/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL (ES) Module * ----------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Compiler test case. *//*--------------------------------------------------------------------*/ #include "glsShaderLibraryCase.hpp" #include "tcuTestLog.hpp" #include "tcuRenderTarget.hpp" #include "tcuStringTemplate.hpp" #include "gluShaderProgram.hpp" #include "gluPixelTransfer.hpp" #include "gluDrawUtil.hpp" #include "gluContextInfo.hpp" #include "gluStrUtil.hpp" #include "glwFunctions.hpp" #include "glwEnums.hpp" #include "deRandom.hpp" #include "deInt32.h" #include "deMath.h" #include "deString.h" #include "deStringUtil.hpp" #include "deSharedPtr.hpp" #include <map> #include <vector> #include <string> #include <sstream> using namespace std; using namespace tcu; using namespace glu; namespace deqp { namespace gls { namespace sl { enum { VIEWPORT_WIDTH = 128, VIEWPORT_HEIGHT = 128 }; static inline bool usesShaderInoutQualifiers (glu::GLSLVersion version) { switch (version) { case glu::GLSL_VERSION_100_ES: case glu::GLSL_VERSION_130: case glu::GLSL_VERSION_140: case glu::GLSL_VERSION_150: return false; default: return true; } } static inline bool supportsFragmentHighp (glu::GLSLVersion version) { return version != glu::GLSL_VERSION_100_ES; } ShaderCase::ValueBlock::ValueBlock (void) : arrayLength(0) { } ShaderCase::CaseRequirement::CaseRequirement (void) : m_type (REQUIREMENTTYPE_LAST) , m_supportedExtensionNdx (-1) , m_effectiveShaderStageFlags (-1) , m_enumName (-1) , m_referenceValue (-1) { } ShaderCase::CaseRequirement ShaderCase::CaseRequirement::createAnyExtensionRequirement (const std::vector<std::string>& requirements, deUint32 effectiveShaderStageFlags) { CaseRequirement retVal; retVal.m_type = REQUIREMENTTYPE_EXTENSION; retVal.m_extensions = requirements; retVal.m_effectiveShaderStageFlags = effectiveShaderStageFlags; return retVal; } ShaderCase::CaseRequirement ShaderCase::CaseRequirement::createLimitRequirement (deUint32 enumName, int ref) { CaseRequirement retVal; retVal.m_type = REQUIREMENTTYPE_IMPLEMENTATION_LIMIT; retVal.m_enumName = enumName; retVal.m_referenceValue = ref; return retVal; } void ShaderCase::CaseRequirement::checkRequirements (glu::RenderContext& renderCtx, const glu::ContextInfo& contextInfo) { DE_UNREF(renderCtx); switch (m_type) { case REQUIREMENTTYPE_EXTENSION: { for (int ndx = 0; ndx < (int)m_extensions.size(); ++ndx) { if (contextInfo.isExtensionSupported(m_extensions[ndx].c_str())) { m_supportedExtensionNdx = ndx; return; } } // no extension(s). Make a nice output { std::ostringstream extensionList; for (int ndx = 0; ndx < (int)m_extensions.size(); ++ndx) { if (!extensionList.str().empty()) extensionList << ", "; extensionList << m_extensions[ndx]; } if (m_extensions.size() == 1) throw tcu::NotSupportedError("Test requires extension " + extensionList.str()); else throw tcu::NotSupportedError("Test requires any extension of " + extensionList.str()); } // cannot be reached } case REQUIREMENTTYPE_IMPLEMENTATION_LIMIT: { const glw::Functions& gl = renderCtx.getFunctions(); glw::GLint value = 0; glw::GLenum error; gl.getIntegerv(m_enumName, &value); error = gl.getError(); if (error != GL_NO_ERROR) throw tcu::TestError("Query for " + de::toString(glu::getGettableStateStr(m_enumName)) + " generated " + de::toString(glu::getErrorStr(error))); if (!(value > m_referenceValue)) throw tcu::NotSupportedError("Test requires " + de::toString(glu::getGettableStateStr(m_enumName)) + " (" + de::toString(value) + ") > " + de::toString(m_referenceValue)); return; } default: DE_ASSERT(false); } } ShaderCase::ShaderCaseSpecification::ShaderCaseSpecification (void) : expectResult (EXPECT_LAST) , targetVersion (glu::GLSL_VERSION_LAST) , caseType (CASETYPE_COMPLETE) { } ShaderCase::ShaderCaseSpecification ShaderCase::ShaderCaseSpecification::generateSharedSourceVertexCase (ExpectResult expectResult_, glu::GLSLVersion targetVersion_, const std::vector<ValueBlock>& values, const std::string& sharedSource) { ShaderCaseSpecification retVal; retVal.expectResult = expectResult_; retVal.targetVersion = targetVersion_; retVal.caseType = CASETYPE_VERTEX_ONLY; retVal.valueBlocks = values; retVal.vertexSources.push_back(sharedSource); return retVal; } ShaderCase::ShaderCaseSpecification ShaderCase::ShaderCaseSpecification::generateSharedSourceFragmentCase (ExpectResult expectResult_, glu::GLSLVersion targetVersion_, const std::vector<ValueBlock>& values, const std::string& sharedSource) { ShaderCaseSpecification retVal; retVal.expectResult = expectResult_; retVal.targetVersion = targetVersion_; retVal.caseType = CASETYPE_FRAGMENT_ONLY; retVal.valueBlocks = values; retVal.fragmentSources.push_back(sharedSource); return retVal; } class BeforeDrawValidator : public glu::DrawUtilCallback { public: enum TargetType { TARGETTYPE_PROGRAM = 0, TARGETTYPE_PIPELINE, TARGETTYPE_LAST }; BeforeDrawValidator (const glw::Functions& gl, glw::GLuint target, TargetType targetType); void beforeDrawCall (void); const std::string& getInfoLog (void) const; glw::GLint getValidateStatus (void) const; private: const glw::Functions& m_gl; const glw::GLuint m_target; const TargetType m_targetType; glw::GLint m_validateStatus; std::string m_logMessage; }; BeforeDrawValidator::BeforeDrawValidator (const glw::Functions& gl, glw::GLuint target, TargetType targetType) : m_gl (gl) , m_target (target) , m_targetType (targetType) , m_validateStatus (-1) { DE_ASSERT(targetType < TARGETTYPE_LAST); } void BeforeDrawValidator::beforeDrawCall (void) { glw::GLint bytesWritten = 0; glw::GLint infoLogLength; std::vector<glw::GLchar> logBuffer; int stringLength; // validate if (m_targetType == TARGETTYPE_PROGRAM) m_gl.validateProgram(m_target); else if (m_targetType == TARGETTYPE_PIPELINE) m_gl.validateProgramPipeline(m_target); else DE_ASSERT(false); GLU_EXPECT_NO_ERROR(m_gl.getError(), "validate"); // check status m_validateStatus = -1; if (m_targetType == TARGETTYPE_PROGRAM) m_gl.getProgramiv(m_target, GL_VALIDATE_STATUS, &m_validateStatus); else if (m_targetType == TARGETTYPE_PIPELINE) m_gl.getProgramPipelineiv(m_target, GL_VALIDATE_STATUS, &m_validateStatus); else DE_ASSERT(false); GLU_EXPECT_NO_ERROR(m_gl.getError(), "get validate status"); TCU_CHECK(m_validateStatus == GL_TRUE || m_validateStatus == GL_FALSE); // read log infoLogLength = 0; if (m_targetType == TARGETTYPE_PROGRAM) m_gl.getProgramiv(m_target, GL_INFO_LOG_LENGTH, &infoLogLength); else if (m_targetType == TARGETTYPE_PIPELINE) m_gl.getProgramPipelineiv(m_target, GL_INFO_LOG_LENGTH, &infoLogLength); else DE_ASSERT(false); GLU_EXPECT_NO_ERROR(m_gl.getError(), "get info log length"); if (infoLogLength <= 0) { m_logMessage.clear(); return; } logBuffer.resize(infoLogLength + 2, '0'); // +1 for zero terminator (infoLogLength should include it, but better play it safe), +1 to make sure buffer is always larger if (m_targetType == TARGETTYPE_PROGRAM) m_gl.getProgramInfoLog(m_target, infoLogLength + 1, &bytesWritten, &logBuffer[0]); else if (m_targetType == TARGETTYPE_PIPELINE) m_gl.getProgramPipelineInfoLog(m_target, infoLogLength + 1, &bytesWritten, &logBuffer[0]); else DE_ASSERT(false); // just ignore bytesWritten to be safe, find the null terminator stringLength = (int)(std::find(logBuffer.begin(), logBuffer.end(), '0') - logBuffer.begin()); m_logMessage.assign(&logBuffer[0], stringLength); } const std::string& BeforeDrawValidator::getInfoLog (void) const { return m_logMessage; } glw::GLint BeforeDrawValidator::getValidateStatus (void) const { return m_validateStatus; } // ShaderCase. ShaderCase::ShaderCase (tcu::TestContext& testCtx, RenderContext& renderCtx, const glu::ContextInfo& contextInfo, const char* name, const char* description, const ShaderCaseSpecification& specification) : tcu::TestCase (testCtx, name, description) , m_renderCtx (renderCtx) , m_contextInfo (contextInfo) , m_caseType (specification.caseType) , m_expectResult (specification.expectResult) , m_targetVersion (specification.targetVersion) , m_separatePrograms (false) , m_valueBlocks (specification.valueBlocks) { if (m_caseType == CASETYPE_VERTEX_ONLY) { // case generated from "both" target, vertex case DE_ASSERT(specification.vertexSources.size() == 1); DE_ASSERT(specification.fragmentSources.empty()); DE_ASSERT(specification.tessCtrlSources.empty()); DE_ASSERT(specification.tessEvalSources.empty()); DE_ASSERT(specification.geometrySources.empty()); } else if (m_caseType == CASETYPE_FRAGMENT_ONLY) { // case generated from "both" target, fragment case DE_ASSERT(specification.vertexSources.empty()); DE_ASSERT(specification.fragmentSources.size() == 1); DE_ASSERT(specification.tessCtrlSources.empty()); DE_ASSERT(specification.tessEvalSources.empty()); DE_ASSERT(specification.geometrySources.empty()); } // single program object { ProgramObject program; program.spec.requirements = specification.requirements; program.spec.vertexSources = specification.vertexSources; program.spec.fragmentSources = specification.fragmentSources; program.spec.tessCtrlSources = specification.tessCtrlSources; program.spec.tessEvalSources = specification.tessEvalSources; program.spec.geometrySources = specification.geometrySources; m_programs.push_back(program); } } ShaderCase::ShaderCase (tcu::TestContext& testCtx, RenderContext& renderCtx, const glu::ContextInfo& contextInfo, const char* name, const char* description, const PipelineCaseSpecification& specification) : tcu::TestCase (testCtx, name, description) , m_renderCtx (renderCtx) , m_contextInfo (contextInfo) , m_caseType (specification.caseType) , m_expectResult (specification.expectResult) , m_targetVersion (specification.targetVersion) , m_separatePrograms (true) , m_valueBlocks (specification.valueBlocks) { deUint32 totalActiveMask = 0; DE_ASSERT(m_caseType == CASETYPE_COMPLETE); // validate for (int pipelineProgramNdx = 0; pipelineProgramNdx < (int)specification.programs.size(); ++pipelineProgramNdx) { // program with an active stage must contain executable code for that stage DE_ASSERT(((specification.programs[pipelineProgramNdx].activeStageBits & (1 << glu::SHADERTYPE_VERTEX)) == 0) || !specification.programs[pipelineProgramNdx].vertexSources.empty()); DE_ASSERT(((specification.programs[pipelineProgramNdx].activeStageBits & (1 << glu::SHADERTYPE_FRAGMENT)) == 0) || !specification.programs[pipelineProgramNdx].fragmentSources.empty()); DE_ASSERT(((specification.programs[pipelineProgramNdx].activeStageBits & (1 << glu::SHADERTYPE_TESSELLATION_CONTROL)) == 0) || !specification.programs[pipelineProgramNdx].tessCtrlSources.empty()); DE_ASSERT(((specification.programs[pipelineProgramNdx].activeStageBits & (1 << glu::SHADERTYPE_TESSELLATION_EVALUATION)) == 0) || !specification.programs[pipelineProgramNdx].tessEvalSources.empty()); DE_ASSERT(((specification.programs[pipelineProgramNdx].activeStageBits & (1 << glu::SHADERTYPE_GEOMETRY)) == 0) || !specification.programs[pipelineProgramNdx].geometrySources.empty()); // no two programs with with the same stage active DE_ASSERT((totalActiveMask & specification.programs[pipelineProgramNdx].activeStageBits) == 0); totalActiveMask |= specification.programs[pipelineProgramNdx].activeStageBits; } // create ProgramObjects for (int pipelineProgramNdx = 0; pipelineProgramNdx < (int)specification.programs.size(); ++pipelineProgramNdx) { ProgramObject program; program.spec = specification.programs[pipelineProgramNdx]; m_programs.push_back(program); } } ShaderCase::~ShaderCase (void) { } void ShaderCase::init (void) { // If no value blocks given, use an empty one. if (m_valueBlocks.empty()) m_valueBlocks.push_back(ValueBlock()); // Use first value block to specialize shaders. const ValueBlock& valueBlock = m_valueBlocks[0]; // \todo [2010-04-01 petri] Check that all value blocks have matching values. // prepare programs for (int programNdx = 0; programNdx < (int)m_programs.size(); ++programNdx) { // Check requirements for (int ndx = 0; ndx < (int)m_programs[programNdx].spec.requirements.size(); ++ndx) m_programs[programNdx].spec.requirements[ndx].checkRequirements(m_renderCtx, m_contextInfo); // Generate specialized shader sources. if (m_caseType == CASETYPE_COMPLETE) { // all shaders specified separately specializeVertexShaders (m_programs[programNdx].programSources, m_programs[programNdx].spec.vertexSources, valueBlock, m_programs[programNdx].spec.requirements); specializeFragmentShaders (m_programs[programNdx].programSources, m_programs[programNdx].spec.fragmentSources, valueBlock, m_programs[programNdx].spec.requirements); specializeGeometryShaders (m_programs[programNdx].programSources, m_programs[programNdx].spec.geometrySources, valueBlock, m_programs[programNdx].spec.requirements); specializeTessControlShaders(m_programs[programNdx].programSources, m_programs[programNdx].spec.tessCtrlSources, valueBlock, m_programs[programNdx].spec.requirements); specializeTessEvalShaders (m_programs[programNdx].programSources, m_programs[programNdx].spec.tessEvalSources, valueBlock, m_programs[programNdx].spec.requirements); } else if (m_caseType == CASETYPE_VERTEX_ONLY) { DE_ASSERT(m_programs.size() == 1); DE_ASSERT(!m_separatePrograms); // case generated from "both" target, vertex case m_programs[0].programSources << glu::VertexSource(specializeVertexShader(m_programs[0].spec.vertexSources[0].c_str(), valueBlock)); m_programs[0].programSources << glu::FragmentSource(genFragmentShader(valueBlock)); } else if (m_caseType == CASETYPE_FRAGMENT_ONLY) { DE_ASSERT(m_programs.size() == 1); DE_ASSERT(!m_separatePrograms); // case generated from "both" target, fragment case m_programs[0].programSources << glu::VertexSource(genVertexShader(valueBlock)); m_programs[0].programSources << glu::FragmentSource(specializeFragmentShader(m_programs[0].spec.fragmentSources[0].c_str(), valueBlock)); } m_programs[programNdx].programSources << glu::ProgramSeparable(m_separatePrograms); } // log the expected result switch (m_expectResult) { case EXPECT_PASS: // Don't write anything break; case EXPECT_COMPILE_FAIL: m_testCtx.getLog() << tcu::TestLog::Message << "Expecting shader compilation to fail." << tcu::TestLog::EndMessage; break; case EXPECT_LINK_FAIL: m_testCtx.getLog() << tcu::TestLog::Message << "Expecting program linking to fail." << tcu::TestLog::EndMessage; break; case EXPECT_COMPILE_LINK_FAIL: m_testCtx.getLog() << tcu::TestLog::Message << "Expecting either shader compilation or program linking to fail." << tcu::TestLog::EndMessage; break; case EXPECT_VALIDATION_FAIL: m_testCtx.getLog() << tcu::TestLog::Message << "Expecting program validation to fail." << tcu::TestLog::EndMessage; break; default: DE_ASSERT(false); break; } } static void setUniformValue (const glw::Functions& gl, const std::vector<deUint32>& pipelinePrograms, const std::string& name, const ShaderCase::Value& val, int arrayNdx, tcu::TestLog& log) { bool foundAnyMatch = false; for (int programNdx = 0; programNdx < (int)pipelinePrograms.size(); ++programNdx) { const int scalarSize = getDataTypeScalarSize(val.dataType); const int loc = gl.getUniformLocation(pipelinePrograms[programNdx], name.c_str()); const int elemNdx = (val.arrayLength == 1) ? (0) : (arrayNdx * scalarSize); if (loc == -1) continue; foundAnyMatch = true; DE_STATIC_ASSERT(sizeof(ShaderCase::Value::Element) == sizeof(glw::GLfloat)); DE_STATIC_ASSERT(sizeof(ShaderCase::Value::Element) == sizeof(glw::GLint)); gl.useProgram(pipelinePrograms[programNdx]); switch (val.dataType) { case TYPE_FLOAT: gl.uniform1fv(loc, 1, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_VEC2: gl.uniform2fv(loc, 1, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_VEC3: gl.uniform3fv(loc, 1, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_VEC4: gl.uniform4fv(loc, 1, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_MAT2: gl.uniformMatrix2fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_MAT3: gl.uniformMatrix3fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_MAT4: gl.uniformMatrix4fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32); break; case TYPE_INT: gl.uniform1iv(loc, 1, &val.elements[elemNdx].int32); break; case TYPE_INT_VEC2: gl.uniform2iv(loc, 1, &val.elements[elemNdx].int32); break; case TYPE_INT_VEC3: gl.uniform3iv(loc, 1, &val.elements[elemNdx].int32); break; case TYPE_INT_VEC4: gl.uniform4iv(loc, 1, &val.elements[elemNdx].int32); break; case TYPE_BOOL: gl.uniform1iv(loc, 1, &val.elements[elemNdx].int32); break; case TYPE_BOOL_VEC2: gl.uniform2iv(loc, 1, &val.elements[elemNdx].int32); break; case TYPE_BOOL_VEC3: gl.uniform3iv(loc, 1, &val.elements[elemNdx].int32); break; case TYPE_BOOL_VEC4: gl.uniform4iv(loc, 1, &val.elements[elemNdx].int32); break; case TYPE_UINT: gl.uniform1uiv(loc, 1, (const deUint32*)&val.elements[elemNdx].int32); break; case TYPE_UINT_VEC2: gl.uniform2uiv(loc, 1, (const deUint32*)&val.elements[elemNdx].int32); break; case TYPE_UINT_VEC3: gl.uniform3uiv(loc, 1, (const deUint32*)&val.elements[elemNdx].int32); break; case TYPE_UINT_VEC4: gl.uniform4uiv(loc, 1, (const deUint32*)&val.elements[elemNdx].int32); break; case TYPE_FLOAT_MAT2X3: gl.uniformMatrix2x3fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_MAT2X4: gl.uniformMatrix2x4fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_MAT3X2: gl.uniformMatrix3x2fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_MAT3X4: gl.uniformMatrix3x4fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_MAT4X2: gl.uniformMatrix4x2fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32); break; case TYPE_FLOAT_MAT4X3: gl.uniformMatrix4x3fv(loc, 1, GL_FALSE, &val.elements[elemNdx].float32); break; case TYPE_SAMPLER_2D: case TYPE_SAMPLER_CUBE: DE_ASSERT(!"implement!"); break; default: DE_ASSERT(false); } } if (!foundAnyMatch) log << tcu::TestLog::Message << "WARNING // Uniform \"" << name << "\" location is not valid, location = -1. Cannot set value to the uniform." << tcu::TestLog::EndMessage; } bool ShaderCase::isTessellationPresent (void) const { if (m_separatePrograms) { const deUint32 tessellationBits = (1 << glu::SHADERTYPE_TESSELLATION_CONTROL) | (1 << glu::SHADERTYPE_TESSELLATION_EVALUATION); for (int programNdx = 0; programNdx < (int)m_programs.size(); ++programNdx) if (m_programs[programNdx].spec.activeStageBits & tessellationBits) return true; return false; } else return !m_programs[0].programSources.sources[glu::SHADERTYPE_TESSELLATION_CONTROL].empty() || !m_programs[0].programSources.sources[glu::SHADERTYPE_TESSELLATION_EVALUATION].empty(); } bool ShaderCase::checkPixels (Surface& surface, int minX, int maxX, int minY, int maxY) { TestLog& log = m_testCtx.getLog(); bool allWhite = true; bool allBlack = true; bool anyUnexpected = false; DE_ASSERT((maxX > minX) && (maxY > minY)); for (int y = minY; y <= maxY; y++) { for (int x = minX; x <= maxX; x++) { RGBA pixel = surface.getPixel(x, y); // Note: we really do not want to involve alpha in the check comparison // \todo [2010-09-22 kalle] Do we know that alpha would be one? If yes, could use color constants white and black. bool isWhite = (pixel.getRed() == 255) && (pixel.getGreen() == 255) && (pixel.getBlue() == 255); bool isBlack = (pixel.getRed() == 0) && (pixel.getGreen() == 0) && (pixel.getBlue() == 0); allWhite = allWhite && isWhite; allBlack = allBlack && isBlack; anyUnexpected = anyUnexpected || (!isWhite && !isBlack); } } if (!allWhite) { if (anyUnexpected) log << TestLog::Message << "WARNING: expecting all rendered pixels to be white or black, but got other colors as well!" << TestLog::EndMessage; else if (!allBlack) log << TestLog::Message << "WARNING: got inconsistent results over the image, when all pixels should be the same color!" << TestLog::EndMessage; return false; } return true; } bool ShaderCase::execute (void) { const float quadSize = 1.0f; static const float s_positions[4*4] = { -quadSize, -quadSize, 0.0f, 1.0f, -quadSize, +quadSize, 0.0f, 1.0f, +quadSize, -quadSize, 0.0f, 1.0f, +quadSize, +quadSize, 0.0f, 1.0f }; static const deUint16 s_indices[2*3] = { 0, 1, 2, 1, 3, 2 }; TestLog& log = m_testCtx.getLog(); const glw::Functions& gl = m_renderCtx.getFunctions(); // Compute viewport. const tcu::RenderTarget& renderTarget = m_renderCtx.getRenderTarget(); de::Random rnd (deStringHash(getName())); const int width = deMin32(renderTarget.getWidth(), VIEWPORT_WIDTH); const int height = deMin32(renderTarget.getHeight(), VIEWPORT_HEIGHT); const int viewportX = rnd.getInt(0, renderTarget.getWidth() - width); const int viewportY = rnd.getInt(0, renderTarget.getHeight() - height); const int numVerticesPerDraw = 4; const bool tessellationPresent = isTessellationPresent(); bool allCompilesOk = true; bool allLinksOk = true; const char* failReason = DE_NULL; deUint32 vertexProgramID = -1; std::vector<deUint32> pipelineProgramIDs; std::vector<de::SharedPtr<glu::ShaderProgram> > programs; de::SharedPtr<glu::ProgramPipeline> programPipeline; GLU_EXPECT_NO_ERROR(gl.getError(), "ShaderCase::execute(): start"); if (!m_separatePrograms) { de::SharedPtr<glu::ShaderProgram> program (new glu::ShaderProgram(m_renderCtx, m_programs[0].programSources)); vertexProgramID = program->getProgram(); pipelineProgramIDs.push_back(program->getProgram()); programs.push_back(program); // Check that compile/link results are what we expect. DE_STATIC_ASSERT(glu::SHADERTYPE_VERTEX == 0); for (int stage = glu::SHADERTYPE_VERTEX; stage < glu::SHADERTYPE_LAST; ++stage) if (program->hasShader((glu::ShaderType)stage) && !program->getShaderInfo((glu::ShaderType)stage).compileOk) allCompilesOk = false; if (!program->getProgramInfo().linkOk) allLinksOk = false; log << *program; } else { // Separate programs for (int programNdx = 0; programNdx < (int)m_programs.size(); ++programNdx) { de::SharedPtr<glu::ShaderProgram> program(new glu::ShaderProgram(m_renderCtx, m_programs[programNdx].programSources)); if (m_programs[programNdx].spec.activeStageBits & (1 << glu::SHADERTYPE_VERTEX)) vertexProgramID = program->getProgram(); pipelineProgramIDs.push_back(program->getProgram()); programs.push_back(program); // Check that compile/link results are what we expect. DE_STATIC_ASSERT(glu::SHADERTYPE_VERTEX == 0); for (int stage = glu::SHADERTYPE_VERTEX; stage < glu::SHADERTYPE_LAST; ++stage) if (program->hasShader((glu::ShaderType)stage) && !program->getShaderInfo((glu::ShaderType)stage).compileOk) allCompilesOk = false; if (!program->getProgramInfo().linkOk) allLinksOk = false; // Log program and active stages { const tcu::ScopedLogSection section (log, "Program", "Program " + de::toString(programNdx+1)); tcu::MessageBuilder builder (&log); bool firstStage = true; builder << "Pipeline uses stages: "; for (int stage = glu::SHADERTYPE_VERTEX; stage < glu::SHADERTYPE_LAST; ++stage) { if (m_programs[programNdx].spec.activeStageBits & (1 << stage)) { if (!firstStage) builder << ", "; builder << glu::getShaderTypeName((glu::ShaderType)stage); firstStage = true; } } builder << tcu::TestLog::EndMessage; log << *program; } } } switch (m_expectResult) { case EXPECT_PASS: case EXPECT_VALIDATION_FAIL: if (!allCompilesOk) failReason = "expected shaders to compile and link properly, but failed to compile."; else if (!allLinksOk) failReason = "expected shaders to compile and link properly, but failed to link."; break; case EXPECT_COMPILE_FAIL: if (allCompilesOk && !allLinksOk) failReason = "expected compilation to fail, but shaders compiled and link failed."; else if (allCompilesOk) failReason = "expected compilation to fail, but shaders compiled correctly."; break; case EXPECT_LINK_FAIL: if (!allCompilesOk) failReason = "expected linking to fail, but unable to compile."; else if (allLinksOk) failReason = "expected linking to fail, but passed."; break; case EXPECT_COMPILE_LINK_FAIL: if (allCompilesOk && allLinksOk) failReason = "expected compile or link to fail, but passed."; break; default: DE_ASSERT(false); return false; } if (failReason != DE_NULL) { // \todo [2010-06-07 petri] These should be handled in the test case? log << TestLog::Message << "ERROR: " << failReason << TestLog::EndMessage; // If implementation parses shader at link time, report it as quality warning. if (m_expectResult == EXPECT_COMPILE_FAIL && allCompilesOk && !allLinksOk) m_testCtx.setTestResult(QP_TEST_RESULT_QUALITY_WARNING, failReason); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, failReason); return false; } // Return if compile/link expected to fail. if (m_expectResult == EXPECT_COMPILE_FAIL || m_expectResult == EXPECT_COMPILE_LINK_FAIL || m_expectResult == EXPECT_LINK_FAIL) return (failReason == DE_NULL); // Setup viewport. gl.viewport(viewportX, viewportY, width, height); if (m_separatePrograms) { programPipeline = de::SharedPtr<glu::ProgramPipeline>(new glu::ProgramPipeline(m_renderCtx)); // Setup pipeline gl.bindProgramPipeline(programPipeline->getPipeline()); for (int programNdx = 0; programNdx < (int)m_programs.size(); ++programNdx) { deUint32 shaderFlags = 0; for (int stage = glu::SHADERTYPE_VERTEX; stage < glu::SHADERTYPE_LAST; ++stage) if (m_programs[programNdx].spec.activeStageBits & (1 << stage)) shaderFlags |= glu::getGLShaderTypeBit((glu::ShaderType)stage); programPipeline->useProgramStages(shaderFlags, pipelineProgramIDs[programNdx]); } programPipeline->activeShaderProgram(vertexProgramID); GLU_EXPECT_NO_ERROR(gl.getError(), "setup pipeline"); } else { // Start using program gl.useProgram(vertexProgramID); GLU_EXPECT_NO_ERROR(gl.getError(), "glUseProgram()"); } // Fetch location for positions positions. int positionLoc = gl.getAttribLocation(vertexProgramID, "dEQP_Position"); if (positionLoc == -1) { string errStr = string("no location found for attribute 'dEQP_Position'"); TCU_FAIL(errStr.c_str()); } // Iterate all value blocks. for (int blockNdx = 0; blockNdx < (int)m_valueBlocks.size(); blockNdx++) { const ValueBlock& valueBlock = m_valueBlocks[blockNdx]; // always render at least one pass even if there is no input/output data const int numRenderPasses = (valueBlock.arrayLength == 0) ? (1) : (valueBlock.arrayLength); // Iterate all array sub-cases. for (int arrayNdx = 0; arrayNdx < numRenderPasses; arrayNdx++) { int numValues = (int)valueBlock.values.size(); vector<VertexArrayBinding> vertexArrays; int attribValueNdx = 0; vector<vector<float> > attribValues (numValues); glw::GLenum postDrawError; BeforeDrawValidator beforeDrawValidator (gl, (m_separatePrograms) ? (programPipeline->getPipeline()) : (vertexProgramID), (m_separatePrograms) ? (BeforeDrawValidator::TARGETTYPE_PIPELINE) : (BeforeDrawValidator::TARGETTYPE_PROGRAM)); vertexArrays.push_back(va::Float(positionLoc, 4, numVerticesPerDraw, 0, &s_positions[0])); // Collect VA pointer for inputs for (int valNdx = 0; valNdx < numValues; valNdx++) { const ShaderCase::Value& val = valueBlock.values[valNdx]; const char* const valueName = val.valueName.c_str(); const DataType dataType = val.dataType; const int scalarSize = getDataTypeScalarSize(val.dataType); if (val.storageType == ShaderCase::Value::STORAGE_INPUT) { // Replicate values four times. std::vector<float>& scalars = attribValues[attribValueNdx++]; scalars.resize(numVerticesPerDraw * scalarSize); if (isDataTypeFloatOrVec(dataType) || isDataTypeMatrix(dataType)) { for (int repNdx = 0; repNdx < numVerticesPerDraw; repNdx++) for (int ndx = 0; ndx < scalarSize; ndx++) scalars[repNdx*scalarSize + ndx] = val.elements[arrayNdx*scalarSize + ndx].float32; } else { // convert to floats. for (int repNdx = 0; repNdx < numVerticesPerDraw; repNdx++) { for (int ndx = 0; ndx < scalarSize; ndx++) { float v = (float)val.elements[arrayNdx*scalarSize + ndx].int32; DE_ASSERT(val.elements[arrayNdx*scalarSize + ndx].int32 == (int)v); scalars[repNdx*scalarSize + ndx] = v; } } } // Attribute name prefix. string attribPrefix = ""; // \todo [2010-05-27 petri] Should latter condition only apply for vertex cases (or actually non-fragment cases)? if ((m_caseType == CASETYPE_FRAGMENT_ONLY) || (getDataTypeScalarType(dataType) != TYPE_FLOAT)) attribPrefix = "a_"; // Input always given as attribute. string attribName = attribPrefix + valueName; int attribLoc = gl.getAttribLocation(vertexProgramID, attribName.c_str()); if (attribLoc == -1) { log << TestLog::Message << "Warning: no location found for attribute '" << attribName << "'" << TestLog::EndMessage; continue; } if (isDataTypeMatrix(dataType)) { int numCols = getDataTypeMatrixNumColumns(dataType); int numRows = getDataTypeMatrixNumRows(dataType); DE_ASSERT(scalarSize == numCols*numRows); for (int i = 0; i < numCols; i++) vertexArrays.push_back(va::Float(attribLoc + i, numRows, numVerticesPerDraw, scalarSize*sizeof(float), &scalars[i * numRows])); } else { DE_ASSERT(isDataTypeFloatOrVec(dataType) || isDataTypeIntOrIVec(dataType) || isDataTypeUintOrUVec(dataType) || isDataTypeBoolOrBVec(dataType)); vertexArrays.push_back(va::Float(attribLoc, scalarSize, numVerticesPerDraw, 0, &scalars[0])); } GLU_EXPECT_NO_ERROR(gl.getError(), "set vertex attrib array"); } } GLU_EXPECT_NO_ERROR(gl.getError(), "before set uniforms"); // set uniform values for outputs (refs). for (int valNdx = 0; valNdx < numValues; valNdx++) { const ShaderCase::Value& val = valueBlock.values[valNdx]; const char* const valueName = val.valueName.c_str(); if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT) { // Set reference value. string refName = string("ref_") + valueName; setUniformValue(gl, pipelineProgramIDs, refName, val, arrayNdx, m_testCtx.getLog()); GLU_EXPECT_NO_ERROR(gl.getError(), "set reference uniforms"); } else if (val.storageType == ShaderCase::Value::STORAGE_UNIFORM) { setUniformValue(gl, pipelineProgramIDs, valueName, val, arrayNdx, m_testCtx.getLog()); GLU_EXPECT_NO_ERROR(gl.getError(), "set uniforms"); } } // Clear. gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "clear buffer"); // Use program or pipeline if (m_separatePrograms) gl.useProgram(0); else gl.useProgram(vertexProgramID); // Draw. if (tessellationPresent) { gl.patchParameteri(GL_PATCH_VERTICES, 3); GLU_EXPECT_NO_ERROR(gl.getError(), "set patchParameteri(PATCH_VERTICES, 3)"); } draw(m_renderCtx, vertexProgramID, (int)vertexArrays.size(), &vertexArrays[0], (tessellationPresent) ? (pr::Patches(DE_LENGTH_OF_ARRAY(s_indices), &s_indices[0])) : (pr::Triangles(DE_LENGTH_OF_ARRAY(s_indices), &s_indices[0])), (m_expectResult == EXPECT_VALIDATION_FAIL) ? (&beforeDrawValidator) : (DE_NULL)); postDrawError = gl.getError(); if (m_expectResult == EXPECT_PASS) { // Read back results. Surface surface (width, height); const float w = s_positions[3]; const int minY = deCeilFloatToInt32 (((-quadSize / w) * 0.5f + 0.5f) * height + 1.0f); const int maxY = deFloorFloatToInt32(((+quadSize / w) * 0.5f + 0.5f) * height - 0.5f); const int minX = deCeilFloatToInt32 (((-quadSize / w) * 0.5f + 0.5f) * width + 1.0f); const int maxX = deFloorFloatToInt32(((+quadSize / w) * 0.5f + 0.5f) * width - 0.5f); GLU_EXPECT_NO_ERROR(postDrawError, "draw"); glu::readPixels(m_renderCtx, viewportX, viewportY, surface.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "read pixels"); if (!checkPixels(surface, minX, maxX, minY, maxY)) { log << TestLog::Message << "INCORRECT RESULT for (value block " << (blockNdx+1) << " of " << (int)m_valueBlocks.size() << ", sub-case " << arrayNdx+1 << " of " << valueBlock.arrayLength << "):" << TestLog::EndMessage; log << TestLog::Message << "Failing shader input/output values:" << TestLog::EndMessage; dumpValues(valueBlock, arrayNdx); // Dump image on failure. log << TestLog::Image("Result", "Rendered result image", surface); gl.useProgram(0); m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed"); return false; } } else if (m_expectResult == EXPECT_VALIDATION_FAIL) { log << TestLog::Message << "Draw call generated error: " << glu::getErrorStr(postDrawError) << " " << ((postDrawError == GL_INVALID_OPERATION) ? ("(expected)") : ("(unexpected)")) << "\n" << "Validate status: " << glu::getBooleanStr(beforeDrawValidator.getValidateStatus()) << " " << ((beforeDrawValidator.getValidateStatus() == GL_FALSE) ? ("(expected)") : ("(unexpected)")) << "\n" << "Info log: " << ((beforeDrawValidator.getInfoLog().empty()) ? ("[empty string]") : (beforeDrawValidator.getInfoLog())) << "\n" << TestLog::EndMessage; // test result if (postDrawError != GL_NO_ERROR && postDrawError != GL_INVALID_OPERATION) { m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, ("Draw: got unexpected error: " + de::toString(glu::getErrorStr(postDrawError))).c_str()); return false; } if (beforeDrawValidator.getValidateStatus() == GL_TRUE) { if (postDrawError == GL_NO_ERROR) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "expected validation and rendering to fail but validation and rendering succeeded"); else if (postDrawError == GL_INVALID_OPERATION) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "expected validation and rendering to fail but validation succeeded (rendering failed as expected)"); else DE_ASSERT(false); return false; } else if (beforeDrawValidator.getValidateStatus() == GL_FALSE && postDrawError == GL_NO_ERROR) { m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "expected validation and rendering to fail but rendering succeeded (validation failed as expected)"); return false; } else if (beforeDrawValidator.getValidateStatus() == GL_FALSE && postDrawError == GL_INVALID_OPERATION) { // Validation does not depend on input values, no need to test all values return true; } else DE_ASSERT(false); } else DE_ASSERT(false); } } gl.useProgram(0); if (m_separatePrograms) gl.bindProgramPipeline(0); GLU_EXPECT_NO_ERROR(gl.getError(), "ShaderCase::execute(): end"); return true; } TestCase::IterateResult ShaderCase::iterate (void) { // Initialize state to pass. m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); bool executeOk = execute(); DE_ASSERT(executeOk ? m_testCtx.getTestResult() == QP_TEST_RESULT_PASS : m_testCtx.getTestResult() != QP_TEST_RESULT_PASS); DE_UNREF(executeOk); return TestCase::STOP; } static void generateExtensionStatements (std::ostringstream& buf, const std::vector<ShaderCase::CaseRequirement>& requirements, glu::ShaderType type) { for (int ndx = 0; ndx < (int)requirements.size(); ++ndx) if (requirements[ndx].getType() == ShaderCase::CaseRequirement::REQUIREMENTTYPE_EXTENSION && (requirements[ndx].getAffectedExtensionStageFlags() & (1 << (deUint32)type)) != 0) buf << "#extension " << requirements[ndx].getSupportedExtension() << " : require\n"; } // Injects #extension XXX : require lines after the last preprocessor directive in the shader code. Does not support line continuations static std::string injectExtensionRequirements (const std::string& baseCode, glu::ShaderType shaderType, const std::vector<ShaderCase::CaseRequirement>& requirements) { std::istringstream baseCodeBuf(baseCode); std::ostringstream resultBuf; std::string line; bool firstNonPreprocessorLine = true; std::ostringstream extensions; generateExtensionStatements(extensions, requirements, shaderType); // skip if no requirements if (extensions.str().empty()) return baseCode; while (std::getline(baseCodeBuf, line)) { // begins with '#'? const std::string::size_type firstNonWhitespace = line.find_first_not_of("\t "); const bool isPreprocessorDirective = (firstNonWhitespace != std::string::npos && line.at(firstNonWhitespace) == '#'); // Inject #extensions if (!isPreprocessorDirective && firstNonPreprocessorLine) { firstNonPreprocessorLine = false; resultBuf << extensions.str(); } resultBuf << line << "\n"; } return resultBuf.str(); } // This functions builds a matching vertex shader for a 'both' case, when // the fragment shader is being tested. // We need to build attributes and varyings for each 'input'. string ShaderCase::genVertexShader (const ValueBlock& valueBlock) const { ostringstream res; const bool usesInout = usesShaderInoutQualifiers(m_targetVersion); const char* vtxIn = usesInout ? "in" : "attribute"; const char* vtxOut = usesInout ? "out" : "varying"; res << glu::getGLSLVersionDeclaration(m_targetVersion) << "\n"; // Declarations (position + attribute/varying for each input). res << "precision highp float;\n"; res << "precision highp int;\n"; res << "\n"; res << vtxIn << " highp vec4 dEQP_Position;\n"; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; if (val.storageType == ShaderCase::Value::STORAGE_INPUT) { DataType floatType = getDataTypeFloatScalars(val.dataType); const char* typeStr = getDataTypeName(floatType); res << vtxIn << " " << typeStr << " a_" << val.valueName << ";\n"; if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT) res << vtxOut << " " << typeStr << " " << val.valueName << ";\n"; else res << vtxOut << " " << typeStr << " v_" << val.valueName << ";\n"; } } res << "\n"; // Main function. // - gl_Position = dEQP_Position; // - for each input: write attribute directly to varying res << "void main()\n"; res << "{\n"; res << " gl_Position = dEQP_Position;\n"; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; if (val.storageType == ShaderCase::Value::STORAGE_INPUT) { const string& name = val.valueName; if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT) res << " " << name << " = a_" << name << ";\n"; else res << " v_" << name << " = a_" << name << ";\n"; } } res << "}\n"; return res.str(); } static void genCompareFunctions (ostringstream& stream, const ShaderCase::ValueBlock& valueBlock, bool useFloatTypes) { bool cmpTypeFound[TYPE_LAST]; for (int i = 0; i < TYPE_LAST; i++) cmpTypeFound[i] = false; for (int valueNdx = 0; valueNdx < (int)valueBlock.values.size(); valueNdx++) { const ShaderCase::Value& val = valueBlock.values[valueNdx]; if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT) cmpTypeFound[(int)val.dataType] = true; } if (useFloatTypes) { if (cmpTypeFound[TYPE_BOOL]) stream << "bool isOk (float a, bool b) { return ((a > 0.5) == b); }\n"; if (cmpTypeFound[TYPE_BOOL_VEC2]) stream << "bool isOk (vec2 a, bvec2 b) { return (greaterThan(a, vec2(0.5)) == b); }\n"; if (cmpTypeFound[TYPE_BOOL_VEC3]) stream << "bool isOk (vec3 a, bvec3 b) { return (greaterThan(a, vec3(0.5)) == b); }\n"; if (cmpTypeFound[TYPE_BOOL_VEC4]) stream << "bool isOk (vec4 a, bvec4 b) { return (greaterThan(a, vec4(0.5)) == b); }\n"; if (cmpTypeFound[TYPE_INT]) stream << "bool isOk (float a, int b) { float atemp = a+0.5; return (float(b) <= atemp && atemp <= float(b+1)); }\n"; if (cmpTypeFound[TYPE_INT_VEC2]) stream << "bool isOk (vec2 a, ivec2 b) { return (ivec2(floor(a + 0.5)) == b); }\n"; if (cmpTypeFound[TYPE_INT_VEC3]) stream << "bool isOk (vec3 a, ivec3 b) { return (ivec3(floor(a + 0.5)) == b); }\n"; if (cmpTypeFound[TYPE_INT_VEC4]) stream << "bool isOk (vec4 a, ivec4 b) { return (ivec4(floor(a + 0.5)) == b); }\n"; if (cmpTypeFound[TYPE_UINT]) stream << "bool isOk (float a, uint b) { float atemp = a+0.5; return (float(b) <= atemp && atemp <= float(b+1u)); }\n"; if (cmpTypeFound[TYPE_UINT_VEC2]) stream << "bool isOk (vec2 a, uvec2 b) { return (uvec2(floor(a + 0.5)) == b); }\n"; if (cmpTypeFound[TYPE_UINT_VEC3]) stream << "bool isOk (vec3 a, uvec3 b) { return (uvec3(floor(a + 0.5)) == b); }\n"; if (cmpTypeFound[TYPE_UINT_VEC4]) stream << "bool isOk (vec4 a, uvec4 b) { return (uvec4(floor(a + 0.5)) == b); }\n"; } else { if (cmpTypeFound[TYPE_BOOL]) stream << "bool isOk (bool a, bool b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_BOOL_VEC2]) stream << "bool isOk (bvec2 a, bvec2 b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_BOOL_VEC3]) stream << "bool isOk (bvec3 a, bvec3 b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_BOOL_VEC4]) stream << "bool isOk (bvec4 a, bvec4 b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_INT]) stream << "bool isOk (int a, int b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_INT_VEC2]) stream << "bool isOk (ivec2 a, ivec2 b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_INT_VEC3]) stream << "bool isOk (ivec3 a, ivec3 b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_INT_VEC4]) stream << "bool isOk (ivec4 a, ivec4 b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_UINT]) stream << "bool isOk (uint a, uint b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_UINT_VEC2]) stream << "bool isOk (uvec2 a, uvec2 b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_UINT_VEC3]) stream << "bool isOk (uvec3 a, uvec3 b) { return (a == b); }\n"; if (cmpTypeFound[TYPE_UINT_VEC4]) stream << "bool isOk (uvec4 a, uvec4 b) { return (a == b); }\n"; } if (cmpTypeFound[TYPE_FLOAT]) stream << "bool isOk (float a, float b, float eps) { return (abs(a-b) <= (eps*abs(b) + eps)); }\n"; if (cmpTypeFound[TYPE_FLOAT_VEC2]) stream << "bool isOk (vec2 a, vec2 b, float eps) { return all(lessThanEqual(abs(a-b), (eps*abs(b) + eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_VEC3]) stream << "bool isOk (vec3 a, vec3 b, float eps) { return all(lessThanEqual(abs(a-b), (eps*abs(b) + eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_VEC4]) stream << "bool isOk (vec4 a, vec4 b, float eps) { return all(lessThanEqual(abs(a-b), (eps*abs(b) + eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_MAT2]) stream << "bool isOk (mat2 a, mat2 b, float eps) { vec2 diff = max(abs(a[0]-b[0]), abs(a[1]-b[1])); return all(lessThanEqual(diff, vec2(eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_MAT2X3]) stream << "bool isOk (mat2x3 a, mat2x3 b, float eps) { vec3 diff = max(abs(a[0]-b[0]), abs(a[1]-b[1])); return all(lessThanEqual(diff, vec3(eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_MAT2X4]) stream << "bool isOk (mat2x4 a, mat2x4 b, float eps) { vec4 diff = max(abs(a[0]-b[0]), abs(a[1]-b[1])); return all(lessThanEqual(diff, vec4(eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_MAT3X2]) stream << "bool isOk (mat3x2 a, mat3x2 b, float eps) { vec2 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), abs(a[2]-b[2])); return all(lessThanEqual(diff, vec2(eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_MAT3]) stream << "bool isOk (mat3 a, mat3 b, float eps) { vec3 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), abs(a[2]-b[2])); return all(lessThanEqual(diff, vec3(eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_MAT3X4]) stream << "bool isOk (mat3x4 a, mat3x4 b, float eps) { vec4 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), abs(a[2]-b[2])); return all(lessThanEqual(diff, vec4(eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_MAT4X2]) stream << "bool isOk (mat4x2 a, mat4x2 b, float eps) { vec2 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), max(abs(a[2]-b[2]), abs(a[3]-b[3]))); return all(lessThanEqual(diff, vec2(eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_MAT4X3]) stream << "bool isOk (mat4x3 a, mat4x3 b, float eps) { vec3 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), max(abs(a[2]-b[2]), abs(a[3]-b[3]))); return all(lessThanEqual(diff, vec3(eps))); }\n"; if (cmpTypeFound[TYPE_FLOAT_MAT4]) stream << "bool isOk (mat4 a, mat4 b, float eps) { vec4 diff = max(max(abs(a[0]-b[0]), abs(a[1]-b[1])), max(abs(a[2]-b[2]), abs(a[3]-b[3]))); return all(lessThanEqual(diff, vec4(eps))); }\n"; } static void genCompareOp (ostringstream& output, const char* dstVec4Var, const ShaderCase::ValueBlock& valueBlock, const char* nonFloatNamePrefix, const char* checkVarName) { bool isFirstOutput = true; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; const char* valueName = val.valueName.c_str(); if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT) { // Check if we're only interested in one variable (then skip if not the right one). if (checkVarName && !deStringEqual(valueName, checkVarName)) continue; // Prefix. if (isFirstOutput) { output << "bool RES = "; isFirstOutput = false; } else output << "RES = RES && "; // Generate actual comparison. if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT) output << "isOk(" << valueName << ", ref_" << valueName << ", 0.05);\n"; else output << "isOk(" << nonFloatNamePrefix << valueName << ", ref_" << valueName << ");\n"; } // \note Uniforms are already declared in shader. } if (isFirstOutput) output << dstVec4Var << " = vec4(1.0);\n"; // \todo [petri] Should we give warning if not expect-failure case? else output << dstVec4Var << " = vec4(RES, RES, RES, 1.0);\n"; } string ShaderCase::genFragmentShader (const ValueBlock& valueBlock) const { ostringstream shader; const bool usesInout = usesShaderInoutQualifiers(m_targetVersion); const bool customColorOut = usesInout; const char* fragIn = usesInout ? "in" : "varying"; const char* prec = supportsFragmentHighp(m_targetVersion) ? "highp" : "mediump"; shader << glu::getGLSLVersionDeclaration(m_targetVersion) << "\n"; shader << "precision " << prec << " float;\n"; shader << "precision " << prec << " int;\n"; shader << "\n"; if (customColorOut) { shader << "layout(location = 0) out mediump vec4 dEQP_FragColor;\n"; shader << "\n"; } genCompareFunctions(shader, valueBlock, true); shader << "\n"; // Declarations (varying, reference for each output). for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; DataType floatType = getDataTypeFloatScalars(val.dataType); const char* floatTypeStr = getDataTypeName(floatType); const char* refTypeStr = getDataTypeName(val.dataType); if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT) { if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT) shader << fragIn << " " << floatTypeStr << " " << val.valueName << ";\n"; else shader << fragIn << " " << floatTypeStr << " v_" << val.valueName << ";\n"; shader << "uniform " << refTypeStr << " ref_" << val.valueName << ";\n"; } } shader << "\n"; shader << "void main()\n"; shader << "{\n"; shader << " "; genCompareOp(shader, customColorOut ? "dEQP_FragColor" : "gl_FragColor", valueBlock, "v_", DE_NULL); shader << "}\n"; return shader.str(); } // Specialize a shader for the vertex shader test case. string ShaderCase::specializeVertexShader (const char* src, const ValueBlock& valueBlock) const { ostringstream decl; ostringstream setup; ostringstream output; const bool usesInout = usesShaderInoutQualifiers(m_targetVersion); const char* vtxIn = usesInout ? "in" : "attribute"; const char* vtxOut = usesInout ? "out" : "varying"; // generated from "both" case DE_ASSERT(m_caseType == CASETYPE_VERTEX_ONLY); // Output (write out position). output << "gl_Position = dEQP_Position;\n"; // Declarations (position + attribute for each input, varying for each output). decl << vtxIn << " highp vec4 dEQP_Position;\n"; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; const char* valueName = val.valueName.c_str(); DataType floatType = getDataTypeFloatScalars(val.dataType); const char* floatTypeStr = getDataTypeName(floatType); const char* refTypeStr = getDataTypeName(val.dataType); if (val.storageType == ShaderCase::Value::STORAGE_INPUT) { if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT) { decl << vtxIn << " " << floatTypeStr << " " << valueName << ";\n"; } else { decl << vtxIn << " " << floatTypeStr << " a_" << valueName << ";\n"; setup << refTypeStr << " " << valueName << " = " << refTypeStr << "(a_" << valueName << ");\n"; } } else if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT) { if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT) decl << vtxOut << " " << floatTypeStr << " " << valueName << ";\n"; else { decl << vtxOut << " " << floatTypeStr << " v_" << valueName << ";\n"; decl << refTypeStr << " " << valueName << ";\n"; output << "v_" << valueName << " = " << floatTypeStr << "(" << valueName << ");\n"; } } } // Shader specialization. map<string, string> params; params.insert(pair<string, string>("DECLARATIONS", decl.str())); params.insert(pair<string, string>("SETUP", setup.str())); params.insert(pair<string, string>("OUTPUT", output.str())); params.insert(pair<string, string>("POSITION_FRAG_COLOR", "gl_Position")); StringTemplate tmpl (src); const string baseSrc = tmpl.specialize(params); const string withExt = injectExtensionRequirements(baseSrc, SHADERTYPE_VERTEX, m_programs[0].spec.requirements); return withExt; } // Specialize a shader for the fragment shader test case. string ShaderCase::specializeFragmentShader (const char* src, const ValueBlock& valueBlock) const { ostringstream decl; ostringstream setup; ostringstream output; const bool usesInout = usesShaderInoutQualifiers(m_targetVersion); const bool customColorOut = usesInout; const char* fragIn = usesInout ? "in" : "varying"; const char* fragColor = customColorOut ? "dEQP_FragColor" : "gl_FragColor"; // generated from "both" case DE_ASSERT(m_caseType == CASETYPE_FRAGMENT_ONLY); genCompareFunctions(decl, valueBlock, false); genCompareOp(output, fragColor, valueBlock, "", DE_NULL); if (customColorOut) decl << "layout(location = 0) out mediump vec4 dEQP_FragColor;\n"; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; const char* valueName = val.valueName.c_str(); DataType floatType = getDataTypeFloatScalars(val.dataType); const char* floatTypeStr = getDataTypeName(floatType); const char* refTypeStr = getDataTypeName(val.dataType); if (val.storageType == ShaderCase::Value::STORAGE_INPUT) { if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT) decl << fragIn << " " << floatTypeStr << " " << valueName << ";\n"; else { decl << fragIn << " " << floatTypeStr << " v_" << valueName << ";\n"; std::string offset = isDataTypeIntOrIVec(val.dataType) ? " * 1.0025" : ""; // \todo [petri] bit of a hack to avoid errors in chop() due to varying interpolation setup << refTypeStr << " " << valueName << " = " << refTypeStr << "(v_" << valueName << offset << ");\n"; } } else if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT) { decl << "uniform " << refTypeStr << " ref_" << valueName << ";\n"; decl << refTypeStr << " " << valueName << ";\n"; } } /* \todo [2010-04-01 petri] Check all outputs. */ // Shader specialization. map<string, string> params; params.insert(pair<string, string>("DECLARATIONS", decl.str())); params.insert(pair<string, string>("SETUP", setup.str())); params.insert(pair<string, string>("OUTPUT", output.str())); params.insert(pair<string, string>("POSITION_FRAG_COLOR", fragColor)); StringTemplate tmpl (src); const string baseSrc = tmpl.specialize(params); const string withExt = injectExtensionRequirements(baseSrc, SHADERTYPE_FRAGMENT, m_programs[0].spec.requirements); return withExt; } static map<string, string> generateVertexSpecialization (glu::GLSLVersion targetVersion, const ShaderCase::ValueBlock& valueBlock) { const bool usesInout = usesShaderInoutQualifiers(targetVersion); const char* vtxIn = usesInout ? "in" : "attribute"; ostringstream decl; ostringstream setup; map<string, string> params; decl << vtxIn << " highp vec4 dEQP_Position;\n"; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; const char* typeStr = getDataTypeName(val.dataType); if (val.storageType == ShaderCase::Value::STORAGE_INPUT) { if (getDataTypeScalarType(val.dataType) == TYPE_FLOAT) { decl << vtxIn << " " << typeStr << " " << val.valueName << ";\n"; } else { DataType floatType = getDataTypeFloatScalars(val.dataType); const char* floatTypeStr = getDataTypeName(floatType); decl << vtxIn << " " << floatTypeStr << " a_" << val.valueName << ";\n"; setup << typeStr << " " << val.valueName << " = " << typeStr << "(a_" << val.valueName << ");\n"; } } else if (val.storageType == ShaderCase::Value::STORAGE_UNIFORM && val.valueName.find('.') == string::npos) decl << "uniform " << typeStr << " " << val.valueName << ";\n"; } params.insert(pair<string, string>("VERTEX_DECLARATIONS", decl.str())); params.insert(pair<string, string>("VERTEX_SETUP", setup.str())); params.insert(pair<string, string>("VERTEX_OUTPUT", string("gl_Position = dEQP_Position;\n"))); return params; } static map<string, string> generateFragmentSpecialization (glu::GLSLVersion targetVersion, const ShaderCase::ValueBlock& valueBlock) { const bool usesInout = usesShaderInoutQualifiers(targetVersion); const bool customColorOut = usesInout; const char* fragColor = customColorOut ? "dEQP_FragColor" : "gl_FragColor"; ostringstream decl; ostringstream output; map<string, string> params; genCompareFunctions(decl, valueBlock, false); genCompareOp(output, fragColor, valueBlock, "", DE_NULL); if (customColorOut) decl << "layout(location = 0) out mediump vec4 dEQP_FragColor;\n"; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; const char* valueName = val.valueName.c_str(); const char* refTypeStr = getDataTypeName(val.dataType); if (val.storageType == ShaderCase::Value::STORAGE_OUTPUT) { decl << "uniform " << refTypeStr << " ref_" << valueName << ";\n"; decl << refTypeStr << " " << valueName << ";\n"; } else if (val.storageType == ShaderCase::Value::STORAGE_UNIFORM && val.valueName.find('.') == string::npos) { decl << "uniform " << refTypeStr << " " << valueName << ";\n"; } } params.insert(pair<string, string>("FRAGMENT_DECLARATIONS", decl.str())); params.insert(pair<string, string>("FRAGMENT_OUTPUT", output.str())); params.insert(pair<string, string>("FRAG_COLOR", fragColor)); return params; } static map<string, string> generateGeometrySpecialization (glu::GLSLVersion targetVersion, const ShaderCase::ValueBlock& valueBlock) { ostringstream decl; map<string, string> params; DE_UNREF(targetVersion); decl << "layout (triangles) in;\n"; decl << "layout (triangle_strip, max_vertices=3) out;\n"; decl << "\n"; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; const char* valueName = val.valueName.c_str(); const char* refTypeStr = getDataTypeName(val.dataType); if (val.storageType == ShaderCase::Value::STORAGE_UNIFORM && val.valueName.find('.') == string::npos) { decl << "uniform " << refTypeStr << " " << valueName << ";\n"; } } params.insert(pair<string, string>("GEOMETRY_DECLARATIONS", decl.str())); return params; } static map<string, string> generateTessControlSpecialization (glu::GLSLVersion targetVersion, const ShaderCase::ValueBlock& valueBlock) { ostringstream decl; ostringstream output; map<string, string> params; DE_UNREF(targetVersion); decl << "layout (vertices=3) out;\n"; decl << "\n"; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; const char* valueName = val.valueName.c_str(); const char* refTypeStr = getDataTypeName(val.dataType); if (val.storageType == ShaderCase::Value::STORAGE_UNIFORM && val.valueName.find('.') == string::npos) { decl << "uniform " << refTypeStr << " " << valueName << ";\n"; } } output << "gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n" "gl_TessLevelInner[0] = 2.0;\n" "gl_TessLevelInner[1] = 2.0;\n" "gl_TessLevelOuter[0] = 2.0;\n" "gl_TessLevelOuter[1] = 2.0;\n" "gl_TessLevelOuter[2] = 2.0;\n" "gl_TessLevelOuter[3] = 2.0;"; params.insert(pair<string, string>("TESSELLATION_CONTROL_DECLARATIONS", decl.str())); params.insert(pair<string, string>("TESSELLATION_CONTROL_OUTPUT", output.str())); return params; } static map<string, string> generateTessEvalSpecialization (glu::GLSLVersion targetVersion, const ShaderCase::ValueBlock& valueBlock) { ostringstream decl; ostringstream output; map<string, string> params; DE_UNREF(targetVersion); decl << "layout (triangles) in;\n"; decl << "\n"; for (int ndx = 0; ndx < (int)valueBlock.values.size(); ndx++) { const ShaderCase::Value& val = valueBlock.values[ndx]; const char* valueName = val.valueName.c_str(); const char* refTypeStr = getDataTypeName(val.dataType); if (val.storageType == ShaderCase::Value::STORAGE_UNIFORM && val.valueName.find('.') == string::npos) { decl << "uniform " << refTypeStr << " " << valueName << ";\n"; } } output << "gl_Position = gl_TessCoord[0] * gl_in[0].gl_Position + gl_TessCoord[1] * gl_in[1].gl_Position + gl_TessCoord[2] * gl_in[2].gl_Position;\n"; params.insert(pair<string, string>("TESSELLATION_EVALUATION_DECLARATIONS", decl.str())); params.insert(pair<string, string>("TESSELLATION_EVALUATION_OUTPUT", output.str())); return params; } static void specializeShaders (glu::ProgramSources& dst, glu::ShaderType shaderType, const std::vector<std::string>& sources, const ShaderCase::ValueBlock& valueBlock, glu::GLSLVersion targetVersion, const std::vector<ShaderCase::CaseRequirement>& requirements, std::map<std::string, std::string> (*specializationGenerator)(glu::GLSLVersion, const ShaderCase::ValueBlock&)) { if (!sources.empty()) { const std::map<std::string, std::string> specializationParams = specializationGenerator(targetVersion, valueBlock); for (int ndx = 0; ndx < (int)sources.size(); ++ndx) { const StringTemplate tmpl (sources[ndx]); const std::string baseGLSLCode = tmpl.specialize(specializationParams); const std::string glslSource = injectExtensionRequirements(baseGLSLCode, shaderType, requirements); dst << glu::ShaderSource(shaderType, glslSource); } } } void ShaderCase::specializeVertexShaders (glu::ProgramSources& dst, const std::vector<std::string>& sources, const ValueBlock& valueBlock, const std::vector<ShaderCase::CaseRequirement>& requirements) const { specializeShaders(dst, glu::SHADERTYPE_VERTEX, sources, valueBlock, m_targetVersion, requirements, generateVertexSpecialization); } void ShaderCase::specializeFragmentShaders (glu::ProgramSources& dst, const std::vector<std::string>& sources, const ValueBlock& valueBlock, const std::vector<ShaderCase::CaseRequirement>& requirements) const { specializeShaders(dst, glu::SHADERTYPE_FRAGMENT, sources, valueBlock, m_targetVersion, requirements, generateFragmentSpecialization); } void ShaderCase::specializeGeometryShaders (glu::ProgramSources& dst, const std::vector<std::string>& sources, const ValueBlock& valueBlock, const std::vector<ShaderCase::CaseRequirement>& requirements) const { specializeShaders(dst, glu::SHADERTYPE_GEOMETRY, sources, valueBlock, m_targetVersion, requirements, generateGeometrySpecialization); } void ShaderCase::specializeTessControlShaders (glu::ProgramSources& dst, const std::vector<std::string>& sources, const ValueBlock& valueBlock, const std::vector<ShaderCase::CaseRequirement>& requirements) const { specializeShaders(dst, glu::SHADERTYPE_TESSELLATION_CONTROL, sources, valueBlock, m_targetVersion, requirements, generateTessControlSpecialization); } void ShaderCase::specializeTessEvalShaders (glu::ProgramSources& dst, const std::vector<std::string>& sources, const ValueBlock& valueBlock, const std::vector<ShaderCase::CaseRequirement>& requirements) const { specializeShaders(dst, glu::SHADERTYPE_TESSELLATION_EVALUATION, sources, valueBlock, m_targetVersion, requirements, generateTessEvalSpecialization); } void ShaderCase::dumpValues (const ValueBlock& valueBlock, int arrayNdx) { int numValues = (int)valueBlock.values.size(); for (int valNdx = 0; valNdx < numValues; valNdx++) { const ShaderCase::Value& val = valueBlock.values[valNdx]; const char* valueName = val.valueName.c_str(); DataType dataType = val.dataType; int scalarSize = getDataTypeScalarSize(val.dataType); ostringstream result; result << " "; if (val.storageType == Value::STORAGE_INPUT) result << "input "; else if (val.storageType == Value::STORAGE_UNIFORM) result << "uniform "; else if (val.storageType == Value::STORAGE_OUTPUT) result << "expected "; result << getDataTypeName(dataType) << " " << valueName << ":"; if (isDataTypeScalar(dataType)) result << " "; if (isDataTypeVector(dataType)) result << " [ "; else if (isDataTypeMatrix(dataType)) result << "\n"; if (isDataTypeScalarOrVector(dataType)) { for (int scalarNdx = 0; scalarNdx < scalarSize; scalarNdx++) { int elemNdx = (val.arrayLength == 1) ? 0 : arrayNdx; const Value::Element& e = val.elements[elemNdx*scalarSize + scalarNdx]; result << ((scalarNdx != 0) ? ", " : ""); if (isDataTypeFloatOrVec(dataType)) result << e.float32; else if (isDataTypeIntOrIVec(dataType)) result << e.int32; else if (isDataTypeUintOrUVec(dataType)) result << (deUint32)e.int32; else if (isDataTypeBoolOrBVec(dataType)) result << (e.bool32 ? "true" : "false"); } } else if (isDataTypeMatrix(dataType)) { int numRows = getDataTypeMatrixNumRows(dataType); int numCols = getDataTypeMatrixNumColumns(dataType); for (int rowNdx = 0; rowNdx < numRows; rowNdx++) { result << " [ "; for (int colNdx = 0; colNdx < numCols; colNdx++) { int elemNdx = (val.arrayLength == 1) ? 0 : arrayNdx; float v = val.elements[elemNdx*scalarSize + rowNdx*numCols + colNdx].float32; result << ((colNdx==0) ? "" : ", ") << v; } result << " ]\n"; } } if (isDataTypeScalar(dataType)) result << "\n"; else if (isDataTypeVector(dataType)) result << " ]\n"; m_testCtx.getLog() << TestLog::Message << result.str() << TestLog::EndMessage; } } } // sl } // gls } // deqp