// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIXSTORAGE_H #define EIGEN_MATRIXSTORAGE_H #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN EIGEN_DENSE_STORAGE_CTOR_PLUGIN; #else #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN #endif namespace Eigen { namespace internal { struct constructor_without_unaligned_array_assert {}; template<typename T, int Size> void check_static_allocation_size() { // if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit #if EIGEN_STACK_ALLOCATION_LIMIT EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG); #endif } /** \internal * Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned: * to 16 bytes boundary if the total size is a multiple of 16 bytes. */ template <typename T, int Size, int MatrixOrArrayOptions, int Alignment = (MatrixOrArrayOptions&DontAlign) ? 0 : (((Size*sizeof(T))%16)==0) ? 16 : 0 > struct plain_array { T array[Size]; plain_array() { check_static_allocation_size<T,Size>(); } plain_array(constructor_without_unaligned_array_assert) { check_static_allocation_size<T,Size>(); } }; #if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT) #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) #elif EIGEN_GNUC_AT_LEAST(4,7) // GCC 4.7 is too aggressive in its optimizations and remove the alignement test based on the fact the array is declared to be aligned. // See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900 // Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined: template<typename PtrType> EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; } #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ eigen_assert((reinterpret_cast<size_t>(eigen_unaligned_array_assert_workaround_gcc47(array)) & sizemask) == 0 \ && "this assertion is explained here: " \ "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ " **** READ THIS WEB PAGE !!! ****"); #else #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ eigen_assert((reinterpret_cast<size_t>(array) & sizemask) == 0 \ && "this assertion is explained here: " \ "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ " **** READ THIS WEB PAGE !!! ****"); #endif template <typename T, int Size, int MatrixOrArrayOptions> struct plain_array<T, Size, MatrixOrArrayOptions, 16> { EIGEN_USER_ALIGN16 T array[Size]; plain_array() { EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf); check_static_allocation_size<T,Size>(); } plain_array(constructor_without_unaligned_array_assert) { check_static_allocation_size<T,Size>(); } }; template <typename T, int MatrixOrArrayOptions, int Alignment> struct plain_array<T, 0, MatrixOrArrayOptions, Alignment> { EIGEN_USER_ALIGN16 T array[1]; plain_array() {} plain_array(constructor_without_unaligned_array_assert) {} }; } // end namespace internal /** \internal * * \class DenseStorage * \ingroup Core_Module * * \brief Stores the data of a matrix * * This class stores the data of fixed-size, dynamic-size or mixed matrices * in a way as compact as possible. * * \sa Matrix */ template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage; // purely fixed-size matrix template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage { internal::plain_array<T,Size,_Options> m_data; public: inline DenseStorage() {} inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()) {} inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {} inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); } static inline DenseIndex rows(void) {return _Rows;} static inline DenseIndex cols(void) {return _Cols;} inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {} inline void resize(DenseIndex,DenseIndex,DenseIndex) {} inline const T *data() const { return m_data.array; } inline T *data() { return m_data.array; } }; // null matrix template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options> { public: inline DenseStorage() {} inline DenseStorage(internal::constructor_without_unaligned_array_assert) {} inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {} inline void swap(DenseStorage& ) {} static inline DenseIndex rows(void) {return _Rows;} static inline DenseIndex cols(void) {return _Cols;} inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {} inline void resize(DenseIndex,DenseIndex,DenseIndex) {} inline const T *data() const { return 0; } inline T *data() { return 0; } }; // more specializations for null matrices; these are necessary to resolve ambiguities template<typename T, int _Options> class DenseStorage<T, 0, Dynamic, Dynamic, _Options> : public DenseStorage<T, 0, 0, 0, _Options> { }; template<typename T, int _Rows, int _Options> class DenseStorage<T, 0, _Rows, Dynamic, _Options> : public DenseStorage<T, 0, 0, 0, _Options> { }; template<typename T, int _Cols, int _Options> class DenseStorage<T, 0, Dynamic, _Cols, _Options> : public DenseStorage<T, 0, 0, 0, _Options> { }; // dynamic-size matrix with fixed-size storage template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options> { internal::plain_array<T,Size,_Options> m_data; DenseIndex m_rows; DenseIndex m_cols; public: inline DenseStorage() : m_rows(0), m_cols(0) {} inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {} inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) : m_rows(nbRows), m_cols(nbCols) {} inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); } inline DenseIndex rows() const {return m_rows;} inline DenseIndex cols() const {return m_cols;} inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; } inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; } inline const T *data() const { return m_data.array; } inline T *data() { return m_data.array; } }; // dynamic-size matrix with fixed-size storage and fixed width template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options> { internal::plain_array<T,Size,_Options> m_data; DenseIndex m_rows; public: inline DenseStorage() : m_rows(0) {} inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {} inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex) : m_rows(nbRows) {} inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } inline DenseIndex rows(void) const {return m_rows;} inline DenseIndex cols(void) const {return _Cols;} inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; } inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; } inline const T *data() const { return m_data.array; } inline T *data() { return m_data.array; } }; // dynamic-size matrix with fixed-size storage and fixed height template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options> { internal::plain_array<T,Size,_Options> m_data; DenseIndex m_cols; public: inline DenseStorage() : m_cols(0) {} inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {} inline DenseStorage(DenseIndex, DenseIndex, DenseIndex nbCols) : m_cols(nbCols) {} inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } inline DenseIndex rows(void) const {return _Rows;} inline DenseIndex cols(void) const {return m_cols;} inline void conservativeResize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; } inline void resize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; } inline const T *data() const { return m_data.array; } inline T *data() { return m_data.array; } }; // purely dynamic matrix. template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options> { T *m_data; DenseIndex m_rows; DenseIndex m_cols; public: inline DenseStorage() : m_data(0), m_rows(0), m_cols(0) {} inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0), m_cols(0) {} inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows), m_cols(nbCols) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); } inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); } inline DenseIndex rows(void) const {return m_rows;} inline DenseIndex cols(void) const {return m_cols;} inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols) { m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols); m_rows = nbRows; m_cols = nbCols; } void resize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols) { if(size != m_rows*m_cols) { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); if (size) m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size); else m_data = 0; EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } m_rows = nbRows; m_cols = nbCols; } inline const T *data() const { return m_data; } inline T *data() { return m_data; } }; // matrix with dynamic width and fixed height (so that matrix has dynamic size). template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options> { T *m_data; DenseIndex m_cols; public: inline DenseStorage() : m_data(0), m_cols(0) {} inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {} inline DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(nbCols) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); } inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } static inline DenseIndex rows(void) {return _Rows;} inline DenseIndex cols(void) const {return m_cols;} inline void conservativeResize(DenseIndex size, DenseIndex, DenseIndex nbCols) { m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols); m_cols = nbCols; } EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex, DenseIndex nbCols) { if(size != _Rows*m_cols) { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); if (size) m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size); else m_data = 0; EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } m_cols = nbCols; } inline const T *data() const { return m_data; } inline T *data() { return m_data; } }; // matrix with dynamic height and fixed width (so that matrix has dynamic size). template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options> { T *m_data; DenseIndex m_rows; public: inline DenseStorage() : m_data(0), m_rows(0) {} inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {} inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows) { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); } inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } inline DenseIndex rows(void) const {return m_rows;} static inline DenseIndex cols(void) {return _Cols;} inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex) { m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols); m_rows = nbRows; } EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex nbRows, DenseIndex) { if(size != m_rows*_Cols) { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); if (size) m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size); else m_data = 0; EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } m_rows = nbRows; } inline const T *data() const { return m_data; } inline T *data() { return m_data; } }; } // end namespace Eigen #endif // EIGEN_MATRIX_H