEIGHT_GRID: return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size"; case ASTCBLOCKTESTTYPE_WEIGHT_ISE: return "Test different integer sequence encoding block values for weight grid"; case ASTCBLOCKTESTTYPE_CEMS: return "Test different color endpoint mode combinations, combined with different plane and partition counts"; case ASTCBLOCKTESTTYPE_PARTITION_SEED: return "Test different partition pattern indices"; case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_LDR: return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode"; case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15: return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15"; case ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15: return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15"; case ASTCBLOCKTESTTYPE_ENDPOINT_ISE: return "Test different integer sequence encoding block values for color endpoints"; case ASTCBLOCKTESTTYPE_CCS: return "Test color component selector, for different partition counts"; case ASTCBLOCKTESTTYPE_RANDOM: return "Random block test"; default: DE_ASSERT(false); return DE_NULL; } } bool isBlockTestTypeHDROnly (ASTCBlockTestType testType) { return testType == ASTCBLOCKTESTTYPE_VOID_EXTENT_HDR || testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_NO_15 || testType == ASTCBLOCKTESTTYPE_ENDPOINT_VALUE_HDR_15; } } // Functional } // gles3 } // deqp