/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL (ES) Module * ----------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Precision and range tests for GLSL builtins and types. * *//*--------------------------------------------------------------------*/ #include "glsBuiltinPrecisionTests.hpp" #include "deMath.h" #include "deMemory.h" #include "deDefs.hpp" #include "deRandom.hpp" #include "deSTLUtil.hpp" #include "deStringUtil.hpp" #include "deUniquePtr.hpp" #include "deSharedPtr.hpp" #include "tcuCommandLine.hpp" #include "tcuFloatFormat.hpp" #include "tcuInterval.hpp" #include "tcuTestCase.hpp" #include "tcuTestLog.hpp" #include "tcuVector.hpp" #include "tcuMatrix.hpp" #include "gluContextInfo.hpp" #include "gluVarType.hpp" #include "gluRenderContext.hpp" #include "glwDefs.hpp" #include "glsShaderExecUtil.hpp" #include <cmath> #include <string> #include <sstream> #include <iostream> #include <map> #include <utility> // Uncomment this to get evaluation trace dumps to std::cerr // #define GLS_ENABLE_TRACE // set this to true to dump even passing results #define GLS_LOG_ALL_RESULTS false namespace deqp { namespace gls { namespace BuiltinPrecisionTests { using std::string; using std::map; using std::ostream; using std::ostringstream; using std::pair; using std::vector; using std::set; using de::MovePtr; using de::Random; using de::SharedPtr; using de::UniquePtr; using tcu::Interval; using tcu::FloatFormat; using tcu::MessageBuilder; using tcu::TestCase; using tcu::TestLog; using tcu::Vector; using tcu::Matrix; namespace matrix = tcu::matrix; using glu::Precision; using glu::RenderContext; using glu::VarType; using glu::DataType; using glu::ShaderType; using glu::ContextInfo; using gls::ShaderExecUtil::Symbol; typedef TestCase::IterateResult IterateResult; using namespace glw; using namespace tcu; /*--------------------------------------------------------------------*//*! * \brief Generic singleton creator. * * instance<T>() returns a reference to a unique default-constructed instance * of T. This is mainly used for our GLSL function implementations: each * function is implemented by an object, and each of the objects has a * distinct class. It would be extremely toilsome to maintain a separate * context object that contained individual instances of the function classes, * so we have to resort to global singleton instances. * *//*--------------------------------------------------------------------*/ template <typename T> const T& instance (void) { static const T s_instance = T(); return s_instance; } /*--------------------------------------------------------------------*//*! * \brief Dummy placeholder type for unused template parameters. * * In the precision tests we are dealing with functions of different arities. * To minimize code duplication, we only define templates with the maximum * number of arguments, currently four. If a function's arity is less than the * maximum, Void us used as the type for unused arguments. * * Although Voids are not used at run-time, they still must be compilable, so * they must support all operations that other types do. * *//*--------------------------------------------------------------------*/ struct Void { typedef Void Element; enum { SIZE = 0, }; template <typename T> explicit Void (const T&) {} Void (void) {} operator double (void) const { return TCU_NAN; } // These are used to make Voids usable as containers in container-generic code. Void& operator[] (int) { return *this; } const Void& operator[] (int) const { return *this; } }; ostream& operator<< (ostream& os, Void) { return os << "()"; } //! Returns true for all other types except Void template <typename T> bool isTypeValid (void) { return true; } template <> bool isTypeValid<Void> (void) { return false; } //! Utility function for getting the name of a data type. //! This is used in vector and matrix constructors. template <typename T> const char* dataTypeNameOf (void) { return glu::getDataTypeName(glu::dataTypeOf<T>()); } template <> const char* dataTypeNameOf<Void> (void) { DE_ASSERT(!"Impossible"); return DE_NULL; } //! A hack to get Void support for VarType. template <typename T> VarType getVarTypeOf (Precision prec = glu::PRECISION_LAST) { return glu::varTypeOf<T>(prec); } template <> VarType getVarTypeOf<Void> (Precision) { DE_ASSERT(!"Impossible"); return VarType(); } /*--------------------------------------------------------------------*//*! * \brief Type traits for generalized interval types. * * We are trying to compute sets of acceptable values not only for * float-valued expressions but also for compound values: vectors and * matrices. We approximate a set of vectors as a vector of intervals and * likewise for matrices. * * We now need generalized operations for each type and its interval * approximation. These are given in the type Traits<T>. * * The type Traits<T>::IVal is the approximation of T: it is `Interval` for * scalar types, and a vector or matrix of intervals for container types. * * To allow template inference to take place, there are function wrappers for * the actual operations in Traits<T>. Hence we can just use: * * makeIVal(someFloat) * * instead of: * * Traits<float>::doMakeIVal(value) * *//*--------------------------------------------------------------------*/ template <typename T> struct Traits; //! Create container from elementwise singleton values. template <typename T> typename Traits<T>::IVal makeIVal (const T& value) { return Traits<T>::doMakeIVal(value); } //! Elementwise union of intervals. template <typename T> typename Traits<T>::IVal unionIVal (const typename Traits<T>::IVal& a, const typename Traits<T>::IVal& b) { return Traits<T>::doUnion(a, b); } //! Returns true iff every element of `ival` contains the corresponding element of `value`. template <typename T> bool contains (const typename Traits<T>::IVal& ival, const T& value) { return Traits<T>::doContains(ival, value); } //! Print out an interval with the precision of `fmt`. template <typename T> void printIVal (const FloatFormat& fmt, const typename Traits<T>::IVal& ival, ostream& os) { Traits<T>::doPrintIVal(fmt, ival, os); } template <typename T> string intervalToString (const FloatFormat& fmt, const typename Traits<T>::IVal& ival) { ostringstream oss; printIVal<T>(fmt, ival, oss); return oss.str(); } //! Print out a value with the precision of `fmt`. template <typename T> void printValue (const FloatFormat& fmt, const T& value, ostream& os) { Traits<T>::doPrintValue(fmt, value, os); } template <typename T> string valueToString (const FloatFormat& fmt, const T& val) { ostringstream oss; printValue(fmt, val, oss); return oss.str(); } //! Approximate `value` elementwise to the float precision defined in `fmt`. //! The resulting interval might not be a singleton if rounding in both //! directions is allowed. template <typename T> typename Traits<T>::IVal round (const FloatFormat& fmt, const T& value) { return Traits<T>::doRound(fmt, value); } template <typename T> typename Traits<T>::IVal convert (const FloatFormat& fmt, const typename Traits<T>::IVal& value) { return Traits<T>::doConvert(fmt, value); } //! Common traits for scalar types. template <typename T> struct ScalarTraits { typedef Interval IVal; static Interval doMakeIVal (const T& value) { // Thankfully all scalar types have a well-defined conversion to `double`, // hence Interval can represent their ranges without problems. return Interval(double(value)); } static Interval doUnion (const Interval& a, const Interval& b) { return a | b; } static bool doContains (const Interval& a, T value) { return a.contains(double(value)); } static Interval doConvert (const FloatFormat& fmt, const IVal& ival) { return fmt.convert(ival); } static Interval doRound (const FloatFormat& fmt, T value) { return fmt.roundOut(double(value), false); } }; template<> struct Traits<float> : ScalarTraits<float> { static void doPrintIVal (const FloatFormat& fmt, const Interval& ival, ostream& os) { os << fmt.intervalToHex(ival); } static void doPrintValue (const FloatFormat& fmt, const float& value, ostream& os) { os << fmt.floatToHex(value); } }; template<> struct Traits<bool> : ScalarTraits<bool> { static void doPrintValue (const FloatFormat&, const float& value, ostream& os) { os << (value ? "true" : "false"); } static void doPrintIVal (const FloatFormat&, const Interval& ival, ostream& os) { os << "{"; if (ival.contains(false)) os << "false"; if (ival.contains(false) && ival.contains(true)) os << ", "; if (ival.contains(true)) os << "true"; os << "}"; } }; template<> struct Traits<int> : ScalarTraits<int> { static void doPrintValue (const FloatFormat&, const int& value, ostream& os) { os << value; } static void doPrintIVal (const FloatFormat&, const Interval& ival, ostream& os) { os << "[" << int(ival.lo()) << ", " << int(ival.hi()) << "]"; } }; //! Common traits for containers, i.e. vectors and matrices. //! T is the container type itself, I is the same type with interval elements. template <typename T, typename I> struct ContainerTraits { typedef typename T::Element Element; typedef I IVal; static IVal doMakeIVal (const T& value) { IVal ret; for (int ndx = 0; ndx < T::SIZE; ++ndx) ret[ndx] = makeIVal(value[ndx]); return ret; } static IVal doUnion (const IVal& a, const IVal& b) { IVal ret; for (int ndx = 0; ndx < T::SIZE; ++ndx) ret[ndx] = unionIVal<Element>(a[ndx], b[ndx]); return ret; } static bool doContains (const IVal& ival, const T& value) { for (int ndx = 0; ndx < T::SIZE; ++ndx) if (!contains(ival[ndx], value[ndx])) return false; return true; } static void doPrintIVal (const FloatFormat& fmt, const IVal ival, ostream& os) { os << "("; for (int ndx = 0; ndx < T::SIZE; ++ndx) { if (ndx > 0) os << ", "; printIVal<Element>(fmt, ival[ndx], os); } os << ")"; } static void doPrintValue (const FloatFormat& fmt, const T& value, ostream& os) { os << dataTypeNameOf<T>() << "("; for (int ndx = 0; ndx < T::SIZE; ++ndx) { if (ndx > 0) os << ", "; printValue<Element>(fmt, value[ndx], os); } os << ")"; } static IVal doConvert (const FloatFormat& fmt, const IVal& value) { IVal ret; for (int ndx = 0; ndx < T::SIZE; ++ndx) ret[ndx] = convert<Element>(fmt, value[ndx]); return ret; } static IVal doRound (const FloatFormat& fmt, T value) { IVal ret; for (int ndx = 0; ndx < T::SIZE; ++ndx) ret[ndx] = round(fmt, value[ndx]); return ret; } }; template <typename T, int Size> struct Traits<Vector<T, Size> > : ContainerTraits<Vector<T, Size>, Vector<typename Traits<T>::IVal, Size> > { }; template <typename T, int Rows, int Cols> struct Traits<Matrix<T, Rows, Cols> > : ContainerTraits<Matrix<T, Rows, Cols>, Matrix<typename Traits<T>::IVal, Rows, Cols> > { }; //! Void traits. These are just dummies, but technically valid: a Void is a //! unit type with a single possible value. template<> struct Traits<Void> { typedef Void IVal; static Void doMakeIVal (const Void& value) { return value; } static Void doUnion (const Void&, const Void&) { return Void(); } static bool doContains (const Void&, Void) { return true; } static Void doRound (const FloatFormat&, const Void& value) { return value; } static Void doConvert (const FloatFormat&, const Void& value) { return value; } static void doPrintValue (const FloatFormat&, const Void&, ostream& os) { os << "()"; } static void doPrintIVal (const FloatFormat&, const Void&, ostream& os) { os << "()"; } }; //! This is needed for container-generic operations. //! We want a scalar type T to be its own "one-element vector". template <typename T, int Size> struct ContainerOf { typedef Vector<T, Size> Container; }; template <typename T> struct ContainerOf<T, 1> { typedef T Container; }; template <int Size> struct ContainerOf<Void, Size> { typedef Void Container; }; // This is a kludge that is only needed to get the ExprP::operator[] syntactic sugar to work. template <typename T> struct ElementOf { typedef typename T::Element Element; }; template <> struct ElementOf<float> { typedef void Element; }; template <> struct ElementOf<bool> { typedef void Element; }; template <> struct ElementOf<int> { typedef void Element; }; /*--------------------------------------------------------------------*//*! * * \name Abstract syntax for expressions and statements. * * We represent GLSL programs as syntax objects: an Expr<T> represents an * expression whose GLSL type corresponds to the C++ type T, and a Statement * represents a statement. * * To ease memory management, we use shared pointers to refer to expressions * and statements. ExprP<T> is a shared pointer to an Expr<T>, and StatementP * is a shared pointer to a Statement. * * \{ * *//*--------------------------------------------------------------------*/ class ExprBase; class ExpandContext; class Statement; class StatementP; class FuncBase; template <typename T> class ExprP; template <typename T> class Variable; template <typename T> class VariableP; template <typename T> class DefaultSampling; typedef set<const FuncBase*> FuncSet; template <typename T> VariableP<T> variable (const string& name); StatementP compoundStatement (const vector<StatementP>& statements); /*--------------------------------------------------------------------*//*! * \brief A variable environment. * * An Environment object maintains the mapping between variables of the * abstract syntax tree and their values. * * \todo [2014-03-28 lauri] At least run-time type safety. * *//*--------------------------------------------------------------------*/ class Environment { public: template<typename T> void bind (const Variable<T>& variable, const typename Traits<T>::IVal& value) { deUint8* const data = new deUint8[sizeof(value)]; deMemcpy(data, &value, sizeof(value)); de::insert(m_map, variable.getName(), SharedPtr<deUint8>(data)); } template<typename T> typename Traits<T>::IVal& lookup (const Variable<T>& variable) const { deUint8* const data = de::lookup(m_map, variable.getName()).get(); return *reinterpret_cast<typename Traits<T>::IVal*>(data); } private: map<string, SharedPtr<deUint8, de::ArrayDeleter<deUint8> > > m_map; }; /*--------------------------------------------------------------------*//*! * \brief Evaluation context. * * The evaluation context contains everything that separates one execution of * an expression from the next. Currently this means the desired floating * point precision and the current variable environment. * *//*--------------------------------------------------------------------*/ struct EvalContext { EvalContext (const FloatFormat& format_, Precision floatPrecision_, Environment& env_, int callDepth_ = 0) : format (format_) , floatPrecision (floatPrecision_) , env (env_) , callDepth (callDepth_) {} FloatFormat format; Precision floatPrecision; Environment& env; int callDepth; }; /*--------------------------------------------------------------------*//*! * \brief Simple incremental counter. * * This is used to make sure that different ExpandContexts will not produce * overlapping temporary names. * *//*--------------------------------------------------------------------*/ class Counter { public: Counter (int count = 0) : m_count(count) {} int operator() (void) { return m_count++; } private: int m_count; }; class ExpandContext { public: ExpandContext (Counter& symCounter) : m_symCounter(symCounter) {} ExpandContext (const ExpandContext& parent) : m_symCounter(parent.m_symCounter) {} template<typename T> VariableP<T> genSym (const string& baseName) { return variable<T>(baseName + de::toString(m_symCounter())); } void addStatement (const StatementP& stmt) { m_statements.push_back(stmt); } vector<StatementP> getStatements (void) const { return m_statements; } private: Counter& m_symCounter; vector<StatementP> m_statements; }; /*--------------------------------------------------------------------*//*! * \brief A statement or declaration. * * Statements have no values. Instead, they are executed for their side * effects only: the execute() method should modify at least one variable in * the environment. * * As a bit of a kludge, a Statement object can also represent a declaration: * when it is evaluated, it can add a variable binding to the environment * instead of modifying a current one. * *//*--------------------------------------------------------------------*/ class Statement { public: virtual ~Statement (void) { } //! Execute the statement, modifying the environment of `ctx` void execute (EvalContext& ctx) const { this->doExecute(ctx); } void print (ostream& os) const { this->doPrint(os); } //! Add the functions used in this statement to `dst`. void getUsedFuncs (FuncSet& dst) const { this->doGetUsedFuncs(dst); } protected: virtual void doPrint (ostream& os) const = 0; virtual void doExecute (EvalContext& ctx) const = 0; virtual void doGetUsedFuncs (FuncSet& dst) const = 0; }; ostream& operator<<(ostream& os, const Statement& stmt) { stmt.print(os); return os; } /*--------------------------------------------------------------------*//*! * \brief Smart pointer for statements (and declarations) * *//*--------------------------------------------------------------------*/ class StatementP : public SharedPtr<const Statement> { public: typedef SharedPtr<const Statement> Super; StatementP (void) {} explicit StatementP (const Statement* ptr) : Super(ptr) {} StatementP (const Super& ptr) : Super(ptr) {} }; /*--------------------------------------------------------------------*//*! * \brief * * A statement that modifies a variable or a declaration that binds a variable. * *//*--------------------------------------------------------------------*/ template <typename T> class VariableStatement : public Statement { public: VariableStatement (const VariableP<T>& variable, const ExprP<T>& value, bool isDeclaration) : m_variable (variable) , m_value (value) , m_isDeclaration (isDeclaration) {} protected: void doPrint (ostream& os) const { if (m_isDeclaration) os << glu::declare(getVarTypeOf<T>(), m_variable->getName()); else os << m_variable->getName(); os << " = " << *m_value << ";\n"; } void doExecute (EvalContext& ctx) const { if (m_isDeclaration) ctx.env.bind(*m_variable, m_value->evaluate(ctx)); else ctx.env.lookup(*m_variable) = m_value->evaluate(ctx); } void doGetUsedFuncs (FuncSet& dst) const { m_value->getUsedFuncs(dst); } VariableP<T> m_variable; ExprP<T> m_value; bool m_isDeclaration; }; template <typename T> StatementP variableStatement (const VariableP<T>& variable, const ExprP<T>& value, bool isDeclaration) { return StatementP(new VariableStatement<T>(variable, value, isDeclaration)); } template <typename T> StatementP variableDeclaration (const VariableP<T>& variable, const ExprP<T>& definiens) { return variableStatement(variable, definiens, true); } template <typename T> StatementP variableAssignment (const VariableP<T>& variable, const ExprP<T>& value) { return variableStatement(variable, value, false); } /*--------------------------------------------------------------------*//*! * \brief A compound statement, i.e. a block. * * A compound statement is executed by executing its constituent statements in * sequence. * *//*--------------------------------------------------------------------*/ class CompoundStatement : public Statement { public: CompoundStatement (const vector<StatementP>& statements) : m_statements (statements) {} protected: void doPrint (ostream& os) const { os << "{\n"; for (size_t ndx = 0; ndx < m_statements.size(); ++ndx) os << *m_statements[ndx]; os << "}\n"; } void doExecute (EvalContext& ctx) const { for (size_t ndx = 0; ndx < m_statements.size(); ++ndx) m_statements[ndx]->execute(ctx); } void doGetUsedFuncs (FuncSet& dst) const { for (size_t ndx = 0; ndx < m_statements.size(); ++ndx) m_statements[ndx]->getUsedFuncs(dst); } vector<StatementP> m_statements; }; StatementP compoundStatement(const vector<StatementP>& statements) { return StatementP(new CompoundStatement(statements)); } //! Common base class for all expressions regardless of their type. class ExprBase { public: virtual ~ExprBase (void) {} void printExpr (ostream& os) const { this->doPrintExpr(os); } //! Output the functions that this expression refers to void getUsedFuncs (FuncSet& dst) const { this->doGetUsedFuncs(dst); } protected: virtual void doPrintExpr (ostream&) const {} virtual void doGetUsedFuncs (FuncSet&) const {} }; //! Type-specific operations for an expression representing type T. template <typename T> class Expr : public ExprBase { public: typedef T Val; typedef typename Traits<T>::IVal IVal; IVal evaluate (const EvalContext& ctx) const; protected: virtual IVal doEvaluate (const EvalContext& ctx) const = 0; }; //! Evaluate an expression with the given context, optionally tracing the calls to stderr. template <typename T> typename Traits<T>::IVal Expr<T>::evaluate (const EvalContext& ctx) const { #ifdef GLS_ENABLE_TRACE static const FloatFormat highpFmt (-126, 127, 23, true, tcu::MAYBE, tcu::YES, tcu::MAYBE); EvalContext newCtx (ctx.format, ctx.floatPrecision, ctx.env, ctx.callDepth + 1); const IVal ret = this->doEvaluate(newCtx); if (isTypeValid<T>()) { std::cerr << string(ctx.callDepth, ' '); this->printExpr(std::cerr); std::cerr << " -> " << intervalToString<T>(highpFmt, ret) << std::endl; } return ret; #else return this->doEvaluate(ctx); #endif } template <typename T> class ExprPBase : public SharedPtr<const Expr<T> > { public: }; ostream& operator<< (ostream& os, const ExprBase& expr) { expr.printExpr(os); return os; } /*--------------------------------------------------------------------*//*! * \brief Shared pointer to an expression of a container type. * * Container types (i.e. vectors and matrices) support the subscription * operator. This class provides a bit of syntactic sugar to allow us to use * the C++ subscription operator to create a subscription expression. *//*--------------------------------------------------------------------*/ template <typename T> class ContainerExprPBase : public ExprPBase<T> { public: ExprP<typename T::Element> operator[] (int i) const; }; template <typename T> class ExprP : public ExprPBase<T> {}; // We treat Voids as containers since the dummy parameters in generalized // vector functions are represented as Voids. template <> class ExprP<Void> : public ContainerExprPBase<Void> {}; template <typename T, int Size> class ExprP<Vector<T, Size> > : public ContainerExprPBase<Vector<T, Size> > {}; template <typename T, int Rows, int Cols> class ExprP<Matrix<T, Rows, Cols> > : public ContainerExprPBase<Matrix<T, Rows, Cols> > {}; template <typename T> ExprP<T> exprP (void) { return ExprP<T>(); } template <typename T> ExprP<T> exprP (const SharedPtr<const Expr<T> >& ptr) { ExprP<T> ret; static_cast<SharedPtr<const Expr<T> >&>(ret) = ptr; return ret; } template <typename T> ExprP<T> exprP (const Expr<T>* ptr) { return exprP(SharedPtr<const Expr<T> >(ptr)); } /*--------------------------------------------------------------------*//*! * \brief A shared pointer to a variable expression. * * This is just a narrowing of ExprP for the operations that require a variable * instead of an arbitrary expression. * *//*--------------------------------------------------------------------*/ template <typename T> class VariableP : public SharedPtr<const Variable<T> > { public: typedef SharedPtr<const Variable<T> > Super; explicit VariableP (const Variable<T>* ptr) : Super(ptr) {} VariableP (void) {} VariableP (const Super& ptr) : Super(ptr) {} operator ExprP<T> (void) const { return exprP(SharedPtr<const Expr<T> >(*this)); } }; /*--------------------------------------------------------------------*//*! * \name Syntactic sugar operators for expressions. * * @{ * * These operators allow the use of C++ syntax to construct GLSL expressions * containing operators: e.g. "a+b" creates an addition expression with * operands a and b, and so on. * *//*--------------------------------------------------------------------*/ ExprP<float> operator-(const ExprP<float>& arg0); ExprP<float> operator+(const ExprP<float>& arg0, const ExprP<float>& arg1); ExprP<float> operator-(const ExprP<float>& arg0, const ExprP<float>& arg1); ExprP<float> operator*(const ExprP<float>& arg0, const ExprP<float>& arg1); ExprP<float> operator/(const ExprP<float>& arg0, const ExprP<float>& arg1); template<int Size> ExprP<Vector<float, Size> > operator-(const ExprP<Vector<float, Size> >& arg0); template<int Size> ExprP<Vector<float, Size> > operator*(const ExprP<Vector<float, Size> >& arg0, const ExprP<float>& arg1); template<int Size> ExprP<Vector<float, Size> > operator*(const ExprP<Vector<float, Size> >& arg0, const ExprP<Vector<float, Size> >& arg1); template<int Size> ExprP<Vector<float, Size> > operator-(const ExprP<Vector<float, Size> >& arg0, const ExprP<Vector<float, Size> >& arg1); template<int Left, int Mid, int Right> ExprP<Matrix<float, Left, Right> > operator* (const ExprP<Matrix<float, Left, Mid> >& left, const ExprP<Matrix<float, Mid, Right> >& right); template<int Rows, int Cols> ExprP<Vector<float, Rows> > operator* (const ExprP<Vector<float, Cols> >& left, const ExprP<Matrix<float, Rows, Cols> >& right); template<int Rows, int Cols> ExprP<Vector<float, Cols> > operator* (const ExprP<Matrix<float, Rows, Cols> >& left, const ExprP<Vector<float, Rows> >& right); template<int Rows, int Cols> ExprP<Matrix<float, Rows, Cols> > operator* (const ExprP<Matrix<float, Rows, Cols> >& left, const ExprP<float>& right); template<int Rows, int Cols> ExprP<Matrix<float, Rows, Cols> > operator+ (const ExprP<Matrix<float, Rows, Cols> >& left, const ExprP<Matrix<float, Rows, Cols> >& right); template<int Rows, int Cols> ExprP<Matrix<float, Rows, Cols> > operator- (const ExprP<Matrix<float, Rows, Cols> >& mat); //! @} /*--------------------------------------------------------------------*//*! * \brief Variable expression. * * A variable is evaluated by looking up its range of possible values from an * environment. *//*--------------------------------------------------------------------*/ template <typename T> class Variable : public Expr<T> { public: typedef typename Expr<T>::IVal IVal; Variable (const string& name) : m_name (name) {} string getName (void) const { return m_name; } protected: void doPrintExpr (ostream& os) const { os << m_name; } IVal doEvaluate (const EvalContext& ctx) const { return ctx.env.lookup<T>(*this); } private: string m_name; }; template <typename T> VariableP<T> variable (const string& name) { return VariableP<T>(new Variable<T>(name)); } template <typename T> VariableP<T> bindExpression (const string& name, ExpandContext& ctx, const ExprP<T>& expr) { VariableP<T> var = ctx.genSym<T>(name); ctx.addStatement(variableDeclaration(var, expr)); return var; } /*--------------------------------------------------------------------*//*! * \brief Constant expression. * * A constant is evaluated by rounding it to a set of possible values allowed * by the current floating point precision. *//*--------------------------------------------------------------------*/ template <typename T> class Constant : public Expr<T> { public: typedef typename Expr<T>::IVal IVal; Constant (const T& value) : m_value(value) {} protected: void doPrintExpr (ostream& os) const { os << m_value; } IVal doEvaluate (const EvalContext&) const { return makeIVal(m_value); } private: T m_value; }; template <typename T> ExprP<T> constant (const T& value) { return exprP(new Constant<T>(value)); } //! Return a reference to a singleton void constant. const ExprP<Void>& voidP (void) { static const ExprP<Void> singleton = constant(Void()); return singleton; } /*--------------------------------------------------------------------*//*! * \brief Four-element tuple. * * This is used for various things where we need one thing for each possible * function parameter. Currently the maximum supported number of parameters is * four. *//*--------------------------------------------------------------------*/ template <typename T0 = Void, typename T1 = Void, typename T2 = Void, typename T3 = Void> struct Tuple4 { explicit Tuple4 (const T0& e0 = T0(), const T1& e1 = T1(), const T2& e2 = T2(), const T3& e3 = T3()) : a (e0) , b (e1) , c (e2) , d (e3) { } T0 a; T1 b; T2 c; T3 d; }; /*--------------------------------------------------------------------*//*! * \brief Function signature. * * This is a purely compile-time structure used to bundle all types in a * function signature together. This makes passing the signature around in * templates easier, since we only need to take and pass a single Sig instead * of a bunch of parameter types and a return type. * *//*--------------------------------------------------------------------*/ template <typename R, typename P0 = Void, typename P1 = Void, typename P2 = Void, typename P3 = Void> struct Signature { typedef R Ret; typedef P0 Arg0; typedef P1 Arg1; typedef P2 Arg2; typedef P3 Arg3; typedef typename Traits<Ret>::IVal IRet; typedef typename Traits<Arg0>::IVal IArg0; typedef typename Traits<Arg1>::IVal IArg1; typedef typename Traits<Arg2>::IVal IArg2; typedef typename Traits<Arg3>::IVal IArg3; typedef Tuple4< const Arg0&, const Arg1&, const Arg2&, const Arg3&> Args; typedef Tuple4< const IArg0&, const IArg1&, const IArg2&, const IArg3&> IArgs; typedef Tuple4< ExprP<Arg0>, ExprP<Arg1>, ExprP<Arg2>, ExprP<Arg3> > ArgExprs; }; typedef vector<const ExprBase*> BaseArgExprs; /*--------------------------------------------------------------------*//*! * \brief Type-independent operations for function objects. * *//*--------------------------------------------------------------------*/ class FuncBase { public: virtual ~FuncBase (void) {} virtual string getName (void) const = 0; //! Name of extension that this function requires, or empty. virtual string getRequiredExtension (void) const { return ""; } virtual void print (ostream&, const BaseArgExprs&) const = 0; //! Index of output parameter, or -1 if none of the parameters is output. virtual int getOutParamIndex (void) const { return -1; } void printDefinition (ostream& os) const { doPrintDefinition(os); } void getUsedFuncs (FuncSet& dst) const { this->doGetUsedFuncs(dst); } protected: virtual void doPrintDefinition (ostream& os) const = 0; virtual void doGetUsedFuncs (FuncSet& dst) const = 0; }; typedef Tuple4<string, string, string, string> ParamNames; /*--------------------------------------------------------------------*//*! * \brief Function objects. * * Each Func object represents a GLSL function. It can be applied to interval * arguments, and it returns the an interval that is a conservative * approximation of the image of the GLSL function over the argument * intervals. That is, it is given a set of possible arguments and it returns * the set of possible values. * *//*--------------------------------------------------------------------*/ template <typename Sig_> class Func : public FuncBase { public: typedef Sig_ Sig; typedef typename Sig::Ret Ret; typedef typename Sig::Arg0 Arg0; typedef typename Sig::Arg1 Arg1; typedef typename Sig::Arg2 Arg2; typedef typename Sig::Arg3 Arg3; typedef typename Sig::IRet IRet; typedef typename Sig::IArg0 IArg0; typedef typename Sig::IArg1 IArg1; typedef typename Sig::IArg2 IArg2; typedef typename Sig::IArg3 IArg3; typedef typename Sig::Args Args; typedef typename Sig::IArgs IArgs; typedef typename Sig::ArgExprs ArgExprs; void print (ostream& os, const BaseArgExprs& args) const { this->doPrint(os, args); } IRet apply (const EvalContext& ctx, const IArg0& arg0 = IArg0(), const IArg1& arg1 = IArg1(), const IArg2& arg2 = IArg2(), const IArg3& arg3 = IArg3()) const { return this->applyArgs(ctx, IArgs(arg0, arg1, arg2, arg3)); } IRet applyArgs (const EvalContext& ctx, const IArgs& args) const { return this->doApply(ctx, args); } ExprP<Ret> operator() (const ExprP<Arg0>& arg0 = voidP(), const ExprP<Arg1>& arg1 = voidP(), const ExprP<Arg2>& arg2 = voidP(), const ExprP<Arg3>& arg3 = voidP()) const; const ParamNames& getParamNames (void) const { return this->doGetParamNames(); } protected: virtual IRet doApply (const EvalContext&, const IArgs&) const = 0; virtual void doPrint (ostream& os, const BaseArgExprs& args) const { os << getName() << "("; if (isTypeValid<Arg0>()) os << *args[0]; if (isTypeValid<Arg1>()) os << ", " << *args[1]; if (isTypeValid<Arg2>()) os << ", " << *args[2]; if (isTypeValid<Arg3>()) os << ", " << *args[3]; os << ")"; } virtual const ParamNames& doGetParamNames (void) const { static ParamNames names ("a", "b", "c", "d"); return names; } }; template <typename Sig> class Apply : public Expr<typename Sig::Ret> { public: typedef typename Sig::Ret Ret; typedef typename Sig::Arg0 Arg0; typedef typename Sig::Arg1 Arg1; typedef typename Sig::Arg2 Arg2; typedef typename Sig::Arg3 Arg3; typedef typename Expr<Ret>::Val Val; typedef typename Expr<Ret>::IVal IVal; typedef Func<Sig> ApplyFunc; typedef typename ApplyFunc::ArgExprs ArgExprs; Apply (const ApplyFunc& func, const ExprP<Arg0>& arg0 = voidP(), const ExprP<Arg1>& arg1 = voidP(), const ExprP<Arg2>& arg2 = voidP(), const ExprP<Arg3>& arg3 = voidP()) : m_func (func), m_args (arg0, arg1, arg2, arg3) {} Apply (const ApplyFunc& func, const ArgExprs& args) : m_func (func), m_args (args) {} protected: void doPrintExpr (ostream& os) const { BaseArgExprs args; args.push_back(m_args.a.get()); args.push_back(m_args.b.get()); args.push_back(m_args.c.get()); args.push_back(m_args.d.get()); m_func.print(os, args); } IVal doEvaluate (const EvalContext& ctx) const { return m_func.apply(ctx, m_args.a->evaluate(ctx), m_args.b->evaluate(ctx), m_args.c->evaluate(ctx), m_args.d->evaluate(ctx)); } void doGetUsedFuncs (FuncSet& dst) const { m_func.getUsedFuncs(dst); m_args.a->getUsedFuncs(dst); m_args.b->getUsedFuncs(dst); m_args.c->getUsedFuncs(dst); m_args.d->getUsedFuncs(dst); } const ApplyFunc& m_func; ArgExprs m_args; }; template <typename Sig> ExprP<typename Sig::Ret> createApply (const Func<Sig>& func, const typename Func<Sig>::ArgExprs& args) { return exprP(new Apply<Sig>(func, args)); } template <typename Sig> ExprP<typename Sig::Ret> createApply ( const Func<Sig>& func, const ExprP<typename Sig::Arg0>& arg0 = voidP(), const ExprP<typename Sig::Arg1>& arg1 = voidP(), const ExprP<typename Sig::Arg2>& arg2 = voidP(), const ExprP<typename Sig::Arg3>& arg3 = voidP()) { return exprP(new Apply<Sig>(func, arg0, arg1, arg2, arg3)); } template <typename Sig> ExprP<typename Sig::Ret> Func<Sig>::operator() (const ExprP<typename Sig::Arg0>& arg0, const ExprP<typename Sig::Arg1>& arg1, const ExprP<typename Sig::Arg2>& arg2, const ExprP<typename Sig::Arg3>& arg3) const { return createApply(*this, arg0, arg1, arg2, arg3); } template <typename F> ExprP<typename F::Ret> app (const ExprP<typename F::Arg0>& arg0 = voidP(), const ExprP<typename F::Arg1>& arg1 = voidP(), const ExprP<typename F::Arg2>& arg2 = voidP(), const ExprP<typename F::Arg3>& arg3 = voidP()) { return createApply(instance<F>(), arg0, arg1, arg2, arg3); } template <typename F> typename F::IRet call (const EvalContext& ctx, const typename F::IArg0& arg0 = Void(), const typename F::IArg1& arg1 = Void(), const typename F::IArg2& arg2 = Void(), const typename F::IArg3& arg3 = Void()) { return instance<F>().apply(ctx, arg0, arg1, arg2, arg3); } template <typename Sig> class ApplyVar : public Apply<Sig> { public: typedef typename Sig::Ret Ret; typedef typename Sig::Arg0 Arg0; typedef typename Sig::Arg1 Arg1; typedef typename Sig::Arg2 Arg2; typedef typename Sig::Arg3 Arg3; typedef typename Expr<Ret>::Val Val; typedef typename Expr<Ret>::IVal IVal; typedef Func<Sig> ApplyFunc; typedef typename ApplyFunc::ArgExprs ArgExprs; ApplyVar (const ApplyFunc& func, const VariableP<Arg0>& arg0, const VariableP<Arg1>& arg1, const VariableP<Arg2>& arg2, const VariableP<Arg3>& arg3) : Apply<Sig> (func, arg0, arg1, arg2, arg3) {} protected: IVal doEvaluate (const EvalContext& ctx) const { const Variable<Arg0>& var0 = static_cast<const Variable<Arg0>&>(*this->m_args.a); const Variable<Arg1>& var1 = static_cast<const Variable<Arg1>&>(*this->m_args.b); const Variable<Arg2>& var2 = static_cast<const Variable<Arg2>&>(*this->m_args.c); const Variable<Arg3>& var3 = static_cast<const Variable<Arg3>&>(*this->m_args.d); return this->m_func.apply(ctx, ctx.env.lookup(var0), ctx.env.lookup(var1), ctx.env.lookup(var2), ctx.env.lookup(var3)); } }; template <typename Sig> ExprP<typename Sig::Ret> applyVar (const Func<Sig>& func, const VariableP<typename Sig::Arg0>& arg0, const VariableP<typename Sig::Arg1>& arg1, const VariableP<typename Sig::Arg2>& arg2, const VariableP<typename Sig::Arg3>& arg3) { return exprP(new ApplyVar<Sig>(func, arg0, arg1, arg2, arg3)); } template <typename Sig_> class DerivedFunc : public Func<Sig_> { public: typedef typename DerivedFunc::ArgExprs ArgExprs; typedef typename DerivedFunc::IRet IRet; typedef typename DerivedFunc::IArgs IArgs; typedef typename DerivedFunc::Ret Ret; typedef typename DerivedFunc::Arg0 Arg0; typedef typename DerivedFunc::Arg1 Arg1; typedef typename DerivedFunc::Arg2 Arg2; typedef typename DerivedFunc::Arg3 Arg3; typedef typename DerivedFunc::IArg0 IArg0; typedef typename DerivedFunc::IArg1 IArg1; typedef typename DerivedFunc::IArg2 IArg2; typedef typename DerivedFunc::IArg3 IArg3; protected: void doPrintDefinition (ostream& os) const { const ParamNames& paramNames = this->getParamNames(); initialize(); os << dataTypeNameOf<Ret>() << " " << this->getName() << "("; if (isTypeValid<Arg0>()) os << dataTypeNameOf<Arg0>() << " " << paramNames.a; if (isTypeValid<Arg1>()) os << ", " << dataTypeNameOf<Arg1>() << " " << paramNames.b; if (isTypeValid<Arg2>()) os << ", " << dataTypeNameOf<Arg2>() << " " << paramNames.c; if (isTypeValid<Arg3>()) os << ", " << dataTypeNameOf<Arg3>() << " " << paramNames.d; os << ")\n{\n"; for (size_t ndx = 0; ndx < m_body.size(); ++ndx) os << *m_body[ndx]; os << "return " << *m_ret << ";\n"; os << "}\n"; } IRet doApply (const EvalContext& ctx, const IArgs& args) const { Environment funEnv; IArgs& mutArgs = const_cast<IArgs&>(args); IRet ret; initialize(); funEnv.bind(*m_var0, args.a); funEnv.bind(*m_var1, args.b); funEnv.bind(*m_var2, args.c); funEnv.bind(*m_var3, args.d); { EvalContext funCtx(ctx.format, ctx.floatPrecision, funEnv, ctx.callDepth); for (size_t ndx = 0; ndx < m_body.size(); ++ndx) m_body[ndx]->execute(funCtx); ret = m_ret->evaluate(funCtx); } // \todo [lauri] Store references instead of values in environment const_cast<IArg0&>(mutArgs.a) = funEnv.lookup(*m_var0); const_cast<IArg1&>(mutArgs.b) = funEnv.lookup(*m_var1); const_cast<IArg2&>(mutArgs.c) = funEnv.lookup(*m_var2); const_cast<IArg3&>(mutArgs.d) = funEnv.lookup(*m_var3); return ret; } void doGetUsedFuncs (FuncSet& dst) const { initialize(); if (dst.insert(this).second) { for (size_t ndx = 0; ndx < m_body.size(); ++ndx) m_body[ndx]->getUsedFuncs(dst); m_ret->getUsedFuncs(dst); } } virtual ExprP<Ret> doExpand (ExpandContext& ctx, const ArgExprs& args_) const = 0; // These are transparently initialized when first needed. They cannot be // initialized in the constructor because they depend on the doExpand // method of the subclass. mutable VariableP<Arg0> m_var0; mutable VariableP<Arg1> m_var1; mutable VariableP<Arg2> m_var2; mutable VariableP<Arg3> m_var3; mutable vector<StatementP> m_body; mutable ExprP<Ret> m_ret; private: void initialize (void) const { if (!m_ret) { const ParamNames& paramNames = this->getParamNames(); Counter symCounter; ExpandContext ctx (symCounter); ArgExprs args; args.a = m_var0 = variable<Arg0>(paramNames.a); args.b = m_var1 = variable<Arg1>(paramNames.b); args.c = m_var2 = variable<Arg2>(paramNames.c); args.d = m_var3 = variable<Arg3>(paramNames.d); m_ret = this->doExpand(ctx, args); m_body = ctx.getStatements(); } } }; template <typename Sig> class PrimitiveFunc : public Func<Sig> { public: typedef typename PrimitiveFunc::Ret Ret; typedef typename PrimitiveFunc::ArgExprs ArgExprs; protected: void doPrintDefinition (ostream&) const {} void doGetUsedFuncs (FuncSet&) const {} }; template <typename T> class Cond : public PrimitiveFunc<Signature<T, bool, T, T> > { public: typedef typename Cond::IArgs IArgs; typedef typename Cond::IRet IRet; string getName (void) const { return "_cond"; } protected: void doPrint (ostream& os, const BaseArgExprs& args) const { os << "(" << *args[0] << " ? " << *args[1] << " : " << *args[2] << ")"; } IRet doApply (const EvalContext&, const IArgs& iargs)const { IRet ret; if (iargs.a.contains(true)) ret = unionIVal<T>(ret, iargs.b); if (iargs.a.contains(false)) ret = unionIVal<T>(ret, iargs.c); return ret; } }; template <typename T> class CompareOperator : public PrimitiveFunc<Signature<bool, T, T> > { public: typedef typename CompareOperator::IArgs IArgs; typedef typename CompareOperator::IArg0 IArg0; typedef typename CompareOperator::IArg1 IArg1; typedef typename CompareOperator::IRet IRet; protected: void doPrint (ostream& os, const BaseArgExprs& args) const { os << "(" << *args[0] << getSymbol() << *args[1] << ")"; } Interval doApply (const EvalContext&, const IArgs& iargs) const { const IArg0& arg0 = iargs.a; const IArg1& arg1 = iargs.b; IRet ret; if (canSucceed(arg0, arg1)) ret |= true; if (canFail(arg0, arg1)) ret |= false; return ret; } virtual string getSymbol (void) const = 0; virtual bool canSucceed (const IArg0&, const IArg1&) const = 0; virtual bool canFail (const IArg0&, const IArg1&) const = 0; }; template <typename T> class LessThan : public CompareOperator<T> { public: string getName (void) const { return "lessThan"; } protected: string getSymbol (void) const { return "<"; } bool canSucceed (const Interval& a, const Interval& b) const { return (a.lo() < b.hi()); } bool canFail (const Interval& a, const Interval& b) const { return !(a.hi() < b.lo()); } }; template <typename T> ExprP<bool> operator< (const ExprP<T>& a, const ExprP<T>& b) { return app<LessThan<T> >(a, b); } template <typename T> ExprP<T> cond (const ExprP<bool>& test, const ExprP<T>& consequent, const ExprP<T>& alternative) { return app<Cond<T> >(test, consequent, alternative); } /*--------------------------------------------------------------------*//*! * * @} * *//*--------------------------------------------------------------------*/ class FloatFunc1 : public PrimitiveFunc<Signature<float, float> > { protected: Interval doApply (const EvalContext& ctx, const IArgs& iargs) const { return this->applyMonotone(ctx, iargs.a); } Interval applyMonotone (const EvalContext& ctx, const Interval& iarg0) const { Interval ret; TCU_INTERVAL_APPLY_MONOTONE1(ret, arg0, iarg0, val, TCU_SET_INTERVAL(val, point, point = this->applyPoint(ctx, arg0))); ret |= innerExtrema(ctx, iarg0); ret &= (this->getCodomain() | TCU_NAN); return ctx.format.convert(ret); } virtual Interval innerExtrema (const EvalContext&, const Interval&) const { return Interval(); // empty interval, i.e. no extrema } virtual Interval applyPoint (const EvalContext& ctx, double arg0) const { const double exact = this->applyExact(arg0); const double prec = this->precision(ctx, exact, arg0); return exact + Interval(-prec, prec); } virtual double applyExact (double) const { TCU_THROW(InternalError, "Cannot apply"); } virtual Interval getCodomain (void) const { return Interval::unbounded(true); } virtual double precision (const EvalContext& ctx, double, double) const = 0; }; class CFloatFunc1 : public FloatFunc1 { public: CFloatFunc1 (const string& name, DoubleFunc1& func) : m_name(name), m_func(func) {} string getName (void) const { return m_name; } protected: double applyExact (double x) const { return m_func(x); } const string m_name; DoubleFunc1& m_func; }; class FloatFunc2 : public PrimitiveFunc<Signature<float, float, float> > { protected: Interval doApply (const EvalContext& ctx, const IArgs& iargs) const { return this->applyMonotone(ctx, iargs.a, iargs.b); } Interval applyMonotone (const EvalContext& ctx, const Interval& xi, const Interval& yi) const { Interval reti; TCU_INTERVAL_APPLY_MONOTONE2(reti, x, xi, y, yi, ret, TCU_SET_INTERVAL(ret, point, point = this->applyPoint(ctx, x, y))); reti |= innerExtrema(ctx, xi, yi); reti &= (this->getCodomain() | TCU_NAN); return ctx.format.convert(reti); } virtual Interval innerExtrema (const EvalContext&, const Interval&, const Interval&) const { return Interval(); // empty interval, i.e. no extrema } virtual Interval applyPoint (const EvalContext& ctx, double x, double y) const { const double exact = this->applyExact(x, y); const double prec = this->precision(ctx, exact, x, y); return exact + Interval(-prec, prec); } virtual double applyExact (double, double) const { TCU_THROW(InternalError, "Cannot apply"); } virtual Interval getCodomain (void) const { return Interval::unbounded(true); } virtual double precision (const EvalContext& ctx, double ret, double x, double y) const = 0; }; class CFloatFunc2 : public FloatFunc2 { public: CFloatFunc2 (const string& name, DoubleFunc2& func) : m_name(name) , m_func(func) { } string getName (void) const { return m_name; } protected: double applyExact (double x, double y) const { return m_func(x, y); } const string m_name; DoubleFunc2& m_func; }; class InfixOperator : public FloatFunc2 { protected: virtual string getSymbol (void) const = 0; void doPrint (ostream& os, const BaseArgExprs& args) const { os << "(" << *args[0] << " " << getSymbol() << " " << *args[1] << ")"; } Interval applyPoint (const EvalContext& ctx, double x, double y) const { const double exact = this->applyExact(x, y); // Allow either representable number on both sides of the exact value, // but require exactly representable values to be preserved. return ctx.format.roundOut(exact, !deIsInf(x) && !deIsInf(y)); } double precision (const EvalContext&, double, double, double) const { return 0.0; } }; class FloatFunc3 : public PrimitiveFunc<Signature<float, float, float, float> > { protected: Interval doApply (const EvalContext& ctx, const IArgs& iargs) const { return this->applyMonotone(ctx, iargs.a, iargs.b, iargs.c); } Interval applyMonotone (const EvalContext& ctx, const Interval& xi, const Interval& yi, const Interval& zi) const { Interval reti; TCU_INTERVAL_APPLY_MONOTONE3(reti, x, xi, y, yi, z, zi, ret, TCU_SET_INTERVAL(ret, point, point = this->applyPoint(ctx, x, y, z))); return ctx.format.convert(reti); } virtual Interval applyPoint (const EvalContext& ctx, double x, double y, double z) const { const double exact = this->applyExact(x, y, z); const double prec = this->precision(ctx, exact, x, y, z); return exact + Interval(-prec, prec); } virtual double applyExact (double, double, double) const { TCU_THROW(InternalError, "Cannot apply"); } virtual double precision (const EvalContext& ctx, double result, double x, double y, double z) const = 0; }; // We define syntactic sugar functions for expression constructors. Since // these have the same names as ordinary mathematical operations (sin, log // etc.), it's better to give them a dedicated namespace. namespace Functions { using namespace tcu; class Add : public InfixOperator { public: string getName (void) const { return "add"; } string getSymbol (void) const { return "+"; } Interval doApply (const EvalContext& ctx, const IArgs& iargs) const { // Fast-path for common case if (iargs.a.isOrdinary() && iargs.b.isOrdinary()) { Interval ret; TCU_SET_INTERVAL_BOUNDS(ret, sum, sum = iargs.a.lo() + iargs.b.lo(), sum = iargs.a.hi() + iargs.b.hi()); return ctx.format.convert(ctx.format.roundOut(ret, true)); } return this->applyMonotone(ctx, iargs.a, iargs.b); } protected: double applyExact (double x, double y) const { return x + y; } }; class Mul : public InfixOperator { public: string getName (void) const { return "mul"; } string getSymbol (void) const { return "*"; } Interval doApply (const EvalContext& ctx, const IArgs& iargs) const { Interval a = iargs.a; Interval b = iargs.b; // Fast-path for common case if (a.isOrdinary() && b.isOrdinary()) { Interval ret; if (a.hi() < 0) { a = -a; b = -b; } if (a.lo() >= 0 && b.lo() >= 0) { TCU_SET_INTERVAL_BOUNDS(ret, prod, prod = iargs.a.lo() * iargs.b.lo(), prod = iargs.a.hi() * iargs.b.hi()); return ctx.format.convert(ctx.format.roundOut(ret, true)); } if (a.lo() >= 0 && b.hi() <= 0) { TCU_SET_INTERVAL_BOUNDS(ret, prod, prod = iargs.a.hi() * iargs.b.lo(), prod = iargs.a.lo() * iargs.b.hi()); return ctx.format.convert(ctx.format.roundOut(ret, true)); } } return this->applyMonotone(ctx, iargs.a, iargs.b); } protected: double applyExact (double x, double y) const { return x * y; } Interval innerExtrema(const EvalContext&, const Interval& xi, const Interval& yi) const { if (((xi.contains(-TCU_INFINITY) || xi.contains(TCU_INFINITY)) && yi.contains(0.0)) || ((yi.contains(-TCU_INFINITY) || yi.contains(TCU_INFINITY)) && xi.contains(0.0))) return Interval(TCU_NAN); return Interval(); } }; class Sub : public InfixOperator { public: string getName (void) const { return "sub"; } string getSymbol (void) const { return "-"; } Interval doApply (const EvalContext& ctx, const IArgs& iargs) const { // Fast-path for common case if (iargs.a.isOrdinary() && iargs.b.isOrdinary()) { Interval ret; TCU_SET_INTERVAL_BOUNDS(ret, diff, diff = iargs.a.lo() - iargs.b.hi(), diff = iargs.a.hi() - iargs.b.lo()); return ctx.format.convert(ctx.format.roundOut(ret, true)); } else { return this->applyMonotone(ctx, iargs.a, iargs.b); } } protected: double applyExact (double x, double y) const { return x - y; } }; class Negate : public FloatFunc1 { public: string getName (void) const { return "_negate"; } void doPrint (ostream& os, const BaseArgExprs& args) const { os << "-" << *args[0]; } protected: double precision (const EvalContext&, double, double) const { return 0.0; } double applyExact (double x) const { return -x; } }; class Div : public InfixOperator { public: string getName (void) const { return "div"; } protected: string getSymbol (void) const { return "/"; } Interval innerExtrema (const EvalContext&, const Interval& nom, const Interval& den) const { Interval ret; if (den.contains(0.0)) { if (nom.contains(0.0)) ret |= TCU_NAN; if (nom.lo() < 0.0 || nom.hi() > 0.0) ret |= Interval::unbounded(); } return ret; } protected: double applyExact (double x, double y) const { return x / y; } Interval applyPoint (const EvalContext& ctx, double x, double y) const { return FloatFunc2::applyPoint(ctx, x, y); } double precision (const EvalContext& ctx, double ret, double, double den) const { const FloatFormat& fmt = ctx.format; // \todo [2014-03-05 lauri] Check that the limits in GLSL 3.10 are actually correct. // For now, we assume that division's precision is 2.5 ULP when the value is within // [2^MINEXP, 2^MAXEXP-1] if (den == 0.0) return 0.0; // Result must be exactly inf else if (de::inBounds(deAbs(den), deLdExp(1.0, fmt.getMinExp()), deLdExp(1.0, fmt.getMaxExp() - 1))) return fmt.ulp(ret, 2.5); else return TCU_INFINITY; // Can be any number, but must be a number. } }; class InverseSqrt : public FloatFunc1 { public: string getName (void) const { return "inversesqrt"; } protected: double applyExact (double x) const { return 1.0 / deSqrt(x); } double precision (const EvalContext& ctx, double ret, double x) const { return x <= 0 ? TCU_NAN : ctx.format.ulp(ret, 2.0); } Interval getCodomain (void) const { return Interval(0.0, TCU_INFINITY); } }; class ExpFunc : public CFloatFunc1 { public: ExpFunc (const string& name, DoubleFunc1& func) : CFloatFunc1(name, func) {} protected: double precision (const EvalContext& ctx, double ret, double x) const { switch (ctx.floatPrecision) { case glu::PRECISION_HIGHP: return ctx.format.ulp(ret, 3.0 + 2.0 * deAbs(x)); case glu::PRECISION_MEDIUMP: return ctx.format.ulp(ret, 2.0 + 2.0 * deAbs(x)); case glu::PRECISION_LOWP: return ctx.format.ulp(ret, 2.0); default: DE_ASSERT(!"Impossible"); } return 0; } Interval getCodomain (void) const { return Interval(0.0, TCU_INFINITY); } }; class Exp2 : public ExpFunc { public: Exp2 (void) : ExpFunc("exp2", deExp2) {} }; class Exp : public ExpFunc { public: Exp (void) : ExpFunc("exp", deExp) {} }; ExprP<float> exp2 (const ExprP<float>& x) { return app<Exp2>(x); } ExprP<float> exp (const ExprP<float>& x) { return app<Exp>(x); } class LogFunc : public CFloatFunc1 { public: LogFunc (const string& name, DoubleFunc1& func) : CFloatFunc1(name, func) {} protected: double precision (const EvalContext& ctx, double ret, double x) const { if (x <= 0) return TCU_NAN; switch (ctx.floatPrecision) { case glu::PRECISION_HIGHP: return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -21) : ctx.format.ulp(ret, 3.0); case glu::PRECISION_MEDIUMP: return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -7) : ctx.format.ulp(ret, 2.0); case glu::PRECISION_LOWP: return ctx.format.ulp(ret, 2.0); default: DE_ASSERT(!"Impossible"); } return 0; } }; class Log2 : public LogFunc { public: Log2 (void) : LogFunc("log2", deLog2) {} }; class Log : public LogFunc { public: Log (void) : LogFunc("log", deLog) {} }; ExprP<float> log2 (const ExprP<float>& x) { return app<Log2>(x); } ExprP<float> log (const ExprP<float>& x) { return app<Log>(x); } #define DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0) \ ExprP<TRET> NAME (const ExprP<T0>& arg0) { return app<CLASS>(arg0); } #define DEFINE_DERIVED1(CLASS, TRET, NAME, T0, ARG0, EXPANSION) \ class CLASS : public DerivedFunc<Signature<TRET, T0> > \ { \ public: \ string getName (void) const { return #NAME; } \ \ protected: \ ExprP<TRET> doExpand (ExpandContext&, \ const CLASS::ArgExprs& args_) const \ { \ const ExprP<float>& ARG0 = args_.a; \ return EXPANSION; \ } \ }; \ DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0) #define DEFINE_DERIVED_FLOAT1(CLASS, NAME, ARG0, EXPANSION) \ DEFINE_DERIVED1(CLASS, float, NAME, float, ARG0, EXPANSION) #define DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1) \ ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1) \ { \ return app<CLASS>(arg0, arg1); \ } #define DEFINE_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION) \ class CLASS : public DerivedFunc<Signature<TRET, T0, T1> > \ { \ public: \ string getName (void) const { return #NAME; } \ \ protected: \ ExprP<TRET> doExpand (ExpandContext&, const ArgExprs& args_) const \ { \ const ExprP<T0>& Arg0 = args_.a; \ const ExprP<T1>& Arg1 = args_.b; \ return EXPANSION; \ } \ }; \ DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1) #define DEFINE_DERIVED_FLOAT2(CLASS, NAME, Arg0, Arg1, EXPANSION) \ DEFINE_DERIVED2(CLASS, float, NAME, float, Arg0, float, Arg1, EXPANSION) #define DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2) \ ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1, const ExprP<T2>& arg2) \ { \ return app<CLASS>(arg0, arg1, arg2); \ } #define DEFINE_DERIVED3(CLASS, TRET, NAME, T0, ARG0, T1, ARG1, T2, ARG2, EXPANSION) \ class CLASS : public DerivedFunc<Signature<TRET, T0, T1, T2> > \ { \ public: \ string getName (void) const { return #NAME; } \ \ protected: \ ExprP<TRET> doExpand (ExpandContext&, const ArgExprs& args_) const \ { \ const ExprP<T0>& ARG0 = args_.a; \ const ExprP<T1>& ARG1 = args_.b; \ const ExprP<T2>& ARG2 = args_.c; \ return EXPANSION; \ } \ }; \ DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2) #define DEFINE_DERIVED_FLOAT3(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION) \ DEFINE_DERIVED3(CLASS, float, NAME, float, ARG0, float, ARG1, float, ARG2, EXPANSION) #define DEFINE_CONSTRUCTOR4(CLASS, TRET, NAME, T0, T1, T2, T3) \ ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1, \ const ExprP<T2>& arg2, const ExprP<T3>& arg3) \ { \ return app<CLASS>(arg0, arg1, arg2, arg3); \ } DEFINE_DERIVED_FLOAT1(Sqrt, sqrt, x, constant(1.0f) / app<InverseSqrt>(x)); DEFINE_DERIVED_FLOAT2(Pow, pow, x, y, exp2(y * log2(x))); DEFINE_DERIVED_FLOAT1(Radians, radians, d, (constant(DE_PI) / constant(180.0f)) * d); DEFINE_DERIVED_FLOAT1(Degrees, degrees, r, (constant(180.0f) / constant(DE_PI)) * r); class TrigFunc : public CFloatFunc1 { public: TrigFunc (const string& name, DoubleFunc1& func, const Interval& loEx, const Interval& hiEx) : CFloatFunc1 (name, func) , m_loExtremum (loEx) , m_hiExtremum (hiEx) {} protected: Interval innerExtrema (const EvalContext&, const Interval& angle) const { const double lo = angle.lo(); const double hi = angle.hi(); const int loSlope = doGetSlope(lo); const int hiSlope = doGetSlope(hi); // Detect the high and low values the function can take between the // interval endpoints. if (angle.length() >= 2.0 * DE_PI_DOUBLE) { // The interval is longer than a full cycle, so it must get all possible values. return m_hiExtremum | m_loExtremum; } else if (loSlope == 1 && hiSlope == -1) { // The slope can change from positive to negative only at the maximum value. return m_hiExtremum; } else if (loSlope == -1 && hiSlope == 1) { // The slope can change from negative to positive only at the maximum value. return m_loExtremum; } else if (loSlope == hiSlope && deIntSign(applyExact(hi) - applyExact(lo)) * loSlope == -1) { // The slope has changed twice between the endpoints, so both extrema are included. return m_hiExtremum | m_loExtremum; } return Interval(); } Interval getCodomain (void) const { // Ensure that result is always within [-1, 1], or NaN (for +-inf) return Interval(-1.0, 1.0) | TCU_NAN; } double precision (const EvalContext& ctx, double ret, double arg) const { if (ctx.floatPrecision == glu::PRECISION_HIGHP) { // Use precision from OpenCL fast relaxed math if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE) { return deLdExp(1.0, -11); } else { // "larger otherwise", let's pick |x| * 2^-12 , which is slightly over // 2^-11 at x == pi. return deLdExp(deAbs(arg), -12); } } else { // from OpenCL half-float extension specification return ctx.format.ulp(ret, 2.0); } } virtual int doGetSlope (double angle) const = 0; Interval m_loExtremum; Interval m_hiExtremum; }; class Sin : public TrigFunc { public: Sin (void) : TrigFunc("sin", deSin, -1.0, 1.0) {} protected: int doGetSlope (double angle) const { return deIntSign(deCos(angle)); } }; ExprP<float> sin (const ExprP<float>& x) { return app<Sin>(x); } class Cos : public TrigFunc { public: Cos (void) : TrigFunc("cos", deCos, -1.0, 1.0) {} protected: int doGetSlope (double angle) const { return -deIntSign(deSin(angle)); } }; ExprP<float> cos (const ExprP<float>& x) { return app<Cos>(x); } DEFINE_DERIVED_FLOAT1(Tan, tan, x, sin(x) * (constant(1.0f) / cos(x))); class ArcTrigFunc : public CFloatFunc1 { public: ArcTrigFunc (const string& name, DoubleFunc1& func, double precisionULPs, const Interval& domain, const Interval& codomain) : CFloatFunc1 (name, func) , m_precision (precisionULPs) , m_domain (domain) , m_codomain (codomain) {} protected: double precision (const EvalContext& ctx, double ret, double x) const { if (!m_domain.contains(x)) return TCU_NAN; if (ctx.floatPrecision == glu::PRECISION_HIGHP) { // Use OpenCL's precision return ctx.format.ulp(ret, m_precision); } else { // Use OpenCL half-float spec return ctx.format.ulp(ret, 2.0); } } // We could implement getCodomain with m_codomain, but choose not to, // because it seems too strict with trascendental constants like pi. const double m_precision; const Interval m_domain; const Interval m_codomain; }; class ASin : public ArcTrigFunc { public: ASin (void) : ArcTrigFunc("asin", deAsin, 4.0, Interval(-1.0, 1.0), Interval(-DE_PI_DOUBLE * 0.5, DE_PI_DOUBLE * 0.5)) {} }; class ACos : public ArcTrigFunc { public: ACos (void) : ArcTrigFunc("acos", deAcos, 4.0, Interval(-1.0, 1.0), Interval(0.0, DE_PI_DOUBLE)) {} }; class ATan : public ArcTrigFunc { public: ATan (void) : ArcTrigFunc("atan", deAtanOver, 5.0, Interval::unbounded(), Interval(-DE_PI_DOUBLE * 0.5, DE_PI_DOUBLE * 0.5)) {} }; class ATan2 : public CFloatFunc2 { public: ATan2 (void) : CFloatFunc2 ("atan", deAtan2) {} protected: Interval innerExtrema (const EvalContext&, const Interval& yi, const Interval& xi) const { Interval ret; if (yi.contains(0.0)) { if (xi.contains(0.0)) ret |= TCU_NAN; if (xi.intersects(Interval(-TCU_INFINITY, 0.0))) ret |= Interval(-DE_PI_DOUBLE, DE_PI_DOUBLE); } return ret; } double precision (const EvalContext& ctx, double ret, double, double) const { if (ctx.floatPrecision == glu::PRECISION_HIGHP) return ctx.format.ulp(ret, 6.0); else return ctx.format.ulp(ret, 2.0); } // Codomain could be [-pi, pi], but that would probably be too strict. }; DEFINE_DERIVED_FLOAT1(Sinh, sinh, x, (exp(x) - exp(-x)) / constant(2.0f)); DEFINE_DERIVED_FLOAT1(Cosh, cosh, x, (exp(x) + exp(-x)) / constant(2.0f)); DEFINE_DERIVED_FLOAT1(Tanh, tanh, x, sinh(x) / cosh(x)); // These are not defined as derived forms in the GLSL ES spec, but // that gives us a reasonable precision. DEFINE_DERIVED_FLOAT1(ASinh, asinh, x, log(x + sqrt(x * x + constant(1.0f)))); DEFINE_DERIVED_FLOAT1(ACosh, acosh, x, log(x + sqrt((x + constant(1.0f)) * (x - constant(1.0f))))); DEFINE_DERIVED_FLOAT1(ATanh, atanh, x, constant(0.5f) * log((constant(1.0f) + x) / (constant(1.0f) - x))); template <typename T> class GetComponent : public PrimitiveFunc<Signature<typename T::Element, T, int> > { public: typedef typename GetComponent::IRet IRet; string getName (void) const { return "_getComponent"; } void print (ostream& os, const BaseArgExprs& args) const { os << *args[0] << "[" << *args[1] << "]"; } protected: IRet doApply (const EvalContext&, const typename GetComponent::IArgs& iargs) const { IRet ret; for (int compNdx = 0; compNdx < T::SIZE; ++compNdx) { if (iargs.b.contains(compNdx)) ret = unionIVal<typename T::Element>(ret, iargs.a[compNdx]); } return ret; } }; template <typename T> ExprP<typename T::Element> getComponent (const ExprP<T>& container, int ndx) { DE_ASSERT(0 <= ndx && ndx < T::SIZE); return app<GetComponent<T> >(container, constant(ndx)); } template <typename T> string vecNamePrefix (void); template <> string vecNamePrefix<float> (void) { return ""; } template <> string vecNamePrefix<int> (void) { return "i"; } template <> string vecNamePrefix<bool> (void) { return "b"; } template <typename T, int Size> string vecName (void) { return vecNamePrefix<T>() + "vec" + de::toString(Size); } template <typename T, int Size> class GenVec; template <typename T> class GenVec<T, 1> : public DerivedFunc<Signature<T, T> > { public: typedef typename GenVec<T, 1>::ArgExprs ArgExprs; string getName (void) const { return "_" + vecName<T, 1>(); } protected: ExprP<T> doExpand (ExpandContext&, const ArgExprs& args) const { return args.a; } }; template <typename T> class GenVec<T, 2> : public PrimitiveFunc<Signature<Vector<T, 2>, T, T> > { public: typedef typename GenVec::IRet IRet; typedef typename GenVec::IArgs IArgs; string getName (void) const { return vecName<T, 2>(); } protected: IRet doApply (const EvalContext&, const IArgs& iargs) const { return IRet(iargs.a, iargs.b); } }; template <typename T> class GenVec<T, 3> : public PrimitiveFunc<Signature<Vector<T, 3>, T, T, T> > { public: typedef typename GenVec::IRet IRet; typedef typename GenVec::IArgs IArgs; string getName (void) const { return vecName<T, 3>(); } protected: IRet doApply (const EvalContext&, const IArgs& iargs) const { return IRet(iargs.a, iargs.b, iargs.c); } }; template <typename T> class GenVec<T, 4> : public PrimitiveFunc<Signature<Vector<T, 4>, T, T, T, T> > { public: typedef typename GenVec::IRet IRet; typedef typename GenVec::IArgs IArgs; string getName (void) const { return vecName<T, 4>(); } protected: IRet doApply (const EvalContext&, const IArgs& iargs) const { return IRet(iargs.a, iargs.b, iargs.c, iargs.d); } }; template <typename T, int Rows, int Columns> class GenMat; template <typename T, int Rows> class GenMat<T, Rows, 2> : public PrimitiveFunc< Signature<Matrix<T, Rows, 2>, Vector<T, Rows>, Vector<T, Rows> > > { public: typedef typename GenMat::Ret Ret; typedef typename GenMat::IRet IRet; typedef typename GenMat::IArgs IArgs; string getName (void) const { return dataTypeNameOf<Ret>(); } protected: IRet doApply (const EvalContext&, const IArgs& iargs) const { IRet ret; ret[0] = iargs.a; ret[1] = iargs.b; return ret; } }; template <typename T, int Rows> class GenMat<T, Rows, 3> : public PrimitiveFunc< Signature<Matrix<T, Rows, 3>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > > { public: typedef typename GenMat::Ret Ret; typedef typename GenMat::IRet IRet; typedef typename GenMat::IArgs IArgs; string getName (void) const { return dataTypeNameOf<Ret>(); } protected: IRet doApply (const EvalContext&, const IArgs& iargs) const { IRet ret; ret[0] = iargs.a; ret[1] = iargs.b; ret[2] = iargs.c; return ret; } }; template <typename T, int Rows> class GenMat<T, Rows, 4> : public PrimitiveFunc< Signature<Matrix<T, Rows, 4>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > > { public: typedef typename GenMat::Ret Ret; typedef typename GenMat::IRet IRet; typedef typename GenMat::IArgs IArgs; string getName (void) const { return dataTypeNameOf<Ret>(); } protected: IRet doApply (const EvalContext&, const IArgs& iargs) const { IRet ret; ret[0] = iargs.a; ret[1] = iargs.b; ret[2] = iargs.c; ret[3] = iargs.d; return ret; } }; template <typename T, int Rows> ExprP<Matrix<T, Rows, 2> > mat2 (const ExprP<Vector<T, Rows> >& arg0, const ExprP<Vector<T, Rows> >& arg1) { return app<GenMat<T, Rows, 2> >(arg0, arg1); } template <typename T, int Rows> ExprP<Matrix<T, Rows, 3> > mat3 (const ExprP<Vector<T, Rows> >& arg0, const ExprP<Vector<T, Rows> >& arg1, const ExprP<Vector<T, Rows> >& arg2) { return app<GenMat<T, Rows, 3> >(arg0, arg1, arg2); } template <typename T, int Rows> ExprP<Matrix<T, Rows, 4> > mat4 (const ExprP<Vector<T, Rows> >& arg0, const ExprP<Vector<T, Rows> >& arg1, const ExprP<Vector<T, Rows> >& arg2, const ExprP<Vector<T, Rows> >& arg3) { return app<GenMat<T, Rows, 4> >(arg0, arg1, arg2, arg3); } template <int Rows, int Cols> class MatNeg : public PrimitiveFunc<Signature<Matrix<float, Rows, Cols>, Matrix<float, Rows, Cols> > > { public: typedef typename MatNeg::IRet IRet; typedef typename MatNeg::IArgs IArgs; string getName (void) const { return "_matNeg"; } protected: void doPrint (ostream& os, const BaseArgExprs& args) const { os << "-(" << *args[0] << ")"; } IRet doApply (const EvalContext&, const IArgs& iargs) const { IRet ret; for (int col = 0; col < Cols; ++col) { for (int row = 0; row < Rows; ++row) ret[col][row] = -iargs.a[col][row]; } return ret; } }; template <typename T, typename Sig> class CompWiseFunc : public PrimitiveFunc<Sig> { public: typedef Func<Signature<T, T, T> > ScalarFunc; string getName (void) const { return doGetScalarFunc().getName(); } protected: void doPrint (ostream& os, const BaseArgExprs& args) const { doGetScalarFunc().print(os, args); } virtual const ScalarFunc& doGetScalarFunc (void) const = 0; }; template <int Rows, int Cols> class CompMatFuncBase : public CompWiseFunc<float, Signature<Matrix<float, Rows, Cols>, Matrix<float, Rows, Cols>, Matrix<float, Rows, Cols> > > { public: typedef typename CompMatFuncBase::IRet IRet; typedef typename CompMatFuncBase::IArgs IArgs; protected: IRet doApply (const EvalContext& ctx, const IArgs& iargs) const { IRet ret; for (int col = 0; col < Cols; ++col) { for (int row = 0; row < Rows; ++row) ret[col][row] = this->doGetScalarFunc().apply(ctx, iargs.a[col][row], iargs.b[col][row]); } return ret; } }; template <typename F, int Rows, int Cols> class CompMatFunc : public CompMatFuncBase<Rows, Cols> { protected: const typename CompMatFunc::ScalarFunc& doGetScalarFunc (void) const { return instance<F>(); } }; class ScalarMatrixCompMult : public Mul { public: string getName (void) const { return "matrixCompMult"; } void doPrint (ostream& os, const BaseArgExprs& args) const { Func<Sig>::doPrint(os, args); } }; template <int Rows, int Cols> class MatrixCompMult : public CompMatFunc<ScalarMatrixCompMult, Rows, Cols> { }; template <int Rows, int Cols> class ScalarMatFuncBase : public CompWiseFunc<float, Signature<Matrix<float, Rows, Cols>, Matrix<float, Rows, Cols>, float> > { public: typedef typename ScalarMatFuncBase::IRet IRet; typedef typename ScalarMatFuncBase::IArgs IArgs; protected: IRet doApply (const EvalContext& ctx, const IArgs& iargs) const { IRet ret; for (int col = 0; col < Cols; ++col) { for (int row = 0; row < Rows; ++row) ret[col][row] = this->doGetScalarFunc().apply(ctx, iargs.a[col][row], iargs.b); } return ret; } }; template <typename F, int Rows, int Cols> class ScalarMatFunc : public ScalarMatFuncBase<Rows, Cols> { protected: const typename ScalarMatFunc::ScalarFunc& doGetScalarFunc (void) const { return instance<F>(); } }; template<typename T, int Size> struct GenXType; template<typename T> struct GenXType<T, 1> { static ExprP<T> genXType (const ExprP<T>& x) { return x; } }; template<typename T> struct GenXType<T, 2> { static ExprP<Vector<T, 2> > genXType (const ExprP<T>& x) { return app<GenVec<T, 2> >(x, x); } }; template<typename T> struct GenXType<T, 3> { static ExprP<Vector<T, 3> > genXType (const ExprP<T>& x) { return app<GenVec<T, 3> >(x, x, x); } }; template<typename T> struct GenXType<T, 4> { static ExprP<Vector<T, 4> > genXType (const ExprP<T>& x) { return app<GenVec<T, 4> >(x, x, x, x); } }; //! Returns an expression of vector of size `Size` (or scalar if Size == 1), //! with each element initialized with the expression `x`. template<typename T, int Size> ExprP<typename ContainerOf<T, Size>::Container> genXType (const ExprP<T>& x) { return GenXType<T, Size>::genXType(x); } typedef GenVec<float, 2> FloatVec2; DEFINE_CONSTRUCTOR2(FloatVec2, Vec2, vec2, float, float) typedef GenVec<float, 3> FloatVec3; DEFINE_CONSTRUCTOR3(FloatVec3, Vec3, vec3, float, float, float) typedef GenVec<float, 4> FloatVec4; DEFINE_CONSTRUCTOR4(FloatVec4, Vec4, vec4, float, float, float, float) template <int Size> class Dot : public DerivedFunc<Signature<float, Vector<float, Size>, Vector<float, Size> > > { public: typedef typename Dot::ArgExprs ArgExprs; string getName (void) const { return "dot"; } protected: ExprP<float> doExpand (ExpandContext&, const ArgExprs& args) const { ExprP<float> val = args.a[0] * args.b[0]; for (int ndx = 1; ndx < Size; ++ndx) val = val + args.a[ndx] * args.b[ndx]; return val; } }; template <> class Dot<1> : public DerivedFunc<Signature<float, float, float> > { public: string getName (void) const { return "dot"; } ExprP<float> doExpand (ExpandContext&, const ArgExprs& args) const { return args.a * args.b; } }; template <int Size> ExprP<float> dot (const ExprP<Vector<float, Size> >& x, const ExprP<Vector<float, Size> >& y) { return app<Dot<Size> >(x, y); } ExprP<float> dot (const ExprP<float>& x, const ExprP<float>& y) { return app<Dot<1> >(x, y); } template <int Size> class Length : public DerivedFunc< Signature<float, typename ContainerOf<float, Size>::Container> > { public: typedef typename Length::ArgExprs ArgExprs; string getName (void) const { return "length"; } protected: ExprP<float> doExpand (ExpandContext&, const ArgExprs& args) const { return sqrt(dot(args.a, args.a)); } }; template <int Size> ExprP<float> length (const ExprP<typename ContainerOf<float, Size>::Container>& x) { return app<Length<Size> >(x); } template <int Size> class Distance : public DerivedFunc< Signature<float, typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container> > { public: typedef typename Distance::Ret Ret; typedef typename Distance::ArgExprs ArgExprs; string getName (void) const { return "distance"; } protected: ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const { return length<Size>(args.a - args.b); } }; // cross class Cross : public DerivedFunc<Signature<Vec3, Vec3, Vec3> > { public: string getName (void) const { return "cross"; } protected: ExprP<Vec3> doExpand (ExpandContext&, const ArgExprs& x) const { return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2], x.a[2] * x.b[0] - x.b[2] * x.a[0], x.a[0] * x.b[1] - x.b[0] * x.a[1]); } }; DEFINE_CONSTRUCTOR2(Cross, Vec3, cross, Vec3, Vec3) template<int Size> class Normalize : public DerivedFunc< Signature<typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container> > { public: typedef typename Normalize::Ret Ret; typedef typename Normalize::ArgExprs ArgExprs; string getName (void) const { return "normalize"; } protected: ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const { return args.a / length<Size>(args.a); } }; template <int Size> class FaceForward : public DerivedFunc< Signature<typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container> > { public: typedef typename FaceForward::Ret Ret; typedef typename FaceForward::ArgExprs ArgExprs; string getName (void) const { return "faceforward"; } protected: ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const { return cond(dot(args.c, args.b) < constant(0.0f), args.a, -args.a); } }; template <int Size> class Reflect : public DerivedFunc< Signature<typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container> > { public: typedef typename Reflect::Ret Ret; typedef typename Reflect::ArgExprs ArgExprs; string getName (void) const { return "reflect"; } protected: ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const { return args.a - (args.b * dot(args.b, args.a) * constant(2.0f)); } }; template <int Size> class Refract : public DerivedFunc< Signature<typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container, typename ContainerOf<float, Size>::Container, float> > { public: typedef typename Refract::Ret Ret; typedef typename Refract::Arg0 Arg0; typedef typename Refract::Arg1 Arg1; typedef typename Refract::ArgExprs ArgExprs; string getName (void) const { return "refract"; } protected: ExprP<Ret> doExpand (ExpandContext& ctx, const ArgExprs& args) const { const ExprP<Arg0>& i = args.a; const ExprP<Arg1>& n = args.b; const ExprP<float>& eta = args.c; const ExprP<float> dotNI = bindExpression("dotNI", ctx, dot(n, i)); const ExprP<float> k = bindExpression("k", ctx, constant(1.0f) - eta * eta * (constant(1.0f) - dotNI * dotNI)); return cond(k < constant(0.0f), genXType<float, Size>(constant(0.0f)), i * eta - n * (eta * dotNI + sqrt(k))); } }; class PreciseFunc1 : public CFloatFunc1 { public: PreciseFunc1 (const string& name, DoubleFunc1& func) : CFloatFunc1(name, func) {} protected: double precision (const EvalContext&, double, double) const { return 0.0; } }; class Abs : public PreciseFunc1 { public: Abs (void) : PreciseFunc1("abs", deAbs) {} }; class Sign : public PreciseFunc1 { public: Sign (void) : PreciseFunc1("sign", deSign) {} }; class Floor : public PreciseFunc1 { public: Floor (void) : PreciseFunc1("floor", deFloor) {} }; class Trunc : public PreciseFunc1 { public: Trunc (void) : PreciseFunc1("trunc", deTrunc) {} }; class Round : public FloatFunc1 { public: string getName (void) const { return "round"; } protected: Interval applyPoint (const EvalContext&, double x) const { double truncated = 0.0; const double fract = deModf(x, &truncated); Interval ret; if (fabs(fract) <= 0.5) ret |= truncated; if (fabs(fract) >= 0.5) ret |= truncated + deSign(fract); return ret; } double precision (const EvalContext&, double, double) const { return 0.0; } }; class RoundEven : public PreciseFunc1 { public: RoundEven (void) : PreciseFunc1("roundEven", deRoundEven) {} }; class Ceil : public PreciseFunc1 { public: Ceil (void) : PreciseFunc1("ceil", deCeil) {} }; DEFINE_DERIVED_FLOAT1(Fract, fract, x, x - app<Floor>(x)); class PreciseFunc2 : public CFloatFunc2 { public: PreciseFunc2 (const string& name, DoubleFunc2& func) : CFloatFunc2(name, func) {} protected: double precision (const EvalContext&, double, double, double) const { return 0.0; } }; DEFINE_DERIVED_FLOAT2(Mod, mod, x, y, x - y * app<Floor>(x / y)); class Modf : public PrimitiveFunc<Signature<float, float, float> > { public: string getName (void) const { return "modf"; } protected: IRet doApply (const EvalContext&, const IArgs& iargs) const { Interval fracIV; Interval& wholeIV = const_cast<Interval&>(iargs.b); double intPart = 0; TCU_INTERVAL_APPLY_MONOTONE1(fracIV, x, iargs.a, frac, frac = deModf(x, &intPart)); TCU_INTERVAL_APPLY_MONOTONE1(wholeIV, x, iargs.a, whole, deModf(x, &intPart); whole = intPart); return fracIV; } int getOutParamIndex (void) const { return 1; } }; class Min : public PreciseFunc2 { public: Min (void) : PreciseFunc2("min", deMin) {} }; class Max : public PreciseFunc2 { public: Max (void) : PreciseFunc2("max", deMax) {} }; class Clamp : public FloatFunc3 { public: string getName (void) const { return "clamp"; } double applyExact (double x, double minVal, double maxVal) const { return de::min(de::max(x, minVal), maxVal); } double precision (const EvalContext&, double, double, double minVal, double maxVal) const { return minVal > maxVal ? TCU_NAN : 0.0; } }; ExprP<float> clamp(const ExprP<float>& x, const ExprP<float>& minVal, const ExprP<float>& maxVal) { return app<Clamp>(x, minVal, maxVal); } DEFINE_DERIVED_FLOAT3(Mix, mix, x, y, a, (x * (constant(1.0f) - a)) + y * a); static double step (double edge, double x) { return x < edge ? 0.0 : 1.0; } class Step : public PreciseFunc2 { public: Step (void) : PreciseFunc2("step", step) {} }; class SmoothStep : public DerivedFunc<Signature<float, float, float, float> > { public: string getName (void) const { return "smoothstep"; } protected: ExprP<Ret> doExpand (ExpandContext& ctx, const ArgExprs& args) const { const ExprP<float>& edge0 = args.a; const ExprP<float>& edge1 = args.b; const ExprP<float>& x = args.c; const ExprP<float> tExpr = clamp((x - edge0) / (edge1 - edge0), constant(0.0f), constant(1.0f)); const ExprP<float> t = bindExpression("t", ctx, tExpr); return (t * t * (constant(3.0f) - constant(2.0f) * t)); } }; class FrExp : public PrimitiveFunc<Signature<float, float, int> > { public: string getName (void) const { return "frexp"; } protected: IRet doApply (const EvalContext&, const IArgs& iargs) const { IRet ret; const IArg0& x = iargs.a; IArg1& exponent = const_cast<IArg1&>(iargs.b); if (x.hasNaN() || x.contains(TCU_INFINITY) || x.contains(-TCU_INFINITY)) { // GLSL (in contrast to IEEE) says that result of applying frexp // to infinity is undefined ret = Interval::unbounded() | TCU_NAN; exponent = Interval(-deLdExp(1.0, 31), deLdExp(1.0, 31)-1); } else if (!x.empty()) { int loExp = 0; const double loFrac = deFrExp(x.lo(), &loExp); int hiExp = 0; const double hiFrac = deFrExp(x.hi(), &hiExp); if (deSign(loFrac) != deSign(hiFrac)) { exponent = Interval(-TCU_INFINITY, de::max(loExp, hiExp)); ret = Interval(); if (deSign(loFrac) < 0) ret |= Interval(-1.0 + DBL_EPSILON*0.5, 0.0); if (deSign(hiFrac) > 0) ret |= Interval(0.0, 1.0 - DBL_EPSILON*0.5); } else { exponent = Interval(loExp, hiExp); if (loExp == hiExp) ret = Interval(loFrac, hiFrac); else ret = deSign(loFrac) * Interval(0.5, 1.0 - DBL_EPSILON*0.5); } } return ret; } int getOutParamIndex (void) const { return 1; } }; class LdExp : public PrimitiveFunc<Signature<float, float, int> > { public: string getName (void) const { return "ldexp"; } protected: Interval doApply (const EvalContext& ctx, const IArgs& iargs) const { Interval ret = call<Exp2>(ctx, iargs.b); // Khronos bug 11180 consensus: if exp2(exponent) cannot be represented, // the result is undefined. if (ret.contains(TCU_INFINITY) | ret.contains(-TCU_INFINITY)) ret |= TCU_NAN; return call<Mul>(ctx, iargs.a, ret); } }; template<int Rows, int Columns> class Transpose : public PrimitiveFunc<Signature<Matrix<float, Rows, Columns>, Matrix<float, Columns, Rows> > > { public: typedef typename Transpose::IRet IRet; typedef typename Transpose::IArgs IArgs; string getName (void) const { return "transpose"; } protected: IRet doApply (const EvalContext&, const IArgs& iargs) const { IRet ret; for (int rowNdx = 0; rowNdx < Rows; ++rowNdx) { for (int colNdx = 0; colNdx < Columns; ++colNdx) ret(rowNdx, colNdx) = iargs.a(colNdx, rowNdx); } return ret; } }; template<typename Ret, typename Arg0, typename Arg1> class MulFunc : public PrimitiveFunc<Signature<Ret, Arg0, Arg1> > { public: string getName (void) const { return "mul"; } protected: void doPrint (ostream& os, const BaseArgExprs& args) const { os << "(" << *args[0] << " * " << *args[1] << ")"; } }; template<int LeftRows, int Middle, int RightCols> class MatMul : public MulFunc<Matrix<float, LeftRows, RightCols>, Matrix<float, LeftRows, Middle>, Matrix<float, Middle, RightCols> > { protected: typedef typename MatMul::IRet IRet; typedef typename MatMul::IArgs IArgs; typedef typename MatMul::IArg0 IArg0; typedef typename MatMul::IArg1 IArg1; IRet doApply (const EvalContext& ctx, const IArgs& iargs) const { const IArg0& left = iargs.a; const IArg1& right = iargs.b; IRet ret; for (int row = 0; row < LeftRows; ++row) { for (int col = 0; col < RightCols; ++col) { Interval element (0.0); for (int ndx = 0; ndx < Middle; ++ndx) element = call<Add>(ctx, element, call<Mul>(ctx, left[ndx][row], right[col][ndx])); ret[col][row] = element; } } return ret; } }; template<int Rows, int Cols> class VecMatMul : public MulFunc<Vector<float, Cols>, Vector<float, Rows>, Matrix<float, Rows, Cols> > { public: typedef typename VecMatMul::IRet IRet; typedef typename VecMatMul::IArgs IArgs; typedef typename VecMatMul::IArg0 IArg0; typedef typename VecMatMul::IArg1 IArg1; protected: IRet doApply (const EvalContext& ctx, const IArgs& iargs) const { const IArg0& left = iargs.a; const IArg1& right = iargs.b; IRet ret; for (int col = 0; col < Cols; ++col) { Interval element (0.0); for (int row = 0; row < Rows; ++row) element = call<Add>(ctx, element, call<Mul>(ctx, left[row], right[col][row])); ret[col] = element; } return ret; } }; template<int Rows, int Cols> class MatVecMul : public MulFunc<Vector<float, Rows>, Matrix<float, Rows, Cols>, Vector<float, Cols> > { public: typedef typename MatVecMul::IRet IRet; typedef typename MatVecMul::IArgs IArgs; typedef typename MatVecMul::IArg0 IArg0; typedef typename MatVecMul::IArg1 IArg1; protected: IRet doApply (const EvalContext& ctx, const IArgs& iargs) const { const IArg0& left = iargs.a; const IArg1& right = iargs.b; return call<VecMatMul<Cols, Rows> >(ctx, right, call<Transpose<Rows, Cols> >(ctx, left)); } }; template<int Rows, int Cols> class OuterProduct : public PrimitiveFunc<Signature<Matrix<float, Rows, Cols>, Vector<float, Rows>, Vector<float, Cols> > > { public: typedef typename OuterProduct::IRet IRet; typedef typename OuterProduct::IArgs IArgs; string getName (void) const { return "outerProduct"; } protected: IRet doApply (const EvalContext& ctx, const IArgs& iargs) const { IRet ret; for (int row = 0; row < Rows; ++row) { for (int col = 0; col < Cols; ++col) ret[col][row] = call<Mul>(ctx, iargs.a[row], iargs.b[col]); } return ret; } }; template<int Rows, int Cols> ExprP<Matrix<float, Rows, Cols> > outerProduct (const ExprP<Vector<float, Rows> >& left, const ExprP<Vector<float, Cols> >& right) { return app<OuterProduct<Rows, Cols> >(left, right); } template<int Size> class DeterminantBase : public DerivedFunc<Signature<float, Matrix<float, Size, Size> > > { public: string getName (void) const { return "determinant"; } }; template<int Size> class Determinant; template<int Size> ExprP<float> determinant (ExprP<Matrix<float, Size, Size> > mat) { return app<Determinant<Size> >(mat); } template<> class Determinant<2> : public DeterminantBase<2> { protected: ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const { ExprP<Mat2> mat = args.a; return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1]; } }; template<> class Determinant<3> : public DeterminantBase<3> { protected: ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const { ExprP<Mat3> mat = args.a; return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) + mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) + mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0])); } }; template<> class Determinant<4> : public DeterminantBase<4> { protected: ExprP<Ret> doExpand (ExpandContext& ctx, const ArgExprs& args) const { ExprP<Mat4> mat = args.a; ExprP<Mat3> minors[4]; for (int ndx = 0; ndx < 4; ++ndx) { ExprP<Vec4> minorColumns[3]; ExprP<Vec3> columns[3]; for (int col = 0; col < 3; ++col) minorColumns[col] = mat[col < ndx ? col : col + 1]; for (int col = 0; col < 3; ++col) columns[col] = vec3(minorColumns[0][col+1], minorColumns[1][col+1], minorColumns[2][col+1]); minors[ndx] = bindExpression("minor", ctx, mat3(columns[0], columns[1], columns[2])); } return (mat[0][0] * determinant(minors[0]) - mat[1][0] * determinant(minors[1]) + mat[2][0] * determinant(minors[2]) - mat[3][0] * determinant(minors[3])); } }; template<int Size> class Inverse; template <int Size> ExprP<Matrix<float, Size, Size> > inverse (ExprP<Matrix<float, Size, Size> > mat) { return app<Inverse<Size> >(mat); } template<> class Inverse<2> : public DerivedFunc<Signature<Mat2, Mat2> > { public: string getName (void) const { return "inverse"; } protected: ExprP<Ret> doExpand (ExpandContext& ctx, const ArgExprs& args) const { ExprP<Mat2> mat = args.a; ExprP<float> det = bindExpression("det", ctx, determinant(mat)); return mat2(vec2(mat[1][1] / det, -mat[0][1] / det), vec2(-mat[1][0] / det, mat[0][0] / det)); } }; template<> class Inverse<3> : public DerivedFunc<Signature<Mat3, Mat3> > { public: string getName (void) const { return "inverse"; } protected: ExprP<Ret> doExpand (ExpandContext& ctx, const ArgExprs& args) const { ExprP<Mat3> mat = args.a; ExprP<Mat2> invA = bindExpression("invA", ctx, inverse(mat2(vec2(mat[0][0], mat[0][1]), vec2(mat[1][0], mat[1][1])))); ExprP<Vec2> matB = bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1])); ExprP<Vec2> matC = bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2])); ExprP<float> matD = bindExpression("matD", ctx, mat[2][2]); ExprP<float> schur = bindExpression("schur", ctx, constant(1.0f) / (matD - dot(matC * invA, matB))); ExprP<Vec2> t1 = invA * matB; ExprP<Vec2> t2 = t1 * schur; ExprP<Mat2> t3 = outerProduct(t2, matC); ExprP<Mat2> t4 = t3 * invA; ExprP<Mat2> t5 = invA + t4; ExprP<Mat2> blockA = bindExpression("blockA", ctx, t5); ExprP<Vec2> blockB = bindExpression("blockB", ctx, (invA * matB) * -schur); ExprP<Vec2> blockC = bindExpression("blockC", ctx, (matC * invA) * -schur); return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]), vec3(blockA[1][0], blockA[1][1], blockC[1]), vec3(blockB[0], blockB[1], schur)); } }; template<> class Inverse<4> : public DerivedFunc<Signature<Mat4, Mat4> > { public: string getName (void) const { return "inverse"; } protected: ExprP<Ret> doExpand (ExpandContext& ctx, const ArgExprs& args) const { ExprP<Mat4> mat = args.a; ExprP<Mat2> invA = bindExpression("invA", ctx, inverse(mat2(vec2(mat[0][0], mat[0][1]), vec2(mat[1][0], mat[1][1])))); ExprP<Mat2> matB = bindExpression("matB", ctx, mat2(vec2(mat[2][0], mat[2][1]), vec2(mat[3][0], mat[3][1]))); ExprP<Mat2> matC = bindExpression("matC", ctx, mat2(vec2(mat[0][2], mat[0][3]), vec2(mat[1][2], mat[1][3]))); ExprP<Mat2> matD = bindExpression("matD", ctx, mat2(vec2(mat[2][2], mat[2][3]), vec2(mat[3][2], mat[3][3]))); ExprP<Mat2> schur = bindExpression("schur", ctx, inverse(matD + -(matC * invA * matB))); ExprP<Mat2> blockA = bindExpression("blockA", ctx, invA + (invA * matB * schur * matC * invA)); ExprP<Mat2> blockB = bindExpression("blockB", ctx, (-invA) * matB * schur); ExprP<Mat2> blockC = bindExpression("blockC", ctx, (-schur) * matC * invA); return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]), vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]), vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]), vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1])); } }; class Fma : public DerivedFunc<Signature<float, float, float, float> > { public: string getName (void) const { return "fma"; } string getRequiredExtension (void) const { return "GL_EXT_gpu_shader5"; } protected: ExprP<float> doExpand (ExpandContext&, const ArgExprs& x) const { return x.a * x.b + x.c; } }; } // Functions using namespace Functions; template <typename T> ExprP<typename T::Element> ContainerExprPBase<T>::operator[] (int i) const { return Functions::getComponent(exprP<T>(*this), i); } ExprP<float> operator+ (const ExprP<float>& arg0, const ExprP<float>& arg1) { return app<Add>(arg0, arg1); } ExprP<float> operator- (const ExprP<float>& arg0, const ExprP<float>& arg1) { return app<Sub>(arg0, arg1); } ExprP<float> operator- (const ExprP<float>& arg0) { return app<Negate>(arg0); } ExprP<float> operator* (const ExprP<float>& arg0, const ExprP<float>& arg1) { return app<Mul>(arg0, arg1); } ExprP<float> operator/ (const ExprP<float>& arg0, const ExprP<float>& arg1) { return app<Div>(arg0, arg1); } template <typename Sig_, int Size> class GenFunc : public PrimitiveFunc<Signature< typename ContainerOf<typename Sig_::Ret, Size>::Container, typename ContainerOf<typename Sig_::Arg0, Size>::Container, typename ContainerOf<typename Sig_::Arg1, Size>::Container, typename ContainerOf<typename Sig_::Arg2, Size>::Container, typename ContainerOf<typename Sig_::Arg3, Size>::Container> > { public: typedef typename GenFunc::IArgs IArgs; typedef typename GenFunc::IRet IRet; GenFunc (const Func<Sig_>& scalarFunc) : m_func (scalarFunc) {} string getName (void) const { return m_func.getName(); } int getOutParamIndex (void) const { return m_func.getOutParamIndex(); } string getRequiredExtension (void) const { return m_func.getRequiredExtension(); } protected: void doPrint (ostream& os, const BaseArgExprs& args) const { m_func.print(os, args); } IRet doApply (const EvalContext& ctx, const IArgs& iargs) const { IRet ret; for (int ndx = 0; ndx < Size; ++ndx) { ret[ndx] = m_func.apply(ctx, iargs.a[ndx], iargs.b[ndx], iargs.c[ndx], iargs.d[ndx]); } return ret; } void doGetUsedFuncs (FuncSet& dst) const { m_func.getUsedFuncs(dst); } const Func<Sig_>& m_func; }; template <typename F, int Size> class VectorizedFunc : public GenFunc<typename F::Sig, Size> { public: VectorizedFunc (void) : GenFunc<typename F::Sig, Size>(instance<F>()) {} }; template <typename Sig_, int Size> class FixedGenFunc : public PrimitiveFunc <Signature< typename ContainerOf<typename Sig_::Ret, Size>::Container, typename ContainerOf<typename Sig_::Arg0, Size>::Container, typename Sig_::Arg1, typename ContainerOf<typename Sig_::Arg2, Size>::Container, typename ContainerOf<typename Sig_::Arg3, Size>::Container> > { public: typedef typename FixedGenFunc::IArgs IArgs; typedef typename FixedGenFunc::IRet IRet; string getName (void) const { return this->doGetScalarFunc().getName(); } protected: void doPrint (ostream& os, const BaseArgExprs& args) const { this->doGetScalarFunc().print(os, args); } IRet doApply (const EvalContext& ctx, const IArgs& iargs) const { IRet ret; const Func<Sig_>& func = this->doGetScalarFunc(); for (int ndx = 0; ndx < Size; ++ndx) ret[ndx] = func.apply(ctx, iargs.a[ndx], iargs.b, iargs.c[ndx], iargs.d[ndx]); return ret; } virtual const Func<Sig_>& doGetScalarFunc (void) const = 0; }; template <typename F, int Size> class FixedVecFunc : public FixedGenFunc<typename F::Sig, Size> { protected: const Func<typename F::Sig>& doGetScalarFunc (void) const { return instance<F>(); } }; template<typename Sig> struct GenFuncs { GenFuncs (const Func<Sig>& func_, const GenFunc<Sig, 2>& func2_, const GenFunc<Sig, 3>& func3_, const GenFunc<Sig, 4>& func4_) : func (func_) , func2 (func2_) , func3 (func3_) , func4 (func4_) {} const Func<Sig>& func; const GenFunc<Sig, 2>& func2; const GenFunc<Sig, 3>& func3; const GenFunc<Sig, 4>& func4; }; template<typename F> GenFuncs<typename F::Sig> makeVectorizedFuncs (void) { return GenFuncs<typename F::Sig>(instance<F>(), instance<VectorizedFunc<F, 2> >(), instance<VectorizedFunc<F, 3> >(), instance<VectorizedFunc<F, 4> >()); } template<int Size> ExprP<Vector<float, Size> > operator*(const ExprP<Vector<float, Size> >& arg0, const ExprP<Vector<float, Size> >& arg1) { return app<VectorizedFunc<Mul, Size> >(arg0, arg1); } template<int Size> ExprP<Vector<float, Size> > operator*(const ExprP<Vector<float, Size> >& arg0, const ExprP<float>& arg1) { return app<FixedVecFunc<Mul, Size> >(arg0, arg1); } template<int Size> ExprP<Vector<float, Size> > operator/(const ExprP<Vector<float, Size> >& arg0, const ExprP<float>& arg1) { return app<FixedVecFunc<Div, Size> >(arg0, arg1); } template<int Size> ExprP<Vector<float, Size> > operator-(const ExprP<Vector<float, Size> >& arg0) { return app<VectorizedFunc<Negate, Size> >(arg0); } template<int Size> ExprP<Vector<float, Size> > operator-(const ExprP<Vector<float, Size> >& arg0, const ExprP<Vector<float, Size> >& arg1) { return app<VectorizedFunc<Sub, Size> >(arg0, arg1); } template<int LeftRows, int Middle, int RightCols> ExprP<Matrix<float, LeftRows, RightCols> > operator* (const ExprP<Matrix<float, LeftRows, Middle> >& left, const ExprP<Matrix<float, Middle, RightCols> >& right) { return app<MatMul<LeftRows, Middle, RightCols> >(left, right); } template<int Rows, int Cols> ExprP<Vector<float, Rows> > operator* (const ExprP<Vector<float, Cols> >& left, const ExprP<Matrix<float, Rows, Cols> >& right) { return app<VecMatMul<Rows, Cols> >(left, right); } template<int Rows, int Cols> ExprP<Vector<float, Cols> > operator* (const ExprP<Matrix<float, Rows, Cols> >& left, const ExprP<Vector<float, Rows> >& right) { return app<MatVecMul<Rows, Cols> >(left, right); } template<int Rows, int Cols> ExprP<Matrix<float, Rows, Cols> > operator* (const ExprP<Matrix<float, Rows, Cols> >& left, const ExprP<float>& right) { return app<ScalarMatFunc<Mul, Rows, Cols> >(left, right); } template<int Rows, int Cols> ExprP<Matrix<float, Rows, Cols> > operator+ (const ExprP<Matrix<float, Rows, Cols> >& left, const ExprP<Matrix<float, Rows, Cols> >& right) { return app<CompMatFunc<Add, Rows, Cols> >(left, right); } template<int Rows, int Cols> ExprP<Matrix<float, Rows, Cols> > operator- (const ExprP<Matrix<float, Rows, Cols> >& mat) { return app<MatNeg<Rows, Cols> >(mat); } template <typename T> class Sampling { public: virtual void genFixeds (const FloatFormat&, vector<T>&) const {} virtual T genRandom (const FloatFormat&, Precision, Random&) const { return T(); } virtual double getWeight (void) const { return 0.0; } }; template <> class DefaultSampling<Void> : public Sampling<Void> { public: void genFixeds (const FloatFormat&, vector<Void>& dst) const { dst.push_back(Void()); } }; template <> class DefaultSampling<bool> : public Sampling<bool> { public: void genFixeds (const FloatFormat&, vector<bool>& dst) const { dst.push_back(true); dst.push_back(false); } }; template <> class DefaultSampling<int> : public Sampling<int> { public: int genRandom (const FloatFormat&, Precision prec, Random& rnd) const { const int exp = rnd.getInt(0, getNumBits(prec)-2); const int sign = rnd.getBool() ? -1 : 1; return sign * rnd.getInt(0, 1L << exp); } void genFixeds (const FloatFormat&, vector<int>& dst) const { dst.push_back(0); dst.push_back(-1); dst.push_back(1); } double getWeight (void) const { return 1.0; } private: static inline int getNumBits (Precision prec) { switch (prec) { case glu::PRECISION_LOWP: return 8; case glu::PRECISION_MEDIUMP: return 16; case glu::PRECISION_HIGHP: return 32; default: DE_ASSERT(false); return 0; } } }; template <> class DefaultSampling<float> : public Sampling<float> { public: float genRandom (const FloatFormat& format, Precision prec, Random& rnd) const; void genFixeds (const FloatFormat& format, vector<float>& dst) const; double getWeight (void) const { return 1.0; } }; //! Generate a random float from a reasonable general-purpose distribution. float DefaultSampling<float>::genRandom (const FloatFormat& format, Precision, Random& rnd) const { const int minExp = format.getMinExp(); const int maxExp = format.getMaxExp(); const bool haveSubnormal = format.hasSubnormal() != tcu::NO; // Choose exponent so that the cumulative distribution is cubic. // This makes the probability distribution quadratic, with the peak centered on zero. const double minRoot = deCbrt(minExp - 0.5 - (haveSubnormal ? 1.0 : 0.0)); const double maxRoot = deCbrt(maxExp + 0.5); const int fractionBits = format.getFractionBits(); const int exp = int(deRoundEven(dePow(rnd.getDouble(minRoot, maxRoot), 3.0))); float base = 0.0f; // integral power of two float quantum = 0.0f; // smallest representable difference in the binade float significand = 0.0f; // Significand. DE_ASSERT(fractionBits < std::numeric_limits<float>::digits); // Generate some occasional special numbers switch (rnd.getInt(0, 64)) { case 0: return 0; case 1: return TCU_INFINITY; case 2: return -TCU_INFINITY; case 3: return TCU_NAN; default: break; } if (exp >= minExp) { // Normal number base = deFloatLdExp(1.0f, exp); quantum = deFloatLdExp(1.0f, exp - fractionBits); } else { // Subnormal base = 0.0f; quantum = deFloatLdExp(1.0f, minExp - fractionBits); } switch (rnd.getInt(0, 16)) { case 0: // The highest number in this binade, significand is all bits one. significand = base - quantum; break; case 1: // Significand is one. significand = quantum; break; case 2: // Significand is zero. significand = 0.0; break; default: // Random (evenly distributed) significand. { deUint64 intFraction = rnd.getUint64() & ((1 << fractionBits) - 1); significand = float(intFraction) * quantum; } } // Produce positive numbers more often than negative. return (rnd.getInt(0,3) == 0 ? -1.0f : 1.0f) * (base + significand); } //! Generate a standard set of floats that should always be tested. void DefaultSampling<float>::genFixeds (const FloatFormat& format, vector<float>& dst) const { const int minExp = format.getMinExp(); const int maxExp = format.getMaxExp(); const int fractionBits = format.getFractionBits(); const float minQuantum = deFloatLdExp(1.0f, minExp - fractionBits); const float minNormalized = deFloatLdExp(1.0f, minExp); const float maxQuantum = deFloatLdExp(1.0f, maxExp - fractionBits); // NaN dst.push_back(TCU_NAN); // Zero dst.push_back(0.0f); for (int sign = -1; sign <= 1; sign += 2) { // Smallest subnormal dst.push_back(sign * minQuantum); // Largest subnormal dst.push_back(sign * (minNormalized - minQuantum)); // Smallest normalized dst.push_back(sign * minNormalized); // Next smallest normalized dst.push_back(sign * (minNormalized + minQuantum)); dst.push_back(sign * 0.5f); dst.push_back(sign * 1.0f); dst.push_back(sign * 2.0f); // Largest number dst.push_back(sign * (deFloatLdExp(1.0f, maxExp) + (deFloatLdExp(1.0f, maxExp) - maxQuantum))); dst.push_back(sign * TCU_INFINITY); } } template <typename T, int Size> class DefaultSampling<Vector<T, Size> > : public Sampling<Vector<T, Size> > { public: typedef Vector<T, Size> Value; Value genRandom (const FloatFormat& fmt, Precision prec, Random& rnd) const { Value ret; for (int ndx = 0; ndx < Size; ++ndx) ret[ndx] = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd); return ret; } void genFixeds (const FloatFormat& fmt, vector<Value>& dst) const { vector<T> scalars; instance<DefaultSampling<T> >().genFixeds(fmt, scalars); for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx) dst.push_back(Value(scalars[scalarNdx])); } double getWeight (void) const { return dePow(instance<DefaultSampling<T> >().getWeight(), Size); } }; template <typename T, int Rows, int Columns> class DefaultSampling<Matrix<T, Rows, Columns> > : public Sampling<Matrix<T, Rows, Columns> > { public: typedef Matrix<T, Rows, Columns> Value; Value genRandom (const FloatFormat& fmt, Precision prec, Random& rnd) const { Value ret; for (int rowNdx = 0; rowNdx < Rows; ++rowNdx) for (int colNdx = 0; colNdx < Columns; ++colNdx) ret(rowNdx, colNdx) = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd); return ret; } void genFixeds (const FloatFormat& fmt, vector<Value>& dst) const { vector<T> scalars; instance<DefaultSampling<T> >().genFixeds(fmt, scalars); for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx) dst.push_back(Value(scalars[scalarNdx])); if (Columns == Rows) { Value mat (0.0); T x = T(1.0f); mat[0][0] = x; for (int ndx = 0; ndx < Columns; ++ndx) { mat[Columns-1-ndx][ndx] = x; x *= T(2.0f); } dst.push_back(mat); } } double getWeight (void) const { return dePow(instance<DefaultSampling<T> >().getWeight(), Rows * Columns); } }; struct Context { Context (const string& name_, TestContext& testContext_, RenderContext& renderContext_, const FloatFormat& floatFormat_, const FloatFormat& highpFormat_, Precision precision_, ShaderType shaderType_, size_t numRandoms_) : name (name_) , testContext (testContext_) , renderContext (renderContext_) , floatFormat (floatFormat_) , highpFormat (highpFormat_) , precision (precision_) , shaderType (shaderType_) , numRandoms (numRandoms_) {} string name; TestContext& testContext; RenderContext& renderContext; FloatFormat floatFormat; FloatFormat highpFormat; Precision precision; ShaderType shaderType; size_t numRandoms; }; template<typename In0_ = Void, typename In1_ = Void, typename In2_ = Void, typename In3_ = Void> struct InTypes { typedef In0_ In0; typedef In1_ In1; typedef In2_ In2; typedef In3_ In3; }; template <typename In> int numInputs (void) { return (!isTypeValid<typename In::In0>() ? 0 : !isTypeValid<typename In::In1>() ? 1 : !isTypeValid<typename In::In2>() ? 2 : !isTypeValid<typename In::In3>() ? 3 : 4); } template<typename Out0_, typename Out1_ = Void> struct OutTypes { typedef Out0_ Out0; typedef Out1_ Out1; }; template <typename Out> int numOutputs (void) { return (!isTypeValid<typename Out::Out0>() ? 0 : !isTypeValid<typename Out::Out1>() ? 1 : 2); } template<typename In> struct Inputs { vector<typename In::In0> in0; vector<typename In::In1> in1; vector<typename In::In2> in2; vector<typename In::In3> in3; }; template<typename Out> struct Outputs { Outputs (size_t size) : out0(size), out1(size) {} vector<typename Out::Out0> out0; vector<typename Out::Out1> out1; }; template<typename In, typename Out> struct Variables { VariableP<typename In::In0> in0; VariableP<typename In::In1> in1; VariableP<typename In::In2> in2; VariableP<typename In::In3> in3; VariableP<typename Out::Out0> out0; VariableP<typename Out::Out1> out1; }; template<typename In> struct Samplings { Samplings (const Sampling<typename In::In0>& in0_, const Sampling<typename In::In1>& in1_, const Sampling<typename In::In2>& in2_, const Sampling<typename In::In3>& in3_) : in0 (in0_), in1 (in1_), in2 (in2_), in3 (in3_) {} const Sampling<typename In::In0>& in0; const Sampling<typename In::In1>& in1; const Sampling<typename In::In2>& in2; const Sampling<typename In::In3>& in3; }; template<typename In> struct DefaultSamplings : Samplings<In> { DefaultSamplings (void) : Samplings<In>(instance<DefaultSampling<typename In::In0> >(), instance<DefaultSampling<typename In::In1> >(), instance<DefaultSampling<typename In::In2> >(), instance<DefaultSampling<typename In::In3> >()) {} }; class PrecisionCase : public TestCase { public: IterateResult iterate (void); protected: PrecisionCase (const Context& context, const string& name, const string& extension = "") : TestCase (context.testContext, name.c_str(), name.c_str()) , m_ctx (context) , m_status () , m_rnd (0xdeadbeefu + context.testContext.getCommandLine().getBaseSeed()) , m_extension (extension) { } RenderContext& getRenderContext(void) const { return m_ctx.renderContext; } const FloatFormat& getFormat (void) const { return m_ctx.floatFormat; } TestLog& log (void) const { return m_testCtx.getLog(); } virtual void runTest (void) = 0; template <typename In, typename Out> void testStatement (const Variables<In, Out>& variables, const Inputs<In>& inputs, const Statement& stmt); template<typename T> Symbol makeSymbol (const Variable<T>& variable) { return Symbol(variable.getName(), getVarTypeOf<T>(m_ctx.precision)); } Context m_ctx; ResultCollector m_status; Random m_rnd; const string m_extension; }; IterateResult PrecisionCase::iterate (void) { runTest(); m_status.setTestContextResult(m_testCtx); return STOP; } template <typename In, typename Out> void PrecisionCase::testStatement (const Variables<In, Out>& variables, const Inputs<In>& inputs, const Statement& stmt) { using namespace ShaderExecUtil; typedef typename In::In0 In0; typedef typename In::In1 In1; typedef typename In::In2 In2; typedef typename In::In3 In3; typedef typename Out::Out0 Out0; typedef typename Out::Out1 Out1; const FloatFormat& fmt = getFormat(); const int inCount = numInputs<In>(); const int outCount = numOutputs<Out>(); const size_t numValues = (inCount > 0) ? inputs.in0.size() : 1; Outputs<Out> outputs (numValues); ShaderSpec spec; const FloatFormat highpFmt = m_ctx.highpFormat; const int maxMsgs = 100; int numErrors = 0; Environment env; // Hoisted out of the inner loop for optimization. switch (inCount) { case 4: DE_ASSERT(inputs.in3.size() == numValues); case 3: DE_ASSERT(inputs.in2.size() == numValues); case 2: DE_ASSERT(inputs.in1.size() == numValues); case 1: DE_ASSERT(inputs.in0.size() == numValues); default: break; } // Print out the statement and its definitions log() << TestLog::Message << "Statement: " << stmt << TestLog::EndMessage; { ostringstream oss; FuncSet funcs; stmt.getUsedFuncs(funcs); for (FuncSet::const_iterator it = funcs.begin(); it != funcs.end(); ++it) { (*it)->printDefinition(oss); } if (!funcs.empty()) log() << TestLog::Message << "Reference definitions:\n" << oss.str() << TestLog::EndMessage; } // Initialize ShaderSpec from precision, variables and statement. { ostringstream os; os << "precision " << glu::getPrecisionName(m_ctx.precision) << " float;\n"; spec.globalDeclarations = os.str(); } spec.version = getContextTypeGLSLVersion(getRenderContext().getType()); if (!m_extension.empty()) spec.globalDeclarations = "#extension " + m_extension + " : require\n"; spec.inputs.resize(inCount); switch (inCount) { case 4: spec.inputs[3] = makeSymbol(*variables.in3); case 3: spec.inputs[2] = makeSymbol(*variables.in2); case 2: spec.inputs[1] = makeSymbol(*variables.in1); case 1: spec.inputs[0] = makeSymbol(*variables.in0); default: break; } spec.outputs.resize(outCount); switch (outCount) { case 2: spec.outputs[1] = makeSymbol(*variables.out1); case 1: spec.outputs[0] = makeSymbol(*variables.out0); default: break; } spec.source = de::toString(stmt); // Run the shader with inputs. { UniquePtr<ShaderExecutor> executor (createExecutor(getRenderContext(), m_ctx.shaderType, spec)); const void* inputArr[] = { &inputs.in0.front(), &inputs.in1.front(), &inputs.in2.front(), &inputs.in3.front(), }; void* outputArr[] = { &outputs.out0.front(), &outputs.out1.front(), }; executor->log(log()); if (!executor->isOk()) TCU_FAIL("Shader compilation failed"); executor->useProgram(); executor->execute(int(numValues), inputArr, outputArr); } // Initialize environment with dummy values so we don't need to bind in inner loop. { const typename Traits<In0>::IVal in0; const typename Traits<In1>::IVal in1; const typename Traits<In2>::IVal in2; const typename Traits<In3>::IVal in3; const typename Traits<Out0>::IVal reference0; const typename Traits<Out1>::IVal reference1; env.bind(*variables.in0, in0); env.bind(*variables.in1, in1); env.bind(*variables.in2, in2); env.bind(*variables.in3, in3); env.bind(*variables.out0, reference0); env.bind(*variables.out1, reference1); } // For each input tuple, compute output reference interval and compare // shader output to the reference. for (size_t valueNdx = 0; valueNdx < numValues; valueNdx++) { bool result = true; typename Traits<Out0>::IVal reference0; typename Traits<Out1>::IVal reference1; env.lookup(*variables.in0) = convert<In0>(fmt, round(fmt, inputs.in0[valueNdx])); env.lookup(*variables.in1) = convert<In1>(fmt, round(fmt, inputs.in1[valueNdx])); env.lookup(*variables.in2) = convert<In2>(fmt, round(fmt, inputs.in2[valueNdx])); env.lookup(*variables.in3) = convert<In3>(fmt, round(fmt, inputs.in3[valueNdx])); { EvalContext ctx (fmt, m_ctx.precision, env); stmt.execute(ctx); } switch (outCount) { case 2: reference1 = convert<Out1>(highpFmt, env.lookup(*variables.out1)); if (!m_status.check(contains(reference1, outputs.out1[valueNdx]), "Shader output 1 is outside acceptable range")) result = false; case 1: reference0 = convert<Out0>(highpFmt, env.lookup(*variables.out0)); if (!m_status.check(contains(reference0, outputs.out0[valueNdx]), "Shader output 0 is outside acceptable range")) result = false; default: break; } if (!result) ++numErrors; if ((!result && numErrors <= maxMsgs) || GLS_LOG_ALL_RESULTS) { MessageBuilder builder = log().message(); builder << (result ? "Passed" : "Failed") << " sample:\n"; if (inCount > 0) { builder << "\t" << variables.in0->getName() << " = " << valueToString(highpFmt, inputs.in0[valueNdx]) << "\n"; } if (inCount > 1) { builder << "\t" << variables.in1->getName() << " = " << valueToString(highpFmt, inputs.in1[valueNdx]) << "\n"; } if (inCount > 2) { builder << "\t" << variables.in2->getName() << " = " << valueToString(highpFmt, inputs.in2[valueNdx]) << "\n"; } if (inCount > 3) { builder << "\t" << variables.in3->getName() << " = " << valueToString(highpFmt, inputs.in3[valueNdx]) << "\n"; } if (outCount > 0) { builder << "\t" << variables.out0->getName() << " = " << valueToString(highpFmt, outputs.out0[valueNdx]) << "\n" << "\tExpected range: " << intervalToString<typename Out::Out0>(highpFmt, reference0) << "\n"; } if (outCount > 1) { builder << "\t" << variables.out1->getName() << " = " << valueToString(highpFmt, outputs.out1[valueNdx]) << "\n" << "\tExpected range: " << intervalToString<typename Out::Out1>(highpFmt, reference1) << "\n"; } builder << TestLog::EndMessage; } } if (numErrors > maxMsgs) { log() << TestLog::Message << "(Skipped " << (numErrors - maxMsgs) << " messages.)" << TestLog::EndMessage; } if (numErrors == 0) { log() << TestLog::Message << "All " << numValues << " inputs passed." << TestLog::EndMessage; } else { log() << TestLog::Message << numErrors << "/" << numValues << " inputs failed." << TestLog::EndMessage; } } template <typename T> struct InputLess { bool operator() (const T& val1, const T& val2) const { return val1 < val2; } }; template <typename T> bool inputLess (const T& val1, const T& val2) { return InputLess<T>()(val1, val2); } template <> struct InputLess<float> { bool operator() (const float& val1, const float& val2) const { if (deIsNaN(val1)) return false; if (deIsNaN(val2)) return true; return val1 < val2; } }; template <typename T, int Size> struct InputLess<Vector<T, Size> > { bool operator() (const Vector<T, Size>& vec1, const Vector<T, Size>& vec2) const { for (int ndx = 0; ndx < Size; ++ndx) { if (inputLess(vec1[ndx], vec2[ndx])) return true; if (inputLess(vec2[ndx], vec1[ndx])) return false; } return false; } }; template <typename T, int Rows, int Cols> struct InputLess<Matrix<T, Rows, Cols> > { bool operator() (const Matrix<T, Rows, Cols>& mat1, const Matrix<T, Rows, Cols>& mat2) const { for (int col = 0; col < Cols; ++col) { if (inputLess(mat1[col], mat2[col])) return true; if (inputLess(mat2[col], mat1[col])) return false; } return false; } }; template <typename In> struct InTuple : public Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3> { InTuple (const typename In::In0& in0, const typename In::In1& in1, const typename In::In2& in2, const typename In::In3& in3) : Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3> (in0, in1, in2, in3) {} }; template <typename In> struct InputLess<InTuple<In> > { bool operator() (const InTuple<In>& in1, const InTuple<In>& in2) const { if (inputLess(in1.a, in2.a)) return true; if (inputLess(in2.a, in1.a)) return false; if (inputLess(in1.b, in2.b)) return true; if (inputLess(in2.b, in1.b)) return false; if (inputLess(in1.c, in2.c)) return true; if (inputLess(in2.c, in1.c)) return false; if (inputLess(in1.d, in2.d)) return true; return false; }; }; template<typename In> Inputs<In> generateInputs (const Samplings<In>& samplings, const FloatFormat& floatFormat, Precision intPrecision, size_t numSamples, Random& rnd) { Inputs<In> ret; Inputs<In> fixedInputs; set<InTuple<In>, InputLess<InTuple<In> > > seenInputs; samplings.in0.genFixeds(floatFormat, fixedInputs.in0); samplings.in1.genFixeds(floatFormat, fixedInputs.in1); samplings.in2.genFixeds(floatFormat, fixedInputs.in2); samplings.in3.genFixeds(floatFormat, fixedInputs.in3); for (size_t ndx0 = 0; ndx0 < fixedInputs.in0.size(); ++ndx0) { for (size_t ndx1 = 0; ndx1 < fixedInputs.in1.size(); ++ndx1) { for (size_t ndx2 = 0; ndx2 < fixedInputs.in2.size(); ++ndx2) { for (size_t ndx3 = 0; ndx3 < fixedInputs.in3.size(); ++ndx3) { const InTuple<In> tuple (fixedInputs.in0[ndx0], fixedInputs.in1[ndx1], fixedInputs.in2[ndx2], fixedInputs.in3[ndx3]); seenInputs.insert(tuple); ret.in0.push_back(tuple.a); ret.in1.push_back(tuple.b); ret.in2.push_back(tuple.c); ret.in3.push_back(tuple.d); } } } } for (size_t ndx = 0; ndx < numSamples; ++ndx) { const typename In::In0 in0 = samplings.in0.genRandom(floatFormat, intPrecision, rnd); const typename In::In1 in1 = samplings.in1.genRandom(floatFormat, intPrecision, rnd); const typename In::In2 in2 = samplings.in2.genRandom(floatFormat, intPrecision, rnd); const typename In::In3 in3 = samplings.in3.genRandom(floatFormat, intPrecision, rnd); const InTuple<In> tuple (in0, in1, in2, in3); if (de::contains(seenInputs, tuple)) continue; seenInputs.insert(tuple); ret.in0.push_back(in0); ret.in1.push_back(in1); ret.in2.push_back(in2); ret.in3.push_back(in3); } return ret; } class FuncCaseBase : public PrecisionCase { public: IterateResult iterate (void); protected: FuncCaseBase (const Context& context, const string& name, const FuncBase& func) : PrecisionCase (context, name, func.getRequiredExtension()) {} }; IterateResult FuncCaseBase::iterate (void) { MovePtr<ContextInfo> info (ContextInfo::create(getRenderContext())); if (!m_extension.empty() && !info->isExtensionSupported(m_extension.c_str())) throw NotSupportedError("Unsupported extension: " + m_extension); runTest(); m_status.setTestContextResult(m_testCtx); return STOP; } template <typename Sig> class FuncCase : public FuncCaseBase { public: typedef Func<Sig> CaseFunc; typedef typename Sig::Ret Ret; typedef typename Sig::Arg0 Arg0; typedef typename Sig::Arg1 Arg1; typedef typename Sig::Arg2 Arg2; typedef typename Sig::Arg3 Arg3; typedef InTypes<Arg0, Arg1, Arg2, Arg3> In; typedef OutTypes<Ret> Out; FuncCase (const Context& context, const string& name, const CaseFunc& func) : FuncCaseBase (context, name, func) , m_func (func) {} protected: void runTest (void); virtual const Samplings<In>& getSamplings (void) { return instance<DefaultSamplings<In> >(); } private: const CaseFunc& m_func; }; template <typename Sig> void FuncCase<Sig>::runTest (void) { const Inputs<In> inputs (generateInputs(getSamplings(), m_ctx.floatFormat, m_ctx.precision, m_ctx.numRandoms, m_rnd)); Variables<In, Out> variables; variables.out0 = variable<Ret>("out0"); variables.out1 = variable<Void>("out1"); variables.in0 = variable<Arg0>("in0"); variables.in1 = variable<Arg1>("in1"); variables.in2 = variable<Arg2>("in2"); variables.in3 = variable<Arg3>("in3"); { ExprP<Ret> expr = applyVar(m_func, variables.in0, variables.in1, variables.in2, variables.in3); StatementP stmt = variableAssignment(variables.out0, expr); this->testStatement(variables, inputs, *stmt); } } template <typename Sig> class InOutFuncCase : public FuncCaseBase { public: typedef Func<Sig> CaseFunc; typedef typename Sig::Ret Ret; typedef typename Sig::Arg0 Arg0; typedef typename Sig::Arg1 Arg1; typedef typename Sig::Arg2 Arg2; typedef typename Sig::Arg3 Arg3; typedef InTypes<Arg0, Arg2, Arg3> In; typedef OutTypes<Ret, Arg1> Out; InOutFuncCase (const Context& context, const string& name, const CaseFunc& func) : FuncCaseBase (context, name, func) , m_func (func) {} protected: void runTest (void); virtual const Samplings<In>& getSamplings (void) { return instance<DefaultSamplings<In> >(); } private: const CaseFunc& m_func; }; template <typename Sig> void InOutFuncCase<Sig>::runTest (void) { const Inputs<In> inputs (generateInputs(getSamplings(), m_ctx.floatFormat, m_ctx.precision, m_ctx.numRandoms, m_rnd)); Variables<In, Out> variables; variables.out0 = variable<Ret>("out0"); variables.out1 = variable<Arg1>("out1"); variables.in0 = variable<Arg0>("in0"); variables.in1 = variable<Arg2>("in1"); variables.in2 = variable<Arg3>("in2"); variables.in3 = variable<Void>("in3"); { ExprP<Ret> expr = applyVar(m_func, variables.in0, variables.out1, variables.in1, variables.in2); StatementP stmt = variableAssignment(variables.out0, expr); this->testStatement(variables, inputs, *stmt); } } template <typename Sig> PrecisionCase* createFuncCase (const Context& context, const string& name, const Func<Sig>& func) { switch (func.getOutParamIndex()) { case -1: return new FuncCase<Sig>(context, name, func); case 1: return new InOutFuncCase<Sig>(context, name, func); default: DE_ASSERT(!"Impossible"); } return DE_NULL; } class CaseFactory { public: virtual ~CaseFactory (void) {} virtual MovePtr<TestNode> createCase (const Context& ctx) const = 0; virtual string getName (void) const = 0; virtual string getDesc (void) const = 0; }; class FuncCaseFactory : public CaseFactory { public: virtual const FuncBase& getFunc (void) const = 0; string getName (void) const { return de::toLower(getFunc().getName()); } string getDesc (void) const { return "Function '" + getFunc().getName() + "'"; } }; template <typename Sig> class GenFuncCaseFactory : public CaseFactory { public: GenFuncCaseFactory (const GenFuncs<Sig>& funcs, const string& name) : m_funcs (funcs) , m_name (de::toLower(name)) {} MovePtr<TestNode> createCase (const Context& ctx) const { TestCaseGroup* group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str()); group->addChild(createFuncCase(ctx, "scalar", m_funcs.func)); group->addChild(createFuncCase(ctx, "vec2", m_funcs.func2)); group->addChild(createFuncCase(ctx, "vec3", m_funcs.func3)); group->addChild(createFuncCase(ctx, "vec4", m_funcs.func4)); return MovePtr<TestNode>(group); } string getName (void) const { return m_name; } string getDesc (void) const { return "Function '" + m_funcs.func.getName() + "'"; } private: const GenFuncs<Sig> m_funcs; string m_name; }; template <template <int> class GenF> class TemplateFuncCaseFactory : public FuncCaseFactory { public: MovePtr<TestNode> createCase (const Context& ctx) const { TestCaseGroup* group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str()); group->addChild(createFuncCase(ctx, "scalar", instance<GenF<1> >())); group->addChild(createFuncCase(ctx, "vec2", instance<GenF<2> >())); group->addChild(createFuncCase(ctx, "vec3", instance<GenF<3> >())); group->addChild(createFuncCase(ctx, "vec4", instance<GenF<4> >())); return MovePtr<TestNode>(group); } const FuncBase& getFunc (void) const { return instance<GenF<1> >(); } }; template <template <int> class GenF> class SquareMatrixFuncCaseFactory : public FuncCaseFactory { public: MovePtr<TestNode> createCase (const Context& ctx) const { TestCaseGroup* group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str()); group->addChild(createFuncCase(ctx, "mat2", instance<GenF<2> >())); #if 0 // disabled until we get reasonable results group->addChild(createFuncCase(ctx, "mat3", instance<GenF<3> >())); group->addChild(createFuncCase(ctx, "mat4", instance<GenF<4> >())); #endif return MovePtr<TestNode>(group); } const FuncBase& getFunc (void) const { return instance<GenF<2> >(); } }; template <template <int, int> class GenF> class MatrixFuncCaseFactory : public FuncCaseFactory { public: MovePtr<TestNode> createCase (const Context& ctx) const { TestCaseGroup* const group = new TestCaseGroup(ctx.testContext, ctx.name.c_str(), ctx.name.c_str()); this->addCase<2, 2>(ctx, group); this->addCase<3, 2>(ctx, group); this->addCase<4, 2>(ctx, group); this->addCase<2, 3>(ctx, group); this->addCase<3, 3>(ctx, group); this->addCase<4, 3>(ctx, group); this->addCase<2, 4>(ctx, group); this->addCase<3, 4>(ctx, group); this->addCase<4, 4>(ctx, group); return MovePtr<TestNode>(group); } const FuncBase& getFunc (void) const { return instance<GenF<2,2> >(); } private: template <int Rows, int Cols> void addCase (const Context& ctx, TestCaseGroup* group) const { const char* const name = dataTypeNameOf<Matrix<float, Rows, Cols> >(); group->addChild(createFuncCase(ctx, name, instance<GenF<Rows, Cols> >())); } }; template <typename Sig> class SimpleFuncCaseFactory : public CaseFactory { public: SimpleFuncCaseFactory (const Func<Sig>& func) : m_func(func) {} MovePtr<TestNode> createCase (const Context& ctx) const { return MovePtr<TestNode>(createFuncCase(ctx, ctx.name.c_str(), m_func)); } string getName (void) const { return de::toLower(m_func.getName()); } string getDesc (void) const { return "Function '" + getName() + "'"; } private: const Func<Sig>& m_func; }; template <typename F> SharedPtr<SimpleFuncCaseFactory<typename F::Sig> > createSimpleFuncCaseFactory (void) { return SharedPtr<SimpleFuncCaseFactory<typename F::Sig> >( new SimpleFuncCaseFactory<typename F::Sig>(instance<F>())); } class BuiltinFuncs : public CaseFactories { public: const vector<const CaseFactory*> getFactories (void) const { vector<const CaseFactory*> ret; for (size_t ndx = 0; ndx < m_factories.size(); ++ndx) ret.push_back(m_factories[ndx].get()); return ret; } void addFactory (SharedPtr<const CaseFactory> fact) { m_factories.push_back(fact); } private: vector<SharedPtr<const CaseFactory> > m_factories; }; template <typename F> void addScalarFactory(BuiltinFuncs& funcs, string name = "") { if (name.empty()) name = instance<F>().getName(); funcs.addFactory(SharedPtr<const CaseFactory>(new GenFuncCaseFactory<typename F::Sig>( makeVectorizedFuncs<F>(), name))); } MovePtr<const CaseFactories> createES3BuiltinCases (void) { MovePtr<BuiltinFuncs> funcs (new BuiltinFuncs()); addScalarFactory<Add>(*funcs); addScalarFactory<Sub>(*funcs); addScalarFactory<Mul>(*funcs); addScalarFactory<Div>(*funcs); addScalarFactory<Radians>(*funcs); addScalarFactory<Degrees>(*funcs); addScalarFactory<Sin>(*funcs); addScalarFactory<Cos>(*funcs); addScalarFactory<Tan>(*funcs); addScalarFactory<ASin>(*funcs); addScalarFactory<ACos>(*funcs); addScalarFactory<ATan2>(*funcs, "atan2"); addScalarFactory<ATan>(*funcs); addScalarFactory<Sinh>(*funcs); addScalarFactory<Cosh>(*funcs); addScalarFactory<Tanh>(*funcs); addScalarFactory<ASinh>(*funcs); addScalarFactory<ACosh>(*funcs); addScalarFactory<ATanh>(*funcs); addScalarFactory<Pow>(*funcs); addScalarFactory<Exp>(*funcs); addScalarFactory<Log>(*funcs); addScalarFactory<Exp2>(*funcs); addScalarFactory<Log2>(*funcs); addScalarFactory<Sqrt>(*funcs); addScalarFactory<InverseSqrt>(*funcs); addScalarFactory<Abs>(*funcs); addScalarFactory<Sign>(*funcs); addScalarFactory<Floor>(*funcs); addScalarFactory<Trunc>(*funcs); addScalarFactory<Round>(*funcs); addScalarFactory<RoundEven>(*funcs); addScalarFactory<Ceil>(*funcs); addScalarFactory<Fract>(*funcs); addScalarFactory<Mod>(*funcs); funcs->addFactory(createSimpleFuncCaseFactory<Modf>()); addScalarFactory<Min>(*funcs); addScalarFactory<Max>(*funcs); addScalarFactory<Clamp>(*funcs); addScalarFactory<Mix>(*funcs); addScalarFactory<Step>(*funcs); addScalarFactory<SmoothStep>(*funcs); funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length>())); funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance>())); funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot>())); funcs->addFactory(createSimpleFuncCaseFactory<Cross>()); funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize>())); funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward>())); funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect>())); funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract>())); funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<MatrixCompMult>())); funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct>())); funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose>())); funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant>())); funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse>())); return MovePtr<const CaseFactories>(funcs.release()); } MovePtr<const CaseFactories> createES31BuiltinCases (void) { MovePtr<BuiltinFuncs> funcs (new BuiltinFuncs()); addScalarFactory<FrExp>(*funcs); addScalarFactory<LdExp>(*funcs); addScalarFactory<Fma>(*funcs); return MovePtr<const CaseFactories>(funcs.release()); } struct PrecisionTestContext { PrecisionTestContext (TestContext& testCtx_, RenderContext& renderCtx_, const FloatFormat& highp_, const FloatFormat& mediump_, const FloatFormat& lowp_, const vector<ShaderType>& shaderTypes_, int numRandoms_) : testCtx (testCtx_) , renderCtx (renderCtx_) , shaderTypes (shaderTypes_) , numRandoms (numRandoms_) { formats[glu::PRECISION_HIGHP] = &highp_; formats[glu::PRECISION_MEDIUMP] = &mediump_; formats[glu::PRECISION_LOWP] = &lowp_; } TestContext& testCtx; RenderContext& renderCtx; const FloatFormat* formats[glu::PRECISION_LAST]; vector<ShaderType> shaderTypes; int numRandoms; }; TestCaseGroup* createFuncGroup (const PrecisionTestContext& ctx, const CaseFactory& factory) { TestCaseGroup* const group = new TestCaseGroup(ctx.testCtx, factory.getName().c_str(), factory.getDesc().c_str()); for (int precNdx = 0; precNdx < glu::PRECISION_LAST; ++precNdx) { const Precision precision = Precision(precNdx); const string precName (glu::getPrecisionName(precision)); const FloatFormat& fmt = *de::getSizedArrayElement(ctx.formats, precNdx); const FloatFormat& highpFmt = *de::getSizedArrayElement(ctx.formats, glu::PRECISION_HIGHP); for (size_t shaderNdx = 0; shaderNdx < ctx.shaderTypes.size(); ++shaderNdx) { const ShaderType shaderType = ctx.shaderTypes[shaderNdx]; const string shaderName (glu::getShaderTypeName(shaderType)); const string name = precName + "_" + shaderName; const Context caseCtx (name, ctx.testCtx, ctx.renderCtx, fmt, highpFmt, precision, shaderType, ctx.numRandoms); group->addChild(factory.createCase(caseCtx).release()); } } return group; } void addBuiltinPrecisionTests (TestContext& testCtx, RenderContext& renderCtx, const CaseFactories& cases, const vector<ShaderType>& shaderTypes, TestCaseGroup& dstGroup) { const FloatFormat highp (-126, 127, 23, true, tcu::MAYBE, // subnormals tcu::YES, // infinities tcu::MAYBE); // NaN // \todo [2014-04-01 lauri] Check these once Khronos bug 11840 is resolved. const FloatFormat mediump (-13, 13, 9, false); // A fixed-point format is just a floating point format with a fixed // exponent and support for subnormals. const FloatFormat lowp (0, 0, 7, false, tcu::YES); const PrecisionTestContext ctx (testCtx, renderCtx, highp, mediump, lowp, shaderTypes, 16384); for (size_t ndx = 0; ndx < cases.getFactories().size(); ++ndx) dstGroup.addChild(createFuncGroup(ctx, *cases.getFactories()[ndx])); } } // BuiltinPrecisionTests } // gls } // deqp