// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSE_PERMUTATION_H #define EIGEN_SPARSE_PERMUTATION_H // This file implements sparse * permutation products namespace Eigen { namespace internal { template<typename PermutationType, typename MatrixType, int Side, bool Transposed> struct traits<permut_sparsematrix_product_retval<PermutationType, MatrixType, Side, Transposed> > { typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned; typedef typename MatrixTypeNestedCleaned::Scalar Scalar; typedef typename MatrixTypeNestedCleaned::Index Index; enum { SrcStorageOrder = MatrixTypeNestedCleaned::Flags&RowMajorBit ? RowMajor : ColMajor, MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight }; typedef typename internal::conditional<MoveOuter, SparseMatrix<Scalar,SrcStorageOrder,Index>, SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,Index> >::type ReturnType; }; template<typename PermutationType, typename MatrixType, int Side, bool Transposed> struct permut_sparsematrix_product_retval : public ReturnByValue<permut_sparsematrix_product_retval<PermutationType, MatrixType, Side, Transposed> > { typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned; typedef typename MatrixTypeNestedCleaned::Scalar Scalar; typedef typename MatrixTypeNestedCleaned::Index Index; enum { SrcStorageOrder = MatrixTypeNestedCleaned::Flags&RowMajorBit ? RowMajor : ColMajor, MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight }; permut_sparsematrix_product_retval(const PermutationType& perm, const MatrixType& matrix) : m_permutation(perm), m_matrix(matrix) {} inline int rows() const { return m_matrix.rows(); } inline int cols() const { return m_matrix.cols(); } template<typename Dest> inline void evalTo(Dest& dst) const { if(MoveOuter) { SparseMatrix<Scalar,SrcStorageOrder,Index> tmp(m_matrix.rows(), m_matrix.cols()); Matrix<Index,Dynamic,1> sizes(m_matrix.outerSize()); for(Index j=0; j<m_matrix.outerSize(); ++j) { Index jp = m_permutation.indices().coeff(j); sizes[((Side==OnTheLeft) ^ Transposed) ? jp : j] = m_matrix.innerVector(((Side==OnTheRight) ^ Transposed) ? jp : j).size(); } tmp.reserve(sizes); for(Index j=0; j<m_matrix.outerSize(); ++j) { Index jp = m_permutation.indices().coeff(j); Index jsrc = ((Side==OnTheRight) ^ Transposed) ? jp : j; Index jdst = ((Side==OnTheLeft) ^ Transposed) ? jp : j; for(typename MatrixTypeNestedCleaned::InnerIterator it(m_matrix,jsrc); it; ++it) tmp.insertByOuterInner(jdst,it.index()) = it.value(); } dst = tmp; } else { SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,Index> tmp(m_matrix.rows(), m_matrix.cols()); Matrix<Index,Dynamic,1> sizes(tmp.outerSize()); sizes.setZero(); PermutationMatrix<Dynamic,Dynamic,Index> perm; if((Side==OnTheLeft) ^ Transposed) perm = m_permutation; else perm = m_permutation.transpose(); for(Index j=0; j<m_matrix.outerSize(); ++j) for(typename MatrixTypeNestedCleaned::InnerIterator it(m_matrix,j); it; ++it) sizes[perm.indices().coeff(it.index())]++; tmp.reserve(sizes); for(Index j=0; j<m_matrix.outerSize(); ++j) for(typename MatrixTypeNestedCleaned::InnerIterator it(m_matrix,j); it; ++it) tmp.insertByOuterInner(perm.indices().coeff(it.index()),j) = it.value(); dst = tmp; } } protected: const PermutationType& m_permutation; typename MatrixType::Nested m_matrix; }; } /** \returns the matrix with the permutation applied to the columns */ template<typename SparseDerived, typename PermDerived> inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, false> operator*(const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm) { return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, false>(perm, matrix.derived()); } /** \returns the matrix with the permutation applied to the rows */ template<typename SparseDerived, typename PermDerived> inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, false> operator*( const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix) { return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, false>(perm, matrix.derived()); } /** \returns the matrix with the inverse permutation applied to the columns. */ template<typename SparseDerived, typename PermDerived> inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, true> operator*(const SparseMatrixBase<SparseDerived>& matrix, const Transpose<PermutationBase<PermDerived> >& tperm) { return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, true>(tperm.nestedPermutation(), matrix.derived()); } /** \returns the matrix with the inverse permutation applied to the rows. */ template<typename SparseDerived, typename PermDerived> inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, true> operator*(const Transpose<PermutationBase<PermDerived> >& tperm, const SparseMatrixBase<SparseDerived>& matrix) { return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, true>(tperm.nestedPermutation(), matrix.derived()); } } // end namespace Eigen #endif // EIGEN_SPARSE_SELFADJOINTVIEW_H